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Canonical extensions via natural dualities

To study lattice-based algebras two valuable tools have been
developed:

@ the theory of topological dualities (started by Marshall
Stone), and in particular the theory of natural dualities
(started by Brian Davey), and

@ the theory of canonical extensions.

In our work with Brian Davey (Melbourne) and Hilary Priestley
(Oxford) a decade ago we presented a new approach to
canonical extensions of lattice-based algebras — in the
spirit of the natural dualities. This can be achieved by using:
(i) in distributive case: Priestley duality as a natural duality,
(i) in non-distributive case (with Andrew and Maria):

a topological representation due to M. Plosc¢ica (1995) which
presents the classical one due to A. Urquhart (1978) in the
spirit of the natural dualities.
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Canonical extensions originated in the 1951-52 papers of
B. Jonsson and A. Tarski, Boolean algebras with operators:

Definition

Let B be a Boolean algebra (with operators) and let Xg be the
Stone space dual to B, i.e., Xg is the set of ultrafilters of B with
an appropriate topology. (Stone duality tells us that we may
identify the Boolean algebra B with the Boolean algebra of
clopen subsets of the Stone space Xg.)

The canonical extension B® of B is the Boolean algebra #(Xg)
of all subsets of the set Xg of ultrafilters of B (with the operators
extended in a natural way).

Thus, roughly speaking, Jonsson and Tarski obtained B? from
the Stone space Xg by forgetting the topology.
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Forty Years Later

@ Forty years later the concept was extended to distr. lattices
and later to general lattices and even posets (M. Gehrke,
J. Harding, B. Jonsson, Y. Venema, A. Palmigiano,...).

@ An equational class of algebras is said to be canonical if it
is closed under the formation of canonical extensions.

@ When the members of the class of lattice-based algebras
are the algebraic models of a logic, canonicity leads to
completeness results for the associated logic.

@ That is partly why the canonical extensions have been
important and have been of an interest to logicians, too.
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The canonical extension L? of L is the doubly algebraic
distributive lattice Up(Xy) of all up-sets of the ordered set

(XL; C) of prime filters of L.

Thus, again, L9 is obtained from the Priestley space X by
forgetting the topology.
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Going beyond BDLs

For the category £ of arbitrary bounded lattices, Gehrke and
Harding (2001) suggested the following definitions:

Definition
Let C be a complete lattice and L be a sublattice of C.

@ Cis called a completion of L.

@ Cis called a dense completion of L if every element of C
can be expressed as a join of meets of elements of L and
as a meet of joins of elements of L.

@ Cis called a compact completion of L if, for any subsets
A,B C L we have A\ A <'\/ Bimplies the existence of finite
subsets A C A, B C Bwith AA </ B.

(Equivalently: if for every filter F and every ideal J of L,
we have A F < \/J implies FNJ # @.)
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Canonical extensions of bounded lattices (CEs of BLs)

Gehrke and Harding (2001) proved:

Let L be a bounded lattice.

@ L has a dense, compact completion C.

@ If C4 and C, are dense, compact completions of L, then
Ci =Co.

@ Abstractly, the canonical extension of a BL L has been
defined as a dense and compact completion of L.

@ Concretely, they constructed L° as the complete lattice of
Galois-stable sets of the polarity R between the filter
lattice Filt(L) and the ideal lattice IdI(L) of L:

(F,) e R:<= Fnl#0.
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@ For the class B of BAs and B € B, we define the dual of B
to be D(B) = B(B, 2), the set of all homomorphisms from
B to 2. There is a one-to-one correspondence between
B(B,2) and the set of ultrafilters of B.

@ For the class D of BDLs and D € D, we define
D(D) = D(D, 2). There is a one-to-one correspondence
between D(D, 2) and the prime filters of D.

@ Forthe class £ of BLs and L € £, we have might have
L(L,2) = 0. M. PloScica defined the dual of L to be
D(L) = L£™(L,2), the set of maximal partial
homomorphisms from L into 2. There is a one-to-one
correspondence between £L™P(L,2) and maximal pairwise
disjoint filter-ideal pairs used by Urquhart (1978).
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Ploscica’s representation for bounded lattices

@ Let L be a bounded lattice. Ploscica’s dual of L is
D(L) = X, := (£™(L,2), R, T) where binary (reflexive)
relation R for f,g € L™ (L, 2) is defined as follows:
(f,g) e Rif Yae domfndomg, f(a) < g(a).
(Equivalently: (f,g) € R iff f~'(1)ng='(0) =0.)
The topology 7 has as a subbasis of closed sets
Va={feL™(L2)|fa)=0},
Wo={feL™(L2)|flay=1}.
@ Plo&cica’s second dual of L is ED(L) := G7°(X¢, 27), the
set of all continuous maximal partial R-preserving maps
from X, = (L™(L,2),R,T)t0 2+ =({0,1},<, 7).

