Logical calculus for compact Hausdorff spaces via Boolean algebras with binary relations

Nick Bezhanishvili
Institute for Logic, Language and Computation
University of Amsterdam
https://staff.fnwi.uva.nl/n.bezhanishvili
AAA 95, Bratislava, 10 Feb 2018
joint work with G. Bezhanishvili, T. Santoli, S. Sourabh
Y. Venema

Part 1: Dualities

Stone duality

BA is the category of Boolean algebras and Boolean algebra homomorphisms.

Stone duality

BA is the category of Boolean algebras and Boolean algebra homomorphisms.

A Stone space is a compact Hausdorff space with a basis of clopen sets.

Stone duality

BA is the category of Boolean algebras and Boolean algebra homomorphisms.

A Stone space is a compact Hausdorff space with a basis of clopen sets.

Stone is the category of Stone spaces and continuous maps.

Stone duality

BA is the category of Boolean algebras and Boolean algebra homomorphisms.

A Stone space is a compact Hausdorff space with a basis of clopen sets.

Stone is the category of Stone spaces and continuous maps.
Theorem (Stone duality).
Stone is dually equivalent to BA.

Stone duality

If X is a Stone space, then $\operatorname{Clop}(X)$ is a Boolean algebra.

Stone duality

If X is a Stone space, then $\operatorname{Clop}(X)$ is a Boolean algebra.
If B is a Boolean algebra, then the space X_{B} of ultrafilters of B with the topology given by $\{\alpha(a): a \in B\}$, where

$$
\alpha(a)=\left\{x \in X_{B}: a \in x\right\}
$$

is a Stone topology.

Stone duality

If X is a Stone space, then $\operatorname{Clop}(X)$ is a Boolean algebra.
If B is a Boolean algebra, then the space X_{B} of ultrafilters of B with the topology given by $\{\alpha(a): a \in B\}$, where

$$
\alpha(a)=\left\{x \in X_{B}: a \in x\right\}
$$

is a Stone topology.
Theorem (Stone representation)
Every Boolean algebra B is isomorphic to $\operatorname{Clop}\left(X_{B}\right)$.

de Vries duality

Can Stone duality be extended to a larger class of spaces, e.g., compact Hausdorff spaces?

de Vries duality

Can Stone duality be extended to a larger class of spaces, e.g., compact Hausdorff spaces?

This has been answered positively by de Vries, 1962.

de Vries duality

Can Stone duality be extended to a larger class of spaces, e.g., compact Hausdorff spaces?

This has been answered positively by de Vries, 1962.
We will take another route to arrive at de Vries duality.

de Vries duality

Can Stone duality be extended to a larger class of spaces, e.g., compact Hausdorff spaces?

This has been answered positively by de Vries, 1962.
We will take another route to arrive at de Vries duality.
Our approach is based on the duality used in modal logic.

Modal algebras

A modal algebra is a pair (B, \diamond), where B is a Boolean algebra and $\diamond: B \rightarrow B$ a unary map such that

Modal algebras

A modal algebra is a pair (B, \diamond), where B is a Boolean algebra and $\diamond: B \rightarrow B$ a unary map such that
(1) $\diamond 0=0$,
(2) $\diamond(a \vee b)=\diamond a \vee \diamond b$.

Continuous relations

Let X be a Stone space and $R \subseteq X^{2}$ a binary relation.

Continuous relations

Let X be a Stone space and $R \subseteq X^{2}$ a binary relation. R is called continuous if

Continuous relations

Let X be a Stone space and $R \subseteq X^{2}$ a binary relation. R is called continuous if
(1) $R[x]$ is a closed set for each $x \in X$, where

$$
R[x]=\{y \in X: x R y\} .
$$

Continuous relations

Let X be a Stone space and $R \subseteq X^{2}$ a binary relation. R is called continuous if
(1) $R[x]$ is a closed set for each $x \in X$, where

$$
R[x]=\{y \in X: x R y\} .
$$

(2) $U \in \operatorname{Clop}(X) \Rightarrow R^{-1}[U] \in \operatorname{Clop}(X)$, where

$$
R^{-1}[U]=\{x \in X: R[x] \cap U \neq \emptyset\} .
$$

In other words, $R^{-1}: \operatorname{Clop}(X) \rightarrow \operatorname{Clop}(X)$ is well defined.

Continuous relations

Let X be a Stone space and $R \subseteq X^{2}$ a binary relation. R is called continuous if
(1) $R[x]$ is a closed set for each $x \in X$, where

$$
R[x]=\{y \in X: x R y\} .
$$

(2) $U \in \operatorname{Clop}(X) \Rightarrow R^{-1}[U] \in \operatorname{Clop}(X)$, where

$$
R^{-1}[U]=\{x \in X: R[x] \cap U \neq \emptyset\} .
$$

In other words, $R^{-1}: \operatorname{Clop}(X) \rightarrow \operatorname{Clop}(X)$ is well defined.
Theorem (Esakia, 1974) R is continuous iff $\rho: X \rightarrow V X$ defined by $\rho(x)=R[x]$ is a well-defined continuous map, where $V X$ is the Vietoris space.

Jónsson-Tarski duality

A modal space is a pair (X, R), where X is a Stone space and R is a continuous relation.

Jónsson-Tarski duality

A modal space is a pair (X, R), where X is a Stone space and R is a continuous relation.

If (X, R) is a modal space, then $\left(\operatorname{Clop}(X), R^{-1}\right)$ is a modal algebra.

Jónsson-Tarski duality

A modal space is a pair (X, R), where X is a Stone space and R is a continuous relation.

