Publications

Jaroslav Guričan
[1] J. Guričan and H. Ghumashyan: Strong endomorphism kernel property for finite Brouwerian semilattices and relative Stone algebras, Mathematica Bohemica, 149(1), (2024), 13-25.
[2] T. Katriňák and J. Guričan: On a statement of O. Frink about free pseudo-complemented meet-semilattices, Algebra Universalis, 85(1) art. number 7, (2024), 1-13.
[3] H. Ghumashyan and J. Guričan: Sofic groups are not locally embeddable into finite Moufang loops, Mathematica Bohemica, 147(1), (2022), 11-18.
[4] H. Ghumashyan and J. Guričan: Endomorphism kernel property for finite groups, Mathematica Bohemica, 147(3), (2022), 347-358.
[5] H. Ghumashyan and J. Guričan: Meet infinite distributivity for congruence lattices of direct sums of algebras, Mathematica Slovaca, 72(2), (2022), 333-340.
[6] T. Katriňák and J. Guričan: On a new construction of pseudocomplemented semilattices, Algebra Universalis, 82(4) art. number 54, (2021), 1-12.
[7] J. Guričan: Distributive lattices with strong endomorphism kernel property as direct sums, Categories and General Algebraic Structures with Applications, 13(1), (2020), 45-54.
[8] Jaroslav Guričan and Miroslav Ploąčica: The strong endomorphism kernel property for modular p-algebras and for distributive lattices, Algebra Universalis, 75(2), (2016), 243-255.
[9] Jaroslav Guričan: Strong endomorphism kernel property for Brouwerian Algebras, JP J. of Algebra, Number Theory and Appl., 36(3), (2015), 241-258.
[10] Tibor Katriňák and Jaroslav Guričan: Free pseudocomplemented semilattices: a new approach, Algebra Universalis, 74(3-4), (2015), 305-331.
[11] Jaroslav Guričan: A note on the endomorphism kernel property, JP J. of Algebra, Number Theory and Appl., 33(2), (2014), 133-139.
[12] Robert Jajcay, Jaroslav Guričan and Tatiana Jajcayová: The 6th International Workshop on Optimal Network Topologies Conference proceedings, List of abstracts, , , (2014), 34.
[13] J. Guričan: The endomorphism kernel property for modular p-algebras and Stone lattices of order n, JP J. of Algebra, Number Theory and Appl., 25(1), (2012), 69-90.
[14] T. Katriňák and J. Guričan: Finite pseudocomplemented lattices: The spectra and the Glivenko congruence, Algebra Universalis, 66(1-2), (2011), 151-161.
[15] Tibor Katriňák and Jaroslav Guričan: Homomorphic extensions of pseudocomplemented semilattices, Acta Universitatis Matthiae Belii : Series Mathematica, 15, (2009), 53-62.
[16] T. Katriňák and J. Guričan: Projective extensions of bounded semilattices, Algebra Universalis, 59(1-2), (2008), 97-110.
[17] Tibor Katriňák and Jaroslav Guričan: Projective extensions of semilattices, Algebra Universalis, 55(1), (2006), 45-55.
[18] Jaroslav Guričan and Juraj Slugéň: Recurrence relations within polynomial sequence. In Chajda, I. (ed.) et al., editor, Contribution to General Algebra 14, Proceedings of the Olomouc Conference 2002 (AAA 64) and the Potsdam Conference 2003 (AAA 65), pp. 73 - 82, Verlag Johannes Heyn, Klagenfurt, 2004.
[19] Janka Chlebíková, Jaroslav Guričan, Marek Nagy and Igor Odrobina: The Euromath System - a structured XML editor and browser. In Proceedings of the 12th European TEX Conference, Kerkrade, pp. 41 -48, NTG, 2001.
[20] Jaroslav Guričan: Strengthening of the triangle inequality., Tatra Mt. Math. Publ., 8, (1996), 211-216.
[21] Jaroslav Guričan: Homology theory in the $AST$. III: Comparison with homology theories of Cech and Vietoris., Commentat. Math. Univ. Carol., 34(1), (1993), 11-22.
[22] Jaroslav Guričan: Homology theory in the AST. II: Basic concepts, Eilenberg-Steenrod's axioms., Commentat. Math. Univ. Carol., 33(2), (1992), 353-372.
[23] Jaroslav Guričan: Homology theory in the alternative set theory. I: Algebraic preliminaries., Commentat. Math. Univ. Carol., 32(1), (1991), 75-93.
[24] J. Guričan and P. Kostyrko: On Lipschitz selections of Lipschitz multifunctions., Acta Math. Univ. Comenianae, 66-67, (1985), 131-135.
[25] Jaroslav Guričan and Pavol Zlatoą: Archimedean and geodetical biequivalences., Commentat. Math. Univ. Carol., 26, (1985), 675-698.
[26] Jaroslav Guričan and Pavol Zlatoą: Biequivalences and topology in the alternative set theory., Commentat. Math. Univ. Carol., 26, (1985), 525-552.
[27] Jaroslav Guričan: The semigroup of general circulant matrices., Acta Math. Univ. Comenianae, 44/45, (1984), 13-21.