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Introduction: Boolean-valued models

As known, to a consistent theory T in the classical first-order
language, one can associate the Lindenbaum algebra B(T ). It is a
Boolean algebra of equivalence classes of formulas in T under the
logical equivalence. It can be shown that any Boolean algebra is
isomorphic to B(T ) for a suitable theory T .

Similarly, for the consistent theory in the intuitionistic first-order
logic, the corresponding algebraic structure of equivalent classes is
a Heyting algebra.

A. Tepavčević Lattice valued structures



Introduction: Boolean-valued models

As known, to a consistent theory T in the classical first-order
language, one can associate the Lindenbaum algebra B(T ). It is a
Boolean algebra of equivalence classes of formulas in T under the
logical equivalence. It can be shown that any Boolean algebra is
isomorphic to B(T ) for a suitable theory T .

Similarly, for the consistent theory in the intuitionistic first-order
logic, the corresponding algebraic structure of equivalent classes is
a Heyting algebra.
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Complete Boolean algebras provide semantics for a classical
propositional and first-order logic, as Boolean-valued models.

B is a complete Boolean algebra, L a first-order language and M a
nonempty universe.
Interpretation of constants and terms with respect to valuations
are usual elements of M.
Next, for each pair (a, b) ∈ M2 , the model assigns to the
expression a = b a truth value Ja = bK in B.
Analogously a truth-value is associated to expressions with
relational symbols, and further to sentences and formulas under
valuations, where logical connectives are interpreted by operations
in B.

A first-order formula is valid in every Boolean-valued structure (its
Boolean value is 1) if and only if it is provable in classical
first-order logic.

In a similar way, complete Heyting algebras are related to
intuitionistic first-order logic.
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Models of set theory

In the 1960s Boolean-valued models were introduced by Dana
Scott, Robert M. Solovay, and Petr Vopenka.
The idea was to of use Boolean-valued models to describe forcing
in proving independence of axioms of Set theory.
Sets were replaced by characteristic functions with the two-element
Boolean algebra as the co-domain.
Then the co-domain was extended to an arbitrary fixed complete
Boolean algebra B.
Instead of characteristic functions, new objects became all
functions from sets to B.
In this way the universe of Boolean-valued sets denoted by V (B)

was obtained, consisting of much more functions than there were
sets previously.
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A. Tepavčević Lattice valued structures



Models of set theory

In the 1960s Boolean-valued models were introduced by Dana
Scott, Robert M. Solovay, and Petr Vopenka.
The idea was to of use Boolean-valued models to describe forcing
in proving independence of axioms of Set theory.
Sets were replaced by characteristic functions with the two-element
Boolean algebra as the co-domain.
Then the co-domain was extended to an arbitrary fixed complete
Boolean algebra B.
Instead of characteristic functions, new objects became all
functions from sets to B.

In this way the universe of Boolean-valued sets denoted by V (B)

was obtained, consisting of much more functions than there were
sets previously.
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Next, a first-order language L(B) is introduced by extending the
classical first-order language L with equality and a single predicate
symbol ∈ by adding names for all objects in V (B).

Finally, a function J·KB is constructed, associating to each sentence
in L(B) and then to formulas the Boolean truth value in B.

Theorem (J.L. Bell, 1976)

All the axioms of the first-order predicate calculus with equality
hold in V (B), also the rules of inference. Further,
(i) Ju = uK = 1;
(ii) Ju = vK = Jv = uK;
(iii) Ju = vK ∧ Jv = wK ≤ Ju = wK;
(iv) u(x) ≤ Jx ∈ uK for x ∈ dom(u);
(v) Ju = vK ∧ Ju ∈ wK ≤ Jv ∈ wK;
(vi) Ju = vK ∧ Ju ∈ vK ≤ Ju ∈ wK;
(vii) Ju = vK ∧ Jφ(u)K ≤ Jφ(v)K for any formula φ.
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A. Tepavčević Lattice valued structures



Next, a first-order language L(B) is introduced by extending the
classical first-order language L with equality and a single predicate
symbol ∈ by adding names for all objects in V (B).
Finally, a function J·KB is constructed, associating to each sentence
in L(B) and then to formulas the Boolean truth value in B.

Theorem (J.L. Bell, 1976)

All the axioms of the first-order predicate calculus with equality
hold in V (B), also the rules of inference. Further,
(i) Ju = uK = 1;
(ii) Ju = vK = Jv = uK;

(iii) Ju = vK ∧ Jv = wK ≤ Ju = wK;
(iv) u(x) ≤ Jx ∈ uK for x ∈ dom(u);
(v) Ju = vK ∧ Ju ∈ wK ≤ Jv ∈ wK;
(vi) Ju = vK ∧ Ju ∈ vK ≤ Ju ∈ wK;
(vii) Ju = vK ∧ Jφ(u)K ≤ Jφ(v)K for any formula φ.
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A. Tepavčević Lattice valued structures



Next, a first-order language L(B) is introduced by extending the
classical first-order language L with equality and a single predicate
symbol ∈ by adding names for all objects in V (B).
Finally, a function J·KB is constructed, associating to each sentence
in L(B) and then to formulas the Boolean truth value in B.

Theorem (J.L. Bell, 1976)

All the axioms of the first-order predicate calculus with equality
hold in V (B), also the rules of inference. Further,
(i) Ju = uK = 1;
(ii) Ju = vK = Jv = uK;
(iii) Ju = vK ∧ Jv = wK ≤ Ju = wK;
(iv) u(x) ≤ Jx ∈ uK for x ∈ dom(u);
(v) Ju = vK ∧ Ju ∈ wK ≤ Jv ∈ wK;
(vi) Ju = vK ∧ Ju ∈ vK ≤ Ju ∈ wK;

(vii) Ju = vK ∧ Jφ(u)K ≤ Jφ(v)K for any formula φ.
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Fuzzy algebraic structures and the corresponding
logics

Fuzzy mathematics appeared in sixties in the papers of L. Zadeh.
The characteristic function of a subset B of a set A, as a mapping
KB : A→ {0, 1},
is extended to the function
µ : A→ [0, 1],
whose co-domain is the unit real interval [0, 1].
Set are replaced by functions.
The two co-domains
({0, 1},6) and ([0, 1],6)
are both bounded distributive lattices, the former is Boolean.

The mapping µ is a fuzzy set on A, or a fuzzy subset of A and
these lattices are structures of truth or membership values.
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A. Tepavčević Lattice valued structures



Fuzzy algebraic structures and the corresponding
logics

Fuzzy mathematics appeared in sixties in the papers of L. Zadeh.
The characteristic function of a subset B of a set A, as a mapping
KB : A→ {0, 1},
is extended to the function
µ : A→ [0, 1],
whose co-domain is the unit real interval [0, 1].
Set are replaced by functions.
The two co-domains
({0, 1},6) and ([0, 1],6)
are both bounded distributive lattices, the former is Boolean.

The mapping µ is a fuzzy set on A, or a fuzzy subset of A and
these lattices are structures of truth or membership values.
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Considering the values of a fuzzy set as truth values, Fuzzy logic
has been developed as a kind of many-valued logic, mostly (or
originally) intended to deal with membership values in the unit
interval [0, 1].

The corresponding structures should model
– logical connectives (conjunction, implication, negation,...),
– rules of inference like modus ponens,
– quantifiers and predicates,
– and when applied to fuzzy sets, to generalize set-theoretic
operations.
In addition, graded membership values need not be linearly ordered.

Structures suitable to fulfill these requirements are residuated
lattices and related ordered structures.
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Fuzzy sets

X 6= ∅;
(L,6) - complete lattice with the top 1 and the bottom 0;

µ : X → L – a fuzzy set on X .

Also: Lattice-valued set, L-valued set or fuzzy subset of X .

LX := {µ | µ : X → L} - collection of all L-fuzzy sets on X .

