Acta Universitatis Matthiae Belii ser. Mathematics, 15(2009), 53–62. Received: 13 May 2009, Accepted: 24 November 2009.

HOMOMORPHIC EXTENSIONS OF PSEUDOCOMPLEMENTED SEMILATTICES

TIBOR KATRIŇÁK AND JAROSLAV GURIČAN

Dedicated to the 70th birthday of Alfonz Haviar

ABSTRACT. Our aim is to study and characterize extensions to a homomorphism in the class of pseudocomplemented semilattices. We present here such a description.

1. INTRODUCTION

We shall deal with the question in which circumstances a mapping f defined on a set X of generators of a pseudocomplemented semilattice S can be extended to a homomorphism $g: S \to M$. Such an extension, if it exists, is uniquely determined.

It is a well-known fact (see [5]) that the class of all pseudocomplemented semilattices is equational with only one non-trivial subvariety, namely, the class of Boolean algebras. The preceding question found an answer for Boolean algebras (see [9] and especially Sikorski's extension criterion). We shall use these results as a motivation for our task.

2. Preliminaries

A pseudocomplemented semilattice (= PCS) is an algebra $(S; \wedge, ^*, 0, 1)$ of type (2,1,0,0), where $(S; \wedge, 0, 1)$ is a bounded meet-semilattice and, for every $a \in S$, the element a^* is a *pseudocomplement* of a, i.e. $x \leq a^*$ if and only if $x \wedge a = 0$. A PCS S is said to be *non-trivial*, whenever $|S| \geq 2$. An element $a \in S$ is called *closed*, if $a = a^{**}$. Let B(S) denote the set of all closed elements of S. It is known that

$$(B(S); +, \wedge, *, 0, 1)$$

²⁰⁰⁰ Mathematics Subject Classification. Primary: 06A12, 08A10, Secondary: 06D15.

Key words and phrases. pseudocomplemented semilattice, (finite, simple) extensions of a subalgebra, homomorphic extension.

While working on this paper, both authors were supported by VEGA grant No. 1/0588/09 of Slovak Republic.

forms a Boolean algebra with

$$a+b = (a^* \wedge b^*)^*$$

(see [1] and [3]). (Clearly, a PCS S is a Boolean algebra if and only if S satisfies the identity $x = x^{**}$.)

Here are some rules of computation with * and \land (see [1] or [3]):

(1) $x \wedge x^* = 0$. (2) $x \leq y$ implies that $x^* \geq y^*$. (3) $x \leq x^{**}$. (4) $x^* = x^{***}$. (5) $(x \wedge y)^{**} = x^{**} \wedge y^{**}$. (6) $0^* = 1$ and $1^* = 0$.

The following result can be easily verified (see [7]).

Lemma 2.1. Let S be a PCS and let $X \subseteq S$. Then S is generated by X, i.e. S = [X] if and only if $[X^{**}]_{Bool} = B(S)$ and $S = [X \cup B(S)]_{sem}$, that means, B(S) is generated by $X^{**} = \{x^{**} : x \in X\}$ as a Boolean algebra and S is generated by $X \cup B(S)$ as a semilattice.

Let S and T be PCS's. A function $f: S \to T$ is called a *homomorphism* (of PCS's) if $f(x \land y) = f(x) \land f(y), f(x)^* = f(x^*)$ for $x, y \in S$. We observe that f(0) = 0, and f(1) = 1.

The definitions of the concepts discussed in this paper may be found in [1] and [3].

3. Extensions

Let S and K be PCS's and let K be a subalgebra of S, that means, S is an extension of K. (Notation: $K \leq S$.) In addition, we set $K[X] = [K \cup X]$, whenever $X \subseteq S$. We say that S is a finite (simple) extension of its subalgebra K, if S = K[X] for some finite (one-element) set $X \subseteq S$.

Proposition 3.1. Let K and S be PCS's. Then S is a simple extension of K, that means, S = K[x] for some $x \in S$, if and only if

- (i) $B(S) = [B(K) \cup \{x^{**}\}]_{Bool},$
- (ii) $S_1 = [B(S) \cup K]_{sem}$ is a subalgebra of S and
- (iii) $S = [S_1 \cup \{x\}]_{sem}$.

