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Range of density measures

Martin Sleziak1 and Miloš Ziman

Abstract. We investigate some properties of density measures – finitely
additive measures on the set of natural numbers N extending asymptotic
density. We introduce a class of density measures, which is defined using
cluster points of the sequence

` A(n)
n

´
as well as cluster points of some other

similar sequences.
We obtain range of possible values of density measures for any subset

of N. Our description of this range simplifies the description of Bhashkara
Rao and Bhashkara Rao [4] for general finitely additive measures. Also the
values which can be attained by the measures defined in the first part of
the paper are studied.

Introduction
We are interested in finitely additive measures defined on the algebra P(N) of all
subsets of N. By a measure we mean a function µ : P(N) → [0, 1] satisfying the
following properties:

(a) µ(N) = 1;

(b) µ(A ∪B) = µ(A) + µ(B) for all disjoint A,B ⊆ N.

The asymptotic density d defined by d(A) = lim
n→∞

A(n)
n , where A(n) =

∣∣A ∩
[1, n]

∣∣, is a classical tool for measuring the size of subsets of N. But unfortunately,
it is not defined on all subsets of N. Moreover, it is well known that the collection
of sets having asymptotic density (the domain of d) does not form an algebra of
sets. Let us denote this collection D.

Clearly, N ∈ D and d(N) = 1. If A,B ∈ D and A ∩ B = ∅, then d(A ∪ B) =
d(A) + d(B). Hence d possesses both properties (a) and (b) above and it is known
that it is possible to extend d to a measure.

We will study these extensions, i.e., the measures satisfying:
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(c) µ|D = d.

This kind of measure will be called a density measure (in accordance with [26]).
Existence of density measures was shown already by S. Banach. In functional

analysis it is usually proved using Hahn-Banach theorem (see e.g. [3, p.141,§3]). We
will use a different approach for constructing density measures, using ultrafilters
(see e.g. [2, Theorem 8.33], [19, p.207]). Also the general theory of extensions of
a partial finitely additive measure to a measure, described in detail by Bhashkara
Rao and Bhashkara Rao in [4], is a very convenient tool in this setting.

Dorothy Maharam [22] pioneered the research of the density measures on in-
tegers. This field was further studied by Blass, Frankiewicz, Plebanek and Ryll–
Nardzewski in [5], van Douwen in [30] or Šalát and Tijdeman in [26]. Recently the
density measures and related concept of Lévy group have been employed in the
theory of social choice [8], [9], [21], [29].

Let us note that at least some form of axiom of choice is needed in the construc-
tion of finitely additive measures on N, since there exists a model of ZF constructed
by Pincus and Solovay [23] in which there are no nonprincipal finitely additive mea-
sures on N, see also [18]. (It was mistakenly stated in [14] that Buck’s measure [7]
yields an effective construction of a density measure.)

1 Expressions of density measures
We start by describing the construction of density measures via ultrafilters.

We first recall the notion of limit along a filter (see [2, p.122, Definition 8.23],
[19, p.206, Definition 2.7]). If F is a filter on N and (xn) is a real sequence then
we say that F-limxn = L if L is a real number with the property

{n; |xn − L| > ε} ∈ F

for each ε > 0.
We recall here some basic (and easy to show) properties of the F-limit, which

will be needed later.

Lemma 1. Let F be a free filter on N and (xn) be a real sequence.

(i) If lim
n→∞

xn = L then F-limxn = L.

(ii) If F-limxn exists, then lim inf xn ≤ F-limxn ≤ lim supxn.

(iii) The F-limits are unique.

(iv) F-lim(axn + byn) = aF-limxn + bF-lim yn (provided the F-limits of (xn)
and (yn) exist).

(v) F-lim(xn.yn) = F-limxn.F-lim yn (provided the F-limits of (xn) and (yn)
exist).

(vi) For every cluster point c of the sequence (xn) there exists a free filter F such
that F-limxn = c. On the other hand, if F-limxn exists, it is a cluster point
of the sequence (xn).
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(vii) lim
n→∞

xn = L if and only if F-limxn = L for every free ultrafilter F .

(viii) If (xn) is bounded an F is an ultrafilter, then F-limxn exists.

Using the above properties of F-limit one can show that for any free ultrafilter
F on N a density measure µF can be defined by

µF (A) = F-lim
A(n)
n

.

