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Abstract. Let X be a locally compact topological space and (X, E, Xω) be any

triple consisting of a hyperfinite set X in a sufficiently saturated nonstandard uni-
verse, a monadic equivalence relation E on X, and an E-closed galactic set Xω ⊆ X,

such that all internal subsets of Xω are relatively compact in the induced topology

and X is homeomorphic to the quotient Xω/E. We will show that each regular
complex Borel measure on X can be obtained by pushing down the Loeb measure

induced by some internal function X → ∗C. The construction gives rise to an isomet-

ric isomorphism of the Banach space M(X) of all regular complex Borel measures
on X, normed by total variation, and the quotient Mω(X)/M0(X), for certain ex-

ternal subspaces M0(X), Mω(X) of the hyperfinite dimensional Banach space ∗CX ,
with the norm ‖f‖1 =

∑
x∈X |f(x)|. If additionally X = G is a hyperfinite group,

Xω = Gω is a galactic subgroup of G, E is the equivalence corresponding to a nor-

mal monadic subgroup G0 of Gω , and G is isomorphic to the locally compact group
Gω/G0, then the above Banach space isomorphism preserves the convolution, as well,

i.e., M(G) and Mω(G)/M0(G) are isometrically isomorphic as Banach algebras.

0. Introduction

A great deal of methods of nonstandard analysis is based on embedding classical
mathematical structures into somehow related hyperfinite ones. As a rule, the
hyperfinite set (topological space, measure space, etc.) or hyperfinite dimensional
vector space X, extending the classical object X, is subject to the inclusions X ⊆
X ⊆ ∗X, i.e., it is singled out from the nonstandard extension ∗X of X. This has
the additional advantage of X naturally inheriting the structure from X, via the
extension ∗X, and applicability of the transfer principle.

The method, however, may fail to work that way in presence of some already
a little bit more complex algebraic structure on X. For instance, given a group G,
there need not be any hyperfinite group G subject to G ≤ G ≤ ∗G. On the other
hand, some hyperfinite group G extending G all the same may (though still need
not) exist. And similarly for associative linear algebras over some field. The situ-
ation becomes even more complicated for topological groups and Banach algebras.
On the other hand, especially for the sake of applications of nonstandard methods
to the study of spaces and algebras of functions or measures over G, it is desirable
to have G embedded into some hyperfinite group G and relate somehow the just
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mentioned spaces and algebras to the hyperfinite dimensional space (algebra) ∗CG.
The development led to revival of investigations of local embeddability of groups
and algebras into finite groups and finite dimensional algebras and—by involving
methods of nonstandard analysis—gave a new, fresh impetus the theory of local ap-
proximations of topological groups by finite groups and of Banach algebras by finite
dimensional algebras. The present state of the topic is reflected in the monograph
[8] by Gordon and in the papers [2], [7], [9], [10], [11].

Our paper contributes namely to this issue. Accordingly, nonstandard mathe-
matical structures become primary objects of our study, considered prior to the
classical ones, which, as a rule, are obtained as quotients of certain their substruc-
tures. Originally we expected to prove that the Banach algebra M(G) of regular
Borel measures on a locally compact group G, locally approximable by finite groups,
is itself locally approximable by finite dimensional algebras, by embedding M(G)
into the nonstandard hull of a hyperfinite dimensional Banach algebra. However,
we succeeded to embed it just into a certain explicitly described quotient of such
a nonstandard hull. This does not necessarily witness the failure of our goal; equally
well it can indicate the need to extend the definition of local approximability.

The plan of the paper is as follows. In section 1 we introduce the notion of
IMG space, which is a triple (X, E,Xω) consisting of an internal set X, a monadic
equivalence relation E on X and a galactic E-closed set Xω ⊆ X. IMG spaces serve
as convenient framework for dealing with nonstandard counterparts of (sufficiently
regular) topological spaces. In particular, every Hausdorff locally compact space
X is homeomorphic to the observable trace X[ = Xω/E of some hyperfinite con-
densating IMG space (X, E,Xω). This part is formulated in the spirit (though not
in the language) of Vopěnka’s alternative set theory, as presented in [29], [30], [12],
[31]. However, from technical point of view, the presented results already belong
to nonstandard folklore, enabling to omit almost completely the proofs.

