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Abstract. Our aim is to study and characterize extensions to a homo-
morphism in the class of pseudocomplemented semilattices. We present
here such a description.

1. Introduction

We shall deal with the question in which circumstances a mapping f defined on
a set X of generators of a pseudocomplemented semilattice S can be extended
to a homomorphism g : S → M . Such an extension, if it exists, is uniquely
determined.

It is a well-known fact (see [5]) that the class of all pseudocomplemented
semilattices is equational with only one non-trivial subvariety, namely, the class of
Boolean algebras. The preceding question found an answer for Boolean algebras
(see [9] and especially Sikorski’s extension criterion). We shall use these results
as a motivation for our task.

2. Preliminaries

A pseudocomplemented semilattice (= PCS) is an algebra (S;∧,∗ , 0, 1) of type
(2,1,0,0), where (S;∧, 0, 1) is a bounded meet-semilattice and, for every a ∈ S,
the element a∗ is a pseudocomplement of a, i.e. x ≤ a∗ if and only if x ∧ a = 0.
A PCS S is said to be non-trivial, whenever | S |≥ 2. An element a ∈ S is called
closed, if a = a∗∗. Let B(S) denote the set of all closed elements of S. It is known
that

(B(S); +,∧,∗ , 0, 1)
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forms a Boolean algebra with

a+ b = (a∗ ∧ b∗)∗

(see [1] and [3]). (Clearly, a PCS S is a Boolean algebra if and only if S satisfies
the identity x = x∗∗.)

Here are some rules of computation with ∗ and ∧ (see [1] or [3]):
(1) x ∧ x∗ = 0.
(2) x ≤ y implies that x∗ ≥ y∗.
(3) x ≤ x∗∗.
(4) x∗ = x∗∗∗.
(5) (x ∧ y)∗∗ = x∗∗ ∧ y∗∗.
(6) 0∗ = 1 and 1∗ = 0.
The following result can be easily verified (see [7]).

Lemma 2.1. Let S be a PCS and let X ⊆ S. Then S is generated by X, i.e.
S = [X] if and only if [X∗∗]Bool = B(S) and S = [X ∪ B(S)]sem, that means,
B(S) is generated by X∗∗ = {x∗∗ : x ∈ X} as a Boolean algebra and S is
generated by X ∪B(S) as a semilattice.

Let S and T be PCS’s. A function f : S → T is called a homomorphism (of
PCS’s) if f(x ∧ y) = f(x) ∧ f(y), f(x)∗ = f(x∗) for x, y ∈ S. We observe that
f(0) = 0, and f(1) = 1.

The definitions of the concepts discussed in this paper may be found in [1] and
[3].

3. Extensions

Let S and K be PCS’s and let K be a subalgebra of S, that means, S is an
extension ofK. (Notation: K ≤ S.) In addition, we setK[X] = [K∪X], whenever
X ⊆ S. We say that S is a finite (simple) extension of its subalgebra K, if
S = K[X] for some finite (one-element) set X ⊆ S.

Proposition 3.1. Let K and S be PCS’s. Then S is a simple extension of K,
that means, S = K[x] for some x ∈ S, if and only if

(i) B(S) = [B(K) ∪ {x∗∗}]Bool,
(ii) S1 = [B(S) ∪K]sem is a subalgebra of S and
(iii) S = [S1 ∪ {x}]sem.

Proof. Assume first S = K[x]. Then (i) is straightforward (see Lemma 2.1).
(ii) We have only to show that u ∈ S1 implies u∗ ∈ S1. Really, take u ∈ S1.
Evidently,

u = a ∧ s
for some a ∈ B(S) and s ∈ K. Since u ∈ S, we have

u∗∗ = (a ∧ s)∗∗ = a∗∗ ∧ s∗∗ = a ∧ s∗∗ ∈ B(S).
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Therefore, u∗ = u∗∗∗ = (a ∧ s∗∗)∗ ∈ B(S) ⊆ S1, and S1 is a subalgebra of S.
(iii) Set M = [S1 ∪ {x}]sem. We claim that M is a subalgebra of S. Similarly

as above, we have only to show that u ∈ M implies u∗ ∈ M. Either u ∈ S1 or
there exists s ∈ S1 such that

u = s ∧ x.
In the first event u∗ ∈ S1. In the second one, we get u∗∗ = (s ∧ x)∗∗ ∈ B(S).
Since B(S1) = B(S), it is easy to see that u∗ ∈ S1, and hence M is a subalgebra
of S. Finally, since K ∪ {x} ⊆M, we obtain M = S.