(We refer again to [2, Theorem 8.33], [19, p.207] for the proof of this claim.)
A short notice of Lauwers in [21] claims:
Every density measure can be expressed in the form

µϕ(A) =
∫

βN∗
F-lim

A(n)
n

dϕ(F), A ⊆ N (1.1)

for some probability Borel measure ϕ on the set of all free ultrafilters βN∗.
But unfortunately our next considerations show that this result is not correct.

2 Density measures from α-densities
In this section we will consider another class of density measures. In order to define
them we need to recall the definition of α-densities.

For α ≥ −1 and A ⊆ N we denote Aα(n) =
n∑

k=1

χA(k)kα and by Dα the

set of all sets A ⊆ N such that the sequence
(

Aα(n)
Nα(n)

)
has a limit. The limit of

this sequence we denote dα(A) and we will call it the α-density of the set A, i.e.,
dα(A) = lim

n→∞
Aα(n)
Nα(n) . Hence for α = 0 we have the asymptotic density and for

α = −1 the logarithmic density.
As usual, by d and d we will denote the lower and the upper asymptotic density ,

respectively, i.e., d(A) = lim inf
n→∞

A(n)
n and d(A) = lim sup

n→∞

A(n)
n . Similarly, we will

call the functions dα(A) = lim inf
n→∞

Aα(n)
Nα(n) and dα(A) = lim sup

n→∞

Aα(n)
Nα(n) the lower and

the upper α-density .
The following theorem is a consequence of the result of Fuchs and Giuliano

Antonini in [11].

Theorem 1. Let α > −1 and f : N → R be a bounded arithmetic function. If

lim
n→∞

1
Nα(n)

n∑
k=1

f(k)kα = L,

then

lim
n→∞

1
Nβ(n)

n∑
k=1

f(k)kβ = L

for any β ≥ −1.
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Replacing the function f by the characteristic function of a set A we get

Corollary 1. If A ∈ Dα for some α > −1, i.e., the α-density dα(A) = lim
n→∞

Aα(n)
Nα(n)

of a set A exists, then A ∈ Dβ for all β ≥ −1, and dα(A) = dβ(A).

Corollary 2. For all α > −1 we have Dα = D and dα = d.

This means that by replacing the sequence
(A(n)

n

)
in (1.1) by the sequence(Aα(n)

Nα(n)

)
for some α > −1 we get a density measure. By well-known inequality

d−1 ≤ d ≤ d ≤ d−1

(see [17, p.241,Lemma V.2.1], [28, p.272]) we get D ⊆ D−1 and d−1|D = d. There-
fore dα is an extension of d for α = −1, too.

In particular, if we fix some α ≥ −1 and some free ultrafilter F , then the
mapping A 7→ F-lim Aα(n)

Nα(n) defines a density measure. Let us denote this density
measure by µFα .

The following lemma can be useful for evaluating α-densities.

Lemma 2. For all α > −1 we have

lim
n→∞

nα+1

Nα(n)
= α+ 1,

and for α = −1

lim
n→∞

ln(n)
N−1(n)

= 1.

The routine proof can be done for example by interpreting the sums appearing
in the definition of Nα(n) as the lower and upper Riemann sums for integral of the
function xα or by using Stolz theorem.

Now we will show that for every α > 0, there is a free ultrafilter F such that
µFα is different from all density measures µϕ expressible by (1.1).

Since the value of F-lim A(n)
n is a cluster point of the sequence A(n)

n , we see
that d(A) ≤ F-lim A(n)

n ≤ d(A) for all free ultrafilters F and all A ⊆ N, and
consequently d ≤ µϕ ≤ d for every probability Borel measure ϕ on βN∗.

Finally we are ready to present a counterexample to the Lauwers’ assertion:

Let A =
∞⋃

k=0

(
22k, 22k+1

]
∩ N. Similarly as in Lemma 2 one can show that:

dα(A) = lim
k→∞

Aα(22k)
Nα(22k)

= lim
k→∞

∑k−1
i=0

∫ 22i+1

22i xα dx
(22k)α+1

α+1

=
2α+1 − 1

22(α+1) − 1
=

1
2α+1 + 1

,

dα(A) = lim
k→∞

Aα(22k+1)
Nα(22k+1)

= lim
k→∞

∑k
i=0

∫ 22i+1

22i xα dx
(22k+1)α+1

α+1

=
2α+1(2α+1 − 1)

22(α+1) − 1

=
2α+1

2α+1 + 1
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for all α > −1. Hence dβ(A) < dα(A) < dα(A) < dβ(A), if −1 < α < β.
Now, taking any free ultrafilter F containing the set {22k; k = 0, 1, . . . } we get:

µFα (A) = F-lim
Aα(n)
Nα(n)

= dα(A).