LX is a lattice under the componentwise ordering:
µ 6 ν if and only if for each x ∈ X µ(x) 6 ν(x).

µp := {x ∈ X | µ(x) > p} - p-cut, a cut set, cut of µ.
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Fuzzy (sub)algebra

This topic has been investigated from early period of fuzzy era.
Firstly a real interval was used as a co-domain, then a complete
lattice.
If L is a residuated lattice, meet in the following formulas should
be replaced by multiplication.

Let A = (A,F ) be an algebra and L a complete lattice.
A fuzzy subalgebra of A is any mapping µ : A→ L fulfilling the
following closeness property:
For any operation f from F , f : An → A, n ∈ N, and all
x1, . . . , xn ∈ A,

n∧
i=1

µ(xi ) ≤ µ(f (x1, . . . , xn)).

For a nullary operation (constant) c ∈ F , µ(c) = 1.
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Example

An L-fuzzy subgroup of a group (G , ·, −1, e) is a mapping
µ : G → L, fulfilling the following:

µ(x · y) > µ(x) ∧ µ(y), for all x , y ∈ G .

µ(e) = 1.

µ(x−1) > µ(x), for every x ∈ G . 2

Theorem

Let A be an algebra. Then µ : A→ L is a fuzzy subalgebra of A if
and only if for every p ∈ L, the cut set µp is a classical subalgebra
of A.
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Residuated lattice

Let L = (L,∧,∨,⊗,_, 0, 1) be an algebra such that
(L,∧,∨) is a lattice with the bottom 0 and the top element 1;
(L,⊗, 1) is a commutative monoid with the unit 1;
the operation ⊗ (multiplication) and _ (residuum) satisfy the
adjunction property:
x ⊗ y 6 z ⇐⇒ x 6 y _ z .
Then L = (L,∧,∨,⊗,_, 0, 1) is a residuated lattice.
A residuated lattice is complete if the lattice (L,∧,∨) is complete.

Examples

Let [0, 1] be the unit real interval. Then ([0, 1],∧,∨) is a complete
(distributive) lattice under the usual ordering 6 and with
x ∧ y = min(x , y); x ∨ y = max(x , y).
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There are several residuated lattices

([0, 1],∧,∨,⊗,_, 0, 1)

whose lattice reduct is the above complete lattice:

 Lukasiewicz structure:
x ⊗ y = max(x + y − 1, 0);
x _ y = min(1− x + y , 1).

Gödel structure:
x ⊗ y = min(x , y);

x _ y =

{
1 if x 6 y
y if x > y .

.

Product structure:
x ⊗ y = x · y ;

x _ y =

{
1 if x 6 y
y if x > y .

.
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A Heyting lattice is a bounded lattice H in which for all x and
y in H there is a greatest element z of H such that x ∧ z 6 y ;

z is the relative pseudo-complement of x with respect to y .

Every Heyting lattice is distributive, and if it is complete, then
it is also infinitely distributive and it is called a frame.

If z is the above relative pseudo-complement, denoting
z = x _ y , we obtain a binary operation _ on H.

Finally, define x ⊗ y := x ∧ y .

The algebra
(H,∧,∨,⊗,_, 0, 1)

is a residuated lattice, called Heyting algebra.

Boolean algebras, finite distributive lattices, chains, are
examples of Heyting algebras.
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A. Tepavčević Lattice valued structures



A Heyting lattice is a bounded lattice H in which for all x and
y in H there is a greatest element z of H such that x ∧ z 6 y ;

z is the relative pseudo-complement of x with respect to y .

Every Heyting lattice is distributive, and if it is complete, then
it is also infinitely distributive and it is called a frame.

If z is the above relative pseudo-complement, denoting
z = x _ y , we obtain a binary operation _ on H.

Finally, define x ⊗ y := x ∧ y .

The algebra
(H,∧,∨,⊗,_, 0, 1)

is a residuated lattice, called Heyting algebra.

Boolean algebras, finite distributive lattices, chains, are
examples of Heyting algebras.
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When modeling logic in a fuzzy framework by a residuated lattice
L, logical connectives are interpreted as operations in the following
way:

Disjunction (∨ ) is modeled by join (∨ ) in L;
conjunction (∧ ) by multiplication (⊗ );
implication (⇒ ) by residuum ( _ );
equivalence (⇔ ) by biresiduum ( ] ),
where for x , y ∈ L, x ] y = (x _ y) ∧ (y _ x);
negation (¬ ) by negation as operation ( ′ ),
where for x ∈ L, x ′ = x _ 0.
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Algebras with generalized equality

In the following L is a complete residuated lattice.

Fuzzy relations

A fuzzy relation R on a set X is a fuzzy subset of X 2:

R : X 2 → L

.
R is also said to be an L-valued or lattice valued relation on X .
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A fuzzy relation R on X is

reflexive if R(x , x) = 1, for every x ∈ X ;

symmetric: R(x , y) = R(y , x), for all x , y ∈ X ;

transitive: R(x , y)⊗ R(y , z) 6 R(x , z), for all x , y , z ∈ X ;

antisymmetric: R(x , y)⊗ R(y , x) = 0, for all x , y ∈ X ,
x 6= y .

R is a fuzzy equivalence relation (fuzzy similarity) if it is
reflexive, symmetric and transitive.

A fuzzy equivalence relation R is a fuzzy equality if it
satisfies the separation property:
If x 6= y then R(x , x) > R(x , y).

R is a fuzzy ordering relation if it is reflexive, antisymmetric
and transitive.
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If R is a fuzzy equality on A, then for a ∈ A the map [a]R : A→ L
given by

[a]R(x) = R(a, x)

is the L-valued equivalence class of A with respect to R.

Accordingly, the collection

A/R = {[a]R | a ∈ A}

is a factor set of A over R.
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In the classical set theory, and generally in mathematics, sets and
structures are equipped with identity, formalized by the equality
relation.

Elements of a set X are either equal or they are not and the
corresponding information is preserved in the equality, diagonal
∆X = {(x , x) | x ∈ X}.
Formally, ∆X is an equivalence relation on X , with an additional
property that its characteristic function satisfies the separation
property:
If x 6= y then ∆X (x , x) > ∆X (x , y).

In the fuzzy framework, it is reasonable to introduce a set with
L-equality (set with fuzzy equality) as a pair (X ,E) where
X 6= ∅ and E is a fuzzy equality, i.e., a fuzzy equivalence satisfying
a separation property.
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Algebras with fuzzy equality

Algebraic structures with fuzzy equality have been investigated
since late nineties (Höhle, Demirci, Vychodil, Bělohlávek).
The reason was mostly to deal with identities and compatible
relations in fuzzy framework.
Here we present approach by Bělohlávek and Vychodil.

As indicated, L is a fixed residuated lattice.
Let (X ,E) be a set with fuzzy equality and f : An → A an n-ary
operation on A.
E is said to be compatible with f if for all
x1, . . . , xn, y1, . . . , yn ∈ A,⊗n

i=1 E(xi , yi ) 6 E(f (x1, . . . , xn), f (y1, . . . , yn)).

Similarly, E is compatible with an L-valued relation R : A2 → L
on A if for all x1, . . . , xn, y1, . . . , yn ∈ A,⊗n

i=1 E(xi , yi )⊗ R(x1, . . . , xn) 6 R(y1, . . . , yn).
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An algebra with fuzzy equality (algebra with L-equality),
L-algebra in the sequel, is a pair A = (A,EA) where A = (A,FA)
is an algebra and EA is a fuzzy equality on A compatible with
operations in FA.

Algebra A is the skeleton of A.
For an L-algebra A it is usually indicated that A is of a particular
fixed type T , where T is a type of the algebra A, extended by a
functional symbol E to which number 2 is associated.
In this context there are L-groups, L-rings, L-lattices etc.
Clearly, for L being a two-element Boolean algebra, EA is a classical
equality on A and L-algebras coincide with ordinary algebras.