To prove the converse, assume that the conditions (i)-(iii) are satisfied. It is
easy to see that K ≤ S. Therefore, K[x] = [K ∪ {x}] ⊆ S. On the other hand,
B(S) ⊆ K[x] by (i). Consequently, S ⊆ K[x] by (ii) and (iii), and the proof is
complete.

Proposition 3.1 generalizes immediately to arbitrary set X (instead of one-
element set {x}).

Theorem 3.2. Let K and S be PCS’s. Then S = K[X] for some X ⊆ S if and
only if

(i) B(S) = [B(K) ∪X∗∗]bool,
(ii) S1 = [B(S) ∪K]sem is a subalgebra of S and
(iii) S = [S1 ∪X]sem.

Corollary 3.3. Let S = K[X] and let u ∈ S. Then there exist s ∈ K and a finite
U ⊆ X such that

u = u∗∗ ∧ s ∧
∧

(x : x ∈ U).

For our next result we need the following concept:

Definition 3.4. Let K and S be bounded meet-semilattices (PCS’s) such that
K ≤ S. Then K is said to be relatively complete in S, if for each b ∈ S there
exists a smallest a ∈ K such that b ≤ a. In notation:

a = Pr(b) = PrS
K(b) = min{x ∈ K | b ≤ x}.

Write K ≤rc S if K is relatively complete in S. See also [6] or [9] for relatively
complete lattices or Boolean algebras.

Using the notation from the preceding theorem, we can formulate the following
result:

Corollary 3.5. Let K ≤ S for PCS’s. Then K ≤rc S if and only if

K ≤rc S1 ≤rc S,

where S1 = [B(S) ∪K]sem.

Proof. Let K ≤rc S. (Clearly, S = K[X] for some X ⊆ S.) It follows that
B(K) ≤rc B(S) and K ≤rc S1. It remains to prove S1 ≤rc S. Let u ∈ S and
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u ≤ v for some v ∈ S1. It is easy to see that v = a ∧ t for some a ∈ B(S) and
t ∈ K. Now, u ≤ v if and only if u ≤ a and u ≤ t in S. But u ≤ a if and only if
u∗∗ ≤ a. The second relation u ≤ t is equivalent to u ≤ PrS

K(u) ≤ t. Therefore,

u ≤ u∗∗ ∧ PrS
K(u) ≤ a ∧ t = v.

Since u∗∗ ∧PrS
K(u) ∈ S1, we have S1 ≤rc S. The converse implication is straight-

forward.

4. Extension to a homomorphism

In this section we shall examine the following situation: Let K,M and S = K[X]
be PCS’s. Let f0 : K →M be a homomorphism and f : X →M be a mapping.
The question concerning f is whether or not there exists a homomorphism g :
S →M such that g �K∪X= f0 ∪ f (= the restriction of g to K ∪X). It is easy to
see that g, whenever it exists, is uniquely determined. In this case we say that g
is an extension of f0 ∪ f to a homomorphism.

Notice that a specialization of our question for Boolean algebras has been
considered by R. Sikorski. He found a useful characterization of those mappings
f , for which there exists an extension to a Boolean homomorphism (see Sikorski’s
extension criterion in [9]).

The next theorem is concerned with a more general situation and will fre-
quently be useful:

Theorem 4.1. Let K,M and S be PCS’s and let S be an extension of K, that
means, S = K[X] for some X ⊆ S. Assume that f0 : K →M is a homomorphism
and let f : X →M be a mapping. Then there exists a homomorphism g : S →M
extending f0 ∪ f if and only if the following conditions are fulfilled:

