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Knapsack problem

Our setting

@ Let G be a finitely generated (f.g.) group.
o Fix a finite (group) generating set ¥ for G.

o Elements of G can be represented by finite words over
Yuyr
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Knapsack problem

Our setting

@ Let G be a finitely generated (f.g.) group.
o Fix a finite (group) generating set ¥ for G.

o Elements of G can be represented by finite words over
Yuyr

Knapsack problem for G (Myasnikov, Nikolaev, Ushakov 2013)

@ INPUT: Group elements g, g1,82,...,8k
® QUESTION: 3xy,...x € N: g = g" g52---g;*7?
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Knapsack problem

Our setting

@ Let G be a finitely generated (f.g.) group.
o Fix a finite (group) generating set ¥ for G.

o Elements of G can be represented by finite words over
Yuyr

Knapsack problem for G (Myasnikov, Nikolaev, Ushakov 2013)

@ INPUT: Group elements g, g1,82,...,8k
® QUESTION: 3xy,...x € N: g = g" g52---g;*7?

Decidability /complexity of knapsack does not depend on the
chosen generating set for G.
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Related problems

Rational subset membership problem for G

@ INPUT: Group element g € G and a finite automaton A with
transitions labelled by elements from ¥ u ¥ 1.

@ QUESTION: Does g € L(A) hold?
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Related problems

Rational subset membership problem for G

@ INPUT: Group element g € G and a finite automaton A with
transitions labelled by elements from ¥ u ¥ 1.

@ QUESTION: Does g € L(A) hold?

At least as difficult as knapsack:
Take a finite automaton for g;'g5--gy.

Konig, Ganardi, Lohrey, Zetzsche Knapsack Problems in Non-Commutative Groups



Related problems

Rational subset membership problem for G

@ INPUT: Group element g € G and a finite automaton A with
transitions labelled by elements from ¥ u ¥ 1.

@ QUESTION: Does g € L(A) hold?

At least as difficult as knapsack:
Take a finite automaton for g;'g5--gy.

Knapsack problem for G with integer exponents

@ INPUT: Group elements g, g1, - -- gk
® QUESTION: 3xy,...,xx €Z: g = g8 ?
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Related problems

Rational subset membership problem for G

@ INPUT: Group element g € G and a finite automaton A with
transitions labelled by elements from ¥ u ¥ 1.

@ QUESTION: Does g € L(A) hold?

At least as difficult as knapsack:
Take a finite automaton for g;'g5--gy.

Knapsack problem for G with integer exponents

@ INPUT: Group elements g, g1, - -- gk
® QUESTION: 3xy,...,xx €Z: g = g8 ?

Easier than knapsack:
Replace g* (with x € Z) by g*1(g™1)*2 (with x1,x; € N).
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Knapsack over Z

The classical knapsack problem

@ INPUT: Integers a,a1,...ax €Z
© QUESTION: 3x1,...x, e N:ta=xy-a; + -+ Xk -ax?!
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Knapsack over Z

The classical knapsack problem

@ INPUT: Integers a,a1,...ax €Z
© QUESTION: 3x1,...x, e N:ta=xy-a; + -+ Xk -ax?!

This problem is known to be decidable and the complexity depends
on the encoding of the integers a,a1,...ax € Z:

@ Binary encoding of integers (e.g. 5=101): NP-complete

@ Unary encoding of integers (e.g. 5=11111): P
Exact complexity is TC° (Elberfeld, Jakoby, Tantau 2011).
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Knapsack over Z

The classical knapsack problem

@ INPUT: Integers a,a1,...ax €Z
© QUESTION: 3x1,...x, e N:ta=xy-a; + -+ Xk -ax?!

This problem is known to be decidable and the complexity depends
on the encoding of the integers a,a1,...ax € Z:

@ Binary encoding of integers (e.g. 5=101): NP-complete

@ Unary encoding of integers (e.g. 5=11111): P
Exact complexity is TC° (Elberfeld, Jakoby, Tantau 2011).

Complexity bounds carry over to Z™ for every fixed m.
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Knapsack over Z

The classical knapsack problem

@ INPUT: Integers a,a1,...ax €Z
© QUESTION: 3x1,...x, e N:ta=xy-a; + -+ Xk -ax?!