This shows that the measure µFα cannot be of the form (1.1), if α > 0.
Apart from providing a counterexample to (1.1), this answers also one part of

[30, Question 7A.1]. Van Douwen asks, whether µ(A) ≤ d(A) for every density
measure. The above procedure yields a measure µFα with µFα (A) = dα(A) > d(A)
(for α > 0 and appropriate choice of the free filter F). A different example, based
on results of Blümlinger [6], was presented in [27].

Our previous observations lead to a more general class of density measures than
the one defined by Lauwers.

If a measure µ can be expressed in the form

µ(A) =
∫

Ω

µFα (A) dψ(F , α), A ⊆ N (2.1)

for some probability Borel measure ψ on the set Ω = βN∗ × [−1,∞), then µ is
a density measure.

To be precise, we should check the existence of the integral in (2.1). As the
function f(F , α) = µFα (A) = F-lim Aα(n)

Nα(n) is bounded, it suffices to show that it is
ψ-measurable for every Borel measure ψ. By Johnson [20] a sufficient condition
for f(F , α) to be measurable is its separate continuity, i.e., continuity in F for any
fixed α and continuity in α for any fixed F .

The continuity in F follows immediately from the general theory of the Stone-
Čech compactification of a topological space (see e.g. [12] or [31]).

For α > −1, the continuity in α follows from the estimations of Giuliano An-
tonini, Grekos and Mǐśık [13]:

lim sup
n→∞

∣∣∣∣Aα(n)
Nα(n)

− Aα+δ(n)
Nα+δ(n)

∣∣∣∣ < 2δ
α+ 1

lim sup
n→∞

∣∣∣∣Aα(n)
Nα(n)

− Aα−δ(n)
Nα−δ(n)

∣∣∣∣ < 2δ
α− δ + 1

for 0 < δ < α+ 1.
It is proved in [13] that there exists a set A such that the function dα(A) is

discontinuous at α = −1. Thus our function f(F , α) cannot be continuous at α =
−1 for all filters F ∈ N∗. Hence we get the separate continuity on βN∗ × (−1,∞),
only.

So f is ψ-measurable on βN∗× (−1,∞) and on the measurable set βN∗×{−1}
it is continuous, and thus Borel measurable. It follows that f is measurable on Ω.

3 Values of density measures
Assume that µ is a density measure. Let A ⊆ N. The question is: What are the
possible values of µ(A). Or: Which values can be attained by all density measures
for a fixed set A? This question was proposed by Mark Fey in [10].
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It is clear that if A ∈ D, then µ(A) = d(A) for all density measures µ. But
if it is not the case, there are more possibilities for the value of µ(A). The next
paragraphs answer the above question.

The first estimation of µ(A) can be made using monotonicity of a measure.
If B ⊆ A and B ∈ D, then d(B) = µ(B) ≤ µ(A). Hence sup{d(B); B ⊆ A, B ∈

D} ≤ µ(A). Similarly, inf{d(C); C ⊇ A, C ∈ D} ≥ µ(A). Let us denote

d(A) = sup{d(B); B ⊆ A, B ∈ D},

d(A) = inf{d(C); C ⊇ A, C ∈ D}.

Thus we get

Theorem 2. For every set A ⊆ N and all density measures µ we have:

d(A) ≤ µ(A) ≤ d(A). (3.1)

Later on we will show that this estimation is the best possible.
Let us take

d∗(A) = sup

∑p
i=1 d(Ai)−

∑q
j=1 d(Bj)

k
.

The supremum is taken over all finite collections A1, A2, . . . , Ap, B1, B2, . . . Bq of
sets in D and positive integers k such that

kχA +
q∑

j=1

χBj
≥

p∑
i=1

χAi
.

Similarly,

d∗(A) = inf

∑p
i=1 d(Ai)−

∑q
j=1 d(Bj)

k
.