If (X, R) is a modal space, then $\left(\operatorname{Clop}(X), R^{-1}\right)$ is a modal algebra.

If (B, \diamond) is a modal algebra, then $\left(X_{B}, R_{B}\right)$ is a modal space, where X_{B} is the Stone dual of B and R_{B} is defined by

$$
x R_{B} y \text { iff }(a \in y \Rightarrow \diamond a \in x) .
$$

Jónsson-Tarski duality

A modal space is a pair (X, R), where X is a Stone space and R is a continuous relation.

If (X, R) is a modal space, then $\left(\operatorname{Clop}(X), R^{-1}\right)$ is a modal algebra.

If (B, \diamond) is a modal algebra, then $\left(X_{B}, R_{B}\right)$ is a modal space, where X_{B} is the Stone dual of B and R_{B} is defined by

$$
x R_{B} y \text { iff }(a \in y \Rightarrow \Delta a \in x) .
$$

Theorem (Jónsson-Tarski representation)
Every modal algebra (B, \diamond) is isomorphic to $\left(\operatorname{Clop}\left(X_{B}\right), R_{B}^{-1}\right)$.

Jónsson-Tarski duality

A modal space is a pair (X, R), where X is a Stone space and R is a continuous relation.

If (X, R) is a modal space, then $\left(\operatorname{Clop}(X), R^{-1}\right)$ is a modal algebra.

If (B, \diamond) is a modal algebra, then $\left(X_{B}, R_{B}\right)$ is a modal space, where X_{B} is the Stone dual of B and R_{B} is defined by

$$
x R_{B} y \text { iff }(a \in y \Rightarrow \Delta a \in x) .
$$

Theorem (Jónsson-Tarski representation)
Every modal algebra (B, \diamond) is isomorphic to $\left(\operatorname{Clop}\left(X_{B}\right), R_{B}^{-1}\right)$.
This can be extended to a categorical duality.

Continuous relations

Continuous relations are not symmetric.

Continuous relations

Continuous relations are not symmetric.
While for $U \in \operatorname{Clop}(X)$ we have $R^{-1}[U] \in \operatorname{Clop}(X)$,

Continuous relations

Continuous relations are not symmetric.
While for $U \in \operatorname{Clop}(X)$ we have $R^{-1}[U] \in \operatorname{Clop}(X)$, we may not have $R[U] \in \operatorname{Clop}(X)$, where

$$
R[U]=\left\{x \in X: R^{-1}[x] \cap U \neq \emptyset\right\} .
$$

Continuous relations

Continuous relations are not symmetric.
While for $U \in \operatorname{Clop}(X)$ we have $R^{-1}[U] \in \operatorname{Clop}(X)$,
we may not have $R[U] \in \operatorname{Clop}(X)$, where

$$
R[U]=\left\{x \in X: R^{-1}[x] \cap U \neq \emptyset\right\} .
$$

However, continuous relations satisfy the following symmetric condition.

Continuous relations

Continuous relations are not symmetric.
While for $U \in \operatorname{Clop}(X)$ we have $R^{-1}[U] \in \operatorname{Clop}(X)$,
we may not have $R[U] \in \operatorname{Clop}(X)$, where

$$
R[U]=\left\{x \in X: R^{-1}[x] \cap U \neq \emptyset\right\} .
$$

However, continuous relations satisfy the following symmetric condition.

For each closed set F both $R[F]$ and $R^{-1}[F]$ are closed.

Closed relations

Let X be a compact Hausdorff space.

Closed relations

Let X be a compact Hausdorff space.
A binary relation R on X is called closed if $R[F]$ and $R^{-1}[F]$ are closed for each closed set F.

Closed relations

Let X be a compact Hausdorff space.
A binary relation R on X is called closed if $R[F]$ and $R^{-1}[F]$ are closed for each closed set F.

Theorem. The following are equivalent:

Closed relations

Let X be a compact Hausdorff space.
A binary relation R on X is called closed if $R[F]$ and $R^{-1}[F]$ are closed for each closed set F.

Theorem. The following are equivalent:
(1) R is closed.
(2) R is closed in $X \times X$.

Closed relations

Let X be a compact Hausdorff space.
A binary relation R on X is called closed if $R[F]$ and $R^{-1}[F]$ are closed for each closed set F.

Theorem. The following are equivalent:
(1) R is closed.
(2) R is closed in $X \times X$.

Therefore it is natural to study closed relations.

Closed relations

Let X be a Stone space with a closed relation R.

Closed relations

Let X be a Stone space with a closed relation R.
Then $R^{-1}[U]$ may not be clopen for clopen U.

Closed relations

Let X be a Stone space with a closed relation R.
Then $R^{-1}[U]$ may not be clopen for clopen U.
So R^{-1} may not be a map on $\operatorname{Clop}(X)$.

Closed relations

Let X be a Stone space with a closed relation R.
Then $R^{-1}[U]$ may not be clopen for clopen U.
So R^{-1} may not be a map on $\operatorname{Clop}(X)$.
Define a binary relation \prec on $\operatorname{Clop}(X)$ by

$$
U \prec V \text { iff } U \subseteq R^{-1}[V] .
$$

Closed relations

Let X be a Stone space with a closed relation R.
Then $R^{-1}[U]$ may not be clopen for clopen U.
So R^{-1} may not be a map on $\operatorname{Clop}(X)$.
Define a binary relation \prec on $\operatorname{Clop}(X)$ by

$$
U \prec V \text { iff } U \subseteq R^{-1}[V] .
$$

Alternatively,

$$
U \prec V \text { iff } R[U] \subseteq V .
$$

Closed relations

Let X be a Stone space with a closed relation R.
Then $R^{-1}[U]$ may not be clopen for clopen U.
So R^{-1} may not be a map on $\operatorname{Clop}(X)$.
Define a binary relation \prec on $\operatorname{Clop}(X)$ by

$$
U \prec V \text { iff } U \subseteq R^{-1}[V] .
$$

Alternatively,

$$
U \prec V \text { iff } R[U] \subseteq V .
$$

Then $(\operatorname{Clop}(X), \prec)$ is a Boolean algebra with a binary relation.

