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Canonical extensions via natural dualities

To study lattice-based algebras two valuable tools have been
developed:

the theory of topological dualities (started by Marshall
Stone),

and in particular the theory of natural dualities
(started by Brian Davey), and

the theory of canonical extensions.

In our work with Brian Davey (Melbourne) and Hilary Priestley
(Oxford) a decade ago we presented a new approach to
canonical extensions of lattice-based algebras – in the
spirit of the natural dualities. This can be achieved by using:
(i) in distributive case: Priestley duality as a natural duality,
(ii) in non-distributive case (with Andrew and Maria):
a topological representation due to M. Ploščica (1995) which
presents the classical one due to A. Urquhart (1978) in the
spirit of the natural dualities.
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Origins of canonical extensions

Canonical extensions originated in the 1951-52 papers of
B. Jónsson and A. Tarski, Boolean algebras with operators:

Definition
Let B be a Boolean algebra (with operators) and let XB be the
Stone space dual to B, i.e., XB is the set of ultrafilters of B with
an appropriate topology. (Stone duality tells us that we may
identify the Boolean algebra B with the Boolean algebra of
clopen subsets of the Stone space XB.)

The canonical extension Bδ of B is the Boolean algebra ℘(XB)
of all subsets of the set XB of ultrafilters of B (with the operators
extended in a natural way).

Thus, roughly speaking, Jónsson and Tarski obtained Bδ from
the Stone space XB by forgetting the topology.
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Forty Years Later

Forty years later the concept was extended to distr. lattices
and later to general lattices and even posets (M. Gehrke,
J. Harding, B. Jónsson, Y. Venema, A. Palmigiano,...).

An equational class of algebras is said to be canonical if it
is closed under the formation of canonical extensions.

When the members of the class of lattice-based algebras
are the algebraic models of a logic, canonicity leads to
completeness results for the associated logic.

That is partly why the canonical extensions have been
important and have been of an interest to logicians, too.
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Canonical extensions of BDLs

Canonical extensions of bounded distributive lattices were
introduced by Gehrke and Jónsson, 1994:

Definition
Let L be a bounded distributive lattice and let XL be the
Priestley space dual to L, i.e., XL is the set of prime filters of L
with an appropriate topology. (Priestley duality tells us that we
may identify the lattice L with the lattice of clopen up-sets of the
Priestley space XL.)
The canonical extension Lδ of L is the doubly algebraic
distributive lattice Up(XL) of all up-sets of the ordered set
〈XL;⊆〉 of prime filters of L.

Thus, again, Lδ is obtained from the Priestley space XL by
forgetting the topology.
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Going beyond BDLs

For the category L of arbitrary bounded lattices, Gehrke and
Harding (2001) suggested the following definitions:

Definition
Let C be a complete lattice and L be a sublattice of C.

C is called a completion of L.
C is called a dense completion of L if every element of C
can be expressed as a join of meets of elements of L and
as a meet of joins of elements of L.
C is called a compact completion of L if, for any subsets
A,B ⊆ L we have

∧
A 6

∨
B implies the existence of finite

subsets A′ ⊆ A, B′ ⊆ B with
∧

A′ 6
∨

B′.
(Equivalently: if for every filter F and every ideal J of L,
we have

∧
F 6

∨
J implies F ∩ J 6= ∅.)
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Canonical extensions of bounded lattices (CEs of BLs)

Gehrke and Harding (2001) proved:

Theorem
Let L be a bounded lattice.

L has a dense, compact completion C.
If C1 and C2 are dense, compact completions of L, then
C1 ∼= C2.

Abstractly, the canonical extension of a BL L has been
defined as a dense and compact completion of L.
Concretely, they constructed Lδ as the complete lattice of
Galois-stable sets of the polarity R between the filter
lattice Filt(L) and the ideal lattice Idl(L) of L:

(F , I) ∈ R :⇐⇒ F ∩ I 6= ∅.
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Duals of lattice-based algebras via natural dualities

For the class B of BAs and B ∈ B, we define the dual of B
to be D(B) = B(B,2), the set of all homomorphisms from
B to 2. There is a one-to-one correspondence between
B(B,2) and the set of ultrafilters of B.