The infimum is taken over all finite collections A1, A2, . . . , Ap, B1, B2, . . . Bq ∈ D
and positive integers k such that

kχA +
q∑

j=1

χBj
≤

p∑
i=1

χAi

It is clear that

d(A) ≤ d∗(A) ≤ d∗(A) ≤ d(A). (3.2)

By Bhashkara Rao [4, Theorem 3.2.9] for every set A ⊆ N and any value
x ∈ [d∗(A), d∗(A)] there is a density measure µ such that µ(A) = x. Moreover, if
µ is a density measure, then µ(A) ∈ [d∗(A), d∗(A)].

The definition of d∗ and d∗ (the range of density measures) is rather compli-
cated. The original result in [4] was formulated for more general situation of ex-
tending arbitrary partial measures. (Roughly said, by a partial measure we mean
a restriction of a measure to some class of subsets of N. For more details we refer
the reader to [4, Section 3.2].) In our case, we work only with the asymptotic
density and our aim is to prove the simplification of this result. This simplification
is contained in the following theorem and its corollary.
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Theorem 3. For every A ⊆ N the following is true:

d(A) = d∗(A) and d(A) = d∗(A). (3.3)

Corollary 3. Let A ⊆ N. There exists a density measure µ such that µ(A) = x if

and only if x ∈ [d(A), d(A)].

Let us note that if a partial measure m is defined on an algebra of sets then by
a result due to  Loś and Marczewski [4, Proposition 3.3.1] m = m∗ and m = m∗

holds for this measure. This result cannot be used here, since D is not closed under
intersections and unions. (In fact, the smallest algebra containing D is the whole
powerset P(N).)

As we show in Remark 1, Theorem 3 and Corollary 3 could be deduced from
results of Pólya [24] using some functional analytic considerations. However, we
still find our proof of interest, since it is relatively elementary and it is an interesting
application of known results on density sets obtained by Grekos and Volkmann [16].

Before we prove Theorem 3 we will describe some basic properties of d and d.
The following lemma is crucial for proving some of them. Let us note that the
proof was inspired by the proof of [26, Lemma 1].

Lemma 3. If A,B ∈ D, d(A) < d(B), then there exists D ∈ D such that A ∩B ⊆
D ⊆ B and d(D) = d(A).

Proof. Put C = A∩B, A′ = ArC, B′ = BrC. We have lim
n→∞

C(n)+B′(n)
n = d(B)

and lim
n→∞

C(n)+A′(n)
n = d(A), hence

L = lim
n→∞

B′(n)−A′(n)
n

= d(B)− d(A) > 0.

We shall construct a subset D′ ⊂ B′ such that lim
n→∞

D′(n)−A′(n)
n = 0. Then for D =

C ∪ D′ we have d(D) = lim
n→∞

C(n)+D′(n)
n = lim

n→∞
C(n)+A′(n)

n + lim
n→∞

D′(n)−A′(n)
n =

d(A), so D is the desired subset of B.
The subset D′ is defined by induction. If n /∈ B′, then n /∈ D′. If n ∈ B′ and

D′(n − 1) + 1 > A′(n), then n /∈ D′. If n ∈ B′ and D′(n − 1) + 1 ≤ A′(n), then
n ∈ D′. It is obvious that D′(n) ≤ A′(n).

Let us note that if m ∈ B′ but m /∈ D′ (the second case), then D′(m) + 1 >
A′(m) ≥ D′(m), hence D′(m) = A′(m). If n ∈ N and m is the largest number
such that m ≤ n, m /∈ D′ and m ∈ B′, then for every k, m < k ≤ n, we have
D′(k) − D′(m) = B′(k) − B′(m) (since all members of B′ in the interval (m,n]
belong to D′). This implies B′(k)−B′(m) ≤ A′(k)−A′(m).

We denote the largest number m ≤ n for which the second case occurs by
m(n) = m. The set {m(n); n ∈ N} of all such numbers is unbounded. Other-
wise, assume that m is the maximal element of this set. Then we get d(B) =
lim

n→∞
C(n)+B′(n)

n ≤ lim
n→∞

C(n)+A′(n)+B′(m)−A′(m)
n = d(A), a contradiction.
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Now let ε > 0 and N0 be such that for k ≥ N0 the inequality
∣∣∣B′(n)−A′(n)

n − L
∣∣∣ ≤

ε holds. Since the set {m(n); n ∈ N} is unbounded, we can choose n large enough
to assure that n ≥ m(n) ≥ N0. Then we get

(L+ ε)m(n) ≥ B′(m(n))−A′(m(n)),
(L− ε)n ≤ B′(n)−A′(n).