In section 2 some results on finite non-negative Loeb measures are modified to
Loeb measures induced by complex internal finitely additive measures. Section 3
deals with pushing down complex Loeb measures induced by internal functions
f : X → ∗C on some hyperfinite set X. However, instead of focussing just on a single
measure, we emphasize the global aspect by analyzing the relations between the
internal Banach space ∗CX , with the norm ‖f‖1 =

∑
x∈X |f(x)|, and the classical

Banach space M(X) of regular complex Borel measures on the locally compact
space X represented as the observable trace of some condensating IMG space with
base set X, normed by the total variation. This line is followed in the subsequent
sections 4 and 5, where we show that every measure µ ∈ M(X) can be obtained
in this way, and establish the isometric isomorphism M(X) ∼= Mω(X)/M0(X) for
certain external closed F ∗C-linear subspaces M0(X) ⊆Mω(X) ⊆ ∗CX .

In the last section 6 the notion of IMG group as a nonstandard counterpart of
classical topological groups is introduced. For a locally compact group G repre-
sentable as the observable trace G ∼= G[ = Gω/G0 of some condensating IMG group
(G, G0, Gω) with hyperfinite G the relation between the internal convolution on the
space ∗CG and the convolution of measures in M(G) is investigated. Our final re-
sult states that M(G) and Mω(G)/M0(G) are in fact isometrically isomorphic as
Banach algebras.

The reader is assumed to be acquainted with basic as well as with some more in-
volved notions, methods and results of nonstandard analysis, including some usual
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conventions. In particular, some knowledge of the nonstandard approach to topol-
ogy, of the Loeb measure construction and of internal Banach spaces and their
nonstandard hulls is indispensable. Besides the original Robinson’s book [25], the
standard general reference are the monographs [1] and [28]. For Loeb measure also
the original papers by Loeb [18–21], as well as [4], [5], [13], [14] and the survey [6]
by Cutland can be consulted. Some recent developments are reflected in [17], [3]
and the survey [26] by Ross. The canonic reference for nonstandard Banach space
theory is the paper [15] by Henson and Moore.

Our exposition takes place in a nonstandard universe ∗V(I) ⊆ V(∗I) which
is a sufficiently saturated elementary extension of the superstructure V(I) over
some set of individuals I containing at least all (classical) complex numbers. More
precisely, we assume that our nonstandard universe is either κ-saturated for some
uncountable cardinal κ or even polysaturated, i.e., κ-saturated for some κ bigger
than the cardinality of any set in V(I). However, for the sake of generality, we do
not specify the saturation degree κ explicitly. Instead we use the term set or system
of admissible size referring to (external) sets S ⊆ ∗V(I) of (external) cardinality
less than κ. In the most frequently occurring case of an ℵ1-saturated universe (i.e.,
for κ = ℵ1), a system of admissible size is simply a countable one.

If A is an internal (Boolean) algebra of subsets of some internal set X then the
A-monadic and A-galactic sets are exactly the intersections or unions, respectively,
of systems S ⊆ A of admissible size. Monadic and galactic sets are just intersections
or unions, respectively, of admissibly many internal sets.

Otherwise, we use rather standard set-theoretical notation and terminology.
However, the following two remarks seem to be in order.

First, given a set X, a relation R ⊆ X×X = X2 and a subset A ⊆ X we denote
by RA =

{
x ∈ X; (∃ a ∈ A)(aR x)

}
the R-image of A. A is called R-closed if

RA ⊆ A.
Second, if K ⊆ ∗C is any (maybe external) subring of the field ∗C and W is an in-

ternal vector space over ∗C, then a subset of W is called a K-linear subspace of W if
it is a subgroup of the additive group of W closed with respect to multiples by scalars
from K. If K contains finite hypercomplex numbers only, U is a K-linear subspace
of W and Z is some vector space over C, then a K-linear mapping φ : U → Z is
a homomorphism of their additive groups such that φ(ax) = ◦aφ(x) for any a ∈ K,
x ∈ U . If W is an internal (associative) linear algebra over ∗C, then a K-linear
subalgebra of W is a subring of W which is also a K-linear subspace of W . If A ⊆ W
is a K-linear subalgebra of W then a K-ideal of A is simply an ideal of the ring A
which is also a K-linear subspace of W .