Closed relations

Let X be a Stone space with a closed relation R.
Then $R^{-1}[U]$ may not be clopen for clopen U.
So R^{-1} may not be a map on $\operatorname{Clop}(X)$.
Define a binary relation \prec on $\operatorname{Clop}(X)$ by

$$
U \prec V \text { iff } U \subseteq R^{-1}[V] .
$$

Alternatively,

$$
U \prec V \text { iff } R[U] \subseteq V .
$$

Then $(\operatorname{Clop}(X), \prec)$ is a Boolean algebra with a binary relation.

What axioms does this binary relation validate?

Subordinations

Definition. A subordination or a strong inclusion on a Boolean algebra B is a binary relation \prec satisfying

Subordinations

Definition. A subordination or a strong inclusion on a Boolean algebra B is a binary relation \prec satisfying
(S1) $0 \prec a \prec 1$ for each $a \in B$;
(S2) $a \prec b, c$ implies $a \prec b \wedge c$;
(S3) $a, b \prec c$ implies $a \vee b \prec c$;
(S4) $a \leq b \prec c \leq d$ implies $a \prec d$.

Subordinations

Definition. A subordination or a strong inclusion on a Boolean algebra B is a binary relation \prec satisfying
(S1) $0 \prec a \prec 1$ for each $a \in B$;
(S2) $a \prec b, c$ implies $a \prec b \wedge c$;
(S3) $a, b \prec c$ implies $a \vee b \prec c$;
(S4) $a \leq b \prec c \leq d$ implies $a \prec d$.
$(\operatorname{Clop}(X), \prec)$ is a Boolean algebra with a subordination.

Quasi-Modal operators and pre-contact relations

Subordinations are in 1-1 correspondence with Celani's quasi-modal operators.

Quasi-Modal operators and pre-contact relations

Subordinations are in 1-1 correspondence with Celani's quasi-modal operators.

Let (B, \prec) be a BA with subordination.

Quasi-Modal operators and pre-contact relations

Subordinations are in 1-1 correspondence with Celani's quasi-modal operators.

Let (B, \prec) be a BA with subordination.
For $S \subseteq B$, let

$$
\begin{aligned}
& \uparrow S=\{b \in B: \exists a \in S \text { with } a \prec b\} \\
& \downarrow S=\{b \in B: \exists a \in S \text { with } b \prec a\} .
\end{aligned}
$$

Then

$$
\Delta a=\neq a
$$

is a quasi-modal operator.

Quasi-Modal operators and pre-contact relations

Subordinations are in 1-1 correspondence with Celani's quasi-modal operators.

Let (B, \prec) be a BA with subordination.
For $S \subseteq B$, let

$$
\begin{aligned}
& \uparrow S=\{b \in B: \exists a \in S \text { with } a \prec b\} \\
& \ddagger S=\{b \in B: \exists a \in S \text { with } b \prec a\} .
\end{aligned}
$$

Then

$$
\Delta a=\neq a
$$

is a quasi-modal operator.
Subordinations are in 1-1 correspondence with Düntch and Vakarelov's pre-contact relations.

$$
a \delta b \text { iff } a \nprec \neg b .
$$

Boolean algebras with subordinations

One can develop a duality similar to Jónsson-Tarski duality between Stone spaces with closed relations and Boolean algebras with subordinations.

Boolean algebras with subordinations

One can develop a duality similar to Jónsson-Tarski duality between Stone spaces with closed relations and Boolean algebras with subordinations.

Let X be a Stone space with a closed relation R.

Boolean algebras with subordinations

One can develop a duality similar to Jónsson-Tarski duality between Stone spaces with closed relations and Boolean algebras with subordinations.

Let X be a Stone space with a closed relation R.
Then $(\operatorname{Clop}(X), \prec)$ is a Boolean algebra with a subordination.

Modal-like duality

Let (B, \prec) be a BA with subordination and X_{B} be the dual of B.

Modal-like duality

Let (B, \prec) be a BA with subordination and X_{B} be the dual of B.
Define

$$
x R_{B} y \text { provided } \uparrow x \subseteq y
$$

Modal-like duality

Let (B, \prec) be a BA with subordination and X_{B} be the dual of B.
Define

$$
x R_{B} y \text { provided } \uparrow x \subseteq y
$$

Then R_{B} is a closed relation.

Modal-like duality

Let (B, \prec) be a BA with subordination and X_{B} be the dual of B.
Define

$$
x R_{B} y \text { provided } \uparrow x \subseteq y
$$

Then R_{B} is a closed relation.
Theorem (Celani, 2001, Dimov and Vakarelov, 2006) Every Boolean algebra with a subordination (B, \prec) is isomorphic to $(\operatorname{Clop}(X), \prec)$ for some Stone space with a closed relation.