For the class D of BDLs and D ∈ D, we define
D(D) = D(D,2). There is a one-to-one correspondence
between D(D,2) and the prime filters of D.

For the class L of BLs and L ∈ L, we have might have
L(L,2) = ∅.

M. Ploščica defined the dual of L to be
D(L) = Lmp(L,2), the set of maximal partial
homomorphisms from L into 2. There is a one-to-one
correspondence between Lmp(L,2) and maximal pairwise
disjoint filter-ideal pairs used by Urquhart (1978).
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disjoint filter-ideal pairs used by Urquhart (1978).
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Ploščica’s representation for bounded lattices

Let L be a bounded lattice. Ploščica’s dual of L is
D(L) = XL := (Lmp(L,2),R, T ) where binary (reflexive)
relation R for f ,g ∈ Lmp(L,2) is defined as follows:
(f ,g) ∈ R if ∀a ∈ dom f ∩ dom g, f (a) 6 g(a).
(Equivalently: (f ,g) ∈ R iff f−1(1) ∩ g−1(0) = ∅.)

The topology T has as a subbasis of closed sets
Va = { f ∈ Lmp(L,2) | f (a) = 0 },
Wa = { f ∈ Lmp(L,2) | f (a) = 1 }.

Ploščica’s second dual of L is ED(L) := Gmp
T (XL, 2∼T ), the

set of all continuous maximal partial R-preserving maps
from XL = (Lmp(L,2),R, T ) to 2∼T = ({0,1},6, T ).

Theorem (Ploščica, 1995)

Let L ∈ L. Then L ∼= ED(L) via the map a 7→ ea where
ea : (XL, T )→ 2∼T is defined by ea(f ) = f (a).
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Let L ∈ L. Then L ∼= ED(L) via the map a 7→ ea where
ea : (XL, T )→ 2∼T is defined by ea(f ) = f (a).



CEs: history CELs [2013] RS frames RS graphs TiRS CELs [2015] PTi [2017] Morphisms [2017] Gen. Birkhoff
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Example of the dual graph of a bounded lattice

a b c

1

0

L

fab

fac

fbc

fba

fca

fcb

XL

The modular lattice L = M3 and its graph XL = (Lmp(L,2),R).

We define fxy ∈ Lmp(L,2) by f−1
xy (1) = ↑x and f−1

xy (0) = ↓y .
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Canonical extensions of BLs

Let L ∈ L be a bounded lattice. We have the maps

D : L 7−→ XT := (Lmp(L,2),R, T ),
[ : XT 7−→ X := (Lmp(L,2),R),

C : X 7−→ C(X) := Gmp(X, 2∼).

L
D
- GT

L+

δ

?
�

C
G

[

?

Figure: Factorisation of δ in L (Craig, Haviar, Priestley [ACS, 2013])



CEs: history CELs [2013] RS frames RS graphs TiRS CELs [2015] PTi [2017] Morphisms [2017] Gen. Birkhoff

Canonical extensions of BLs

Let L ∈ L be a bounded lattice. We have the maps

D : L 7−→ XT := (Lmp(L,2),R, T ),
[ : XT 7−→ X := (Lmp(L,2),R),

C : X 7−→ C(X) := Gmp(X, 2∼).

L
D
- GT

L+

δ

?
�

C
G

[

?