This problem is known to be decidable and the complexity depends
on the encoding of the integers a,a1,...ax € Z:

@ Binary encoding of integers (e.g. 5=101): NP-complete
@ Unary encoding of integers (e.g. 5=11111): P
Exact complexity is TC° (Elberfeld, Jakoby, Tantau 2011).

Complexity bounds carry over to Z™ for every fixed m.

Note: Our definition of knapsack corresponds to the unary variant.
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Compressed knapsack problem

Is there a knapsack variant for arbitrary groups that corresponds to
the binary knapsack version for Z7?
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Compressed knapsack problem

Is there a knapsack variant for arbitrary groups that corresponds to
the binary knapsack version for Z7?

Represent the group elements g, g1, ..., gk by compressed words
over the generators.
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Compressed knapsack problem

Is there a knapsack variant for arbitrary groups that corresponds to
the binary knapsack version for Z7?

Represent the group elements g, g1, ..., gk by compressed words
over the generators.

Compressed words: straight-line programs (SLP) = context-free
grammars that produce a single word.
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Compressed knapsack problem

Is there a knapsack variant for arbitrary groups that corresponds to
the binary knapsack version for Z7?

Represent the group elements g, g1, ..., gk by compressed words
over the generators.

Compressed words: straight-line programs (SLP) = context-free
grammars that produce a single word.

Example 1: An SLP for a3
S—-AA, A-BB, B-CC, C-DD, D—-EE, E-a.
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Compressed knapsack problem

Is there a knapsack variant for arbitrary groups that corresponds to
the binary knapsack version for Z7?

Represent the group elements g, g1, ..., gk by compressed words
over the generators.

Compressed words: straight-line programs (SLP) = context-free
grammars that produce a single word.

Example 1: An SLP for a3
S—-AA, A-BB, B-CC, C-DD, D—-EE, E-a.

Example 2: An SLP for babbabab:
A > AipAjpfor1<i<4, As—>b, As—a
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Compressed knapsack problem

Is there a knapsack variant for arbitrary groups that corresponds to
the binary knapsack version for Z7?

Represent the group elements g, g1, ..., gk by compressed words
over the generators.

Compressed words: straight-line programs (SLP) = context-free
grammars that produce a single word.

Example 1: An SLP for a3
S—-AA, A-BB, B-CC, C-DD, D—-EE, E-a.

Example 2: An SLP for babbabab:
A > AipAjpfor1<i<4, As—>b, As—a

In compressed knapsack the group elements g, g1,...,8x are
encoded by SLPs that produce words over ¥ u ¥ 1.
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Decidability: hyperbolic groups

Myasnikov, Nikolaev, Ushakov 2013
Knapsack for every hyperbolic group belongs to P.
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Decidability: hyperbolic groups

Myasnikov, Nikolaev, Ushakov 2013
Knapsack for every hyperbolic group belongs to P.

Conjecture: Compressed knapsack for every infinite hyperbolic
group is NP-complete.
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Decidability: graph groups = right-angled Artin groups

Let (X, /) be a finite undirected simple graph.
« graph group G(X,1) = (X | ab= ba for (a,b) € ).
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Decidability: graph groups = right-angled Artin groups

Let (X, /) be a finite undirected simple graph.
« graph group G(X,1) = (X | ab= ba for (a,b) € ).
Formally: G(X,/) = F(X)/N, where

@ F(X) is the free group generated by ¥ and

@ N < F(X) is the smallest normal subgroup containing all
commutators aba 1b~! for (a,b) € /.
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Decidability: graph groups = right-angled Artin groups

Let (X, /) be a finite undirected simple graph.
« graph group G(X,1) = (X | ab= ba for (a,b) € ).
Formally: G(X,/) = F(X)/N, where

@ F(X) is the free group generated by ¥ and

@ N < F(X) is the smallest normal subgroup containing all
commutators aba 1b~! for (a,b) € /.

Extreme cases:

o G(X,1)=7Z™ for I = {(a,b) | a+ b} (complete graph)
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Decidability: graph groups = right-angled Artin groups

Let (X, /) be a finite undirected simple graph.
« graph group G(X,1) = (X | ab= ba for (a,b) € ).
Formally: G(X,/) = F(X)/N, where

@ F(X) is the free group generated by ¥ and

@ N < F(X) is the smallest normal subgroup containing all
commutators aba 1b~! for (a,b) € /.