Remark

It would be more precise to define an L-algebra as a triple
(A,EA,FA), so that the classical equality ”=” is formally excluded
(as it is done in original paper by Bělohlávek and Vychodil). Still,
classical equality is not excluded in the definition of a set with a
fuzzy equality. The present definition does not create confusions
and it is convenient to have an algebra as a skeleton.
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A. Tepavčević Lattice valued structures



An algebra with fuzzy equality (algebra with L-equality),
L-algebra in the sequel, is a pair A = (A,EA) where A = (A,FA)
is an algebra and EA is a fuzzy equality on A compatible with
operations in FA.
Algebra A is the skeleton of A.
For an L-algebra A it is usually indicated that A is of a particular
fixed type T , where T is a type of the algebra A, extended by a
functional symbol E to which number 2 is associated.
In this context there are L-groups, L-rings, L-lattices etc.
Clearly, for L being a two-element Boolean algebra, EA is a classical
equality on A and L-algebras coincide with ordinary algebras.

Remark

It would be more precise to define an L-algebra as a triple
(A,EA,FA), so that the classical equality ”=” is formally excluded
(as it is done in original paper by Bělohlávek and Vychodil). Still,
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Let A = (A,EA) and B = (B,EB) be two L-algebra. Then B is a
subalgebra of A if algebra B is a subalgebra of A and EB is a
restriction of EA on B.

Let A = (A,EA) be an L-algebra. An L-relation θ on A is a
congruence on A, if
(i) θ is an L-equivalence on A,
(ii) θ is compatible with functions in FA,
(iii) θ is compatible with EA.

Condition (iii) is equivalent with EA(a, b) 6 θ(a, b) for all a, b ∈ A.

Let θ be a congruence on an L-algebra A of type T .
A factor L-algebra of A over θ is an L-algebra

A/θ = (A/θ,EA/θ) where EA/θ([x ]θ, [y ]θ) = θ(x , y)
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A. Tepavčević Lattice valued structures



Let A = (A,EA) and B = (B,EB) be two L-algebra. Then B is a
subalgebra of A if algebra B is a subalgebra of A and EB is a
restriction of EA on B.

Let A = (A,EA) be an L-algebra. An L-relation θ on A is a
congruence on A, if
(i) θ is an L-equivalence on A,
(ii) θ is compatible with functions in FA,
(iii) θ is compatible with EA.

Condition (iii) is equivalent with EA(a, b) 6 θ(a, b) for all a, b ∈ A.

Let θ be a congruence on an L-algebra A of type T .

A factor L-algebra of A over θ is an L-algebra

A/θ = (A/θ,EA/θ) where EA/θ([x ]θ, [y ]θ) = θ(x , y)
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Let A and B be L-algebras of type T . Then a homomorphism
h : A→ B from skeleton A to skeleton B is a homomorphism of
A to B if for all x , y ∈ A

EA(x , y) 6 EB(h(x), h(y)).

Theorem ( Bělohlávek, Vychodil, 2006)

If h is a homomorphism from A to B, then kernel of h, i.e., the
L-relation θh on A defined by

θh(x , y) = EB(h(x), h(y))

is an L-congruence on A.

Theorem (Bělohlávek, Vychodil, 2006)

If θ is a congruence on an L-algebra A, then the natural mapping
hθ : A→ A/θ, where hθ(a) = [a]θ is an onto homomorphism.

Isomorphism theorems can also be formulated in this framework.
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Theorem (Bělohlávek, Vychodil, 2006)

If θ is a congruence on an L-algebra A, then the natural mapping
hθ : A→ A/θ, where hθ(a) = [a]θ is an onto homomorphism.

Isomorphism theorems can also be formulated in this framework.
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A direct product of a family {Ai | i ∈ I} of L-algebras of the type
T is an L-algebra

A = (
∏
i∈I
Ai ,EΠMi ),

where for all x , y ∈
∏

i∈I Ai ,

EΠAi (x , y) =
∧
i∈I

EAi (x(i), y(i)).

Subdirect product, subdirect irreducibility can be formulated, and
also properties of these in the framework of L algebras, analogously
to classical representation theorems.
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Logical approach

Algebras with fuzzy equality are structures which semantically
correspond to fuzzy equational logic , which is developed as
Pavelka-style fuzzy logic .
A complete residuated lattice L serves as a model.
A weighted proof is obtained by deduction rules to which weights
from L are associated.
The weight of the last formula in the proof is the degree of
provability of a formula.
Analogously, in semantical sense, a truth-degree is associated to
formula interpreted in L, where equality relational symbol is
modeled by fuzzy equality E.
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An L-algebra A is a model of a set Σ of identities if for each
t ≈ t ′ ∈ Σ, the degree of provability of this identity does not
exceed its truth-degree in this model.

Analogously, a single truth-degree of an identity from Σ is
computed for all algebras being a model of Σ.
If the truth-degree of an identity t ≈ t ′ ∈ Σ is denoted by Jt ≈ t ′KΣ

and its degree of provability by |t ≈ t ′|Σ, we have the following.

Theorem (completeness (Bělohlávek, Vychodil, 2006))

Let L be a complete residuated lattice, X a denumerable set of
variables and Σ a set of identities over X . Then for every
t ≈ t ′ ∈ Σ, |t ≈ t ′|Σ = Jt ≈ t ′KΣ.
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A. Tepavčević Lattice valued structures



An L-algebra A is a model of a set Σ of identities if for each
t ≈ t ′ ∈ Σ, the degree of provability of this identity does not
exceed its truth-degree in this model.
Analogously, a single truth-degree of an identity from Σ is
computed for all algebras being a model of Σ.
If the truth-degree of an identity t ≈ t ′ ∈ Σ is denoted by Jt ≈ t ′KΣ

and its degree of provability by |t ≈ t ′|Σ, we have the following.

Theorem (completeness (Bělohlávek, Vychodil, 2006))
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Birkhoff’s variety theorem for L-algebras

Theorem (Bělohlávek, Vychodil, 2006)

Let L be a complete residuated lattice, K a class of L-algebras of
the same type and X a denumerable set of variables.
Then K is an equational class if and only if K is closed under
operators H, S and P.
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Weak congruences

A weak congruence on an algebra A is a symmetric and
transitive subuniverse of A2 (Šešelja, Vojvodić, Tepavčević).
Equivalently, it is a symmetric, transitive and compatible relation θ
on an algebra A, hence fulfilling the weak reflexivity:

For every nullary operation c in the language of A, cθc .

By the definition, if A has no fundamental nullary operations, then
the empty set is also a weak congruence on this algebra.

Clearly, every congruence on a subalgebra of A is a weak
congruence on A, and vice versa, every nonempty weak
congruence θ on A is a congruence on a subalgebra Bθ of A,
where Bθ := {x ∈ A | x θ x}.
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The weak congruences on A form an algebraic lattice under
inclusion, denoted by Conw(A).

The congruence lattice Con(A) of A is a principal filter in
Conw(A), generated by the diagonal relation ∆ of A.

The congruence lattice of any subalgebra of A is an interval
sublattice of Conw(A).

The subalgebra lattice Sub(A) is isomorphic to the principal ideal
generated by ∆, by sending each weak congruence θ contained in
∆ to its domain.

Therefore, both the subalgebra lattice and the congruence lattice
of an algebra may be recovered and investigated within a single
algebraic lattice.
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A. Tepavčević Lattice valued structures



cc c ccc ccsc c cc
c
cc c c
c

c c c ccc c ccc c

cc c ccc ccc s ccc ccc

cc
∆

∆

a) dihedral group of order 8 b) quaternion group
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Congruence Intersection Property, CIP

If ρ is a congruence on a subalgebra of A, then let

ρA :=
⋂

(θ ∈ ConA | ρ ⊆ θ).