(i) there is a Boolean homomorphism h : B(S)→ B(M), which is an exten-
sion of (f0)B : B(K)→ B(M) (i.e. (f0)B is a restriction of f0 to B(K))
such that

h(x∗∗) = f(x)∗∗

for every x ∈ X;
(ii) if S1 = [B(S)∪K]sem, then there exists a meet-semilattice homomorphism

f1 : S1 →M such that f1 is an extension of f0 ∪ h;
(iii) there exists a meet-semilattice homomorphism g : S → M which is an

extension of f1 ∪ f.
In addition, the homomorphism g : S → M, if it exists, is uniquely determined.
If u ∈ S, then

g(u) = h(u∗∗) ∧ f0(s) ∧
∧

(f(x) : x ∈ U) = f1(u∗∗ ∧ s) ∧
∧

(f(x) : x ∈ U)

for some s ∈ K and a finite U ⊆ X (see Corollary 3.3).
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Proof. The necessity of (i)-(iii) is straightforward (see Lemma 2.1 and Theorem
3.2). Conversely, assume conditions (i) - (iii). First we show that f1 : S1 →M is
a PCS-homomorphism. Really, suppose u ∈ S1. By Theorem 3.2, u = a ∧ s for
some a ∈ B(S) and s ∈ K. Therefore,

f1(u) = f1(a ∧ s) = h(a) ∧ f0(s),

by (ii). Now,

f1(u)∗∗ = (h(a) ∧ f0(s))∗∗ = h(a)∗∗ ∧ f0(s)∗∗ = h(a) ∧ f0(s∗∗)
= h(a) ∧ h(s∗∗) = h(a ∧ s∗∗) = h(u∗∗) = f1(u∗∗),

by (i) and (ii). Hence,

f1(u)∗ = f1(u)∗∗∗ = h(u∗∗)∗ = h(u∗) = f1(u∗),

as h is a Boolean homomorphism. Clearly, f1 is a PCS’s homomorphism and an
extension of f0 ∪ h.

Now, we can show that meet-semilattice homomorphism g : S → M satisfies
g(u)∗ = g(u∗) for any u ∈ S as well. Really, take u ∈ S. By Theorem 3.2, either
u ∈ S1 or u = s ∧ (

∧
X1) for some s ∈ S1 and a finite non-empty X1 ⊆ X. The

first case is straightforward: g(u) = f1(u). Let us consider the second event. By
hypothesis,

g(u) = g(s ∧ (
∧
X1)) = g(s) ∧

∧
(g(y) : y ∈ X1) = f1(s) ∧

∧
(g(y) : y ∈ X1).

Since g(y)∗∗ = f(y)∗∗ = f(y∗∗) = h(y∗∗), for y ∈ X1, we get

g(u)∗∗ = f1(s)∗∗ ∧
∧

(g(y)∗∗ : y ∈ X1) = h(s∗∗) ∧ h(
∧
X∗∗1 ) = h(u∗∗).

It follows that

g(u)∗ = g(u)∗∗∗ = (g(u)∗∗)∗ = h(u∗∗)∗ = h(u∗) = f1(u∗) = g(u∗),

by (i) - (iii). Now, it is easy to see that g is the required homomorphism extending
f0∪f. The last statement follows from Theorem 3.2 and Corollary 3.3. The proof
is complete.

Corollary 4.2. Under the assumptions of Theorem 4.1 and the additional hypo-
thesis that B(K) = B(S), the following statements are equivalent:

(i) There exists a PCS-homomorphism g : S →M, which is an extension of
f0 ∪ f.

(ii) There exists a meet-semilattice homomorphism g : S → M, which is an
extension of f0 ∪ f.

Proof. Clearly, B(K) = B(S) yields that h ⊆ f0. Hence f1 = f0 and the rest
follows from Theorem 4.1.
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Theorem 4.1 shows that an extension of a PCS-homomorphism can be reduced
to three special parts: one extension of a Boolean homomorphism and two exten-
sions of bounded meet-semilattice homomorphisms. More precisely, letK,M and
S be PCS’s and let S = K[X]. Assume that there exist a PCS-homomorphism
f0 : K →M and a mapping f : X →M. Then there exists

(I) a Boolean homomorphism (f0)B : B(K) → B(M), where (f0)B is the
restriction of f0 to B(K) (Lemma 2.1). In addition, there is a mapping f+ :
X∗∗ → B(M) defined by the rule

f+(x∗∗) = f(x)∗∗.

The first question concerning (f0)B is whether or not there is an extension of
(f0)B ∪ f+ to a Boolean homomorphism h : B(S)→ B(M). (Notice that
[B(K) ∪ X∗∗]Bool = B(S) by Lemma 2.1.) The answer to this question comes
from the following lemma, due to R. Sikorski (see [9], Theorem 5.5). First we
need a new notation: Let B be a Boolean algebra. For x ∈ B and ε ∈ {+1,−1},
define the element xε of B by

x+1 = x, x−1 = x∗.