Proof. Assume first S = K[x]. Then (i) is straightforward (see Lemma 2.1). (ii) We have only to show that $u \in S_1$ implies $u^* \in S_1$. Really, take $u \in S_1$. Evidently,

$$u = a \wedge s$$

for some $a \in B(S)$ and $s \in K$. Since $u \in S$, we have

$$u^{**} = (a \land s)^{**} = a^{**} \land s^{**} = a \land s^{**} \in B(S).$$

Therefore, $u^* = u^{***} = (a \land s^{**})^* \in B(S) \subseteq S_1$, and S_1 is a subalgebra of S.

(iii) Set $M = [S_1 \cup \{x\}]_{sem}$. We claim that M is a subalgebra of S. Similarly as above, we have only to show that $u \in M$ implies $u^* \in M$. Either $u \in S_1$ or there exists $s \in S_1$ such that

$$u = s \wedge x.$$

In the first event $u^* \in S_1$. In the second one, we get $u^{**} = (s \wedge x)^{**} \in B(S)$. Since $B(S_1) = B(S)$, it is easy to see that $u^* \in S_1$, and hence M is a subalgebra of S. Finally, since $K \cup \{x\} \subseteq M$, we obtain M = S.

To prove the converse, assume that the conditions (i)-(iii) are satisfied. It is easy to see that $K \leq S$. Therefore, $K[x] = [K \cup \{x\}] \subseteq S$. On the other hand, $B(S) \subseteq K[x]$ by (i). Consequently, $S \subseteq K[x]$ by (ii) and (iii), and the proof is complete.

Proposition 3.1 generalizes immediately to arbitrary set X (instead of oneelement set $\{x\}$).

Theorem 3.2. Let K and S be PCS's. Then S = K[X] for some $X \subseteq S$ if and only if

- (i) $B(S) = [B(K) \cup X^{**}]_{bool}$,
- (ii) $S_1 = [B(S) \cup K]_{sem}$ is a subalgebra of S and
- (iii) $S = [S_1 \cup X]_{sem}$.

Corollary 3.3. Let S = K[X] and let $u \in S$. Then there exist $s \in K$ and a finite $U \subseteq X$ such that

$$u = u^{**} \land s \land \bigwedge (x : x \in U).$$

For our next result we need the following concept:

Definition 3.4. Let K and S be bounded meet-semilattices (PCS's) such that $K \leq S$. Then K is said to be relatively complete in S, if for each $b \in S$ there exists a smallest $a \in K$ such that $b \leq a$. In notation:

$$a = \Pr(b) = \Pr_K^S(b) = \min\{x \in K \mid b \le x\}.$$

Write $K \leq_{rc} S$ if K is relatively complete in S. See also [6] or [9] for relatively complete lattices or Boolean algebras.

Using the notation from the preceding theorem, we can formulate the following result:

Corollary 3.5. Let $K \leq S$ for PCS's. Then $K \leq_{rc} S$ if and only if

$$K \leq_{rc} S_1 \leq_{rc} S,$$

where $S_1 = [B(S) \cup K]_{sem}$.

Proof. Let $K \leq_{rc} S$. (Clearly, S = K[X] for some $X \subseteq S$.) It follows that $B(K) \leq_{rc} B(S)$ and $K \leq_{rc} S_1$. It remains to prove $S_1 \leq_{rc} S$. Let $u \in S$ and

 $u \leq v$ for some $v \in S_1$. It is easy to see that $v = a \wedge t$ for some $a \in B(S)$ and $t \in K$. Now, $u \leq v$ if and only if $u \leq a$ and $u \leq t$ in S. But $u \leq a$ if and only if $u^{**} \leq a$. The second relation $u \leq t$ is equivalent to $u \leq \Pr_K^S(u) \leq t$. Therefore,

$$u \le u^{**} \wedge \Pr_K^S(u) \le a \wedge t = v.$$

Since $u^{**} \wedge \operatorname{Pr}_{K}^{S}(u) \in S_{1}$, we have $S_{1} \leq_{rc} S$. The converse implication is straightforward.

4. EXTENSION TO A HOMOMORPHISM

In this section we shall examine the following situation: Let K, M and S = K[X] be PCS's. Let $f_0: K \to M$ be a homomorphism and $f: X \to M$ be a mapping. The question concerning f is whether or not there exists a homomorphism $g: S \to M$ such that $g \upharpoonright_{K \cup X} = f_0 \cup f$ (= the restriction of g to $K \cup X$). It is easy to see that g, whenever it exists, is uniquely determined. In this case we say that g is an extension of $f_0 \cup f$ to a homomorphism.