Figure: Factorisation of δ in L (Craig, Haviar, Priestley [ACS, 2013])



CEs: history CELs [2013] RS frames RS graphs TiRS CELs [2015] PTi [2017] Morphisms [2017] Gen. Birkhoff

CEs of BLs (Craig, Haviar, Priestley [ACS, 2013])

The fact that the previous diagram commutes is the content of
the following result:

Theorem

Let L ∈ L be a BL. Let D[(L) = X = (Lmp(L,2),R) be
Ploščica’s dual of L (without topology). The lattice
C(X) = Gmp(X, 2∼) ordered by

ϕ 6 ψ :⇐⇒ ϕ−1(1) ⊆ ψ−1(1)

is the canonical extension of L.

We proved the density and compactness of C(X) (technical).
L

L ∼= eL(L) = ED(L) Lδ⊆

E ◦ D
tt

� _

C ◦[ ◦D��



CEs: history CELs [2013] RS frames RS graphs TiRS CELs [2015] PTi [2017] Morphisms [2017] Gen. Birkhoff

CEs of BLs (Craig, Haviar, Priestley [ACS, 2013])

The fact that the previous diagram commutes is the content of
the following result:

Theorem

Let L ∈ L be a BL. Let D[(L) = X = (Lmp(L,2),R) be
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Dual representation: perfect lattices vs RS frames
(Dunne, Gehrke,Palmigiano [2005], Gehrke [2006])

C is a perfect lattice if C is complete, and for all c ∈ C,

c =
∨
{ j ∈ J∞(C) | j 6 c } =

∧
{m ∈ M∞(C) | c 6 m }.

From perfect lattices to RS frames: Let C be a perfect lattice.
Then the mapping

C 7→ (J∞(C),M∞(C),6)

gives rise to an RS frame.

From RS frames to perfect lattices: Let F = (X ,Y ,R) be an RS
frame. A Galois connection between ℘(X ) and ℘(Y ) is defined
as follows for A ⊆ X , B ⊆ Y :

R.(A) = { y ∈ Y | ∀a ∈ A,aRy }R/(B) = { x ∈ X | ∀b ∈ B, xRb }.

Then G(F) := {A ⊆ X | A = R/ ◦ R.(A) } is a perfect lattice.
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Frames associated to bounded lattices

For a frame F = (X ,Y ,R) and x ∈ X and y ∈ Y we define

xR := { y ∈ Y | xRy } and Ry := { x ∈ X | xRy }.

The properties (S) (separation) and (R) (reduction) are defined
(by Gehrke) for an arbitrary frame F = (X ,Y ,R) as follows:

(S) for all x1, x2 ∈ X and y1, y2 ∈ Y ,
(i) x1 6= x2 implies x1R 6= x2R;
(ii) y1 6= y2 implies Ry1 6= Ry2.

(R) (i) for every x ∈ X there exists y ∈ Y such that ¬(xRy) and
∀w ∈ X ((w 6= x & xR ⊆ wR)⇒ wRy);

(ii) for every y ∈ Y there exists x ∈ X such that ¬(xRy) and
∀z ∈ Y ((z 6= y & Ry ⊆ Rz)⇒ xRz).
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Defining RS graphs

Lemma
Let L be a BL. Then XL = (Lmp(L,2),R) satisfies:
(S) for every f ,g ∈ X, if f 6= g then f−1(1) 6= g−1(1) or

f−1(0) 6= g−1(0);
(R) (i) for all f ,h ∈ X, if f−1(1) ( h−1(1) then h−1(1) ∩ f−1(0) 6= ∅;

(ii) for all g,h ∈ X, if g−1(0) ( h−1(0) then
g−1(1) ∩ h−1(0) 6= ∅.

Observe the following for f ,g,h ∈ Lmp(L,2):

f−1(1) ⊆ h−1(1) iff hR ⊆ fR and g−1(0) ⊆ h−1(0) iff Rh ⊆ Rg.

Hence we may rewrite the conditions (S) and (R) above, and
define them for any reflexive graph X = (X ,R), as follows:
(S) for every x , y ∈ X , if x 6= y then xR 6= yR or Rx 6= Ry ;
(R) (i) for all x , z ∈ X , if zR ( xR then (z, x) /∈ R;

(ii) for all y , z ∈ X , if Rz ( Ry then (y , z) /∈ R.