In the lattice of weak congruences, ρA = ρ ∨∆.
A is said to have the congruence intersection property (CIP) if
for any ρ ∈ConB, θ ∈Con C, B, C ∈SubA,

(ρ ∩ θ)A = ρA ∩ θA.

In lattice terms, an algebra has the CIP if and only if

∆ ∨ (ρ ∧ θ) = (∆ ∨ ρ) ∧ (∆ ∨ θ).

Hence, A has the CIP if and only if ∆ is a distributive element of
the lattice C wA, if and only if n∆ : ρ 7→ ρ∨∆ is a homomorphism
from Conw(A) onto ↑∆.
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Lattice identities in Conw(A)

Proposition

If an algebra A has the CIP and the CEP, and SubA and ConA
are modular (distributive) lattices, then also its lattice of weak
congruences is modular (distributive).

For the converse, observe that in a modular lattice every
codistributive element is neutral.

Theorem

An algebra A has modular (distributive) lattice of weak
congruences if and only if SubA and ConA are modular
(distributive) lattices and A has the CIP and the CEP.
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Theorem

The lattice of weak congruences of an algebra A is relatively
complemented if and only if all of the following conditions are
satisfied:
- A has at least one nullary operation,
- no nontrivial congruence on A has a block which is a subalgebra
of A,
- A satisfies the CEP and the CIP, and
- both SubA and ConA are relatively complemented lattices.
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Theorem

Let A be an algebra which has the CIP. Then the weak congruence
lattice of A is complemented if and only if the following conditions
hold:
- A has at least one nullary operation;
- no congruence on A has a block which is a proper subalgebra of
A;
- SubA and ConA are complemented lattices.

Corollary

The weak congruence lattice of an algebra A is Boolean if and
only if A satisfies conditions:
(i) for every subalgebra B, ConB is isomorphic with ConA, under
ρ 7→ ρA and
(ii) SubA and ConA are Boolean lattices.
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Theorem (Czédli, Erné, Šešelja, Tepavčević, 2009)

The following statements on a group G are equivalent:

(1) G is a Dedekind group.

(2) Conw(G ) is modular.

(3) ∆ is a standard (equivalently, a neutral) element of Conw(G ).

(4) G has the CIP and the CEP.
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The CIP for groups

If H is a subgroup of a group G, then let H be the normal closure
of H, i.e., the smallest normal subgroup of G containing H.
Then G has the CIP if and only if for every pair of subgroups H, K ,

H ∩ K = H ∩ K .

Analogously, G satisfies the ∗CIP if and only if⋂
i∈I

Hi =
⋂
i∈I

Hi ,

for every family {Hi | i ∈ I} of subgroups.

Theorem

A finite group G is a Dedekind group if and only if it satisfies the
CIP.

Theorem

A group G is a Dedekind group if and only if it satisfies the ∗CIP.
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Representation of lattices by weak congruences

Bacic representation problem

Represent an algebraic lattice by a weak congruence lattice of an
algebra.

Easily solved by Grätzer-Schmidt theorem:
Let B = (A,F ) be an algebra such that ConB is isomorphic with
L. Then the required algebra A can be obtained by adding to F all
the elements from A as nullary operations: A = (A,F ∪ {A}).
Obviously, Conw(A) ∼= ConB ∼= L.

The above construction by which the diagonal relation of the
algebra corresponds to the bottom of the lattice is called the
trivial representation.
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Weak congruence lattice representation problem 1

Let L be an algebraic lattice and a∈ L. Find an algebra such that
its weak congruence lattice is isomorphic with L, the diagonal
relation being the image of a under the isomorphism.

A representation by which the diagonal relation corresponds to an
element different from the bottom of the lattice is said to be
non-trivial.
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Ω-sets and structures

In 1977., M.P. Fourman and D.S. Scott introduced models for
intuitionistic predicate logic. These were Ω-sets, or Heyting-valued
sets, Ω being a Heyting algebra.

A complete Heyting algebra Ω is fixed.
Recall that a complete Heyting algebra is a complete lattice (Ω,6)
such that for x , y ∈ Ω, the set {z ∈ Ω | z ∧ x 6 y} has a largest
element, denoted by x _ y .
An Ω-set is a pair (A,E ), where A is a nonempty set and E is an
Ω-valued equality, i.e., a function E : A2 → Ω fulfilling:

E (a, b) = E (b, a) (symmetry) and
E (a, b) ∧ E (b, c) 6 E (a, c) (transitivity).

Intuitively,
E (a, b) – the ”truth value” of the formula a = b and
E (a, a) – the truth value of the formula a ∈ A.
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An Ω-set may be understood as a ”set-like” entity consisting of
potentially existing (partially defined) elements, only some of
which possess actual existence (are totally defined).

If (A,E ) is an Ω-set, then for all x , y ∈ A
E (x , x) > E (x , y).

If (A,E ) is an Ω-set, then the mapping µ : A→ Ω, such that
µ(x) := E (x , x), for every x ∈ A
is a generalization of a set on which E acts as an equality relation.

The function E in an Ω-set is separated if

x 6= y and E (x , x) 6= 0 imply E (x , x) > E (x , y).

Observe that separated symmetric and transitive relation on a set
A is the equality relation on a subset of A.
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Ω-algebras

Let Ω be a complete Heyting lattice.
It is a complete lattice only, when indicated.

Recall that an Ω-valued set on a nonempty set X is mapping
µ : X → Ω.

If µ : X → Ω is an Ω-valued set on X then for p ∈ Ω, the set

µp := {x ∈ X | µ(x) > p}

is a p-cut or (cut) of µ.
Obviously,

µp = µ−1(↑p).

Proposition

The collection {µp | p ∈ Ω} of all cuts of the function µ : X → Ω
is a closure system on X .
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An Ω-valued (binary) relation R on A is a lattice-valued function
on A2, i.e., it is a mapping R : A2 → Ω.

R is symmetric if

R(x , y) = R(y , x) for all x , y ∈ A;

R is transitive if

R(x , y) > R(x , z) ∧ R(z , y) for all x , y , z ∈ A.
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Let µ : A→ Ω and R : A2 → Ω be a lattice-valued function a
lattice-valued relation on A, respectively.

Then R is a lattice-valued relation on µ if for all x , y ∈ A

R(x , y) 6 µ(x) ∧ µ(y).

A lattice-valued relation R on µ : A→ Ω is said to be reflexive on
µ or µ-reflexive if

R(x , x) = µ(x) for every x ∈ A.

A symmetric and transitive Ω-valued relation R on A, which is
µ-reflexive is a lattice-valued equivalence on µ : A→ Ω.

A lattice-valued equivalence R on A fulfills the strictness property:

R(x , y) 6 R(x , x) ∧ R(y , y).

A lattice-valued equivalence R on A is a lattice-valued equality,
if it satisfies the separation property:

R(x , y) = R(x , x) 6= 0 implies x = y .
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If A = (A,F ) is an algebra, then the function µ : A→ Ω is
compatible with the operations on A if it is not constantly equal
to 0, and fulfils the following:

For any operation f from F with arity greater than 0,
f : An → A, n ∈ N, and for all a1, . . . , an ∈ A, we have that

n∧
i=1

µ(ai ) 6 µ(f (a1, . . . , an)),

and for a nullary operation c ∈ F , µ(c) = 1.

A lattice-valued relation R : A2 → Ω on an algebra A = (A,F ) is
compatible with the operations in F if the following holds:
For every n-ary operation f ∈ F , for all a1, . . . , an, b1, . . . , bn ∈ A,
and for every constant (nullary operation) c ∈ F

n∧
i=1

R(ai , bi ) 6 R(f (a1, . . . , an), f (b1, . . . , bn));

and R(c, c) = 1.
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As defined, an Ω-set is a pair (A,E ), where A is a nonempty set,
and E is a symmetric and transitive Ω-valued relation on A,
fulfilling the separation property.