Extreme cases:

o G(X,1)=7Z™ for I = {(a,b) | a+ b} (complete graph)
o G(XL,l)=F(X) for I = @.
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Decidability: graph groups = right-angled Artin groups

L, Zetzsche 2015
For every graph group, compressed knapsack is NP-complete.
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Decidability: graph groups = right-angled Artin groups

L, Zetzsche 2015
For every graph group, compressed knapsack is NP-complete.

o Consider a knapsack instance g = g;*g;2---g;", where
8,81;---,8n € G(X,1) and A :=max{lg],[g1],. .-, gnl}.
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Decidability: graph groups = right-angled Artin groups

L, Zetzsche 2015
For every graph group, compressed knapsack is NP-complete.

o Consider a knapsack instance g = g;*g;2---g;", where
8,81;---,8n € G(X,1) and A :=max{lg],[g1],. .-, gnl}.

@ Prove that if g = g"g;2---g;" has a solution, then it has a
solution with x; < APPY(" for all ;.
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Decidability: graph groups = right-angled Artin groups

L, Zetzsche 2015
For every graph group, compressed knapsack is NP-complete.

o Consider a knapsack instance g = g;*g;2---g;", where
8,81;---,8n € G(X,1) and A :=max{lg],[g1],. .-, gnl}.

@ Prove that if g = g"g;2---g;" has a solution, then it has a
solution with x; < APPY(" for all ;.

@ Assume now that g,gi,...,8, are given by SLPs and let m be
the maximal size of those SLPs. Hence, A < 20(m)
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Decidability: graph groups = right-angled Artin groups

L, Zetzsche 2015
For every graph group, compressed knapsack is NP-complete.

o Consider a knapsack instance g = g;*g;2---g;", where
8,81;---,8n € G(X,1) and A :=max{lg],[g1],. .-, gnl}.

@ Prove that if g = g"g;2---g;" has a solution, then it has a
solution with x; < APPY(" for all ;.

@ Assume now that g,gi,...,8, are given by SLPs and let m be
the maximal size of those SLPs. Hence, A < 20(m)

@ Guess binary encodings of numbers x; < A\PoY(m) < 20(m-poly(n))
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Decidability: graph groups = right-angled Artin groups

L, Zetzsche 2015
For every graph group, compressed knapsack is NP-complete.

o Consider a knapsack instance g = g;*g;2---g;", where
8,81;---,8n € G(X,1) and A :=max{lg],[g1],. .-, gnl}.

@ Prove that if g = g"g;2---g;" has a solution, then it has a
solution with x; < APPY(" for all ;.

@ Assume now that g,gi,...,8, are given by SLPs and let m be
the maximal size of those SLPs. Hence, A < 20(m)

@ Guess binary encodings of numbers x; < A\PoY(m) < 20(m-poly(n))

@ Verify in polynomial time whether g = g*1 g*?---g*" holds.
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Decidability: graph groups = right-angled Artin groups

L, Zetzsche 2015
For every graph group, compressed knapsack is NP-complete.

Consider a knapsack instance g = g;*g5%---g;", where
g,81,---,8n € G(L,1) and A := max{lg|,|g1l, .. [gnl}.

Prove that if g = g;"g;2---g;" has a solution, then it has a
solution with x; < APPY(" for all ;.

Assume now that g,g1,...,8n are given by SLPs and let m be
the maximal size of those SLPs. Hence, A < 20(m)

Guess binary encodings of numbers x; < APOY(7) < 20(m-poly(n))

Verify in polynomial time whether g = g** g*?---g*" holds.

«+ compressed word problem for G(X, /).
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Decidability: graph groups = right-angled Artin groups

A graph (X, /) is a transitive forest if it does not contain one of
the following two graphs (C4 and P4) as an induced subgraph:

>~
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Decidability: graph groups = right-angled Artin groups

A graph (X,/) is a transitive forest if it does not contain one of
the following two graphs (C4 and P4) as an induced subgraph:

>~

L, Zetzsche 2016

Let (X, /) be a finite simple undirected graph.

@ (X,/) is a complete graph.
= knapsack for G(X, 1) is TC-complete.
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Decidability: graph groups = right-angled Artin groups

A graph (X,/) is a transitive forest if it does not contain one of
the following two graphs (C4 and P4) as an induced subgraph:

>~

L, Zetzsche 2016

Let (X, /) be a finite simple undirected graph.
@ (X,/) is a complete graph.
= knapsack for G(X, 1) is TC-complete.