CEs: history CELs [2013] RS frames RS graphs TiRS CELs [2015] PTi [2017] Morphisms [2017] Gen. Birkhoff

Defining RS graphs

Lemma
Let L be a BL. Then XL = (Lmp(L,2),R) satisfies:
(S) for every f ,g ∈ X, if f 6= g then f−1(1) 6= g−1(1) or

f−1(0) 6= g−1(0);
(R) (i) for all f ,h ∈ X, if f−1(1) ( h−1(1) then h−1(1) ∩ f−1(0) 6= ∅;

(ii) for all g,h ∈ X, if g−1(0) ( h−1(0) then
g−1(1) ∩ h−1(0) 6= ∅.

Observe the following for f ,g,h ∈ Lmp(L,2):

f−1(1) ⊆ h−1(1) iff hR ⊆ fR and g−1(0) ⊆ h−1(0) iff Rh ⊆ Rg.

Hence we may rewrite the conditions (S) and (R) above, and
define them for any reflexive graph X = (X ,R), as follows:
(S) for every x , y ∈ X , if x 6= y then xR 6= yR or Rx 6= Ry ;
(R) (i) for all x , z ∈ X , if zR ( xR then (z, x) /∈ R;

(ii) for all y , z ∈ X , if Rz ( Ry then (y , z) /∈ R.



CEs: history CELs [2013] RS frames RS graphs TiRS CELs [2015] PTi [2017] Morphisms [2017] Gen. Birkhoff

Defining RS graphs

Lemma
Let L be a BL. Then XL = (Lmp(L,2),R) satisfies:
(S) for every f ,g ∈ X, if f 6= g then f−1(1) 6= g−1(1) or

f−1(0) 6= g−1(0);
(R) (i) for all f ,h ∈ X, if f−1(1) ( h−1(1) then h−1(1) ∩ f−1(0) 6= ∅;

(ii) for all g,h ∈ X, if g−1(0) ( h−1(0) then
g−1(1) ∩ h−1(0) 6= ∅.

Observe the following for f ,g,h ∈ Lmp(L,2):

f−1(1) ⊆ h−1(1) iff hR ⊆ fR and g−1(0) ⊆ h−1(0) iff Rh ⊆ Rg.

Hence we may rewrite the conditions (S) and (R) above, and
define them for any reflexive graph X = (X ,R), as follows:
(S) for every x , y ∈ X , if x 6= y then xR 6= yR or Rx 6= Ry ;
(R) (i) for all x , z ∈ X , if zR ( xR then (z, x) /∈ R;

(ii) for all y , z ∈ X , if Rz ( Ry then (y , z) /∈ R.



CEs: history CELs [2013] RS frames RS graphs TiRS CELs [2015] PTi [2017] Morphisms [2017] Gen. Birkhoff

The (Ti) property for graphs and frames

Let X = (X ,R) be a reflexive graph and consider the property:
(Ti) for all x , y ∈ X , if (x , y) ∈ R, then there exists z ∈ X such

that zR ⊆ xR and Rz ⊆ Ry .

If R was a partial order we would say that the elements z
were in the interval [x , y ]. For the elements z we will use
the term transitive interval elements (with respect to
(x , y) ∈ R).

