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The well-known de Vries duality, established by H. de Vries in 1962, states
that the category of compact Hausdorff spaces is dually equivalent to that of
complete compingent Boolean algebras [1].

The notion of Boolean contact algebra (BCA) was developed independently
in the context of region-based theory of space. A BCA is a Boolean algebra B
endowed with a binary relation C satisfying the following axioms:

C1 a C b⇒ a 6= 0 ;

C2 a 6= 0⇒ a C a ;

C3 a C b⇒ c C a ;

C4 a C b, b ≤ c⇒ a C c ;

C5 a C (b ∨ c)⇒ a C b or a C c.

A BCA is extensional if it satisfies

C6 a � b⇒ ∃c ∈ B such that a C c and c ⊥ b,

where ⊥ denotes the complement of the relation C .
Düntsch and Winter established in [3] a representation theorem for exten-

sional BCAs, showing that every extensional BCA is isomorphic to a dense
subalgebra of the regular closed sets of a T1 weakly regular space. It appears
that BCAs are a direct generalization of de Vries’ compingent algebras, and
that the representation theorem for complete BCAs generalizes de Vries dual-
ity for objects. We turn this representation theorem into a duality, including
morphisms, thus answering a question asked informally by Vakarelov.

We also provide a duality for general BCAs (satisfying C1-C5) through clans.
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