1. Nonstandard representation of locally compact spaces

Let a X be a nonempty internal set, E be a monadic equivalence relation on X
and Xω be an E-closed galactic subset of X. Then the triple (X, E,Xω) is called
an IMG space. Intuitively, E is viewed as the relation of infinitesimal nearness or
indiscernibility on X, and so is Xω as the set of elements of X lying in front of
some horizon—depending on situation, this can be the set of all near-standard or
finite (bounded) elements of X, or even something else. The former fact is stressed
by the notation x ≈ y used instead of (x, y) ∈ E for x, y ∈ X. An IMG space
(X, E,Xω) is called hyperfinite if X is hyperfinite.

It is an easy exercise in saturation to show that in any IMG space (X, E,Xω)
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there is a downward directed system R of reflexive and symmetric internal relations
on X, and an upward directed system V of internal subsets of X, both of admissible
size, satisfying the following conditions:

E =
⋂

R, and (∀R ∈ R)(∃S ∈ R)(S ◦ S ⊆ R),

Xω =
⋃

V, and (∀U ∈ V)(∃V ∈ V)(∃R ∈ R)(RU ⊆ V ).

Then R becomes a base of a uniformity on X (non-Hausdorff, unless E = IdX).
A set Y ⊆ X is open in the induced topology if and only if for each y ∈ Y there
is an internal set A such that E{y} ⊆ A ⊆ Y . In particular, Xω is an open subset
of X. The closure of any set Y ⊆ X is

⋂
R∈R RY ; for internal Y this is equal to(⋂

R∈R R
)
Y = EY .

Let x 7→ x[ denote the restriction of the canonic projection X → X/E to Xω.
In some sense, it is analogous to the standard part map. For each set Y ⊆ X we
have

Y [ =
{
y[; y ∈ Y ∩Xω

}
;

in particular,
X[ = X[

ω = Xω/E

becomes a Hausdorff completely regular space, with topology induced by the uni-
formity with base formed by the relations

R[ =
{(

x[, y[
)
; (x, y) ∈ R ∩X2

ω

}
,

where R ∈ R. As a uniform space, X[ is complete. Conversely, for any set Y ⊆ X[

we denote by
Y] =

{
y ∈ Xω; y[ ∈ Y

}
the preimage of Y under the mapping x 7→ x[.

The topological space X[ could be called the nonstandard hull of the IMG space
(X, E,Xω); however, we prefer to call it the observable trace of (X, E,Xω), and
reserve the term “nonstandard hull” for a more specific situation when X = ∗X
is the nonstandard extension of some classical topological space X. Similarly, the
mapping x 7→ x[ is called the observable trace map, and x[ and Y [ are referred to
as the observable trace of x ∈ Xω and of Y ⊆ X, respectively. The set Y] is called
the pretrace of the set Y ⊆ X[.

A system B of internal subsets of X is called a base of the IMG space (X, E,Xω)
if it is closed under complements and finite unions (i.e., it is a subalgebra of the
algebra ∗P(X) of all internal subsets of X), and for any x ∈ Xω and any internal
set A ⊆ X, satisfying E{x} ⊆ A, there is a B ∈ B such that E{x} ⊆ B ⊆ A. If B
is a base of (X, E,Xω) then the system

B[ =
{
B[; B ∈ B

}
is a fairly good substitute of a base of the topology in X[: namely, for any x ∈ Xω

the system of all sets B[, such that E{x} ⊆ B ∈ B, is a neighborhood base of the
point x[ ∈ X[ (consisting of closed sets).
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Following [22], [23], an IMG space (X, E,Xω) is called condensating if any in-
finite internal set A ⊆ Xω contains at least two distinct elements x ≈ y. This is
equivalent to relative compactness of all internal subsets of Xω. As a consequence,
the observable trace X[ is locally compact. Moreover, the compact subsets of Xω

are exactly those of the form EA for some internal subset A ⊆ Xω. Similarly,
the compact subsets of X[ are exactly their observable traces, i.e., sets of the form
(EA)[ = A[ for internal sets A ⊆ Xω.

If all the sets in V are relatively compact, then, for each relation R ∈ R and
each set V ∈ V, there is a finite set F such that F ⊆ V ⊆ RF . Thus the systems
R, V can be supplemented by a system of finite sets (FR,V ), where R ∈ R, V ∈ V,
satisfying

FR,V ⊆ V ⊆ RFR,V , and (∀x, y ∈ FR,V )(xR y ⇒ x = y).

Then the set
D =

⋃
R∈R
V ∈V

FR,V ,

as union of admissibly many finite sets, is of admissible size, as well. Obviously, D
is dense in Xω and so is D[ in X[. Moreover, x 6≈ y for any distinct x, y ∈ D.