Theorem (Plos¢ica, 1995)

Let L € L. Then L= ED(L) via the map a — e, where
€a: (XL, T) — 21 is defined by e,(f) = f(a).
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Example of the dual graph of a bounded lattice

f
1 2
fcb [ ] \. fac
a (o I I
fca [ ] [ ] be
[ /
0
fba
L XL

The modular lattice L = M3 and its graph X, = (L™(L,2), R).

We define f, € L™(L,2) by f,,'(1) = tx and f,' (0) = ly.
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Canonical extensions of BLs

Let L € £ be a bounded lattice. We have the maps
D:L — Xy :=(L™(L,2),R,T),
> Xy — X = (L™(L,2), R),
C: X — C(X):=g™(X,2).

D
L

gr

ct g

C

Figure: Factorisation of ? in £ (Craig, Haviar, Priestley [ACS, 2013])
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CEs of BLs (Craig, Haviar, Priestley [ACS, 2013])

The fact that the previous diagram commutes is the content of
the following result:

Theorem

LetLe £ beaBL. Let D’(L) = X = (L™(L,2), R) be
Ploscica’s dual of L (without topology). The lattice
C(X) = g™ (X, 2) ordered by

p<yie= o (1) Sy (1)

is the canonical extension of L.

We proved the density and compactness of C(X) (technical).

EoD
Co’ oD

L=~ e (L) = ED(L) c
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Dual representation: perfect lattices vs RS frames

(Dunne, Gehrke,Palmigiano [2005], Gehrke [2006])

C is a perfect lattice if C is complete, and for all ¢ € C,
c=\/{jes=@C)|j<c}= A\{meM(C)|lc<m}

From perfect lattices to RS frames: Let C be a perfect lattice.
Then the mapping
C — (J~(C), M>(C),<)

gives rise to an RS frame.
From RS frames to perfect lattices: Let F = (X, Y, R) be an RS

frame. A Galois connection between #(X) and (YY) is defined
as followsfor AC X, BC Y:

R.(A)={yeY|VaceAaRy}R(B)={xe X |Vbe B,xRb}.
Then G(F):={AC X | A= R,0 R.(A) } is a perfect lattice.
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Frames associated to bounded lattices

ForaframeF = (X,Y,R)and x € X and y € Y we define
xR:={yeY|xRy} and Ry :={xe X | xRy }.

The properties (S) (separation) and (R) (reduction) are defined
(by Gehrke) for an arbitrary frame F = (X, Y, R) as follows:

(S) forall x;,xo € Xand y1,yo € Y,
(i) x1 # X2 implies x1R # x2R,;
(i) y1 # y2 implies Rys # Ry>.

(R) (i) forevery x € X there exists y € Y such that -(xRy) and
Ywe X (w#x & xR C wR) = wRy);
(i) for every y € Y there exists x € X such that —(xRy) and
VzeY ((z#y & Ry C Rz) = xRz).
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Defining RS graphs

Lemma

Let L be a BL. Then X, = (L™(L,2), R) satisfies:
(S) foreveryf,ge X, iff #gthenf=1(1) #g~'(1) or
£-1(0) # g7 1(0);
(R) (i) forallf,he X, iff~1(1) C h="(1) then h~1(1) N f~1(0) # 0;
(i) forallg,he X, ifg='(0) € h='(0) then
g '(1)nh71(0) # 0.

Observe the following for f, g, h € L™(L,2):
(1) c h~'(1)iff AR C fRand g~'(0) C

Ch
Hence we may rewrite the conditions (S) and (R) above, and
define them for any reflexive graph X = (X, R), as follows:
(S) forevery x,y € X, if x # y then xR # yR or Rx # Ry;
(R) (i) forall x,z € X, if zZR C xR then (z,x) ¢ R;

(i) forally,z € X, if Rz C Ry then (y,z) ¢ R.