@ (X,/) is not complete but a transitive forest.
= knapsack for G(X,/) is LogCFL-complete.

Konig, Ganardi, Lohrey, Zetzsche Knapsack Problems in Non-Commutative Groups



Decidability: graph groups = right-angled Artin groups

A graph (X,/) is a transitive forest if it does not contain one of
the following two graphs (C4 and P4) as an induced subgraph:

>~

L, Zetzsche 2016

Let (X, /) be a finite simple undirected graph.
@ (X,/) is a complete graph.
= knapsack for G(X, 1) is TC-complete.

@ (X,/) is not complete but a transitive forest.
= knapsack for G(X,/) is LogCFL-complete.

@ (X,/) is not a transitive forest.
= knapsack for G(X, /) is NP-complete.
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Decidability: graph groups = right-angled Artin groups

What's so special about transitive forests?
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Decidability: graph groups = right-angled Artin groups

What's so special about transitive forests?

The class of graph groups G(X,/) with (X, /) a transitive forest is
the smallest class C with

@ ZeC
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Decidability: graph groups = right-angled Artin groups

What's so special about transitive forests?

The class of graph groups G(X,/) with (X, /) a transitive forest is
the smallest class C with

@ ZeC
0 GeC = GxZeC
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Decidability: graph groups = right-angled Artin groups

What's so special about transitive forests?

The class of graph groups G(X,/) with (X, /) a transitive forest is
the smallest class C with

@ ZeC
0 GeC = GxZeC
@ GGHeC = G+xHeC
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Decidability: virtually special groups

A group G is virtually special if there is a subgroup H < G of finite
index such that H embeds into a graph product.
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Decidability: virtually special groups

A group G is virtually special if there is a subgroup H < G of finite
index such that H embeds into a graph product.

L, Zetzsche 2015

For every virtually special group, compressed knapsack is in NP.
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Decidability: virtually special groups

A group G is virtually special if there is a subgroup H < G of finite
index such that H embeds into a graph product.

L, Zetzsche 2015
For every virtually special group, compressed knapsack is in NP.

« compressed knapsack is in NP for every
@ Coxeter group,

@ one-relator group with torsion,

o fully residually free group

@ fundamental group of a hyperbolic 3-manifold.

Follows from result for graph groups:
If knapsack for G is in NP, then the same holds for
(i) every subgroup of G and (ii) every finite extension of G.
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Decidability results: Heisenberg groups

The discrete Heisenberg group:

1 a ¢
H(Z)={(0 1 b)
0 01

a,b,ceZ}.
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Decidability results: Heisenberg groups

The discrete Heisenberg group:

1 a ¢
H(Z)={(0 1 b)
0 01

It is the free nilpotent group of class 2 and rank 2.

a,b,ceZ}.
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Decidability results: Heisenberg groups

The discrete Heisenberg group:

1 a ¢
H(Z)={(0 1 b)
0 01

It is the free nilpotent group of class 2 and rank 2.

Konig, L, Zetzsche 2015
Knapsack for H(Z) is decidable.

a,b,ceZ}.
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Decidability results: Heisenberg groups

The discrete Heisenberg group:

1 a ¢
H(Z)={(0 1 b)
0 01

It is the free nilpotent group of class 2 and rank 2.

a,b,ceZ}.

Konig, L, Zetzsche 2015
Knapsack for H(Z) is decidable.

Proof: An equation A= A7*A%-A% (A A1,...,A, e H(Z))
translates into a system of

@ two linear equations and

@ a single quadratic Diophantine equation.
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Decidability results: Heisenberg groups

The discrete Heisenberg group:

1 a ¢
H(Z)={(0 1 b)
0 01

It is the free nilpotent group of class 2 and rank 2.

a,b,ceZ}.

Konig, L, Zetzsche 2015
Knapsack for H(Z) is decidable.

Proof: An equation A= A7*A%-A% (A A1,...,A, e H(Z))
translates into a system of

@ two linear equations and

@ a single quadratic Diophantine equation.

By a result of Grunewald and Segal, solvability of such a system is
decidable. O
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Decidability results: co-context-free groups

A f.g. group G is co-context-free if the language
coOWP(G):={we (ZurH*|w+1lin G}

is context-free.