Notice that a specialization of our question for Boolean algebras has been considered by R. Sikorski. He found a useful characterization of those mappings f, for which there exists an extension to a Boolean homomorphism (see Sikorski's extension criterion in [9]).

The next theorem is concerned with a more general situation and will frequently be useful:

Theorem 4.1. Let K, M and S be PCS's and let S be an extension of K, that means, S = K[X] for some $X \subseteq S$. Assume that $f_0 : K \to M$ is a homomorphism and let $f : X \to M$ be a mapping. Then there exists a homomorphism $g : S \to M$ extending $f_0 \cup f$ if and only if the following conditions are fulfilled:

(i) there is a Boolean homomorphism h : B(S) → B(M), which is an extension of (f₀)_B : B(K) → B(M) (i.e. (f₀)_B is a restriction of f₀ to B(K)) such that

$$h(x^{**}) = f(x)^{**}$$

for every $x \in X$;

- (ii) if $S_1 = [B(S) \cup K]_{sem}$, then there exists a meet-semilattice homomorphism $f_1 : S_1 \to M$ such that f_1 is an extension of $f_0 \cup h$;
- (iii) there exists a meet-semilattice homomorphism $g: S \to M$ which is an extension of $f_1 \cup f$.

In addition, the homomorphism $g: S \to M$, if it exists, is uniquely determined. If $u \in S$, then

$$g(u) = h(u^{**}) \land f_0(s) \land \bigwedge (f(x) : x \in U) = f_1(u^{**} \land s) \land \bigwedge (f(x) : x \in U)$$

for some $s \in K$ and a finite $U \subseteq X$ (see Corollary 3.3).

Proof. The necessity of (i)-(iii) is straightforward (see Lemma 2.1 and Theorem 3.2). Conversely, assume conditions (i) - (iii). First we show that $f_1 : S_1 \to M$ is a PCS-homomorphism. Really, suppose $u \in S_1$. By Theorem 3.2, $u = a \wedge s$ for some $a \in B(S)$ and $s \in K$. Therefore,

$$f_1(u) = f_1(a \wedge s) = h(a) \wedge f_0(s),$$

by (ii). Now,

$$f_1(u)^{**} = (h(a) \wedge f_0(s))^{**} = h(a)^{**} \wedge f_0(s)^{**} = h(a) \wedge f_0(s^{**})$$

= $h(a) \wedge h(s^{**}) = h(a \wedge s^{**}) = h(u^{**}) = f_1(u^{**}),$

by (i) and (ii). Hence,

$$f_1(u)^* = f_1(u)^{***} = h(u^{**})^* = h(u^*) = f_1(u^*),$$

as h is a Boolean homomorphism. Clearly, f_1 is a PCS's homomorphism and an extension of $f_0 \cup h$.

Now, we can show that meet-semilattice homomorphism $g: S \to M$ satisfies $g(u)^* = g(u^*)$ for any $u \in S$ as well. Really, take $u \in S$. By Theorem 3.2, either $u \in S_1$ or $u = s \land (\bigwedge X_1)$ for some $s \in S_1$ and a finite non-empty $X_1 \subseteq X$. The first case is straightforward: $g(u) = f_1(u)$. Let us consider the second event. By hypothesis,

$$g(u) = g(s \land (\bigwedge X_1)) = g(s) \land \bigwedge (g(y) : y \in X_1) = f_1(s) \land \bigwedge (g(y) : y \in X_1).$$

Since $g(y)^{**} = f(y)^{**} = f(y^{**}) = h(y^{**})$, for $y \in X_1$, we get

$$g(u)^{**} = f_1(s)^{**} \land \bigwedge (g(y)^{**} : y \in X_1) = h(s^{**}) \land h(\bigwedge X_1^{**}) = h(u^{**}).$$

It follows that

$$g(u)^* = g(u)^{***} = (g(u)^{**})^* = h(u^{**})^* = h(u^*) = f_1(u^*) = g(u^*),$$

by (i) - (iii). Now, it is easy to see that g is the required homomorphism extending $f_0 \cup f$. The last statement follows from Theorem 3.2 and Corollary 3.3. The proof is complete.