1(0) iff Rh C Rg.
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The (Ti) property for graphs and frames

Let X = (X, R) be a reflexive graph and consider the property:
(Ti) forall x,y € X, if (x,y) € R, then there exists z € X such
that zR C xR and Rz C Ry.
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@ If R was a partial order we would say that the elements z
were in the interval [x, y|. For the elements z we will use
the term transitive interval elements (with respect to
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RS graphs

The (Ti) property for graphs and frames

Let X = (X, R) be a reflexive graph and consider the property:
(Ti) forall x,y € X, if (x,y) € R, then there exists z € X such
that zR C xR and Rz C Ry.

@ If R was a partial order we would say that the elements z
were in the interval [x, y|. For the elements z we will use
the term transitive interval elements (with respect to
(x,y) € R).

Let F = (X1, X2, R) be a frame. The (Ti) condition for frames is
motivated by the (Ti) condition on graphs:
(Ti) for every x € Xi and for every y € Xz, if =(xRy) then there
exist w € Xj and z € X5 such that
i) =(wRz);
(i) xR € wRand Ry C Rz;
(iii) for every u € Xj, if u # w and wR C uR then uRz;
(iv) forevery v € Xo, if v # z and Rz C Rv then wRuv.



RS graphs

The (Ti) property for frames in a special case

If the frame F = (X1, Xo, R) is F = (X, X, <), then (Ti) says that
forall x,y € X, if x £ y then there are w, z € X such that
(i) w<£z;
(i) w<xandy < z;
(i) (Yue J®C))(u<w=u<2);
(iv) (Vve M>*(C))(z<v=w<V).

1



TiIRS

TiRS graphs and frames

Definition

A TIiRS graph (frame) is a graph (frame) that satisfies the
conditions (R), (S) and (Ti), i.e., itis an RS graph (frame)
that satisfies the condition (Ti).
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Definition

A TIiRS graph (frame) is a graph (frame) that satisfies the
conditions (R), (S) and (Ti), i.e., itis an RS graph (frame)
that satisfies the condition (Ti).

Proposition

For any bounded lattice L,
(i) its Ploscica’s dual D*(L) = (L™(L,2), R) is a TiRS graph;
(i) the frame F(L) = (Filty (L), Idly (L), R) is a TiRS frame.




TiIRS

TiRS graphs and frames

Definition

A TIiRS graph (frame) is a graph (frame) that satisfies the
conditions (R), (S) and (Ti), i.e., itis an RS graph (frame)
that satisfies the condition (Ti).

Proposition

For any bounded lattice L,
(i) its Ploscica’s dual D*(L) = (L™(L,2), R) is a TiRS graph;
(i) the frame F(L) = (Filty (L), Idly (L), R) is a TiRS frame.

v

There is a one-to-one correspondence between TiRS graphs
and TiRS frames.
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Proof: from graphs to frames

Given a graph X = (X, R), define ~4 and ~5 for x, y € X by

x~qyy if xR=yR X ~oy if Rx=Ry.
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Given a graph X = (X, R), define ~4 and ~5 for x, y € X by

x~qyy if xR=yR X ~oy if Rx=Ry.

Definition
For a graph X = (X, R), the assoc. frame p(X) is defined by:

p(X) = (X/~1,X/~2, Ryx)) where [x]1R,x)[yl2 < (x,¥) ¢ R.




TiIRS

Proof: from graphs to frames

Given a graph X = (X, R), define ~4 and ~5 for x, y € X by
x~qyy if xR=yR X ~oy if Rx=Ry.
For a graph X = (X, R), the assoc. frame p(X) is defined by:

p(X) = (X/~1,X/~2, Ryx)) where [x]1R,x)[yl2 < (x,¥) ¢ R.

| A\

Proposition

LetX = (X, R) be a TiRS graph. The assoc. frame p(X) is a
TiRS frame.




TiIRS

Proof-cont.: from frames to graphs

Definition

LetF = (X1, X2, R) be a frame. The associated graph gr(F) is
(Hg, Kg) where the vertex set Hg is the subset of Xy x X» of all
pairs (x, y) that satisfy the following conditions:

(a) —~(xRy),

(b) foreveryu c X, ifu+# x and xR C uR then uRy,

(c) foreveryv € Xp, ifv # y and Ry C Rv then xRv.

and the edge set Kg is formed by ((x,y), (w, z)) with =(xRz).
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Proof-cont.: from frames to graphs

Definition

LetF = (X1, X2, R) be a frame. The associated graph gr(F) is
(Hg, Kg) where the vertex set Hg is the subset of Xy x X» of all
pairs (x, y) that satisfy the following conditions:

(a) —~(xRy),

(b) foreveryu c X, ifu+# x and xR C uR then uRy,

(c) foreveryv € Xp, ifv # y and Ry C Rv then xRv.

and the edge set Kg is formed by ((x,y), (w, z)) with =(xRz).