Konig, L, Zetzsche 2015

For every co-context-free group G, knapsack is decidable.

In particular, knapsack is decidable for Z:Z and
Higman-Thompson groups.
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Decidability results: co-context-free groups

A f.g. group G is co-context-free if the language
coOWP(G):={we (ZurH*|w+1lin G}

is context-free.

Konig, L, Zetzsche 2015

For every co-context-free group G, knapsack is decidable.

In particular, knapsack is decidable for Z:Z and
Higman-Thompson groups.

Proof: Consider the knapsack instance

— XL X2 Xk

w o= wtwyPew)
H —-1y\*
with w,wy, wo, ... ,we e (ZUX™ )",
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Decidability results: co-context-free groups

Define the homomorphism «a: {ay,...,ax, b}* = (ZUX1)* by

a(a;) =w;, a(b)=wl
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Decidability results: co-context-free groups

Define the homomorphism «a: {ay,...,ax, b}* = (ZUX1)* by
a(a;) =w;, a(b)=wl
For the language
M := ot (coWP(G)) n aja}--aib
we have:

@ M is (effectively) context-free.

_ [ X1 X2 %k X1 X2 Xk :
o M={aj'ay*-a b|wi'wy?-w*+win G}
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Decidability results: co-context-free groups

Define the homomorphism «a: {ay,...,ax, b}* = (ZUX1)* by
a(a;) =w;, a(b)=wl
For the language
M := ot (coWP(G)) n aja}--aib
we have:

@ M is (effectively) context-free.
o M={al'ay*--ab|w'wy?-w #win G}

Hence, we have to check whether M = aja3---a; b.
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Decidability results: co-context-free groups

Define the homomorphism «a: {ay,...,ax, b}* = (ZUX1)* by
a(a;) =w;, a(b)=wl
For the language
M := ot (coWP(G)) n aja}--aib
we have:
@ M is (effectively) context-free.
o M={al'ay*--ab|w'wy?-w #win G}

Hence, we have to check whether M = aja3---a; b.

Compute the Parikh image W(M) c N¥*1 and check whether
\U(M) = {(nl, np,...,Ngk, 1) | n; € N}
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Undecidability: class-2 nilpotent groups

Konig, L, Zetzsche 2015
There is an m > 2 such that knapsack is undecidable for H(Z)™.

In particular, there are nilpotent groups of class 2 with undecidable
knapsack problem.
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Undecidability: class-2 nilpotent groups

Konig, L, Zetzsche 2015
There is an m > 2 such that knapsack is undecidable for H(Z)™.

In particular, there are nilpotent groups of class 2 with undecidable
knapsack problem.

Konig, L, Zetzsche 2015

Decidability of knapsack is not preserved by direct products.
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Undecidability: class-2 nilpotent groups

Konig, L, Zetzsche 2015
There is an m > 2 such that knapsack is undecidable for H(Z)™.

In particular, there are nilpotent groups of class 2 with undecidable
knapsack problem.

Konig, L, Zetzsche 2015
Decidability of knapsack is not preserved by direct products.

Konig, L, Zetzsche 2015

There is a nilpotent group G of class 2 with four abelian subgroups
G1, Gy, G3, G4 such that membership in G; G» G3 G, is undecidable.
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Undecidability: class-2 nilpotent groups

There is an m > 2 such that knapsack is undecidable for H(Z)™. ]
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Undecidability: class-2 nilpotent groups

There is an m > 2 such that knapsack is undecidable for H(Z)™. ]

Proof: Reduction from Hilbert’s 10th problem.
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Undecidability: class-2 nilpotent groups

There is an m > 2 such that knapsack is undecidable for H(Z)™. ]

Proof: Reduction from Hilbert’s 10th problem.

There is a fixed polynomial P(Xi,...,Xk) € Z[X1,...,Xk] such
that the following problem is undecidable:

@ INPUT: aeN.
@ QUESTION: 3(x1,...,xx) € ZXK: P(xq,...,x¢) = a?
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Undecidability: class-2 nilpotent groups

There is an m > 2 such that knapsack is undecidable for H(Z)™. ]

Proof: Reduction from Hilbert’s 10th problem.

There is a fixed polynomial P(Xi,...,Xk) € Z[X1,...,Xk] such
that the following problem is undecidable:

@ INPUT: aeN.
@ QUESTION: 3(x1,...,xx) € ZXK: P(xq,...,x¢) = a?