For an Ω-set (A,E ), we denote by µ the Ω-valued function on A,
defined by

µ(x) := E (x , x).

We say that µ is determined by E .
By the strictness property, E is an Ω-valued relation on µ, namely,
it is an Ω-valued equality on µ.

Proposition

If (A,E ) is an Ω-set and p ∈ Ω, then the cut µp is a subset of A,
and the cut Ep is an equivalence relation on µp.
In addition, the collection of all cuts {Ep | p ∈ Ω} of E is a closure
system, a subposet of the lattice of all weak equivalences on A.
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Ω-algebra; connection to weak congruences

Let A = (A,F ) be an algebra and E : A2 → Ω an Ω-valued
equality on A, which is compatible with the operations in F .
Then, (A,E ) is an Ω-algebra.
Algebra A is the underlying algebra of (A,E ).

The function µ : A→ Ω, defined by µ(x) = E (x , x) is obviously
compatible on A.

Proposition

Let (A,E ) be an Ω-algebra. Then the following hold for every
p ∈ Ω:
(i ) The cut µp of µ is a subalgebra of A, and
(ii ) The cut Ep of E is a congruence relation on µp.
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Therefore:

Every Ω-algebra (A,E ) uniquely determines a closure system in
the lattice Conw(A) of weak congruences on A.

The converse:

Theorem (Šešelja, Tepavčević, unpublished)

Let A be an algebra and R a closure system in Conw(A) such that
for every a ∈ A, ⋂

{R ∈ R | (a, a) ∈ R} ⊆ ∆A.

Then there is a complete lattice Ω and an Ω-algebra (A,E ) with
the underlying algebra A, such that R consists of cuts of E .
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Identities

Let
u(x1, . . . , xn) ≈ v(x1, . . . , xn) (briefly u ≈ v)

be an identity in the type of an Ω-algebra (A,E ). We assume that
variables appearing in terms u and v are from x1, . . . , xn.

Then, (A,E ) satisfies identity u ≈ v (this identity holds on
(A,E )) if the following condition is fulfilled:

n∧
i=1

µ(ai ) 6 E (u(a1, . . . , an), v(a1, . . . , an)),

for all a1, . . . , an ∈ A and the term-operations corresponding to
terms u and v respectively.
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If Ω-algebra (A,E ) satisfies an identity, then this identity does not
necessarily hold on A.

On the other hand, if the supporting algebra fulfills an identity
then also the corresponding Ω-algebra does.

Proposition

If an identity u ≈ v holds on an algebra A, then it also holds on an
Ω-algebra (A,E ).
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Theorem (B. and V. Budimirović, Šešelja,Tepavčević, 2016)

Let (A,E ) be an Ω-algebra, and F a set of identities in the
language of A. Then, (A,E ) satisfies (all identities in) F if and
only if for every p ∈ L the quotient algebra µp/Ep satisfies the
same identities.

In addition, the poset

({µp/Ep | p ∈ Ω},⊆)

is a closure system which is, up to an isomorphism, a subposet of
the weak congruence lattice of A.
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Corollary ( Šešelja,Tepavčević, unpublished)

Let A be an algebra and R a closure system in Conw(A) such that
for every a ∈ A,

⋂
{R ∈ R | (a, a) ∈ R} ⊆ ∆A. Let also F be a

set of identities in the language of A and suppose that for every
ρ ∈ R, the algebra domρ/ρ fulfills these identities.
Then there is a complete lattice Ω and an Ω-algebra (A,E ) with
the underlying algebra A, such that R consists of cuts of E and
(A,E ) satisfies F .
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Example: Ω-group

Let (G,E ) be an Ω-algebra in which G = (G , · ,−1 , e) is an algebra
with a binary operation ( · ), unary operation (−1) and a constant
(e).
Then, (G,E ) is an Ω-group if the following known group identities
hold with respect to E :

x · (y · z) ≈ (x · y) · z ,
x · e ≈ x , e · x ≈ x ,

x · x−1 ≈ e, x−1 · x ≈ e.

In terms of Ω-algebras, these identities are equivalent with
formulas:

(i) E (x · (y · z), (x · y) · z) > µ(x) ∧ µ(y) ∧ µ(z),

(ii) E (x · e, x) > µ(x) and E (e · x , x) > µ(x),

(iii) E (x · x−1, e) > µ(x) and E (x−1 · x , e) > µ(x).
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Theorem

Let (G,E ) be an Ω-algebra. Then, (G,E ) is an Ω-group if and only
if for every p ∈ Ω, the quotient structure µp/Ep is a group.
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Concrete examples

1. G = (N0,⊕,−1 , 0), N0 = {0, 1, 2, . . .}
⊕ – a binary operation on N0:

x ⊕ y :=

{
0 if x = y
x + y if x 6= y

,

−1 – a unary operation on N0 defined by x−1 = x .
A neutral element in G is 0, but ⊕ is not associative, hence G is
not a group. h
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µ :=

(
0 1 2 3 . . . n . . .
1 p1 p2 p3 . . . pn . . .

)
.

Eµ 0 1 2 3 4 5 . . .

0 1 0 r 0 r 0 · · ·
1 0 p1 0 r 0 r · · ·
2 r 0 p2 0 r 0 · · ·
3 0 r 0 p3 0 r · · ·
4 r 0 r 0 p4 0 · · ·
5 0 r 0 r 0 p5 · · ·
...

...
...

...
...

...
...

The structure (G,Eµ) is an Ω-group.
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A. Tepavčević Lattice valued structures



µ :=

(
0 1 2 3 . . . n . . .
1 p1 p2 p3 . . . pn . . .

)
.

Eµ 0 1 2 3 4 5 . . .

0 1 0 r 0 r 0 · · ·
1 0 p1 0 r 0 r · · ·
2 r 0 p2 0 r 0 · · ·
3 0 r 0 p3 0 r · · ·
4 r 0 r 0 p4 0 · · ·
5 0 r 0 r 0 p5 · · ·
...

...
...

...
...

...
...

The structure (G,Eµ) is an Ω-group.
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Cut subalgebras:

µ1 – the trivial one-element subalgebra {0}.
For every pn ∈ Ω, µpn = {0,n}.

⊕ 0 n
0 0 n
n n 0

;

Eµ
pn 0 n
0 1 0
n 0 1

.

For every pn ∈ Ω, the quotient structure µpn/Eµ
pn is a two-element

group.
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2. Consider the symmetric group S3 (given by the table) as a
basic (underlying) algebra.

◦ e f g h j k

e e f g h j k
f f e h g k j
g g j e k f h
h h k f j e g
j j g k e h f
k k h j f g e .

The corresponding Ω-group given in the sequel is commutative.

The lattice Ω (which is not a Heyting algebra) is presented by the
diagram.
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Eµ e f g h j k

e 1 x w q q v
f x t u 0 0 u
g w u s 0 0 u
h q 0 0 p q 0
j q 0 0 q p 0
k v u u 0 0 r .

µ =

(
e f g h j k
1 t s p p r

)
.

All the structures µz/Eµ
z , z ∈ Ω are groups of order 3, 2 or 1,

hence Abelian.

Therefore, this structure is an Abelian Ω-group, identity
x · y ≈ y · x holds as the formula

µ(x) ∧ µ(y) 6 Eµ(x · y , y · x).
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E.g.,

µp =

(
e f g h j k
1 0 0 1 1 0

)
,

Eµ
p e f g h j k

e 1 0 0 0 0 0
f 0 0 0 0 0 0
g 0 0 0 0 0 0
h 0 0 0 1 0 0
j 0 0 0 0 1 0
k 0 0 0 0 0 0 .

