ON THE CLASSIFICATION OF FUNCTIONAL CLONES BY ITS FORMULA AND TYPES DEFINABLE SUBSETS

Alexandr Pinus
Novosibirsk State Technical University, Russia
ag.pinus@gmail.com

As the any functional clone F on the set A is the clone $\operatorname{Tr}\left(\mathfrak{A}_{F}\right)$ of termal functions for the universal algebra $\mathfrak{A}_{F}=<A ; F>$, we have natural interest on the classification of clones F on A by some derived structures of this algebras \mathfrak{A}_{F}, for example, by its algebraic geometries, by Boolean algebras of formula defined subsets of algebra \mathfrak{A}_{F}, by collections of subsets defined by elementary types in \mathfrak{A}_{F}.

We define the clones F_{1}, F_{2} on the set A as algebraically equivalent ($F_{1} \sim_{a l g} F_{2}$), if coincide the algebraic geometries of algebras $\mathfrak{A}_{F_{1}}$ and $\mathfrak{A}_{F_{2}}$ (it is are the collections of algebraic sets of this algebras, see, for example, [1]). Two clones F_{1}, F_{2} on the set A we define as L_{0} - logically equivalent $\left(F_{1} \sim_{l o g} F_{2}\right)$, if coincide the Boolean algebras of quantifier free formula sets of algebras $\mathfrak{A}_{F_{1}}$ and $\mathfrak{A}_{F_{2}}$. Two clones F_{1}, F_{2} on the set A we define as elementary equivalent $\left(F_{1} \sim_{e l} F_{2}\right)$ if coincide the families of sets defined by elementary types in algebras $\mathfrak{A}_{F_{1}}$ and $\mathfrak{A}_{F_{2}}$.

For any clone F on the set A let $P C T(F), C T(F), E C T(F)$ are functional clones of all positive conditional termal, conditional termal, elementary conditional termal functions of algebra \mathfrak{A}_{F} (see, for example, [2]).

The clone F on A is additive (see [1]), if any union of its algebraic sets is also its algebraic set.
Then we have
THEOREM. For any finite set A and any clone F on A :
a) if F is additive clone, then $F \sim_{a l g} P C T(F)$,
b) $F \sim_{l o g} C T(F)$,
c) $F \sim_{e l} E C T(F)$.

Let F_{A} be the collection of all functional clones on A.
COROLLARY. For any finite set A :
a) Any collection of pairwise algebraically non-equivalent additive clones on A is finite,
b) sets $F_{A} / \sim_{l o g}, F_{A} / \sim_{e l}$ are finite.

REFERENCES

1. A.G.Pinus. Algebraic sets of universal algebras and algebraic closure operator.- Lobachevskii Journal of Math., 2017, v.38, №4, p.719-723.
2. A.G.Pinus. The conditional terms and its application in algebra and computional theory.Uspechy Math. Sciences, 2001, v.56, №4, p.35-72.