Let F = (X1,X2,R) be a frame. The (Ti) condition for frames is
motivated by the (Ti) condition on graphs:
(Ti) for every x ∈ X1 and for every y ∈ X2, if ¬(xRy) then there

exist w ∈ X1 and z ∈ X2 such that
(i) ¬(wRz);
(ii) xR ⊆ wR and Ry ⊆ Rz;
(iii) for every u ∈ X1, if u 6= w and wR ⊆ uR then uRz;
(iv) for every v ∈ X2, if v 6= z and Rz ⊆ Rv then wRv .
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The (Ti) property for frames in a special case

If the frame F = (X1,X2,R) is F = (X ,X ,6), then (Ti) says that
for all x , y ∈ X , if x � y then there are w , z ∈ X such that

(i) w � z;
(ii) w 6 x and y 6 z;
(iii) (∀u ∈ J∞(C))(u < w ⇒ u 6 z);
(iv) (∀v ∈ M∞(C))(z < v ⇒ w 6 v).
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TiRS graphs and frames

Definition
A TiRS graph (frame) is a graph (frame) that satisfies the
conditions (R), (S) and (Ti), i.e., it is an RS graph (frame)
that satisfies the condition (Ti).

Proposition

For any bounded lattice L,
(i) its Ploščica’s dual D[(L) = (Lmp(L,2),R) is a TiRS graph;
(ii) the frame F(L) = (FiltM(L), IdlM(L),R) is a TiRS frame.

Theorem
There is a one-to-one correspondence between TiRS graphs
and TiRS frames.
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Proof: from graphs to frames

Given a graph X = (X ,R), define ∼1 and ∼2 for x , y ∈ X by

x ∼1 y if xR = yR x ∼2 y if Rx = Ry .

Definition
For a graph X = (X ,R), the assoc. frame ρ(X) is defined by:

ρ(X) = (X/∼1,X/∼2,Rρ(X)) where [x ]1Rρ(X)[y ]2 ⇐⇒ (x , y) /∈ R.

Proposition

Let X = (X ,R) be a TiRS graph. The assoc. frame ρ(X) is a
TiRS frame.
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Proof-cont.: from frames to graphs

Definition

Let F = (X1,X2,R) be a frame. The associated graph gr(F) is
(HF,KF) where the vertex set HF is the subset of X1 × X2 of all
pairs (x , y) that satisfy the following conditions:
(a) ¬(xRy),
(b) for every u ∈ X1, if u 6= x and xR ⊆ uR then uRy,
(c) for every v ∈ X2, if v 6= y and Ry ⊆ Rv then xRv.

and the edge set KF is formed by ((x , y), (w , z)) with ¬(xRz).

Proposition

Let F = (X1,X2,R) be a TiRS frame. The assoc. graph ρ(F) is
a TiRS graph.
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TiRS frames and TiRS graphs: correspondence

Two graphs X = (X ,RX ) and Y = (Y ,RY ) are isomorphic if
there exists a bijective map α : X → Y such that

∀x1, x2 ∈ X (x1, x2) ∈ RX ⇐⇒ (α(x1), α(x2)) ∈ RY .

Two frames F = (X1,X2,RF ) and G = (Y1,Y2,RG) are
isomorphic if there exists a pair (β1, β2) of bijective maps
βi : Xi → Yi (i = 1,2) with

∀x1 ∈ X1 ∀x2 ∈ X2
(
x1RF x2 ⇐⇒ β1(x1)RGβ2(x2)

)
.

Theorem
Let X = (X ,RX ) be a TiRS graph and F = (X1,X2,R) be a
TiRS frame. Then
(a) the graphs X and gr(ρ(X)) are isomorphic;
(b) the frames F and ρ(gr(F)) are isomorphic.
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CEs of BLs (Craig, Gouveia, Haviar [AU, 2015])

Lat
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Theorem

Let L be a bounded lattice and X = D[(L) be its dual
(Ploščica’s) TiRS graph. Let ρ(X) be the TiRS frame associated
to X and G(ρ(X)) be its corresponding (Gehrke’s) perfect lattice
of Galois-closed sets.
Then the lattice G(ρ(X)) is the canonical extension of L.
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Question
Is every TiRS graph X = (X ,R) of the form
D[(L) = (Lmp(L,2),R) for some bounded lattice L?