Proposition

LetF = (X1, X2, R) be a TiRS frame. The assoc. graph p(F) is
a TiRS graph.




TiIRS

TiRS frames and TiRS graphs: correspondence

@ Two graphs X = (X, Rx) and Y = (Y, Ry) are isomorphic if
there exists a bijective map a: X — Y such that

Vxi, %2 € X (x1,X%2) € Rx < (a(x1),a(x2)) € Ry.
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@ Two graphs X = (X, Rx) and Y = (Y, Ry) are isomorphic if
there exists a bijective map a: X — Y such that
Vx1, X2 € X (X1,X2) € Rx <= (a(x1),a(x2)) € Ry.
@ Two frames F = (Xi, Xo, Rg) and G = (Y4, Yo, Rg) are

isomorphic if there exists a pair (51, 52) of bijective maps
Bi: Xi — Yi (i=1,2) with

Vxy € X1 VX2 € Xo (X1Rpxe <= B1(x1)RgB2(x2)).
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there exists a bijective map a: X — Y such that
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@ Two frames F = (Xi, Xo, Rg) and G = (Y4, Yo, Rg) are

isomorphic if there exists a pair (51, 52) of bijective maps
Bi: Xi — Yi (i=1,2) with

Vxy € X1 VX2 € Xo (X1Rpxe <= B1(x1)RgB2(x2)).



TiIRS

TiRS frames and TiRS graphs: correspondence

@ Two graphs X = (X, Rx) and Y = (Y, Ry) are isomorphic if
there exists a bijective map a: X — Y such that
Vx1, X2 € X (X1,X2) € Rx <= (a(x1),a(x2)) € Ry.
@ Two frames F = (Xi, Xo, Rg) and G = (Y4, Yo, Rg) are

isomorphic if there exists a pair (51, 52) of bijective maps
Bi: Xi — Yi (i=1,2) with

Vxy € X1 VX2 € Xo (X1Rpxe <= B1(x1)RgB2(x2)).

Let X = (X, Rx) be a TiRS graph and F = (Xi, X2, R) be a
TiRS frame. Then

(a) the graphs X and gr(p(X)) are isomorphic;
(b) the frames F and p(gr(F)) are isomorphic.




CELs [2015]

CEs of BLs (Craig, Gouveia, Haviar [AU, 2015])

Lat D(Ploscica)

~ PISp

Lat «————— TiGr(Fr®
PerLat G(Gehrke) iGr(Fr°P)

Theorem

Let L be a bounded lattice and X = D’(L) be its dual
(Ploscica’s) TiRS graph. Let p(X) be the TiRS frame associated
to X and G(p(X)) be its corresponding (Gehrke’s) perfect lattice
of Galois-closed sets.

Then the lattice G(p(X)) is the canonical extension of L.
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Is every TiRS graph X = (X, R) of the form
D’(L) = (L™(L,2), R) for some bounded lattice L?
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Is every TiRS graph X = (X, R) of the form
D’(L) = (L™(L,2), R) for some bounded lattice L?

No. Every poset is a TiRS graph. A poset is said to be
representable if it is the underlying poset of some Priestley
space and hence the untopologized dual of some bounded
distributive lattice. It is known that non-representable posets
exist and hence non-representable TiRS graphs exist.




CELs [2015]

Is every TiRS graph X = (X, R) of the form
D’(L) = (L™(L,2), R) for some bounded lattice L?

No. Every poset is a TiRS graph. A poset is said to be
representable if it is the underlying poset of some Priestley
space and hence the untopologized dual of some bounded
distributive lattice. It is known that non-representable posets
exist and hence non-representable TiRS graphs exist.

Problem 1
Which TiRS graphs arise as duals of bounded lattices?




CELs [2015]

We proved that the RS frame associated to the CE is always
TiRS. Hence, by the correspondence between RS frames and
perfect lattices, one could ask whether also conversely:
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We proved that the RS frame associated to the CE is always
TiRS. Hence, by the correspondence between RS frames and
perfect lattices, one could ask whether also conversely:

Question

Does every TiRS frame correspond to a perfect lattice that is
some canonical extension L’ ?