Write P(Xi,...,Xx) = a as a system S of equations of the form
X-Y=Z X+Y=2Z X=c(ceZ)

with a distinguished equation Xy = a.
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Undecidability: class-2 nilpotent groups

Toy example: S={Xp=a, Xo=X-Y, Y=X+Z2Z}
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Undecidability: class-2 nilpotent groups

Toy example: S={Xp=a, Xo=X-Y, Y=X+Z2Z}

1 a c
Recall that H(Z):{(O 1 b)

0 01

a,b,ceZ}.
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Undecidability: class-2 nilpotent groups

Toy example: S={Xp=a, Xo=X-Y, Y=X+Z2Z}

1 a c
Recall that H(Z):{(O 1 b)

0 01

a,b,ceZ}.

Work in the direct product H(Z)3 (3 = number of equations).
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Undecidability: class-2 nilpotent groups

Toy example: S={Xp=a, Xo=X-Y, Y=X+Z2Z}

1 a c
Recall that H(Z):{(O 1 b)

0 01

a,b,ceZ}.

Work in the direct product H(Z)3 (3 = number of equations).

For Ac H(Z) let Ay = (A,1d,1d), A; = (Id, A, 1d), As = (Id, Id, A).
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Undecidability: class-2 nilpotent groups

The solutions of S={Xp=a, Xo=X-Y, Y=X+Z2Z} are the

solutions of the equation
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Undecidability: class-2 nilpotent groups

The solutions of S={Xp=a, Xo=X-Y, Y=X+Z2Z} are the
solutions of the equation

1 0 a
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0 0 1
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Undecidability: class-2 nilpotent groups

The solutions of S={Xp=a, Xo=X-Y, Y=X+Z2Z} are the
solutions of the equation

1 0 a
01 0] =
0 0 1/
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1
0
0
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Undecidability: class-2 nilpotent groups

How to achieve synchronization?
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Undecidability: class-2 nilpotent groups

How to achieve synchronization?
Example: Consider an equation
g=a"bZcYd?

with g,a,b,c,d € G (any group).
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Undecidability: class-2 nilpotent groups

How to achieve synchronization?
Example: Consider an equation

g= avb?cY d?
with g,a,b,c,d € G (any group).

It has a solution (with Y, Z € Z if and only if the following
equation (over the group G x Z*) has a solution:

(g,0,0,0,0) =

(1,1,0,1,0)¥(1,0,1,0,1)%
(a,-1,0,0,0)Y(b,0,-1,0,0)¥(c,0,0,-1,0)" (d,0,0,0,-1)%

Konig, Ganardi, Lohrey, Zetzsche Knapsack Problems in Non-Commutative Groups



Undecidability: class-2 nilpotent groups

How to achieve synchronization?
Example: Consider an equation

g= avb?cY d?
with g,a,b,c,d € G (any group).

It has a solution (with Y, Z € Z if and only if the following
equation (over the group G x Z*) has a solution:

(g,0,0,0,0) =
(1,1,0,1,0)¥(1,0,1,0,1)%
(a,-1,0,0,0)Y(b,0,-1,0,0)¥(c,0,0,-1,0)" (d,0,0,0,-1)%

In our example: Work in H(Z)3 x Z° (still nilpotent of class 2).
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Undecidability: class-2 nilpotent groups

What we actually proved:
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Undecidability: class-2 nilpotent groups

What we actually proved:

There is a fixed class-2 nilpotent group G and a fixed sequence of
elements g1,8,...,8, € G such that membership in the product

(g1)(g2)-(gn)

is undecidable.
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Undecidability: class-2 nilpotent groups

What we actually proved:

There is a fixed class-2 nilpotent group G and a fixed sequence of
elements g1,8,...,8, € G such that membership in the product

(g1)(g2)-(gn)

is undecidable.

Most of the g; are central.
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Undecidability: class-2 nilpotent groups

What we actually proved:

There is a fixed class-2 nilpotent group G and a fixed sequence of
elements g1,8,...,8, € G such that membership in the product

(g1)(g2)(gn)
is undecidable.

Most of the g; are central.

This allows to write (g1){(g2)---(gn) as a product Gj G>G3Gy of four
abelian subgroups of G.
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Undecidability: class-2 nilpotent groups

What we actually proved:

There is a fixed class-2 nilpotent group G and a fixed sequence of
elements g1,8,...,8, € G such that membership in the product

(g1)(g2)(gn)
is undecidable.