Hence, Eµ
p is a weak congruence on S3, a diagonal of

µp = {e, h, j} and µp/Eµ
p is a group of order 3.
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µu =

(
e f g h j k
1 1 1 1 1 1

)
, hence µu is the underlying group S3.

Eµ
u e f g h j k

e 1 0 0 1 1 0
f 0 1 1 0 0 1
g 0 1 1 0 0 1
h 1 0 0 1 1 0
j 1 0 0 1 1 0
k 0 1 1 0 0 1 .

µu/Eµ
u = {{e, h, j}, {f , g , h}} i.e., it is is a two-element group,

similarly for other cuts.
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Relational structures: Ω-poset and Ω-lattice

Let E be an Ω-valued equality on a nonempty set A.
An Ω-valued relation R : A2 → Ω on A is E -antisymmetric, if the
following holds:

R(x , y) ∧ R(y , x) = E (x , y), for all x , y ∈ A.

Let (M,E ) be an Ω-set.
An Ω-valued relation R : M2 → Ω on M is an Ω-valued order on
(M,E ), if it fulfills the strictness property:

R(x , y) 6 R(x , x) ∧ R(y , y),

it is E -antisymmetric, and it is transitive:

R(x , z) ∧ R(z , y) 6 R(x , y) for all x , y , z ∈ M.

A structure (M,E ,R) is an Ω-poset, if (M,E ) is an Ω-set, and
R : M2 → Ω is an Ω-valued order on (M,E ).
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It is clear that by E -antisymmetry, R(x , x) = E (x , x), for every
x ∈ M.

As usual, we denote by µ the Ω-valued function on M, defined by
µ(x) = E (x , x) = R(x , x).

In an Ω-set, every cut Ep of E is a classical equivalence relation on
the cut µp of µ.
Let [x ]Ep be the equivalence class of x ∈ µp.
µp/Ep is the corresponding quotient set: for p ∈ Ω
[x ]Ep := {y ∈ µp | xEpy}, x ∈ µp; µp/Ep := {[x ]Ep | x ∈ µp}.

Proposition

Let (M,E ,R) be an Ω-poset. Then for every p ∈ Ω, the binary
relation ≤p on µp/Ep, defined by
[x ]Ep ≤p [y ]Ep if and only if (x , y) ∈ Rp

is a classic ordering relation.
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Let (M,E ,R) be an Ω-poset and a, b ∈ M. An element c ∈ M is a
pseudo-infimum of a and b, if for every p 6 µ(a) ∧ µ(b) the
following holds:

(i) p 6 R(c , a) ∧ R(c, b) and
for every x ∈ µp
p 6 R(x , a) ∧ R(x , b) implies p 6 R(x , c).

An element d ∈ M is a pseudo-supremum of a, b ∈ M, if for
every p 6 µ(a) ∧ µ(b) the following holds:
(ii) p 6 R(a, d) ∧ R(b, d) and
for every x ∈ µp
p 6 R(a, x) ∧ R(b, x) implies p 6 R(d , x).

It is straightforward that a pseudo-infimum (supremum) of a and b
belongs to µp for every p 6 µ(a) ∧ µ(b).
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A pseudo-infimum and a pseudo-supremum for given a, b ∈ M, if
they exist, are not unique in general.

Proposition

Let (M,E ,R) be an Ω-poset and a, b, c , c1, d , d1 ∈ M.
If c is a pseudo-infimum of a and b, then
µ(a)∧ µ(b) 6 E (c , c1) if and only if c1 is also a pseudo-infimum of
a and b. Analogously, if d is a pseudo-supremum of a and b, then
µ(a)∧ µ(b) 6 E (d , d1) if and only if d1 is also a pseudo-supremum
of a and b.

Since for p 6 q, every equivalence class of µq/Eq is contained in a
class of µp/Ep, we get that pseudo-infima (suprema) of two
elements a, b, if they exist, belong to the same equivalence class in
µp/Ep, for p 6 µ(a) ∧ µ(b).
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We say that an Ω-poset (M,E ,R) is an Ω-lattice as an ordered
structure, if for every a, b ∈ M there exist a pseudo-infimum and
a pseudo-supremum.

Theorem (Edeghagba, Šešelja, Tepavčević, 2017)

Let (M,E ,R) be an Ω-poset. Then it is an Ω-lattice as an ordered
structure if and only if for every q ∈ Ω, the poset (µq/Eq, ≤q ) is a
lattice, and the following holds:
for all a, b ∈ M, and p = µ(a) ∧ µ(b),
inf([a]Ep , [b]Ep) ⊆ inf([a]Eq , [b]Eq) and
sup([a]Ep , [b]Ep) ⊆ sup([a]Eq , [b]Eq),
for every q, q 6 p.
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Ω-lattice as Ω-algebra

Let M = (M,u,t) be a bi-groupoid and E : M2 → Ω an Ω-valued
equality on M, hence (M,E ) is supposed to be an Ω-set.
In addition, E should be compatible with operations u and t in
the following sense:
E (x , y) ∧ E (z , t) 6 E (x u z , y u t) and
E (x , y) ∧ E (z , t) 6 E (x t z , y t t).

Proposition

If E is a compatible Ω-valued equality on a bi-groupoid
M = (M,u,t), and µ : M → Ω is defined by µ(x) = E (x , x),
then the following hold:
(i) For all x , y ∈ M,
µ(x) ∧ µ(y) 6 µ(x u y) and µ(x) ∧ µ(y) 6 µ(x t y).
(ii) For every p ∈ Ω, the cut µp of µ is a sub-bi-groupoid of M.
(iii) For every p ∈ Ω, the cut Ep of E is a congruence on µp.
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Let M = (M,u,t) be a bi-groupoid and (M,E ) an Ω-algebra.
Then (M,E ) is an Ω-lattice as an Ω-algebra (Ω-lattice as an
algebra), if it satisfies the lattice identities:

`1 : x u y ≈ y u x
`2 : x t y ≈ y t x

(commutativity)

`3 : x u (y u z) ≈ (x u y) u z
`4 : x t (y t z) ≈ (x t y) t z

(associativity)

`5 : (x u y) t x ≈ x
`6 : (x t y) u x ≈ x .

(absorption)
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In terms of Ω-algebras for all x , y , z ∈ M, the following formulas
should be satisfied, where, as already indicated, the mapping
µ : M → Ω is defined by µ(x) = E (x , x):

L1 : µ(x) ∧ µ(y) 6 E (x u y , y u x)
L2 : µ(x) ∧ µ(y) 6 E (x t y , y t x)
L3 : µ(x) ∧ µ(y) ∧ µ(z) 6 E ((x u y) u z , x u (y u z))
L4 : µ(x) ∧ µ(y) ∧ µ(z) 6 E ((x t y) t z , x t (y t z))
L5 : µ(x) ∧ µ(y) 6 E ((x u y) t x , x)
L6 : µ(x) ∧ µ(y) 6 E ((x t y) u x , x).

Theorem

[Edeghagba, Šešelja, Tepavčević, 2017] Let M = (M,u,t) be a
bi-groupoid, and let E be an Ω-valued compatible equality on M.
Then, (M,E ) is an Ω-lattice if and only if for every p ∈ Ω, the
quotient structure µp/Ep is a lattice.
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[Edeghagba, Šešelja, Tepavčević, 2017] Let M = (M,u,t) be a
bi-groupoid, and let E be an Ω-valued compatible equality on M.
Then, (M,E ) is an Ω-lattice if and only if for every p ∈ Ω, the
quotient structure µp/Ep is a lattice.
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Equivalence of two approaches

Let (M,E ,R) be an Ω-lattice as an ordered structure.
Using Axiom of Choice, we define two binary operations, u and t
on M as follows:

For every pair a, b of elements from M, a u b is an arbitrary, fixed
pseudo-infimum of a and b, and a t b is an arbitrary, fixed
pseudo-supremum of a and b.