Answer

No. A non-representable poset is a TiRS graph and hence its
corresponding frame is also TiRS. However, it does not
correspond to the canonical extension of any BDL (BL) L.




CELs [2015]

We proved that the RS frame associated to the CE is always
TiRS. Hence, by the correspondence between RS frames and
perfect lattices, one could ask whether also conversely:

Question

Does every TiRS frame correspond to a perfect lattice that is
some canonical extension L’ ?

Answer

No. A non-representable poset is a TiRS graph and hence its
corresponding frame is also TiRS. However, it does not
correspond to the canonical extension of any BDL (BL) L.

Problem 2

Consider the perfect lattice which corresponds to a TiRS
frame. In addition to being perfect, what additional
properties of the complete lattice arise as a result of it
coming from an RS frame which also satisfies (Ti)?




PTi [2017]

(PTi) condition

A perfect lattice is (PTi) if for all x € J>°(C) and y € M>(C), if
x & y then there exist w € J>(C), z € M>°(C) such that

(i) w<x and y<z

i) w
(i) (Vu e J°°(C))(u <wW=u<2
(iv) Vve M>*(C))(z<v=w<V)

1



PTi [2017]

Perfect lattices dual to TiRS structures are (PTi)

Proposition

Let C be a perfect lattice. If C satisfies (PTi) then the assoc.
RS-frame F(C) = (J*(C), M>(C), <) satisfies (Ti), and so it is
a TiRS frame.

Theorem

LetF = (X, Y,R) be a TiRS frame. Then the perfect lattice
G(F) of the Galois closed sets satisfies (PTi).

| A

A\

The canonical extension of a bounded lattice is more than
perfect - it is a perfect lattice that satisfies (PTi).




PTi [2017]

Proofs (key ingredients)

LetF = (X,Y,R) be a TiRS frame. Then the perfect lattice
G(FF) of the Galois closed sets satisfies (PTi).

@ By Gehrke the completely join-irreducible elements and
completely meet-irreducible elements of G(F) are:
J*(G(F)) = {(Rao R)({x}) [ x € X'},
M>=(G(F))={Ry|ye Y}
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Proofs (key ingredients)

LetF = (X,Y,R) be a TiRS frame. Then the perfect lattice
G(FF) of the Galois closed sets satisfies (PTi).

@ By Gehrke the completely join-irreducible elements and
completely meet-irreducible elements of G(F) are:
J>(G(F)) = {(Rao Ro)({x}) | x € X'},
M>(G(F)) ={Ry |y e Y}
@ We proved for the Galois closed sets arising from an RS
frame F = (X, Y, R) the following properties:
(i) we (RqoR.)({x})ifand only if xR C wR;
(i) (Rqo Rs)({w}) C (Rqo R.)({x})ifand only if xR C wR;



PTi [2017]

Proofs (key ingredients)

LetF = (X,Y,R) be a TiRS frame. Then the perfect lattice
G(FF) of the Galois closed sets satisfies (PTi).

@ By Gehrke the completely join-irreducible elements and
completely meet-irreducible elements of G(F) are:
J*(G(F)) = {(Rac R)({x}) | x € X},
M>=(G(F))={Ry|ye Y}
@ We proved for the Galois closed sets arising from an RS
frame F = (X, Y, R) the following properties:
(i) we (RqoR.)({x})ifand only if xR C wR;
(i) (Rqo Rs)({w}) C (Rqo R.)({x})ifand only if xR C wR;
(i) (Rqo R.)({x}) € Ry if and only if xRy.



PTi [2017]

Proofs (key ingredients) - cont.

The canonical extension of a bounded lattice is more than
perfect - it is a perfect lattice that satisfies (PTi).