Hence n(L− ε) ≤ B′(n)−A′(n) ≤ B′(m(n))−A′(m(n)) ≤ (L+ ε)m(n) and

m(n) ≥ n
L− ε

L+ ε
,

n−m(n) ≤ 2εn
L+ ε

≤ 2ε
L
n.

We have A′(n)−D′(n) ≤ A′(n)−D′(m(n)) = A′(n)−A′(m(n)) ≤ n−m(n),

0 ≤ A′(n)−D′(n)
n

≤ 2ε
L

and

lim
n→∞

A′(n)−D′(n)
n

= 0.

�

Of course the claim of this lemma holds also if d(A) = d(B). We proved in fact
also the following result:

Lemma 4. If A∩B = ∅, lim
n→∞

B(n)−A(n)
n exists and lim

n→∞
B(n)−A(n)

n > 0, then there

is a subset D ⊆ B with lim
n→∞

D(n)−A(n)
n = 0. In particular, B rD ∈ D.

Corollary 4. If A,B ∈ D, d(A) < d(B), then there exists D ∈ D such that A ⊆
D ⊆ A ∪B, D ∈ D and d(D) = d(B).

Proof. We have d(N rA) > d(N rB). By Lemma 3 there exists a set E ∈ D such
that N r (A ∪B) ⊆ E ⊆ N rA and d(E) = d(N rB). If we put D = N rE, then
A ⊆ D ⊆ A ∪B and d(D) = d(B). �

Lemma 5. Let A ⊆ N. Then there exists a subset B ⊆ A such that B ∈ D and
d(B) = d(A).

Similarly, there exists a superset C ⊇ B such that C ∈ D and d(C) = d(A).

Proof. By the definition of d(A) we have d(A) = sup{d(B); B ⊆ A, B ∈ D}. By
results of Grekos and Volkmann [16] the density set S(A) of all density points
(dB, dB), B ⊆ A, is closed, hence it contains its accumulation point

(
d(A), d(A)

)
.

This point corresponds to the desired subset B of A.
The proof of the second part is analogous. �

Lemma 6. If A ∩B = ∅, A ∈ D, d(B) = 0, then d(A ∪B) = d(A).
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Proof. Assume that d(A∪B) > d(A). Then there is C ⊆ A∪B with d(C) > d(A).
By Corollary 4 we may assume that C ⊇ A. Then C r A ∈ D, d(C r A) =
d(C)− d(A) > 0 and therefore d(B) > 0, a contradiction. �

Lemma 7. If A ∈ D, A ∩B = ∅, then d(A ∪B) = d(A) + d(B).

Proof. By Lemma 5 there exists B1 ⊆ B such that d(B1) = dB. Clearly, d(B r
B1) = 0. Then using Lemma 6 we get d(A ∪ B) = d(A ∪ B1 ∪ (B r B1)) =
d(A ∪B1) = d(A) + d(B1) = d(A) + d(B). �

Lemma 8. If B,C ∈ D and A ∪B ⊇ C, then d(C)− d(B) ≤ d(A).

Proof. d(C) ≤ d(A ∪B) = d((ArB) ∪B) = d(ArB) + d(B) ≤ d(A) + d(B). �

We can see that the expression from Lemma 8 appears also in the definition
of d∗ (it is equal to

∑p
i=1 d(Ai) −

∑q
j=1 d(Bj) for a special case p = q = 1). To

prove Theorem 3 it suffices to show that every such a difference of two sums can
be transformed to this simple case.

Let A = {a1 < a2 < . . .} be infinite and m ∈ N. Define a set B = {b1 < b2 <
. . .}, where bi is an arbitrary number from the set {mai +1,mai +2, . . . ,mai +m}.
We will call the set of this kind an m-copy of A. Then it is easy to see that
d(A) = m · d(B). We have also lim

n→∞
A(n)
B(n) = m, thus d(A) = m · d(B) whenever

A ∈ D. Let us note that by [26, Theorem 1] µ(A) = m ·µ(B) holds for any density
measure as well.