Corollary 4.2. Under the assumptions of Theorem 4.1 and the additional hypothesis that B(K) = B(S), the following statements are equivalent:

- (i) There exists a PCS-homomorphism g: S → M, which is an extension of f₀ ∪ f.
- (ii) There exists a meet-semilattice homomorphism g : S → M, which is an extension of f₀ ∪ f.

Proof. Clearly, B(K) = B(S) yields that $h \subseteq f_0$. Hence $f_1 = f_0$ and the rest follows from Theorem 4.1.

Theorem 4.1 shows that an extension of a PCS-homomorphism can be reduced to three special parts: one extension of a Boolean homomorphism and two extensions of bounded meet-semilattice homomorphisms. More precisely, let K, M and S be PCS's and let S = K[X]. Assume that there exist a PCS-homomorphism $f_0: K \to M$ and a mapping $f: X \to M$. Then there exists

(I) a Boolean homomorphism $(f_0)_B : B(K) \to B(M)$, where $(f_0)_B$ is the restriction of f_0 to B(K) (Lemma 2.1). In addition, there is a mapping $f^+ : X^{**} \to B(M)$ defined by the rule

$$f^+(x^{**}) = f(x)^{**}.$$

The first question concerning $(f_0)_B$ is whether or not there is an extension of $(f_0)_B \cup f^+$ to a Boolean homomorphism $h: B(S) \to B(M)$. (Notice that $[B(K) \cup X^{**}]_{Bool} = B(S)$ by Lemma 2.1.) The answer to this question comes from the following lemma, due to R. Sikorski (see [9], Theorem 5.5). First we need a new notation: Let B be a Boolean algebra. For $x \in B$ and $\varepsilon \in \{+1, -1\}$, define the element x^{ε} of B by

$$x^{+1} = x, \quad x^{-1} = x^*.$$

Lemma 4.3. A Boolean homomorphism $h : B(S) \to B(M)$ is an extension of $(f_0)_B \cup f^+$ if and only if

$$a^{\varepsilon_0} \wedge (x_1^{**})^{\varepsilon_1} \wedge \dots \wedge (x_k^{**})^{\varepsilon_k} = 0$$

in B(S) for $a \in B(K)$, $x_1^{**}, \dots, x_k^{**} \in X^{**}$ and $\varepsilon_i \in \{+1, -1\}$ implies $f_0(a)^{\varepsilon_0} \wedge f(x_1^{**})^{\varepsilon_1} \wedge \dots \wedge f(x_k^{**})^{\varepsilon_k} = 0$

in B(M).

(II) Suppose now that a Boolean homomorphism $h: B(S) \to B(M)$ exists and h is an extension of $(f_0)_B \cup f^+$. In addition, there exists $S_1 \leq S$ and we can ask again whether or not there exists a meet-semilattice homomorphism $f_1: S_1 \to M$, which is an extension of $f_0 \cup h$. The answer can be formulated as follows:

Lemma 4.4. Let $h : B(S) \to B(M)$ be a Boolean homomorphism and an extension of $(f_0)_B \cup f^+$. Then there exists a meet-semilattice homomorphism $f_1 : S_1 \to M$, which is an extension of $f_0 \cup h$ if and only if

$$a \wedge s = b \wedge t$$

implies

$$h(a) \wedge f_0(s) = h(b) \wedge f_0(t)$$

for any $a, b \in B(S)$ and $s, t \in K$.

Proof. The result requires only routine verification, and the proof can be omitted.

(III) It remains to establish the third part. We thus have a semilattice homomorphism $f_1: S_1 \to M$, which is an extension of $f_0 \cup h$. Since $S = [S_1 \cup X]_{sem}$ (Theorem 3.2), it is reasonable to ask again whether or not there exists a meetsemilattice homomorphism $g: S \to M$, which is an extension of $f_1 \cup f$. The following lemma yields a solution:

Lemma 4.5. Let $f_1 : S_1 \to M$ be a semilattice homomorphism extending $f_0 \cup h$. Then there exists a semilattice homomorphism $g : S \to M$, which is an extension of $f_1 \cup f$ if and only if

$$s \land \bigwedge (y : y \in Y) = t \land \bigwedge (z : z \in Z)$$

implies

$$f_1(s) \land \bigwedge (f(y) : y \in Y) = f_1(t) \land \bigwedge (f(z) : z \in Z)$$

for any $s, t \in S_1$ and arbitrary finite $Y, Z \subseteq X$.

