ON THE CLASSIFICATION OF FUNCTIONAL CLONES BY ITS FORMULA AND TYPES DEFINABLE SUBSETS

Alexandr Pinus

Novosibirsk State Technical University, Russia ag.pinus@gmail.com

As the any functional clone F on the set A is the clone $Tr(\mathfrak{A}_F)$ of termal functions for the universal algebra $\mathfrak{A}_F = \langle A; F \rangle$, we have natural interest on the classification of clones F on A by some derived structures of this algebras \mathfrak{A}_F , for example, by its algebraic geometries, by Boolean algebras of formula defined subsets of algebra \mathfrak{A}_F , by collections of subsets defined by elementary types in \mathfrak{A}_F .

We define the clones F_1, F_2 on the set A as algebraically equivalent $(F_1 \sim_{alg} F_2)$, if coincide the algebraic geometries of algebras \mathfrak{A}_{F_1} and \mathfrak{A}_{F_2} (it is are the collections of algebraic sets of this algebras, see, for example, [1]). Two clones F_1, F_2 on the set A we define as L_0 - logically equivalent $(F_1 \sim_{log} F_2)$, if coincide the Boolean algebras of quantifier free formula sets of algebras \mathfrak{A}_{F_1} and \mathfrak{A}_{F_2} . Two clones F_1, F_2 on the set A we define as elementary equivalent $(F_1 \sim_{el} F_2)$ if coincide the families of sets defined by elementary types in algebras \mathfrak{A}_{F_1} and \mathfrak{A}_{F_2} .

For any clone F on the set A let PCT(F), CT(F), ECT(F) are functional clones of all positive conditional termal, conditional termal, elementary conditional termal functions of algebra \mathfrak{A}_F (see, for example, [2]).

The clone F on A is *additive* (see [1]), if any union of its algebraic sets is also its algebraic set. Then we have

THEOREM. For any finite set A and any clone F on A:

a) if F is additive clone, then $F \sim_{alg} PCT(F)$,

- b) $F \sim_{log} CT(F)$,
- c) $F \sim_{el} ECT(F)$.

Let F_A be the collection of all functional clones on A.

COROLLARY. For any finite set A:

a) Any collection of pairwise algebraically non-equivalent additive clones on A is finite,

b) sets $F_A / \sim_{log}, F_A / \sim_{el}$ are finite.

REFERENCES

1. A.G.Pinus. Algebraic sets of universal algebras and algebraic closure operator.- Lobachevskii Journal of Math., 2017, v.38, №4, p.719-723.

2. A.G.Pinus. The conditional terms and its application in algebra and computional theory.-Uspechy Math. Sciences, 2001, v.56, №4, p.35-72.