Proof. [Proof of Theorem 3] Let

kχA +
q∑

j=1

χBj
≥

p∑
i=1

χAi
. (3.4)

Put l =
∑q

j=1 χBj and r =
∑p

i=1 χAi . Let m ≥ max
n∈N

(kχA(n) + l(n)). Taking

C =
⋃
n∈N

{mn+ 1,mn+ 2, . . . ,mn+ l(n)}

D =
⋃

n∈A

{mn+ l(n) + 1,mn+ l(n) + 2, . . . ,mn+ l(n) + k},

E =
⋃
n∈N

{mn+ 1,mn+ 2, . . . ,mn+ r(n)}

we get from (3.4) C ∪D ⊇ E.
The sets C, D, E can be viewed as a disjoint union of m-copies of the sets

B1, B2, . . . , Bq, a disjoint union of k m-copies of the set A and a disjoint union of m-

copies of the sets A1, A2, . . . , Ap, respectively. Hence we have d(C) = 1
m

q∑
i=1

d(Bi),
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d(D) = k
m · d(A) and d(E) = 1

m

p∑
i=1

d(Ai). Thus by Lemma 8:

d(E)− d(C) ≤ d(D),∑n
i=1 d(Ai)−

∑m
j=1 d(Bj)

m
≤ k

m
· d(A),∑n

i=1 d(Ai)−
∑m

j=1 d(Bj)
k

≤ d(A).

Hence, d∗(A) ≤ d(A). From (3.2) we have the reverse inequality, so we get d∗(A) =

d(A). The dual equality d∗(A) = d(A) follows from d∗(N rA) = d(N rA). �

The simplification obtained in Theorem 3 applied to the results of [4, Proposi-
tion 3.2.8] yields the following:

Proposition 1. If A,B ⊂ N and A ∩B = ∅, then

d(A) + d(B) ≤ d(A ∪B) ≤ d(A) + d(B) ≤ d(A ∪B) ≤ d(A) + d(B).

If A ∩B = ∅ and A ∪B ∈ D, then

d(A ∪B) = d(A) + d(B).

If A ∈ D, A ∩B = ∅, then

d(A ∪B) = d(A) + d(B).

It is easy to find examples showing that the above inequalities can be strict.
As an application of the lemmas used in the proof of Theorem 3 we prove some

other interesting properties of d and d and of density measures.

Proposition 2. If A ⊆ B and B ∈ D, then there exists C ∈ D such that d(C) =
d(A) and A ⊆ C ⊆ B.

Similarly, if A ⊆ B and A ∈ D, then there exists C ∈ D such that d(C) = d(B)
and A ⊆ C ⊆ B.

Proof. By Lemma 5 there exists D ∈ D such that d(D) = d(A) and A ⊆ D.
Clearly, d(D) = d(A) ≤ d(B) = d(B). By Lemma 3 there exists C such that
A ⊆ D ∩B ⊆ C ⊆ B and d(C) = d(D) = d(A).

The second part is dual to the first one. �

Lemma 9. If A,B ⊆ N, and lim
n→∞

B(n)−A(n)
n exists and lim

n→∞
B(n)−A(n)

n > 0, then

there is a set D such that A∩B ⊆ D ⊆ B with lim
n→∞

D(n)−A(n)
n = 0. In particular,

B rD ∈ D.

Proof. Use Lemma 4 for B′ := B rA ∩B and A′ := ArA ∩B. �
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Proposition 3. Let A,B ⊆ N. There exists the limit lim
n→∞

B(n)−A(n)
n = L if and

only if µ(B)− µ(A) = L for every density measure µ.

Proof. If lim
n→∞

B(n)−A(n)
n = L then, by Lemma 9, there exists a subset D ⊂ B with

lim
n→∞

D(n)−A(n)
n = 0. This implies µ(D) = µ(A) for every density measure µ by [27,

Proposition 3.3]. From this we get

µ(B) = µ(D) + µ(B rD) = µ(A) + d(B rD) = µ(A) + L.

On the other hand, if µ(B)− µ(A) = L for each density measure µ, then also

F-lim
B(n)−A(n)

n
= L

for every free ultrafilter F . This implies that the only cluster point of the sequence(
B(n)−A(n)

n

)
is L and

lim
n→∞

B(n)−A(n)
n

= L.