Modal-like duality

Let (B, \prec) be a BA with subordination and X_{B} be the dual of B.
Define

$$
x R_{B} y \text { provided } \uparrow x \subseteq y
$$

Then R_{B} is a closed relation.
Theorem (Celani, 2001, Dimov and Vakarelov, 2006) Every Boolean algebra with a subordination (B, \prec) is isomorphic to $(\operatorname{Clop}(X), \prec)$ for some Stone space with a closed relation.

This correspondence can be extended to dualities of appropriate categories (G.B., N.B, S.S., Y.V., 2014).

Sahlqvist theory

Sahlqvist theory is a powerful tool in modal logic.

Sahlqvist theory

Sahlqvist theory is a powerful tool in modal logic.
Every Sahlqvist modal formula has a first order-correspondent on relational structures.

Sahlqvist theory

Sahlqvist theory is a powerful tool in modal logic.
Every Sahlqvist modal formula has a first order-correspondent on relational structures.
(1) R is reflexive iff $\square p \rightarrow p$ is valid.
(2) R is symmetric iff $p \rightarrow \square \diamond p$ is valid.
(3) R is transitive iff $\square p \rightarrow \square \square p$ is valid.

Sahlqvist theory for subordinations

Consider the following axioms on BAs with subordination:

Sahlqvist theory for subordinations

Consider the following axioms on BAs with subordination:
(S5) $a \prec b$ implies $a \leq b$;
(S6) $a \prec b$ implies $\neg b \prec \neg a$;
(S7) $a \prec b$ implies there is $c \in B$ with $a \prec c \prec b$;

Sahlqvist theory for subordinations

Theorem. (Celani, 2001, Düntch and Vakarelov, 2004) Let (X, R) be the dual of (B, \prec). Then

Sahlqvist theory for subordinations

Theorem. (Celani, 2001, Düntch and Vakarelov, 2004) Let (X, R) be the dual of (B, \prec). Then
(1) R is reflexive iff \prec satisfies (S5).
(2) R is symmetric iff \prec satisfies (S6).
(3) R is transitive iff \prec satisfies (S7).

Sahlqvist theory for subordinations

Theorem. (Celani, 2001, Düntch and Vakarelov, 2004) Let (X, R) be the dual of (B, \prec). Then
(1) R is reflexive iff \prec satisfies (S5).
(2) R is symmetric iff \prec satisfies (S6).
(3) R is transitive iff \prec satisfies (S7).

So if (B, \prec) validates (S1)-(S7), then in its dual (X, R) the relation R is a closed equivalence relation.

Sahlqvist theory for subordinations

Theorem. (Celani, 2001, Düntch and Vakarelov, 2004) Let (X, R) be the dual of (B, \prec). Then
(1) R is reflexive iff \prec satisfies (S5).
(2) R is symmetric iff \prec satisfies (S6).
(3) R is transitive iff \prec satisfies (S7).

So if (B, \prec) validates (S1)-(S7), then in its dual (X, R) the relation R is a closed equivalence relation.

Sahlqvist correspondence for similar languages were studied by (Balbiani and Kikot, 2012) and (Santoli, 2016).

Gleason cover

Closed equivalence relations are connected to Gleason covers.

Gleason cover

Closed equivalence relations are connected to Gleason covers.
Definition. An onto continuous map $\pi: X \rightarrow Y$ between compact Hausdorff spaces is called irreducible if the image of a proper closed set is proper.

Gleason cover

Closed equivalence relations are connected to Gleason covers.
Definition. An onto continuous map $\pi: X \rightarrow Y$ between compact Hausdorff spaces is called irreducible if the image of a proper closed set is proper.

The Gleason cover of a compact Hausdorff space Y is a pair (X, π), where X is an extremally disconnected (ED) Stone space and $\pi: X \rightarrow Y$ is an irreducible map.

Regular open sets

Let X be a topological space.

Regular open sets

Let X be a topological space.
A set $U \subseteq X$ is regular open if $\operatorname{Int}(\mathbf{C l}(U))=U$.

Regular open sets

Let X be a topological space.
A set $U \subseteq X$ is regular open if $\operatorname{Int}(\mathbf{C l}(U))=U$.
Let $\mathcal{R O}(X)$ be the Boolean algebra of regular open subsets of X, where

- $U \wedge V=U \cap V$,
- $U \vee V=\operatorname{Int}(\mathbf{C l}(U \cup V))$,
- $\neg U=\operatorname{Int}(X-U)$.

Regular open sets

Let X be a topological space.
A set $U \subseteq X$ is regular open if $\operatorname{Int}(\mathbf{C l}(U))=U$.
Let $\mathcal{R O}(X)$ be the Boolean algebra of regular open subsets of X, where

- $U \wedge V=U \cap V$,
- $U \vee V=\operatorname{Int}(\mathbf{C l}(U \cup V))$,
- $\neg U=\operatorname{Int}(X-U)$.
$\mathcal{R O}(X)$ is a complete Boolean algebra.

Regular open sets

Let X be a topological space.
A set $U \subseteq X$ is regular open if $\operatorname{Int}(\mathbf{C l}(U))=U$.
Let $\mathcal{R O}(X)$ be the Boolean algebra of regular open subsets of X, where

- $U \wedge V=U \cap V$,
- $U \vee V=\operatorname{Int}(\mathbf{C l}(U \cup V))$,
- $\neg U=\operatorname{Int}(X-U)$.
$\mathcal{R O}(X)$ is a complete Boolean algebra.
- $\bigwedge_{i \in I} U_{i}=\operatorname{Int} \bigcap_{i \in I} U_{i}$,
- $\bigvee_{i \in I} U_{i}=\operatorname{Int}\left(\mathbf{C l}\left(\bigcup_{i \in I} U_{i}\right)\right)$.