D(Ploscica
Lat ( )

~ PISp

PerLat ————— TiGr(Fr®®
erka G(Gehrke) IGr(Fr™)

Figure: CEs for BLs (Craig, Gouveia, Haviar)
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The (PTi) lattice A, that is not a CE [Sept 2017]

PTi

A;: a PTilattice that is not a CE

(Compactness of a CE: for every filter F and every ideal J,
AF <V Jimplies FNJ # &.)
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The perfect but not (PTi) lattice M, [Sept 2017]

PTi M,

0

M, : a perfect but non-PTi lattice



Morphisms [2017]

TiRS graph and TiRS frame morphisms

Definition

Let X = (X, Rx) and Y = (Y, Ry) be TiRS graphs. A TiRS
graph morphism is a map ¢: X — Y that satisfies the following
conditions:

(i) for x1,x2 € X, if (X1, x2) € Rx then (¢(X1), p(X2)) € Ry;
(i) for xq,x2 € X, if x;Rx C x2Rx then o(x1)Ry C ¢(x2)Ry;
(III) for X1, X2 € X, if RxX1 - RxXg then F‘l’y(p(X1) - RygD(XQ).

Every graph isomorphism and its inverse are TiRS graph
morphisms.



Morphisms [2017]

TiRS graph and TiRS frame morphisms - cont.

Definition
Let F = (X1, X2, Re) and G = (Y3, Y2, Rg) be TiRS frames.
A TiRS frame morphism ¢: F — G is a pair ¢ = (¢4, ¢») of

maps ¢¥1: X; — Y7 and ¢o: Xo — Yo that satisfies the following
conditions:

(i) for x € Xy and y € Xo, if ¢»1(x)Rgv2(y) then xRey;
(i) for x,w € Xq, if xRe C wRE then ¢1(x)Rg C ¥1(W)Rg;
(iii) for y,z € Xo, if Rey C Rgpz then Rgy»(y) C Rgia(2);
(iv) for x € Xy and y € Xo, if (x,y) € Hr then
(¢1(x), ¥2(y)) € He-

Every frame isomorphism is a TiRS frame morphism.




Morphisms [2017]

TiRS graphs and frames: a full categorical framework

LetX = (X,Rx) andY = (Y, Ry) be TiRS graphs and let
F = (X1,X5,Rg) and G = (Y, Y2, Rg) be TiRS frames.

(1) Ifo: X— Y is a TiRS graph morphism and for
p(p)1: Xp1— Yy and p(p)a: Xvo— Y~ are the
maps defined for all x € X by p(¢)1([x]1) = [¢(x)]1 and
p(#)2([x]2) = [e(X)]2, then the pair p() = (p()1, p()2) is
a TiRS frame morphism from p(X) to p(Y).

(2) If the pair+y = (1,v2): F — G is a TiRS frame
morphism, then the map gr(v)): gr(F) — gr(G) defined for
(x,y) € Hr by gr()(x, y) = (¥1(x), ¥2(y)) is @ TIRS graph
morphism.
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A full categorical framework - cont.

LetX = (X,Rx) andY = (Y, Ry) be TiRS graphs and let

F = (X1,X2, Re) and G = (Y, Y2, Rg) be TiRS frames.

(3) Ifo: X — Y is a TiRS graph morphism, then
ar(p()) o ax = ay o .

(4) Ify: F— G is a TiRS frame morphism, then
p(ar(¥)) o Br = Ba o .

P P

X Y F

ax Qy Br B

gr(p( ))Mgr(p(Y)) plgr(F)) plgr(v)) o
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Gen. Birkhoff

Proposition
Every finite RS frame is a TiRS frame.

The following result generalises Birkhoff’s dual representation
of finite distributive lattices via finite posets.



Gen. Birkhoff

Proposition
Every finite RS frame is a TiRS frame.

—

The following result generalises Birkhoff’s dual representation
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Gen. Birkhoff

Proposition
Every finite RS frame is a TiRS frame.

The following result generalises Birkhoff’s dual representation
of finite distributive lattices via finite posets.

Theorem

There exists a dual representation of arbitrary finite lattices via
finite TiRS graphs.

Proof.

Finite lattices = Finite perfect lattices

I

Finite RS frames = Finite TiRS frames

I

Finite TiRS graphs




Gen. Birkhoff

Garrett Birkhoff (1911 — 1996)
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Gen. Birkhoff

A new light to the famous problem?

There exists a dual representation of arbitrary finite lattices via
finite TiRS graphs.

We wonder whether this representation could bring a new light
to the famous Finite Congruence Lattice Problem (FCLP)
which has been open for decades:

Problem 3

Is every finite lattice isomorphic to the congruence lattice
of some finite algebra?




The DM completion vs the CE

bo bo bo bg
% by i b, i b, i by
. . . -
bso boo
e OXO I
Ao oo
ﬁ C
i a4 a % a i ai
ao ao ao ao

L-=wou’ DM(L) Lo (L)’
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