�

Remark 1. The functions d and d were studied also by Pólya [24] in a more general
setting. He has studied sequences of non-negative real numbers such that the
difference of successive elements is bounded from 0. We will use his result only for
sequences of natural numbers. Among other things he proved in [24, Satz VIII]
that

d(A) = lim
θ→1−

lim inf
n→∞

A(n)−A(θn)
n− θn

, d(A) = lim
θ→1−

lim sup
n→∞

A(n)−A(θn)
n− θn

.

Pólya called these values minimal and maximal density (Minimaldichte and Max-
imaldichte). This expression of d and d can serve as a basis for a different proof of
Corollary 3.

Finitely additive measures on N can be understood as positive normed func-
tionals on `∞. Clearly, if we identify a subset of N with its characteristic sequence,
such a functional yields a measure on N. The functional corresponding to a mea-
sure is in fact the integral with respect to this measure (obtained by imitating the
definition of Riemann integral, see e.g. [30, Section 3]). A more detailed exposition
into representation of finitely additive measures as the elements of the dual space
`∗∞ can be found in [6]. From the positivity and µ(N) = 1 we see that the norm of
each measure on N in `∗∞ is equal to 1.

Suppose we are given a set A ⊆ N. Now, for a given θ < 1, choose a sequence
(ni) such that

lim
i→∞

A(ni)−A(θni)
ni − θni

= lim inf
n→∞

A(n)−A(θn)
n− θn

.
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Let F be any free ultrafilter containing the set {ni; i ∈ N}. Then

µθ(B) = F-lim
B(n)−B(θn)

n− θn
= F-lim

(
B(n)
n

n

n− θn
+
B(θn)
θn

(
1− n

n− θn

))
defines a density measure on N such that

µθ(A) = lim inf
n→∞

A(n)−A(θn)
n− θn

.

We consider all these measures as the elements of the unit ball of `∗∞. By
Banach-Alaoglu theorem this ball is compact in weak∗ topology. Let us choose a
sequence µθk

such that lim
k→∞

θk = 1 and 0 < θk < 1. Then the sequence (µθk
) has a

subsequence which is convergent in the weak∗ topology. We denote this subsequence
by (µn) and the limit by µ. The convergence in weak∗ topology implies that

µ(A) = lim
n→∞

µn(A) = d(A).

The proof that there exists a density measure with µ(A) = d(A) is similar.
Together with the convexity of the set of density measures and the obvious estimates
d(A) ≤ µ(A) ≤ d(A) this yields Corollary 3.

4 Density measures with a given value for some set
Corollary 3 gives the complete answer to the question of Fey about the values of
density measure. But this answer is only existential. The natural question arisen
here is: Which values are attained by density measures expressible in some “simple”
form, e.g. (2.1)?

Lemma 10. Consider α ≥ −1 and A ⊆ N. Then the set of all cluster points of the

sequence
(

Aα(n)
Nα(n)

)
is the whole interval

[
dα(A), dα(A)

]
.

Proof. The proof of this lemma is based on [1, Theorem 1] which claims that if
a sequence (xn) in a compact metric space (X, d) satisfies

lim
n→∞

d(xn, xn+1) = 0,

then the set of all cluster points of (xn) is connected. The connectedness of the set
of cluster points of

(
Aα(n)
Nα(n)

)
is equivalent to the assertion of the lemma.

As 0 ≤ Aα(n)
Nα(n) ≤ 1 for all n ∈ N, it suffices to show that lim

n→∞

∣∣∣Aα(n)
Nα(n) −

Aα(n+1)
Nα(n+1)

∣∣∣ =
0. Assume that α > −1. Then we have∣∣∣∣Aα(n)

Nα(n)
− Aα(n+ 1)

Nα(n+ 1)

∣∣∣∣ ≤ ∣∣∣∣Aα(n)
Nα(n)

− Aα(n)
Nα(n+ 1)

∣∣∣∣ +
(n+ 1)α

Nα(n+ 1)

=
Aα(n)
Nα(n)

∣∣∣∣1− Nα(n)
Nα(n+ 1)

∣∣∣∣ +
(n+ 1)α

(n+ 1)α+1

(n+ 1)α+1

Nα(n+ 1)
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Now, using Lemma 2, it can be easily seen that lim
n→∞

∣∣∣Aα(n)
Nα(n) −

Aα(n+1)
Nα(n+1)

∣∣∣ = 0.