The proof is routine.

We conclude this section by observing that Lemmas 4.3-4.5 complete Theorem 4.1. The interested reader should have no serious difficulty in reconstructing the corresponding theorem.

5. SIMPLE EXTENSIONS

In the last section (Theorem 4.1) we saw how a PCS-homomorphism $f_0: K \to M$ can be extended to a PCS-homomorphism $g: S \to M$, where $K \leq S$. Unfortunately, our characterization is of general nature, that means, the result is not useful enough. The purpose of this section is to find a sufficient conditions under which we can easily say that an extension exists or not. For this reason we perform some speciali- zations (simple extensions, retractions) and a generalization (meet-semilattices). (See the discussion in the preceding section.)

Proposition 5.1. Let $f: T \to M$ be a homomorphism of non-trivial bounded meet-semilattices. Assume that the bounded meet-semilattice S = T[x] is a simple extension of T and u is an element of M. Moreover, assume that the element $\Pr_T^S(x)$ exists and, that we have a retraction $\alpha: T[x] \to T$, that means, $\alpha(a) = a$ for any $a \in T$, such that $\alpha(x) = \Pr_T^S(x)$. Then there exists a meet-semilattice homomorphism

$$g: S = T[x] \to M$$

extending f and mapping x to $u \in M$ if and only if

 $a \leq x$ in S and $a \in T$ imply $f(a) \leq u \leq f(\Pr_T^S(x))$ in M.

Proof. Necessity of the condition is obvious. As to sufficiency, it is known that an arbitrary element $v \in S$ can be written in the form

$$v = a \wedge x^r,$$

where $r \in \{0, 1\}$ and $a \in T$. (Note that $x^0 = 1$ and $x^1 = x$.) Now, we can define

$$g:S\to M$$

by

$$g(v) = f(a) \wedge u^r$$

First we have to show that g is well-defined, that is,

$$c \wedge x^r = d \wedge x^s$$
 implies $f(c) \wedge u^r = f(d) \wedge u^s$,

for $c, d \in T$. We have to verify two cases only:

$$c \wedge x = d \wedge x$$
 and $c = d \wedge x$.

Writing Pr(x) for $Pr_T^S(x)$ we get in the first event

$$\alpha(c \wedge x) = c \wedge \Pr(x) = d \wedge \Pr(x) = \alpha(d \wedge x),$$

by the hypothesis on α . Therefore,

$$f(c) \wedge f(\Pr(x)) = f(c \wedge \Pr(x)) = f(d \wedge \Pr(x)) = f(d) \wedge f(\Pr(x)),$$

as f is a homomorphism. Since $u \leq f(\Pr(x))$, we obtain

$$f(c) \wedge u = f(d) \wedge u.$$

Considering the second case $c = d \wedge x$, we see that $c \leq x$. Hence $f(c) \leq u$, by the hypothesis on f. Using the same reasoning as above, we obtain

$$f(c) = f(d) \wedge u,$$

and g is well-defined. The element 0 in S can be expressed as $0 = 0 \land x$. Therefore,

$$g(0) = f(0) \wedge u = 0$$

in *M*. Similarly, g(1) = 1. Now, it can be readily shown that *g* is a meet-semilattice homomorphism extending *f* with the required properties.

Lemma 5.2. Let S = K[x] be a simple extension of PCS's. Assume that there exists $\operatorname{Pr}_{K}^{S}(x)$. Then there exists $\operatorname{Pr}_{S_{1}}^{S}(x)$ (for S_{1} see Section 3) and

$$\Pr_{S_1}^S(x) = x^{**} \wedge \Pr_K^S(x).$$

Proof. Clearly, $x \leq x^{**} \wedge \Pr_K^S(x) \in S_1$. On the other hand, let $x \leq v$ for some $v \in S_1$. By Theorem 3.2, $v = a \wedge t$ for some $a \in B(S)$ and $t \in K$. Now, $x \leq a \wedge t$ implies $x^{**} \leq a$ in B(S) and $x \leq t$ in K. Hence

$$x^{**} \wedge \Pr_K^S(x) \le a \wedge t = v.$$

As a consequence of these results we have

Theorem 5.3. Let K, M and S be PCS's, let S = K[x] be a simple extension of K for some $x \in S$ and let $u \in M$. Let $f_0 : K \to M$ be a PCS-homomorphism. Assume that the element $\Pr_K^S(x)$ exists and that we have (in the notation of Section 3) a retraction $\alpha : S_1[x] \to S_1$ such that $\alpha(x) = x^{**} \wedge \Pr_K^S(x)$. Then there exists a PCS-homomorphism