Most of the g; are central.

This allows to write (g1){(g2)---(gn) as a product Gj G>G3Gy of four
abelian subgroups of G.

Konig, L 2015

There is a class-2 nilpotent group G with four abelian subgroups
Gi, Gy, G3, G4 such that membership in G; G> G3 G, is undecidable.
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Knapsack-semilinear groups

(semi-)linear sets

A subset A c N¥ is linear if there exist v, v1, ..., v, € N such that
A={V0+)\1V1+---+>\nvn|)\1,...,)\,,EN}.

A semilinear set is a finite union of linear sets.
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Knapsack-semilinear groups

(semi-)linear sets

A subset A c N¥ is linear if there exist v, v1, ..., v, € N such that
A={V0+)\1V1+-'-+)\nvn|)\1,...,)\,,EN}.

A semilinear set is a finite union of linear sets.

knapsack-semilinear groups

The f.g. group G is knapsack-semilinear if for all
g,81,8,---,8k € G the set

{(x1,%,...,xk) eNF | g = gligy?gr* )

is semilinear and the vectors in a semilinear representation of this
set can be effectively computed from g, gi,...,gk-

Obviously, knapsack is decidable for every knapsack-semilinear
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Knapsack-semilinear groups

The class of knapsack-semilinear groups is very rich:

Ganardi, Konig, L, Zetzsche 2017

The following groups are knapsack-semilinear:

@ virtually special groups
@ hyperbolic groups

@ co-context-free groups

@ free solvable groups
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Knapsack-semilinear groups

Ganardi, Konig, L, Zetzsche 2017

If G and H are knapsack-semilinear, then the following groups are
knapsack-semilinear as well:

@ every f.g. subgroup of G

@ every finite extension of G

© GxHand G*+H

o HNN-extension (G, t |t tat = p(a)(acA)) with A< G finite

@ amalgamated free product G 4 H where A is a finite
subgroup of G and H.

@ G H (restricted wreath product of G and H)

Konig, Ganardi, Lohrey, Zetzsche Knapsack Problems in Non-Commutative Groups



Knapsack-semilinear groups

Ganardi, Konig, L, Zetzsche 2017

If G and H are knapsack-semilinear, then the following groups are
knapsack-semilinear as well:

@ every f.g. subgroup of G

@ every finite extension of G

© GxHand G*+H

o HNN-extension (G, t |t tat = p(a)(acA)) with A< G finite

@ amalgamated free product G 4 H where A is a finite
subgroup of G and H.

@ G H (restricted wreath product of G and H)

But: there are f.g. groups, which are not knapsack-semilinear and
for which knapsack is still decidable: Heisenberg group H(Z).
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Open problems

@ For every polycyclic group G and all finitely generated
subgroups Gy, Gy < G, membership in GG, is decidable
(Lennox, Wilson 1979).

What about a product of 3 finitely generated subgroups?
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Open problems

@ For every polycyclic group G and all finitely generated
subgroups Gy, Gy < G, membership in GG, is decidable
(Lennox, Wilson 1979).

What about a product of 3 finitely generated subgroups?

@ Complexity of knapsack for a co-context-free group.

Our algorithm runs in exponential time.
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Open problems

@ For every polycyclic group G and all finitely generated
subgroups Gy, Gy < G, membership in GG, is decidable
(Lennox, Wilson 1979).

What about a product of 3 finitely generated subgroups?

@ Complexity of knapsack for a co-context-free group.

Our algorithm runs in exponential time.

@ coC-groups for a language class C having:
(i) effective closure under inverse homomorphisms,
(ii) effective closure under intersection with regular languages,

(iii) effective semilinear Parikh images
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Open problems

@ For every polycyclic group G and all finitely generated
subgroups Gy, Gy < G, membership in GG, is decidable
(Lennox, Wilson 1979).

What about a product of 3 finitely generated subgroups?

@ Complexity of knapsack for a co-context-free group.

Our algorithm runs in exponential time.

@ coC-groups for a language class C having:
(i) effective closure under inverse homomorphisms,
(ii) effective closure under intersection with regular languages,

(iii) effective semilinear Parikh images

@ Knapsack for automaton groups.
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