Gleason cover

Let Y be a compact Hausdorff space.

Gleason cover

Let Y be a compact Hausdorff space.
The Gleason cover of Y is the Stone dual X of $\mathcal{R O}(Y)$.

Gleason cover

Let Y be a compact Hausdorff space.
The Gleason cover of Y is the Stone dual X of $\mathcal{R O}(Y)$.
It comes with an irreducible map $\pi: X \rightarrow Y$.

Gleason cover

Let Y be a compact Hausdorff space.
The Gleason cover of Y is the Stone dual X of $\mathcal{R O}(Y)$.
It comes with an irreducible map $\pi: X \rightarrow Y$.
If Y is a compact Hausdorff space we take its Gleason cover (X, π), and define R on X by $x R y$ if $\pi(x)=\pi(y)$.

Irreducible relations

Then R is a closed equivalence relation on X.

Irreducible relations

Then R is a closed equivalence relation on X.
Since $\pi: X \rightarrow Y$ is irreducible, R in addition satisfies the following condition:

Irreducible relations

Then R is a closed equivalence relation on X.
Since $\pi: X \rightarrow Y$ is irreducible, R in addition satisfies the following condition:
F proper closed subset of $X \Rightarrow R[F]$ is a proper subset of X.

Irreducible relations

Then R is a closed equivalence relation on X.
Since $\pi: X \rightarrow Y$ is irreducible, R in addition satisfies the following condition:
F proper closed subset of $X \Rightarrow R[F]$ is a proper subset of X.
We call such equivalence relations irreducible.

Gleason spaces

Definition. A Gleason space is a pair (X, R) where X is an extremally disconnected Stone space and R is a closed irreducible equivalence relation.

Gleason spaces

Definition. A Gleason space is a pair (X, R) where X is an extremally disconnected Stone space and R is a closed irreducible equivalence relation.

If (X, R) is a Gleason space, then X / R is a compact Hausdorff space.

Gleason spaces

Definition. A Gleason space is a pair (X, R) where X is an extremally disconnected Stone space and R is a closed irreducible equivalence relation.

If (X, R) is a Gleason space, then X / R is a compact Hausdorff space.

Every compact Hausdorff space Y is homeomorphic to X / R for the corresponding Gleason space (X, R).

Gleason spaces

Definition. A Gleason space is a pair (X, R) where X is an extremally disconnected Stone space and R is a closed irreducible equivalence relation.

If (X, R) is a Gleason space, then X / R is a compact Hausdorff space.

Every compact Hausdorff space Y is homeomorphic to X / R for the corresponding Gleason space (X, R).

This establishes a one-to-one correspondence between compact Hausdorff spaces and Gleason spaces.

Gleason spaces

Definition. A Gleason space is a pair (X, R) where X is an extremally disconnected Stone space and R is a closed irreducible equivalence relation.

If (X, R) is a Gleason space, then X / R is a compact Hausdorff space.

Every compact Hausdorff space Y is homeomorphic to X / R for the corresponding Gleason space (X, R).

This establishes a one-to-one correspondence between compact Hausdorff spaces and Gleason spaces.

In fact, this correspondence can be extended to a categorical duality.

Irreducible equivalnce relations

Consider the following axiom on BA's with subordination:

Irreducible equivalnce relations

Consider the following axiom on BA's with subordination:
(S8) $a \neq 0$ implies there is $b \neq 0$ with $b \prec a$.

Irreducible equivalnce relations

Consider the following axiom on BA's with subordination:
(S8) $a \neq 0$ implies there is $b \neq 0$ with $b \prec a$.
(S8) is equivalent to $a=\bigvee\{b: b \prec a\}$.

Irreducible equivalnce relations

Consider the following axiom on BA's with subordination:
(S8) $a \neq 0$ implies there is $b \neq 0$ with $b \prec a$.
(S8) is equivalent to $a=\bigvee\{b: b \prec a\}$.
Theorem. Let (B, \prec) satisfy $(S 1)-(S 7)$ and (X, R) be its dual.

Irreducible equivalnce relations

Consider the following axiom on BA's with subordination:
(S8) $a \neq 0$ implies there is $b \neq 0$ with $b \prec a$.
(S8) is equivalent to $a=\bigvee\{b: b \prec a\}$.
Theorem. Let (B, \prec) satisfy $(S 1)-(S 7)$ and (X, R) be its dual.
Then R is irreducible iff (B, \prec) satisfies (S8).

Gleason spaces

Let (X, R) be a Gleason space.

Gleason spaces

Let (X, R) be a Gleason space.
Then $(\operatorname{Clop}(X), \prec)$ satisfies $(S 1)$-(S8).

Gleason spaces

Let (X, R) be a Gleason space.
Then $(\operatorname{Clop}(X), \prec)$ satisfies (S1)-(S8).
Moreover, since X is also ED, $\operatorname{Clop}(X)$ is complete.

de Vries algebras

Definition (de Vries, 1962) A binary relation \prec on a Boolean algebra is called is a compingent relation or a de Vries subordination if it satisfies (S1)-(S8).

de Vries algebras

Definition (de Vries, 1962) A binary relation \prec on a Boolean algebra is called is a compingent relation or a de Vries subordination if it satisfies (S1)-(S8).

In other words, a compingent relation is a subordination satisfying (S5)-(S8).

de Vries algebras

Definition (de Vries, 1962) A binary relation \prec on a Boolean algebra is called is a compingent relation or a de Vries subordination if it satisfies (S1)-(S8).