$$q: S \to M$$

extending f_0 and mapping x to $u \in M$ if and only if

(i) there exists a meet-semilattice homomorphism $f_1 : S_1 \to M$ which is an extension of $f_0 \cup h$ (see Theorem 4.1) and, we have

$$f_1(x^{**}) = h(x^{**}) = u^{**},$$

(ii) $t \leq x$ in S and $t \in S_1$ imply $f_1(t) \leq u \leq f_1(\operatorname{Pr}_{S_1}^S(x))$ in M.

Proof. Suppose that $g: S \to M$ is an extension of f_0 such that g(x) = u. Since g is a PCS-homomorphism, condition (ii) follows easily. Condition (i) is a consequence of Theorem 4.1.

To prove the remaining half, let us suppose (i) and (ii). We shall proceed by Theorem 4.1. We start by establishing a Boolean homomorphism $h : B(S) \to B(M)$ which is an extension of $(f_0)_B$ (see Theorem 4.1) such that $h(x^{**}) = u^{**}$. It is easy to check that $[B(K) \cup \{x^{**}\}]_{Bool} = B(S)$. Moreover, from (ii) and the hypothesis that $\Pr_K^S(x)$ exists, it follows that

$$a^{**} \le x^{**} \le b^{**}$$
 in S implies $f_0(a^{**}) \le u^{**} \le f_0(\Pr_K^S(x)^{**}) \le f_0(b^{**})$ in M

for any $a, b \in K$. Now we can apply ([9], Corollary 5.8) of Sikorski's extension criterion for Boolean algebras. It does ensure that there is a Boolean homomorphism $h: B(S) \to B(M)$ extending $(f_0)_B: B(K) \to B(M)$ such that $h(x^{**}) = u^{**}$.

By (i) we see that $f_1: S_1 \to M$ is a meet-semilattice homomorphism extending $f_0 \cup h$. It remains to show that there exists a meet-semilattice homomorphism $g: S \to M$ extending $f_1 \cup \{(x, u)\}$. Evidently, $S = S_1[x]$ is a simple meet-semilattice extension. Now, we can apply Proposition 5.1. By Lemma 5.2 and the hypothesis that f_1 is a meet-semilattice homomorphism, we get

$$u^{**} \wedge f_0(\Pr_K^S(x)) = h(x^{**}) \wedge f_1(\Pr_K^S(x)) = f_1(\Pr_{S_1}^S(x)).$$

Now, setting T for S_1 in (ii), we get the main condition of Proposition 5.1. It follows that there exists a meet-semilattice homomorphism $g: S \to M$ extending $f_1 \cup \{(x, u)\}$. Ultimately Theorem 4.1 implies that g is a PCS-homomorphism, and the proof of the theorem is complete.

References

- 1. Balbes, R. and Dwinger, Ph., Distributive lattices, Univ. Missouri Press, Missouri, 1974.
- 2. Frink, O., Pseudo-complements in semi-lattices, Duke Math. J. 29(1962), 505-514.

- 3. Grätzer, G., *General lattice theory*, Birkhäuser Verlag, Basel, Boston, Berlin, 1998 (sec. ed.).
- Howie, J. M., An introduction to semigroup theory, Acad. Press, London, N.Y., San Francisco, 1976.
- Jones, G. T., Projective pseudocomplemented semilattices, Pacific J. Math. 32 (1974), 443-456.
- 6. Jónsson, B., Relatively free products of lattices, Algebra Univ. 1 (1972), 362-371.
- 7. Katriňák, T., Free p-algebras, Algebra Univ. 15 (1982), 176-182.
- Katriňák, T. and Guričan, J., Projective extensions of bounded semilattices, Algebra Univ. 59 (2008), 97-110.
- Koppelberg, S., Hanbook of Boolean algebras, vol. 1 of: Monk, J. D. with R. Bonnet (eds.) North-Holland, Amsterdam etc. 1989.

KATEDRA AGDM FMFI, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovakia

E-mail address, T. Katriňák: katrinak@fmph.uniba.sk *E-mail address*, J. Guričan: gurican@fmph.uniba.sk