Analogous treatment can be used also for α = −1. The only difference is
replacing the term (n+ 1)α+1 by ln(n+ 1) in the last part of the above estimation.

�

Corollary 5. Let A ⊆ N and α ≥ −1. For every x ∈
[
dα(A), dα(A)

]
there is a free

ultrafilter F such that µFα (A) = x.

Proof. According to Lemma 10, x is a cluster point of the sequence
(

Aα(n)
Nα(n)

)
. Hence

there is an (infinite) set K = {n1 < n2 < . . . } such that x = lim
k→∞

Aα(nk)
Nα(nk) . Taking

any free ultrafilter F containing the set K one can easily show that µFα (A) = x.
This completes the proof. �

The following result follows from Rajagopal [25].

Theorem 4. Let −1 ≤ α ≤ β. Then for all A ⊆ N we have

dβ(A) ≤ dα(A) ≤ dα(A) ≤ dβ(A).

This led us to introduce the following notation:

d∞(A) = lim
α→∞

dα(A) = inf
α≥−1

dα(A);

d∞(A) = lim
α→∞

dα(A) = sup
α≥−1

dα(A).

Theorem 5. If A ⊆ N and x ∈
(
d∞(A), d∞(A)

)
, then there is a density measure µ

of the form (2.1) such that µ(A) = x.

Proof. By definition of d∞(A) and d∞(A) there is an α ≥ −1 such that x ∈[
dα(A), dα(A)

]
. The rest follows from Corollary 5. �

Using Theorem 2 we get

Corollary 6. For all A ⊆ N we have

d(A) ≤ d∞(A) ≤ d∞(A) ≤ d(A).

Using Corollary 3 and Corollary 6 we are able to show that the expression (2.1)
does not describe all density measures. There are also density measures of different
type:

Again, taking the set A =
∞⋃

k=0

(
22k, 22k+1

]
∩N we have d(A) = d∞(A) = 0. On

the other hand, µFα (A) ≥ 1
2α+1+1 > 0. Hence µ(A) =

∫
Ω
µFα (A) dψ(F , α) > 0 for

any probability Borel measure ψ, too. But by Corollary 3 there is also a density
measure µ′ with µ′(A) = d(A) = 0.
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We recall the definition of gap density and some results from [16]. The value of
the gap density λ(A) describes how large gaps can be between elements of A. It is
given by

λ(A) = lim sup
n→∞

an+1

an

for A = {a1 < a2 < a3 < . . .}. The sets having infinite gap density are called thin
sets in [5].

It is shown in [16] that the density set S(A) = {(d(B), d(B));B ⊆ A} is located
above the line y = λ(A)x. It follows, that if λ(A) > 1, then d(B) ≥ λ(A)d(B) >
d(B) for any subset B of A with d(B) > 0 (see also [15, Proposition 2.1]). Hence
no subset of A has density strictly greater than 0 and d(A) = 0.

On the other hand, if λ(A) > 1, then there are arbitrary large n’s with an+1 >
(1+ε)an +1. Thus if bn = d(1+ε)ane we get Aα(bn) = Aα(an) and bn ≥ (1+ε)an.
Hence (α + 1)Aα(bn)

bα+1
n

= (α + 1)Aα(an)

bα+1
n

≤ 1
(1+ε)α+1

(α+1)Nα(an)
an

α+1 and by Lemma 2 we
get dα(A) ≤ 1

(1+ε)α+1 . Consequently d∞(A) = 0.

Proposition 4. If λ(A) > 1, then d(A) = d∞(A) = 0.

The question of the equality of d(A) and d∞(A) for a set A with λ(A) = 1
remains open.

Problem 1. Is it true that d(A) = d∞(A) for every A ⊆ N?

Acknowledgement: Authors are grateful to Professor Georges Grekos for helpful
discussion on density sets. We are also greatly indebted to an anonymous referee
for pointing out that our Corollary 3 can be deduced from Polya’s results (see
Remark 1).
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[26] T. Šalát, R. Tijdeman, Asymptotic densities of sets of positive integers, Mathematica
Slovaca 33 (1983) 199–207.
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