In other words, a compingent relation is a subordination satisfying (S5)-(S8).

A de Vries algebra is a pair (B, \prec), where B is a complete Boolean algebra and \prec is a compingent relation.

de Vries algebras

If (X, R) is a Gleason space, then $(\operatorname{Clop}(X), \prec)$ is a de Vries algebra.

de Vries algebras

If (X, R) is a Gleason space, then $(\operatorname{Clop}(X), \prec)$ is a de Vries algebra.

If (B, \prec) is a de Vries algebra, then $\left(X_{B}, R_{B}\right)$ is a Gleason space.

de Vries algebras

If (X, R) is a Gleason space, then $(\operatorname{Clop}(X), \prec)$ is a de Vries algebra.

If (B, \prec) is a de Vries algebra, then $\left(X_{B}, R_{B}\right)$ is a Gleason space.
Theorem (G.B, N.B. Sourabh, Venema, 2014) Every de Vries algebra is isomorphic to $(\operatorname{Clop}(X), \prec)$ for some Gleason space (X, R).

de Vries algebras

If (X, R) is a Gleason space, then $(\operatorname{Clop}(X), \prec)$ is a de Vries algebra.

If (B, \prec) is a de Vries algebra, then $\left(X_{B}, R_{B}\right)$ is a Gleason space.
Theorem (G.B, N.B. Sourabh, Venema, 2014) Every de Vries algebra is isomorphic to $(\operatorname{Clop}(X), \prec)$ for some Gleason space (X, R).

This representation can be extended to a full categorical duality.

Algebra of regular open sets

Let Y be a compact Hausdorff space and let (X, π) be its Gleason cover.

Algebra of regular open sets

Let Y be a compact Hausdorff space and let (X, π) be its Gleason cover.

Then it is well known that $\mathcal{R} \mathcal{O}(Y)$ and $\operatorname{Clop}(X)$ are isomorphic.

Algebra of regular open sets

Let Y be a compact Hausdorff space and let (X, π) be its Gleason cover.

Then it is well known that $\mathcal{R O}(Y)$ and $\operatorname{Clop}(X)$ are isomorphic.
We can define \prec on $\mathcal{R O}(Y)$ by

Algebra of regular open sets

Let Y be a compact Hausdorff space and let (X, π) be its Gleason cover.

Then it is well known that $\mathcal{R O}(Y)$ and $\operatorname{Clop}(X)$ are isomorphic.
We can define \prec on $\mathcal{R} \mathcal{O}(Y)$ by

$$
U \prec V \text { if } \mathbf{C l}(U) \subseteq V
$$

Algebra of regular open sets

Let Y be a compact Hausdorff space and let (X, π) be its Gleason cover.

Then it is well known that $\mathcal{R O}(Y)$ and $\operatorname{Clop}(X)$ are isomorphic.
We can define \prec on $\mathcal{R O}(Y)$ by

$$
U \prec V \text { if } \mathbf{C l}(U) \subseteq V
$$

Then $(\mathcal{R O}(Y), \prec)$ is isomorphic to $(\operatorname{Clop}(X), \prec)$.

Gleason spaces

de Vries duality now follows as a corollary.

Gleason spaces

de Vries duality now follows as a corollary.
Corollary (de Vries, 1962) The category KHaus of compact Haudorff spaces is dual to the category DeV of de Vries algebras.

Part 2: Logical calculi

Language

We will consider formulas in the following language:

$$
p|\top| \varphi \wedge \varphi|\neg \varphi| \varphi \rightsquigarrow \varphi
$$

Language

We will consider formulas in the following language:

$$
p|\top| \varphi \wedge \varphi|\neg \varphi| \varphi \rightsquigarrow \varphi
$$

On a BA with subordination we define

$$
a \rightsquigarrow b= \begin{cases}1 & \text { if } a \prec b \\ 0 & \text { otherwise }\end{cases}
$$

Language

We will consider formulas in the following language:

$$
p|\top| \varphi \wedge \varphi|\neg \varphi| \varphi \rightsquigarrow \varphi
$$

On a BA with subordination we define

$$
a \rightsquigarrow b= \begin{cases}1 & \text { if } a \prec b \\ 0 & \text { otherwise }\end{cases}
$$

Similar semantics was considered by Esakia (1985).

Language

We will consider formulas in the following language:

$$
p|\top| \varphi \wedge \varphi|\neg \varphi| \varphi \rightsquigarrow \varphi
$$

On a BA with subordination we define

$$
a \rightsquigarrow b= \begin{cases}1 & \text { if } a \prec b \\ 0 & \text { otherwise }\end{cases}
$$

Similar semantics was considered by Esakia (1985).
A two sorted language to reason about de Vries algebras was investigated by Balbiani, Tinchev and Vakarelov (2007).

Semantics

In this semantics

$$
a \rightsquigarrow b=1 \text { iff } a \prec b
$$

Semantics

In this semantics
$a \rightsquigarrow b=1$ iff $a \prec b$
and
$\neg(a \rightsquigarrow b)=1$ iff $a \nprec b$.

Axiomatization

A strict implication on a Boolean algebra B is a binary operation $\rightsquigarrow: B \times B \rightarrow B$ satisfying

Axiomatization

A strict implication on a Boolean algebra B is a binary operation $\rightsquigarrow: B \times B \rightarrow B$ satisfying
(I1) $0 \rightsquigarrow a=a \rightsquigarrow 1=1$;
(I2) $(a \vee b) \rightsquigarrow c=(a \rightsquigarrow c) \wedge(b \rightsquigarrow c)$;
(I3) $a \rightsquigarrow(b \wedge c)=(a \rightsquigarrow b) \wedge(a \rightsquigarrow c)$.
Axioms (I1)-(I3) correspond to (S1)-(S4).