Theorem (Edeghagba, Šešelja, Tepavčević, 2017)

If (M,E ,R) is an Ω-lattice as an ordered structure, and
M = (M,u,t) the bi-groupoid in which operations u, t are
introduced above, then (M,E ) is an Ω-lattice as an algebra.
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Theorem (Edeghagba, Šešelja, Tepavčević, 2017)

Let M = (M,u,t) be a bi-groupoid, (M,E ) an Ω-lattice as an
algebra and R : M2 → Ω an Ω-valued relation on M defined by
R(x , y) := µ(x) ∧ µ(y) ∧ E (x u y , x).
Then, (M,E ,R) is an Ω-lattice as an ordered structure.
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Example

Let M = {a, b, c , d , e, f , g}, and let Ω be the lattice given in
Figure 1.
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E a b c d e f g

a r p 0 0 0 0 0
b p r 0 0 0 0 0
c 0 0 s q q 0 0
d 0 0 q 1 q 0 0
e 0 0 q q 1 0 0
f 0 0 0 0 0 q 0
g 0 0 0 0 0 0 q

R a b c d e f g

a r r 0 0 r 0 0
b p r 0 0 r 0 0
c 0 0 s q s q q
d r r s 1 1 q q
e 0 0 q q 1 q q
f 0 0 0 0 0 q q
g 0 0 0 0 0 0 q

Table 1: Ω-valued equality E Table 2: Ω-valued order R

E (x , y) = R(x , y) ∧ R(y , x)

(M,E ,R) is an Ω-lattice as an ordered structure.
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µ =

(
a b c d e f g
r r s 1 1 q q

)
.

The cuts of µ and the cuts of E represented by partitions are:

µ0 = M ; E0 = M2;
µp = {a, b, c , d , e} ; Ep = {{a, b}, {c}, {d}, {e}};
µq = {c , d , e, f , g} ; Eq = {{c , d , e}, {f }, {g}};
µr = {a, b, d , e} ; Er = {{a}, {b}, {d}, {e}};
µs = {c , d , e} ; Es = {{c}, {d}, {e}};
µt = µ1 = {d , e}; Et = E1 = {{d}, {e}}.
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Figure 2: Quotient lattices
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Two binary operations on M are constructed by means of
pseudo-infima and pseudo-suprema. In this way, we obtain the
bi-groupoid M = (M,u,t).

u a b c d e f g

a a a d d a b∗∗ c∗∗

b a b d d b a∗∗ g∗∗

c d d c d c c∗ c∗

d d d d d d d∗ d∗

e a b c d e e∗ c∗

f d∗∗ a∗∗ d∗ e∗ c∗ f f
g a∗∗ e∗∗ c∗ e∗ c∗ f g
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t a b c d e f g

a a b e a e f ∗∗ a∗∗

b b b e b e a∗∗ c∗∗

c e e c c e f g
d a b c d e f g
e e e e e e f g
f g∗∗ g∗∗ f f f f g
g b∗∗ g∗∗ g g g g g

(M,E ) is an Ω-lattice as an algebra.
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Quasigroups

Two standard ways to define quasigroups:

A groupoid (Q, · ) is a quasigroup if for all a, b ∈ Q, linear
equations: a · x = b and y · a = b are uniquely solvable for x , y .

The other way is to define quasigroups as algebras with three
binary operations · , \ , / (called multiplication, left division and
right division respectively):
An equasigroup is an algebra (Q, · , \ , / ) which satisfies the
following identities:

Q1 : y = x · (x\y);
Q2 : y = x\(x · y);
Q3 : y = (y/x) · x ;
Q4 : y = (y · x)/x .
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Theorem

If (Q, · ) is a quasigroup, then (Q, · , \ , / ) is an equasigroup,
where the additional binary operations \ and / are defined by:

a\b = c iff b = a · c and a/b = c iff a = c · b.

A quasigroup (Q, · ) with an identity element e is a loop:
for every x ∈ Q, e · x = x · e = x .
We consider a loop to be a structure (Q, · , e) with the nullary
operation in the language, corresponding to the identity element.
Alternatively, an equasigroup is an eloop if for all x , y , x\x = y/y ;
in this approach x\x serves as the identity element.

Finally, a group is an associative loop.
Here we consider groups in the language with a binary operation · ,
unary operation −1 and a constant e.
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Ω-groupoid, Ω-quasigroup

An Ω-groupoid is a structure (Q,E ), where Q = (Q, ·) is a
groupoid and E : Q2 → L an Ω-valued compatible equality over Q.

Let (Q,E ) be an Ω-groupoid.
Each of the formulas a · x = b and y · a = b, a, b ∈ Q, x , y –
variables, is a linear equation over (Q,E ).

We say that an equation a · x = b is solvable over (Q,E ) if there
is c ∈ Q such that

µ(a) ∧ µ(b) 6 µ(c) ∧ E (a · c , b).

Analogously, an equation y · a = b is solvable over (Q,E ) if there
is d ∈ Q such that

µ(a) ∧ µ(b) 6 µ(d) ∧ E (d · a, b).
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Elements c and d are solutions of equations a · x = b and
y · a = b, respectively in (Q,E ).

Each of the above equations is E -uniquely solvable over (Q,E )
if the following hold:
If c is a solution of the equation a · x = b over (Q,E ) and c1 ∈ Q
fulfills E (a · c1, b) > p for some p 6 µ(a) ∧ µ(b), then

E (c , c1) > p.

Analogously, if d is a solution of the equation y · a = b over (Q,E )
and d1 ∈ Q fulfills E (d1 · a, b) > p for some p 6 µ(a) ∧ µ(b), then

E (d , d1) > p.
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If c1 and d1 are (additional) solutions of equations a · x = b and
y · a = b, respectively, then the above conditions hold.

Hence, an E -uniquely solvable equation may have several solutions.
All these solutions are equal up to the Ω-equality E . More
precisely, we have the following.

Theorem (Krapež, Šešelja, Tepavčević, (submitted))

Let (Q,E ) be an Ω-groupoid. If equations a · x = b and y · a = b,
are E -uniquely solvable over (Q,E ) for all a, b ∈ Q, then for every
p ∈ L the quotient groupoid µp/Ep is a quasigroup.
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We say that an Ω-groupoid (Q,E ) is an Ω-quasigroup, if every
equation of the form a · x = b or y · a = b is E -uniquely solvable
over (Q,E ).

Theorem (Krapež, Šešelja, Tepavčević, (submitted))

Let (Q,E ) be an Ω-groupoid. If for all a, b ∈ Q and for every
p 6 µ(a)∧ µ(b) the quotient groupoid µp/Ep is a quasigroup, then
(Q,E ) is an Ω-quasigroup.
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Let (Q,E ) be an Ω-groupoid. If for all a, b ∈ Q and for every
p 6 µ(a)∧ µ(b) the quotient groupoid µp/Ep is a quasigroup, then
(Q,E ) is an Ω-quasigroup.
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Ω-equasigroup

Let Q = (Q, ·, \, /) be an algebra in the language with three binary
operations, L a complete lattice and E : Q2 → L an Ω-valued
compatible equality over Q.
Then, (Q,E ) is an Ω-equasigroup, if identities Q1, . . . ,Q4 hold:
Q1 : y = x · (x\y);
Q2 : y = x\(x · y);
Q3 : y = (y/x) · x ;
Q4 : y = (y · x)/x .

This means that the following formulas should be satisfied, where
µ : Q → L is defined by µ(x) = E (x , x):
QE 1 : µ(x) ∧ µ(y) 6 E (y , x · (x\y));
QE 2 : µ(x) ∧ µ(y) 6 E (y , x\(x · y));
QE 3 : µ(x) ∧ µ(y) 6 E (y , (y/x) · x);
QE 4 : µ(x) ∧ µ(y) 6 E (y , (y · x)/x).
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Theorem (Krapež, Šešelja, Tepavčević, (submitted))

If ((Q, ·, \, /),E ) is an Ω-equasigroup, then for every p ∈ L, the
quotient structure µp/Ep is a classical equasigroup.

