Interpretability lattice of clonoids

Alexandr Kazda, Matthew Moore

Charles University and University of Kansas

February 10th, 2018 95. Arbeitstagung Allgemeine Algebra

- The PCSP complexity results are not ours
- Pioneers of PCSP: Per Austrin, Joshua Brakensiek, Venkatesan Guruswami, and Johan Håstad
- Any errors, typos etc. in the presentation belong to A. Kazda

- \mathbb{A}, \mathbb{B} are relational structures, $\mathbb{A} \to \mathbb{B}$
- $\mathsf{PCSP}(\mathbb{A},\mathbb{B})$: Input relational structure \mathbb{C}
 - \bullet Output "Yes" if $\mathbb{C} \to \mathbb{A}$
 - \bullet Output "No" if $\mathbb{C}\not\rightarrow \mathbb{B}$
- Example: $PCSP(\mathbb{K}_3, \mathbb{K}_4)$.

- $\mathsf{Pol}(\mathbb{A},\mathbb{B})$ are all polymorphisms from \mathbb{A} to \mathbb{B}
- Polymorphism $f: \mathbb{A}^n \to \mathbb{B}$ sends $R^{\mathbb{A}}$ into $R^{\mathbb{B}}$
- $\mathsf{Pol}(\mathbb{A},\mathbb{B})$ is great for classifying complexity of $\mathsf{PCSP}(\mathbb{A},\mathbb{B})$
- Can't compose, but can take minors:

 $f(x_1, x_2, x_3, x_4, x_5) \in \mathsf{Pol}(\mathbb{A}, \mathbb{B}) \Rightarrow f(x_2, x_2, x_{16}, x_4, x_5) \in \mathsf{Pol}(\mathbb{A}, \mathbb{B})$

- A functional clonoid C on sets A, B is a nonempty family of operations from A to B closed under taking minors
- Taking minors: $\sigma \colon [n] \to [m]$ sends *n*-ary *f* to *m*-ary f^{σ} where

$$f^{\sigma}(x_1,\ldots,x_m)=f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

- Each $Pol(\mathbb{A}, \mathbb{B})$ is a clonoid
- If we just care about minors and identities, we get abstract clonoids (= "clonoids")
- Libor Barto: Abstract clonoids = finitary Set-endofunctors

- $\phi \colon \mathcal{C} \to \mathcal{D}$ preserves arity and commutes with taking minors
- Another view: homomorphism sends identities of ${\cal C}$ to identities of ${\cal D}$... can interpret ${\cal C}$ in ${\cal D}$
- Example:

$$f(x,x,y) \approx g(x,y,y,z) \Rightarrow \phi(f)(x,x,y) \approx \phi(g)(x,y,y,z)$$

• Jakub Opršal: For $\mathbb{A}, \mathbb{B}, \mathbb{A}', \mathbb{B}'$ finite relational structures $\mathsf{Pol}(\mathbb{A}, \mathbb{B}) \to \mathsf{Pol}(\mathbb{A}', \mathbb{B}')$ gives a reduction from $\mathsf{PCSP}(\mathbb{A}', \mathbb{B}')$ to $\mathsf{PCSP}(\mathbb{A}, \mathbb{B})$

- " $\mathcal{C} \to \mathcal{D}$ " is a quasiorder on clonoids factorize to get the poset $\mathcal L$
- Libor Barto: \mathcal{L} is alg-universal
- \mathcal{L} is also a lattice
- Top element: Any clonoid with a constant operation $f(x) \approx f(y)$
- Bottom element: Essentially unary operations, only trivial identities

- $\mathcal{C} \wedge \mathcal{D}$ has *n*-ary part (f,g) where $f \in \mathcal{C}$ and $g \in \mathcal{D}$
- For functional clonoids and $f: A_1^n \to B_1$, $g: A_2^n \to B_2$ pick $(f,g): A_1^n \times A_2^n \to B_1 \times B_2$ defined componentwise
- Infinite meets are similar

- Abstract clonoids: Identities of $\mathcal{C} \lor \mathcal{D}$ are the disjoint union of identities of \mathcal{C} and \mathcal{D}
- Functional clonoids: C goes from A_1 to B_1 and D goes from A_2 to B_2
- Then $\mathcal{C} \vee \mathcal{D}$ goes from $A_1 \cup A_2$ to $B_1 \cup B_2 \cup \{\star\}$
- Operations of $\mathcal{C} \lor \mathcal{D}$ originate from \mathcal{C} or \mathcal{D} .
- Output * for "undefined" (handle with care)
- Infinite joins are similar

- *O_k*... essentially at most *k*-ary nonconstant operations
- Can realize \mathcal{O}_k by idempotent operations on $\{0,1\}$
- $\mathcal{O}_1 \rightarrow \mathcal{O}_2 \rightarrow \mathcal{O}_3 \rightarrow \ldots$
- PCSP(O_i) are all NP-hard (reduce from GapLabelCover)
- Let $\mathcal{O}_{<\infty} = \bigvee_{i=1}^{\infty} \mathcal{O}_i$

- Let \mathcal{O}_{∞} be the clonoid of all idempotent operations on $\{0,1\}$
- $\bullet\,$ If ${\mathcal C}$ is a clonoid without a constant operation then ${\mathcal C}\to {\mathcal O}_\infty$
- $f \in \mathcal{C}$ goes to $f^{O}(x_1, \ldots, x_n)$ where eg.

$$f^{O}(111010) = \begin{cases} 0 & \mathcal{C} \vDash f(x_{1}x_{1}x_{1}x_{0}x_{1}x_{0}) \approx f(x_{0}x_{0}x_{0}x_{0}x_{0}x_{0}x_{0}) \\ 1 & \text{else} \end{cases}$$

- Let $\mathcal{O}_{<\infty} = \bigvee_{i=1}^{\infty} \mathcal{O}_i$
- \bullet From definition of \lor , we can construct $\mathcal{O}_{<\infty}$ as a functional clonoid
- \bullet Let \mathcal{O}_∞ be the class of all idempotent operations on $\{0,1\}$
- $\mathcal{O}_{<\infty}$ is strictly below \mathcal{O}_{∞}
- Reason: \mathcal{O}_{∞} has totally symmetric idempotent operations of all arities that are minors of each other, but $\mathcal{O}_{<\infty}$ does not

- A functional clonoid of operations $A^n \rightarrow B$ is finite if A, B are finite
- If C is a clonoid above or equivalent to $\mathcal{O}_{<\infty}$, then C realizes any system of bounded arity linear identities true in \mathcal{O}_{∞}
- C realizes any finitary part of \mathcal{O}_{∞} and for each n, there are only finitely many *n*-ary operations $A^n \to B$ in C
- \bullet Compactness gives that ${\cal C}$ realizes all linear identities true in ${\cal O}_\infty$

- What interesting chains/cochains are there in *L*?
- Where are the hard PCSPs? (Near the bottom of \mathcal{L})
- Is there a weaker notion than clonoid homomorphism that captures PCSP?
- What does the lattice of finite functional clonoids look like?

Thank you for your attention.

- 一司