Lemma 4.3. A Boolean homomorphism h : B(S) → B(M) is an extension of
(f0)B ∪ f+ if and only if

aε0 ∧ (x∗∗1 )ε1 ∧ · · · ∧ (x∗∗k )εk = 0

in B(S) for a ∈ B(K), x∗∗1 , · · · , x∗∗k ∈ X∗∗ and εi ∈ {+1,−1} implies

f0(a)ε0 ∧ f(x∗∗1 )ε1 ∧ · · · ∧ f(x∗∗k )εk = 0

in B(M).

(II) Suppose now that a Boolean homomorphism h : B(S)→ B(M) exists and
h is an extension of (f0)B ∪ f+. In addition, there exists S1 ≤ S and we can ask
again whether or not there exists a meet-semilattice homomorphism f1 : S1 →M,
which is an extension of f0 ∪ h. The answer can be formulated as follows:

Lemma 4.4. Let h : B(S) → B(M) be a Boolean homomorphism and an
extension of (f0)B ∪ f+. Then there exists a meet-semilattice homomorphism
f1 : S1 →M, which is an extension of f0 ∪ h if and only if

a ∧ s = b ∧ t

implies
h(a) ∧ f0(s) = h(b) ∧ f0(t)

for any a, b ∈ B(S) and s, t ∈ K.

Proof. The result requires only routine verification, and the proof can be
omitted.
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(III) It remains to establish the third part. We thus have a semilattice homo-
morphism f1 : S1 →M, which is an extension of f0 ∪ h. Since S = [S1 ∪X]sem

(Theorem 3.2), it is reasonable to ask again whether or not there exists a meet-
semilattice homomorphism g : S → M , which is an extension of f1 ∪ f. The
following lemma yields a solution:

Lemma 4.5. Let f1 : S1 →M be a semilattice homomorphism extending f0 ∪ h.
Then there exists a semilattice homomorphism g : S →M, which is an extension
of f1 ∪ f if and only if

s ∧
∧

(y : y ∈ Y ) = t ∧
∧

(z : z ∈ Z)

implies
f1(s) ∧

∧
(f(y) : y ∈ Y ) = f1(t) ∧

∧
(f(z) : z ∈ Z)

for any s, t ∈ S1 and arbitrary finite Y,Z ⊆ X.

The proof is routine.
We conclude this section by observing that Lemmas 4.3-4.5 complete Theorem

4.1. The interested reader should have no serious difficulty in reconstructing the
corresponding theorem.

5. Simple extensions

In the last section (Theorem 4.1) we saw how a PCS-homomorphism f0 : K →M
can be extended to a PCS-homomorphism g : S → M , where K ≤ S. Unfortu-
nately, our characterization is of general nature, that means, the result is not
useful enough. The purpose of this section is to find a sufficient conditions under
which we can easily say that an extension exists or not. For this reason we per-
form some speciali- zations (simple extensions, retractions) and a generalization
(meet-semilattices). (See the discussion in the preceding section.)

Proposition 5.1. Let f : T → M be a homomorphism of non-trivial bounded
meet-semilattices. Assume that the bounded meet-semilattice S = T [x] is a simple
extension of T and u is an element of M. Moreover, assume that the element
PrS

T (x) exists and, that we have a retraction α : T [x]→ T, that means, α(a) = a

for any a ∈ T, such that α(x) = PrS
T (x). Then there exists a meet-semilattice

homomorphism
g : S = T [x]→M

extending f and mapping x to u ∈M if and only if

a ≤ x in S and a ∈ T imply f(a) ≤ u ≤ f(PrS
T (x)) in M.

Proof. Necessity of the condition is obvious. As to sufficiency, it is known that
an arbitrary element v ∈ S can be written in the form

v = a ∧ xr,
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where r ∈ {0, 1} and a ∈ T. (Note that x0 = 1 and x1 = x.) Now, we can define

g : S →M

by
g(v) = f(a) ∧ ur.

First we have to show that g is well-defined, that is,

c ∧ xr = d ∧ xs implies f(c) ∧ ur = f(d) ∧ us,

for c, d ∈ T. We have to verify two cases only:

c ∧ x = d ∧ x and c = d ∧ x.