Let B be the subalgebra of ∗P(X) generated by all the sets of the form R{d},
where R ∈ R, d ∈ D. It can easily be seen that B is of admissible size and forms
a base of the condensating IMG space (X, E,Xω).

1.1. Proposition. (a) Let X be a Hausdorff completely regular topological space.
Then X is homeomorphic to a subspace of the observable trace X[ = Xω/E of some
IMG space (X, E,Xω).

(b) Let X be a Hausdorff locally compact topological space. Then X is home-
omorphic to the observable trace X[ = Xω/E of some condensating IMG space
(X, E,Xω).

Moreover, both in (a) and (b), one can additionally assume X to be hyperfinite.

Proof. (a) Let X be any internal set such that X ⊆ X ⊆ ∗X, hyperfinite if desirable.
As X is completely regular, its topology is induced by some uniformity U . Put
E =

⋂
U∈U

∗U ∩ X2. Let S be any open cover of X and Xω =
⋃

S∈S
∗S ∩ X.

Once our nonstandard universe is at least κ-saturated, where κ is any uncountable
cardinal bigger both than |S| and the minimal cardinality of a base of U , then the
triple (X, E,Xω) is an IMG space with all the needed properties.

(b) Let X and E be as in (a), and S be any cover of X by relatively compact
open sets. Then Xω = ns(∗X) and X ∼= X[.

One should be aware, however, that the particular form of the IMG space
(X, E,Xω) from the proof is not obligatory. One can equally well obtain X as
(a subspace of) the observable trace of an IMG space given in advance, prior to
and independently of the nonstandard extension ∗X.

In particular, (b) applies to the space C of all complex numbers, which can
be represented as the quotient F ∗C/I∗C, arising from the condensating IMG space
(∗C,≈, F ∗C), where ≈ denotes the relation of infinitesimal nearness on ∗C, and I∗C
and F ∗C denote the sets of all infinitesimal and all finite hypercomplex numbers,
respectively.
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Similarly, the one point compactification of the (locally compact) observable
trace X[ of a condensating IMG space (X, E,Xω) can be represented as the quotient
X/E′ of X with respect to the monadic equivalence relation

E′ = E ∪ (X r Xω)2,

i.e., as the observable trace of the condensating IMG space (X, E′, X) with compact
internal galaxy X ′

ω = X.
Every internal S-continuous function f : X → ∗C with finite internal supremum

norm
‖f‖∞ = ∗supx∈X |f(x)|

defines a bounded uniformly continuous function, f [ : X[ → C, called the observable
trace of f , where

f [
(
x[

)
= ◦f(x),

for x ∈ Xω. The other way round, every bounded continuous function f : X[ → C,
vanishing at infinity, is of the form f = f [ for some internal S-continuous function
f : X → ∗C, satisfying ‖f‖∞ < ∞ and f(x) ≈ 0 for each x ∈ X r Xω. Indeed,
f can be extended to a unique continuous function X/E′ → C. Then the existence
of f follows from the compactness of X/E′ by the virtue of saturation.

This observation gives rise to a nonstandard representation of the classical Ba-
nach space C0

(
X[

)
of all continuous functions f : X[ → C vanishing at infinity. Let

us denote

I∞∗CX =
{
f ∈ ∗CX ; ‖f‖∞ ≈ 0

}
,

F∞∗CX =
{
f ∈ ∗CX ; ‖f‖∞ < ∞

}
,

C(X) =
{
f ∈ F∞∗CX ; f is S-continuous

}
,

Cω(X) =
{
f ∈ C(X); (∀x ∈ X r Xω)(f(x) ≈ 0)

}
.

Then there is a chain of F ∗C-linear subspaces of the internal vector space ∗CX :

I∞∗CX ⊆ Cω(X) ⊆ C(X) ⊆ F∞∗CX

and the quotient Cω(X)/I∞∗CX becomes a (classical) Banach space, isometrically
isomorphic to C0

(
X[

)
. This gives the representation of

C0

(
X[

) ∼= Cω(X)/I∞∗CX

as a closed subspace of the observable trace (nonstandard hull) F∞∗CX/I∞∗CX of
the internal Banach space

(∗CX , ‖·‖∞
)
. If desirable, one can take a hyperfinite X,

yielding a hyperfinite dimensional ∗CX .

