Decomposing the discriminator in the semilattice of modal operators

95. Arbeitstagung Allgemeine Algebra

Ivo Düntsch^{*} Department of Computer Science, Brock University, St. Catharines, Ontario duentsch@brocku.ca

Let M(B) be the set of modal operators on a nontrivial Boolean algebra B, and \mathcal{L} be the bounded semilattice $\langle M(B), \vee, f^{\mathbf{0}}, f^{\mathbf{1}} \rangle$, where $f^{\mathbf{0}}(x) \equiv 0$, and

$$f^{\mathbf{1}}(x) = \begin{cases} 0, & \text{if } x = 1, \\ 1, & \text{otherwise.} \end{cases}$$

Observe that $f^{\mathbf{1}}$ is the unary discriminator on B. A discriminator decomposition algebra (DDA) is a bimodal algebra $\langle B, f, g \rangle$ in which $f \lor g = f^{\mathbf{1}}$; DDAs have a close relationship to weak mixed algebras of [2]. A decomposition of $f^{\mathbf{1}}$ is a pair of modal operators $\langle f, g \rangle$ on B such that $\langle B, f, g \rangle$ is a DDA.

We investigate the question how the discriminator can be decomposed. Emphasis is given to minimal pairs (i.e. minimal elements of $\mathcal{L} \times \mathcal{L}$), and dual pseudocomplements in \mathcal{L} . In particular we address the question under which conditions \mathcal{L} is dually pseudocomplemented.

References

- [1] Düntsch, I., Dzik, W., and Orłowska, E. (2017). Decomposing the discriminator in the semilattice of modal operators. Preprint.
- [2] Düntsch, I., Orłowska, E., and Tinchev, T. (2018). Mixed algebras and their logics. Journal of Applied Non-Classical Logics. To appear.

^{*}Joint work with W. Dzik & E. Orłowska [1]