Answer
No. Every poset is a TiRS graph. A poset is said to be
representable if it is the underlying poset of some Priestley
space and hence the untopologized dual of some bounded
distributive lattice. It is known that non-representable posets
exist and hence non-representable TiRS graphs exist.

Problem 1
Which TiRS graphs arise as duals of bounded lattices?
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We proved that the RS frame associated to the CE is always
TiRS. Hence, by the correspondence between RS frames and
perfect lattices, one could ask whether also conversely:

Question
Does every TiRS frame correspond to a perfect lattice that is
some canonical extension Lδ?

Answer
No. A non-representable poset is a TiRS graph and hence its
corresponding frame is also TiRS. However, it does not
correspond to the canonical extension of any BDL (BL) L.

Problem 2
Consider the perfect lattice which corresponds to a TiRS
frame. In addition to being perfect, what additional
properties of the complete lattice arise as a result of it
coming from an RS frame which also satisfies (Ti)?
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(PTi) condition

A perfect lattice is (PTi) if for all x ∈ J∞(C) and y ∈ M∞(C), if
x � y then there exist w ∈ J∞(C), z ∈ M∞(C) such that

(i) w 6 x and y 6 z
(ii) w � z
(iii) (∀u ∈ J∞(C))(u < w ⇒ u 6 z)
(iv) (∀v ∈ M∞(C))(z < v ⇒ w 6 v)

1
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x

y
w

z
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Perfect lattices dual to TiRS structures are (PTi)

Proposition

Let C be a perfect lattice. If C satisfies (PTi) then the assoc.
RS-frame F(C) = (J∞(C),M∞(C),6) satisfies (Ti), and so it is
a TiRS frame.

Theorem

Let F = (X ,Y ,R) be a TiRS frame. Then the perfect lattice
G(F) of the Galois closed sets satisfies (PTi).

Corollary
The canonical extension of a bounded lattice is more than
perfect - it is a perfect lattice that satisfies (PTi).



CEs: history CELs [2013] RS frames RS graphs TiRS CELs [2015] PTi [2017] Morphisms [2017] Gen. Birkhoff

Proofs (key ingredients)

Theorem

Let F = (X ,Y ,R) be a TiRS frame. Then the perfect lattice
G(F) of the Galois closed sets satisfies (PTi).

By Gehrke the completely join-irreducible elements and
completely meet-irreducible elements of G(F) are:

J∞(G(F)) = { (R/ ◦ R.)({x}) | x ∈ X },
M∞(G(F)) = {Ry | y ∈ Y }.

We proved for the Galois closed sets arising from an RS
frame F = (X ,Y ,R) the following properties:

(i) w ∈ (R/ ◦ R.)({x}) if and only if xR ⊆ wR;
(ii) (R/ ◦ R.)({w}) ⊆ (R/ ◦ R.)({x}) if and only if xR ⊆ wR;
(iii) (R/ ◦ R.)({x}) ⊆ Ry if and only if xRy .
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Proofs (key ingredients) - cont.

Corollary
The canonical extension of a bounded lattice is more than
perfect - it is a perfect lattice that satisfies (PTi).
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Figure: CEs for BLs (Craig, Gouveia, Haviar)
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The (PTi) lattice AL that is not a CE [Sept 2017]
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AL: a PTi lattice that is not a CE

(Compactness of a CE: for every filter F and every ideal J,∧
F 6

∨
J implies F ∩ J 6= ∅.)
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The perfect but not (PTi) lattice ML [Sept 2017]
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ML: a perfect but non-PTi lattice
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TiRS graph and TiRS frame morphisms

Definition
Let X = (X ,RX ) and Y = (Y ,RY ) be TiRS graphs. A TiRS
graph morphism is a map ϕ : X → Y that satisfies the following
conditions:

(i) for x1, x2 ∈ X , if (x1, x2) ∈ RX then (ϕ(x1), ϕ(x2)) ∈ RY ;
(ii) for x1, x2 ∈ X , if x1RX ⊆ x2RX then ϕ(x1)RY ⊆ ϕ(x2)RY ;
(iii) for x1, x2 ∈ X , if RX x1 ⊆ RX x2 then RYϕ(x1) ⊆ RYϕ(x2).