Axiomatization

A strict implication on a Boolean algebra B is a binary operation $\rightsquigarrow: B \times B \rightarrow B$ satisfying
(I1) $0 \rightsquigarrow a=a \rightsquigarrow 1=1$;
(I2) $(a \vee b) \rightsquigarrow c=(a \rightsquigarrow c) \wedge(b \rightsquigarrow c)$;
(I3) $a \rightsquigarrow(b \wedge c)=(a \rightsquigarrow b) \wedge(a \rightsquigarrow c)$.
Axioms (I1)-(I3) correspond to (S1)-(S4).
(I2)-(I3) imply (S4).

Axiomatization

Other axioms can be rewritten as follows.
(I4) $a \rightsquigarrow b \leq a \rightarrow b$;
(I5) $a \rightsquigarrow b=\neg b \rightsquigarrow \neg a$;
(I6) $a \rightsquigarrow b=1$ implies $\exists c: a \rightsquigarrow c=1$ and $c \rightsquigarrow b=1$;
(I7) $a \neq 0$ implies $\exists b \neq 0: b \rightsquigarrow a=1$.

Axiomatization

Other axioms can be rewritten as follows.
(I4) $a \rightsquigarrow b \leq a \rightarrow b$;
(I5) $a \rightsquigarrow b=\neg b \rightsquigarrow \neg a$;
(I6) $a \rightsquigarrow b=1$ implies $\exists c: a \rightsquigarrow c=1$ and $c \rightsquigarrow b=1$;
(I7) $a \neq 0$ implies $\exists b \neq 0: b \rightsquigarrow a=1$.
(I4)-(I7) correspond to (S5)-(S8)

Discriminator variety

Strict implication algebras satisfying (I4) form a discriminator variety.

Discriminator variety

Strict implication algebras satisfying (I4) form a discriminator variety.

$$
t(a, b, c)=(\square(a \leftrightarrow b) \wedge c) \vee(\neg \square(a \leftrightarrow b) \wedge a)
$$

Discriminator variety

Strict implication algebras satisfying (I4) form a discriminator variety.

$$
t(a, b, c)=(\square(a \leftrightarrow b) \wedge c) \vee(\neg \square(a \leftrightarrow b) \wedge a)
$$

where

$$
\square a=1 \rightsquigarrow a .
$$

Discriminator variety

This variety is semi-simple and its simple algebras are those where \rightsquigarrow has values in $\{0,1\}$.

Discriminator variety

This variety is semi-simple and its simple algebras are those where \rightsquigarrow has values in $\{0,1\}$.

Corollary 1. (G.B., N.B., Santoli, Venema, 2017) The variety of strict implication algebras satisfying (I4) is generated by BAs with subordinations satisfying (S5).

Discriminator variety

This variety is semi-simple and its simple algebras are those where \rightsquigarrow has values in $\{0,1\}$.

Corollary 1. (G.B., N.B., Santoli, Venema, 2017) The variety of strict implication algebras satisfying (I4) is generated by BAs with subordinations satisfying (S5).

Corollary 2. (G.B., N.B., Santoli, Venema, 2017) The variety of strict implication algebras satisfying (I4) and (I5) is generated by BAs with subordinations satisfying (S5) and (S6).

Discriminator variety

This variety is semi-simple and its simple algebras are those where \rightsquigarrow has values in $\{0,1\}$.

Corollary 1. (G.B., N.B., Santoli, Venema, 2017) The variety of strict implication algebras satisfying (I4) is generated by BAs with subordinations satisfying (S5).

Corollary 2. (G.B., N.B., Santoli, Venema, 2017) The variety of strict implication algebras satisfying (I4) and (I5) is generated by BAs with subordinations satisfying (S5) and (S6).

Simple (I1)-(I5)-algebras correspond to contact algebras.

Completeness

Completeness

What about (I6) and (I7)?

Completeness

What about (I6) and (I7)?
(I6) $a \rightsquigarrow b=1$ implies $\exists c: a \rightsquigarrow c=1$ and $c \rightsquigarrow b=1$;
(I7) $a \neq 0$ implies $\exists b \neq 0: b \rightsquigarrow a=1$.

Completeness

What about (I6) and (I7)?
(I6) $a \rightsquigarrow b=1$ implies $\exists c: a \rightsquigarrow c=1$ and $c \rightsquigarrow b=1$;
(I7) $a \neq 0$ implies $\exists b \neq 0: b \rightsquigarrow a=1$.

These are $\forall \exists$-statements.

Non-standard rules

A class of structures is called inductive if it is closed under directed limits.

Non-standard rules

A class of structures is called inductive if it is closed under directed limits.

Theorem. (Chang-Łos-Suszko) A class of structures is axiomatized by $\forall \exists$-statements iff it is an inductive class.

Hierarchy

Non-standard rules

A non-standard rule is one of the form:

$$
(\rho) \frac{F(\bar{\varphi}, \bar{p}) \rightarrow \chi}{G(\bar{\varphi}) \rightarrow \chi}
$$

where χ is a formula variable, and F, G are formulas, each involving formula variables $\bar{\varphi}$, and with F involving a fresh tuple \bar{p} of proposition letters.

Non-standard rules

A non-standard rule is one of the form:

$$
(\rho) \frac{F(\bar{\varphi}, \bar{p}) \rightarrow \chi}{G(\bar{\varphi}) \rightarrow \chi}
$$

where χ is a formula variable, and F, G are formulas, each involving formula variables $\bar{\varphi}$, and with F involving a fresh tuple \bar{p} of proposition letters.