Writing Pr(x) for PrST (x) we get in the first event

α(c ∧ x) = c ∧ Pr(x) = d ∧ Pr(x) = α(d ∧ x),

by the hypothesis on α. Therefore,

f(c) ∧ f(Pr(x)) = f(c ∧ Pr(x)) = f(d ∧ Pr(x)) = f(d) ∧ f(Pr(x)),

as f is a homomorphism. Since u ≤ f(Pr(x)), we obtain

f(c) ∧ u = f(d) ∧ u.

Considering the second case c = d∧ x, we see that c ≤ x. Hence f(c) ≤ u, by the
hypothesis on f. Using the same reasoning as above, we obtain

f(c) = f(d) ∧ u,

and g is well-defined. The element 0 in S can be expressed as 0 = 0∧x. Therefore,

g(0) = f(0) ∧ u = 0

inM. Similarly, g(1) = 1.Now, it can be readily shown that g is a meet-semilattice
homomorphism extending f with the required properties.

Lemma 5.2. Let S = K[x] be a simple extension of PCS’s. Assume that there
exists PrS

K(x). Then there exists PrS
S1

(x) ( for S1 see Section 3 ) and

PrS
S1

(x) = x∗∗ ∧ PrS
K(x).

Proof. Clearly, x ≤ x∗∗ ∧PrS
K(x) ∈ S1. On the other hand, let x ≤ v for some

v ∈ S1. By Theorem 3.2, v = a ∧ t for some a ∈ B(S) and t ∈ K. Now, x ≤ a ∧ t
implies x∗∗ ≤ a in B(S) and x ≤ t in K. Hence

x∗∗ ∧ PrS
K(x) ≤ a ∧ t = v.

As a consequence of these results we have
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Theorem 5.3. Let K,M and S be PCS’s, let S = K[x] be a simple extension
of K for some x ∈ S and let u ∈M. Let f0 : K →M be a PCS-homomorphism.
Assume that the element PrS

K(x) exists and that we have (in the notation of
Section 3 ) a retraction α : S1[x] → S1 such that α(x) = x∗∗ ∧ PrS

K(x). Then
there exists a PCS-homomorphism

g : S →M

extending f0 and mapping x to u ∈M if and only if
(i) there exists a meet-semilattice homomorphism f1 : S1 → M which is an

extension of f0 ∪ h (see Theorem 4.1) and, we have

f1(x∗∗) = h(x∗∗) = u∗∗,

(ii) t ≤ x in S and t ∈ S1 imply f1(t) ≤ u ≤ f1(PrS
S1

(x)) in M.

Proof. Suppose that g : S → M is an extension of f0 such that g(x) = u.
Since g is a PCS-homomorphism, condition (ii) follows easily. Condition (i) is a
consequence of Theorem 4.1.

To prove the remaining half, let us suppose (i) and (ii). We shall proceed by
Theorem 4.1. We start by establishing a Boolean homomorphism h : B(S) →
B(M) which is an extension of (f0)B (see Theorem 4.1) such that h(x∗∗) = u∗∗.
It is easy to check that [B(K) ∪ {x∗∗}]Bool = B(S). Moreover, from (ii) and the
hypothesis that PrS

K(x) exists, it follows that

a∗∗ ≤ x∗∗ ≤ b∗∗ in S implies f0(a∗∗) ≤ u∗∗ ≤ f0(PrS
K(x)∗∗) ≤ f0(b∗∗) in M

for any a, b ∈ K. Now we can apply ([9], Corollary 5.8) of Sikorski’s extension cri-
terion for Boolean algebras. It does ensure that there is a Boolean homomorphism
h : B(S)→ B(M) extending (f0)B : B(K)→ B(M) such that h(x∗∗) = u∗∗.

By (i) we see that f1 : S1 →M is a meet-semilattice homomorphism extending
f0 ∪ h. It remains to show that there exists a meet-semilattice homomorphism
g : S → M extending f1 ∪ {(x, u)}. Evidently, S = S1[x] is a simple meet-
semilattice extension. Now, we can apply Proposition 5.1. By Lemma 5.2 and
the hypothesis that f1 ia a meet-semilattice homomorphism, we get

u∗∗ ∧ f0(PrS
K(x)) = h(x∗∗) ∧ f1(PrS

K(x)) = f1(PrS
S1

(x)).

Now, setting T for S1 in (ii), we get the main condition of Proposition 5.1. It
follows that there exists a meet-semilattice homomorphism g : S →M extending
f1 ∪ {(x, u)}. Ultimately Theorem 4.1 implies that g is a PCS-homomorphism,
and the proof of the theorem is complete.
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