Corollary

If ((Q, ·, \, /),E ) is an Ω-equasigroup, then ((Q, ·),E ) is an
Ω-quasigroup.

The converse follows by the Axiom of Choice (AC).
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Let ((Q, ·),E ) be an Ω-groupoid which is an Ω-quasigroup.

Then, for every p ∈ L, the quotient groupoid (µp/Ep, ·) is a
quasigroup, where the operation · is defined by
[a]Ep · [b]Ep = [a · b]Ep , a, b ∈ µp.
Therefore, the structure (µp/Ep, · , \ , / ) is an equasigroup, where
the operations \ and / are the usual ones:

[a]Ep\ [b]Ep = [c]Ep if and only if [a]Ep · [c]Ep = [b]Ep ,

[b]Ep/ [a]Ep = [d ]Ep if and only if [d ]Ep · [a]Ep = [b]Ep .

Let us define binary operations \ and / over Q in the following way:

For every pair a, b ∈ Q, a\ b = c , where c is an element chosen
by AC from [a]Ep\ [b]Ep in the quasigroup µp/Ep, where
p = µ(a) ∧ µ(b). Analogously, b/ a = d , where d is chosen by
the AC from [b]Ep/ [a]Ep in µp/Ep, for p = µ(a) ∧ µ(b).
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Lemma

Let ((Q, ·),E ) be an Ω-groupoid which is an Ω-quasigroup. Then
the operations \ and / over Q are well defined.

Theorem (Krapež, Šešelja, Tepavčević, (submitted))

Let ((Q, ·),E ) be an Ω-groupoid which is an Ω-quasigroup. Then
the structure ((Q, · , \ , / ),E ) is an Ω-equasigroup, where the
binary operations \ and / over Q are defined by Axiom of Choice
as above.
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A. Tepavčević Lattice valued structures



Example

· a b c d e

a b c a a e
b a b c d e
c c a b b e
d d a b b e
e e e e e a

Table 1

Let (Q, · ) be a groupoid given in Table 1.

This is not a quasigroup, e.g., equation a · x = d does not have a
solution in Q.
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The lattice L is given by the diagram in Figure 1:
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Figure 1
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An Ω-valued equality is presented by Table 2.

E a b c d e

a 1 p p r v
b p 1 p r v
c p p 1 q v
d r r q q 0
e v v v 0 u

Table 2

The function µ : Q → L (µ(x) = E (x , x) for all x ∈ Q):

µ =

(
a b c d e
1 1 1 q u

)
.

((Q, · ),E ) is an Ω-groupoid.
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The subgroupoids of ((Q, · ),E ), which are cuts of µ:

µ1 = µp = {a, b, c},
µq = µr = µw = {a, b, c , d},
µu = µv = {a, b, c , e},
µ0 = {a, b, c , d , e}.

The quotient groupoids over the corresponding cuts of E are the
following:
µ1/E1 = {{a}, {b}, {c}},
µp/Ep = {{a, b, c}},
µq/Eq = {{a}, {b}, {c, d}},
µr/Er = µw/Ew = {{a, b, c , d}},
µu/Eu = {{a, b, c}, {e}},
µv/Ev = {{a, b, c, e}},
µ0/E0 = {{a, b, c, d , e}}.
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All these quotient structures are quasigroups, hence the starting
Ω-groupoid is an Ω-quasigroup, and every linear equation is
E -uniquely solvable over it.

E.g., the mentioned equation a · x = d which does not have a
classical solution in Q, possesses a solution with respect to fuzzy
equality E .
Indeed, due to µ(a) ∧ µ(d) = q, this solution is element b, since
the class X = {b} is the unique solution of the equation
[a]Eq · X = [d ]Eq over the quasigroup µq/Eq (observe that
[d ]Eq = {c , d}).

µ(a)∧µ(d) = q 6 µ(b)∧E (a · b, d) = µ(b)∧E (c , d) = 1∧ q = q.

Hence, a · b and d are E -equal with grade q.
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Ω-loop and Ω-group

An Ω-loop is an Ω-algebra (Q,E ), where Q = (Q, ·, e) is a
structure with a binary operation · and a constant e, ((Q, · ),E )
is an Ω-quasigroup, E (e, e) = 1 and the formula LG 2 holds.

An Ω-semigroup is an Ω-algebra ((Q, · ),E ) where (Q, · ) is a
groupoid and the formula LG 1 holds.

The proof of the following theorem depends on the Axiom of
Choice (AC).

Theorem (Krapež, Šešelja, Tepavčević, (submitted))

Let ((Q, ·, e),E ) be an Ω-algebra. There is a unary operation −1

on Q such that ((Q, ·, −1, e),E ) is an Ω-group if and only if
((Q, ·),E ) is an Ω-semigroup and ((Q, ·, e),E ) an Ω-loop.
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A. Tepavčević Lattice valued structures



Ω-loop and Ω-group

An Ω-loop is an Ω-algebra (Q,E ), where Q = (Q, ·, e) is a
structure with a binary operation · and a constant e, ((Q, · ),E )
is an Ω-quasigroup, E (e, e) = 1 and the formula LG 2 holds.

An Ω-semigroup is an Ω-algebra ((Q, · ),E ) where (Q, · ) is a
groupoid and the formula LG 1 holds.

The proof of the following theorem depends on the Axiom of
Choice (AC).
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Theorem (Krapež, Šešelja, Tepavčević, (submitted))

Let Q = (Q, · ) be an arbitrary groupoid, let a, b be particular
elements in Q, and let E : Q2 → L be an Ω-valued equality over
Q. Then the equation a · x = b has a unique solution w.r.t. E , if
the equation [a]Ep · X = [b]Ep , for p = µ(a) ∧ µ(b), has a
(classical) unique solution in the quotient groupoid (µp/Ep, · ).
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Possible applications

There is a proven importance of coding theory and cryptology in
reliable and secure data communication and transmission.

Quasigroups are used for construction of new cryptosystems, for a
design of new steam and block ciphers as well as for cryptanalysis
of some cryptosystems in order to increase the confidence in these
ciphers.
Our approach gives new directions in producing new cryptosystems.

Although our basic structure is not a quasigroup, quotients of cuts
are, and similar techniques from this field can be applied.
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A. Tepavčević Lattice valued structures



Possible applications

There is a proven importance of coding theory and cryptology in
reliable and secure data communication and transmission.

Quasigroups are used for construction of new cryptosystems, for a
design of new steam and block ciphers as well as for cryptanalysis
of some cryptosystems in order to increase the confidence in these
ciphers.
Our approach gives new directions in producing new cryptosystems.

Although our basic structure is not a quasigroup, quotients of cuts
are, and similar techniques from this field can be applied.

A. Tepavčević Lattice valued structures



Possible applications

There is a proven importance of coding theory and cryptology in
reliable and secure data communication and transmission.

Quasigroups are used for construction of new cryptosystems, for a
design of new steam and block ciphers as well as for cryptanalysis
of some cryptosystems in order to increase the confidence in these
ciphers.
Our approach gives new directions in producing new cryptosystems.

Although our basic structure is not a quasigroup, quotients of cuts
are, and similar techniques from this field can be applied.
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Another application could be in error correcting codes.

Ω-valued equality could be suitably created as related to
Hamming-distance.
In this way, the received codewords with errors can be recovered
within the cut-equivalence class which keeps the original properties
of codes.

Finally, in control systems which are usually designed by
lattice-valued relations, it could be possible to apply Ω-valued
ordered structures in order to get more sensitive coordination
among input and output signals.
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