With the rule (ρ), we associate the first-order formula Φ_{ρ}, defined as:

$$
\Phi_{\rho}:=\forall \bar{a}, b \in B(G(\bar{a}) \not \leq b \Rightarrow \exists \bar{c}: F(\bar{a}, \bar{c}) \not \leq b)
$$

Hierarchy

Formulas $\varphi \quad$ «n \quad varieties
Rules $\Gamma / \varphi \quad \longleftrightarrow$ quasi-varieties
Rules $\Gamma / \Delta \quad \leftrightarrow u \quad$ universal classes
Non-standard rules $\longleftrightarrow \leadsto$ inductive classes

Hierarchy

$$
\begin{array}{ccc}
\text { Logics } & \longleftrightarrow & \text { varieties } \\
\text { Consequence relations } & \longleftrightarrow & \text { quasi-varieties } \\
\text { Multi consequence relations } & \longleftrightarrow & \text { universal classes } \\
\text { Non-standard rule calculi } & \longleftrightarrow & \text { inductive classes }
\end{array}
$$

Non-standard rules

$$
\text { (} \rho 6) \frac{(\varphi \rightsquigarrow p) \wedge(p \rightsquigarrow \psi) \rightarrow \chi}{(\varphi \rightsquigarrow \psi) \rightarrow \chi}
$$

Non-standard rules

($\rho 6) \frac{(\varphi \rightsquigarrow p) \wedge(p \rightsquigarrow \psi) \rightarrow \chi}{(\varphi \rightsquigarrow \psi) \rightarrow \chi}$
($\rho 7) \frac{p \wedge(p \rightsquigarrow \varphi) \rightarrow \chi}{\varphi \rightarrow \chi}$

Non-standard rules

$$
\begin{aligned}
& \text { (} \rho 6) \frac{(\varphi \rightsquigarrow p) \wedge(p \rightsquigarrow \psi) \rightarrow \chi}{(\varphi \rightsquigarrow \psi) \rightarrow \chi} \\
& (\rho 7) \frac{p \wedge(p \rightsquigarrow \varphi) \rightarrow \chi}{\varphi \rightarrow \chi}
\end{aligned}
$$

($\rho 6$) corresponds to (I6) ($\rho 7$) corresponds to (I7)

Completeness

Theorem. (G. B., N. B., Santoli, Venema, 2017)
Let L be obtained by adding non-standard rules $\left\{\rho_{i}\right\}_{i \in I}$ to
(I1)-(I5). Then L is sound and complete wrt the class of algebras satisfying $\left\{\Phi_{\rho_{i}}\right\}_{i \in I}$.

Completeness

Theorem. (G. B., N. B., Santoli, Venema, 2017)
Let L be obtained by adding non-standard rules $\left\{\rho_{i}\right\}_{i \in I}$ to (I1)-(I5). Then L is sound and complete wrt the class of algebras satisfying $\left\{\Phi_{\rho_{i}}\right\}_{i \in I}$.

Key ingredient: Lindenbaum-Tarski like construction.

Completeness

Theorem. (G. B., N. B., Santoli, Venema, 2017)
Let L be obtained by adding non-standard rules $\left\{\rho_{i}\right\}_{i \in I}$ to (I1)-(I5). Then L is sound and complete wrt the class of algebras satisfying $\left\{\Phi_{\rho_{i}}\right\}_{i \in I}$.

Key ingredient: Lindenbaum-Tarski like construction.
Corollary.

- (I1)-(I5) $+(\rho 6),(\rho 7)$ is sound and complete with respect to compingent algebras.

Completeness

Theorem. (G. B., N. B., Santoli, Venema, 2017)
Let L be obtained by adding non-standard rules $\left\{\rho_{i}\right\}_{i \in I}$ to (I1)-(I5). Then L is sound and complete wrt the class of algebras satisfying $\left\{\Phi_{\rho_{i}}\right\}_{i \in I}$.

Key ingredient: Lindenbaum-Tarski like construction.
Corollary.

- (I1)-(I5) $+(\rho 6),(\rho 7)$ is sound and complete with respect to compingent algebras.

What about topological completeness?

Completeness

Given a compingent algebra (B, \prec) we take the MacNeille completion \bar{B} of B.

Completeness

Given a compingent algebra (B, \prec) we take the MacNeille completion \bar{B} of B.

We define \prec on \bar{B} by:

Completeness

Given a compingent algebra (B, \prec) we take the MacNeille completion \bar{B} of B.

We define \prec on \bar{B} by:
$a \prec b$ if there exist $c, d \in B$ such that $a \leq c \prec d \leq b$

Completeness

Given a compingent algebra (B, \prec) we take the MacNeille completion \bar{B} of B.

We define \prec on \bar{B} by:
$a \prec b$ if there exist $c, d \in B$ such that $a \leq c \prec d \leq b$
Theorem.

- Compingent algebras are closed under MacNeille completions.

Completeness

Completeness

Corollary (G. B., N. B., Santoli, Venema, 2017)
(1) (I1)-(I5) $+(\rho 6),(\rho 7)$ is sound and complete wrt de Vries algebras.
(2) (I1)-(I5) $+(\rho 6),(\rho 7)$ is sound and complete wrt Gleason spaces.
(3) (I1)-(I5) $+(\rho 6),(\rho 7)$ is sound and complete wrt compact Haudorff spaces.

Thank you!