Every graph isomorphism and its inverse are TiRS graph
morphisms.
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TiRS graph and TiRS frame morphisms - cont.

Definition
Let F = (X1,X2,RF ) and G = (Y1,Y2,RG) be TiRS frames.
A TiRS frame morphism ψ : F→ G is a pair ψ = (ψ1, ψ2) of
maps ψ1 : X1 → Y1 and ψ2 : X2 → Y2 that satisfies the following
conditions:

(i) for x ∈ X1 and y ∈ X2, if ψ1(x)RGψ2(y) then xRF y ;
(ii) for x ,w ∈ X1, if xRF ⊆ wRF then ψ1(x)RG ⊆ ψ1(w)RG;
(iii) for y , z ∈ X2, if RF y ⊆ RF z then RGψ2(y) ⊆ RGψ2(z);
(iv) for x ∈ X1 and y ∈ X2, if (x , y) ∈ HF then

(ψ1(x), ψ2(y)) ∈ HG.

Every frame isomorphism is a TiRS frame morphism.
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TiRS graphs and frames: a full categorical framework

Theorem
Let X = (X ,RX ) and Y = (Y ,RY ) be TiRS graphs and let
F = (X1,X2,RF ) and G = (Y1,Y2,RG) be TiRS frames.
(1) If ϕ : X→ Y is a TiRS graph morphism and for

ρ(ϕ)1 : X/∼1→ Y/∼1 and ρ(ϕ)2 : X/∼2→ Y/∼2 are the
maps defined for all x ∈ X by ρ(ϕ)1([x ]1) = [ϕ(x)]1 and
ρ(ϕ)2([x ]2) = [ϕ(x)]2, then the pair ρ(ϕ) = (ρ(ϕ)1, ρ(ϕ)2) is
a TiRS frame morphism from ρ(X) to ρ(Y).

(2) If the pair ψ = (ψ1, ψ2) : F→ G is a TiRS frame
morphism, then the map gr(ψ) : gr(F)→ gr(G) defined for
(x , y) ∈ HF by gr(ψ)(x , y) = (ψ1(x), ψ2(y)) is a TiRS graph
morphism.
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A full categorical framework - cont.

Theorem
Let X = (X ,RX ) and Y = (Y ,RY ) be TiRS graphs and let
F = (X1,X2,RF ) and G = (Y1,Y2,RG) be TiRS frames.
(3) If ϕ : X→ Y is a TiRS graph morphism, then

gr(ρ(ϕ)) ◦ αX = αY ◦ ϕ.
(4) If ψ : F→ G is a TiRS frame morphism, then

ρ(gr(ψ)) ◦ βF = βG ◦ ψ.
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Proposition
Every finite RS frame is a TiRS frame.

The following result generalises Birkhoff’s dual representation
of finite distributive lattices via finite posets.

Theorem
There exists a dual representation of arbitrary finite lattices via
finite TiRS graphs.

Proof.

Finite lattices = Finite perfect lattices

Finite RS frames = Finite TiRS frames

Finite TiRS graphs
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Garrett Birkhoff (1911 – 1996)
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A new light to the famous problem?

Theorem
There exists a dual representation of arbitrary finite lattices via
finite TiRS graphs.

We wonder whether this representation could bring a new light
to the famous Finite Congruence Lattice Problem (FCLP)
which has been open for decades:

Problem 3
Is every finite lattice isomorphic to the congruence lattice
of some finite algebra?
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The DM completion vs the CE
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Figure: The Chang algebra showing how the MacNeille completion
and the canonical extension of a bounded lattice can differ.
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