2. Complex Loeb measures

Let X be an internal set, A be an internal algebra of (internal) subsets of X and
ν : A → ∗R be an internal finitely additive (hence hyperfinitely additive) non-
negative measure. We additionally assume that ν is finite, i.e., ν(A) is a finite
hyperreal number for each A ∈ A, in symbols, ν(X) < ∞. Then the assignment

◦ν(A) = ◦(ν(A)
)
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defines a finite, finitely additive non-negative measure ◦ν : A → R. According to
the results of Landers and Rogge [17, theorem 1], it has a unique extension to
a finite σ-additive non-negative measure L(ν) : Ã → R, defined on the σ-algebra
Ã generated by the system of all A-monadic sets (if κ = ℵ1 then Ã is simply the
σ-algebra generated by A). Then λ = L(ν) is called the Loeb measure induced by
the internal measure ν. It can be explicitly described as follows: If B ∈ Ã, then

λ(B) = inf
{◦ν(A); A ∈ A & B ⊆ A

}
= sup

{◦ν(A); A ∈ A & A ⊆ B
}
,

and λ(A M B) = 0 for some A ∈ A. Moreover, the Loeb measure is partially
τ -smooth in the following sense: For any directed system of sets S ⊆ A of admissible
size we have either

λ
(⋂

S
)

= inf{λ(S); S ∈ S}, or λ
(⋃

S
)

= sup{λ(S); S ∈ S},

depending on whether S is downward or upward directed.

Remark. (a) Sometimes by Loeb measure either the extension of ◦ν just to the
σ-algebra σA generated by A, or yet its Carathéodory completion, i.e., its exten-
sion to the σ-algebra L(A, ν) of all Loeb measurable sets is meant. In general
we have σA ⊆ Ã ⊆ L(A, ν). However, unless the nonstandard universe is only
ℵ1-saturated, σA does not necessarily contain all the A-monadic and A-galactic
sets. The algebra Ã, besides containing them, has the advantage that its members
are measurable with respect to all Loeb measures induced by finite internal finitely
additive non-negative measures ν : A → ∗R.

(b) In [17] universal Loeb mesurability of sets in Ã and partial τ -smoothness of
Loeb measures just for finite internal finitely additive measures ν on algebras of
the form A = ∗A0 was proved. However, their proof works for any internal algebra
A almost without any change.

If ν : A → ∗C is an internal complex (hyper)finitely additive measure, then its
internal variation |ν| : A → ∗R is defined by

|ν|(A) = ∗supβ

∑
B∈β

|ν(B)|,

with ∗supβ denoting the internal supremum over all hyperfinite partitions β ⊆ A
of the set A ∈ A. One can show that it is an internal finitely additive non-
negative measure, again. Assuming that |ν| is finite, i.e., the total internal variation
‖ν‖ = |ν|(X) of ν is finite, the original measure ν can be expressed as the Jordan de-
composition ν = (ν1−ν2)+i(ν3−ν4) for certain finite internal non-negative finitely
additive measures ν1, ν2, ν3, ν4 : A → ∗R. Denoting by λj the Loeb measure induced
by νj , one can formally put λ = (λ1 − λ2) + i(λ3 − λ4), and call λ = L(ν) the Loeb
measure induced by the internal complex measure ν, again. Then λ(A) = ◦ν(A)
keeps holding (and makes sense) for all A ∈ A.

Using the Jordan decomposition the previous accounts on non-negative Loeb
measures can be generalized to the complex framework, and the equality of the
Loeb measure L(|ν|), induced by the internal variation |ν| of the internal measure ν,
and the (external) variation |λ| of the Loeb measure λ = L(ν) can be established.
Recall that the latter is defined by

|λ|(B) = supγ

∑
C∈γ

|λ(C)|,
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for B ∈ Ã, with supγ denoting the supremum over all finite partitions γ ⊆ Ã of the
set B ∈ Ã; then the total variation of λ is ‖λ‖ = |λ|(X).

2.1. Proposition. Let X be an internal set, A be an internal algebra of subsets
of X, and ν : A → ∗C be an internal complex finitely additive measure such that
‖ν‖ < ∞. Then the Loeb measure λ = L(ν) : Ã → C is a σ-additive complex
measure extending ◦ν, for any B ∈ Ã there is an A ∈ A such that |λ|(AMB) = 0
and, for each standard ε > 0, the following two conditions hold:

(a) there is an A′ ∈ A such that A′ ⊆ B, and |λ(C)| < ε, whenever C ∈ Ã
satisfies C ⊆ B r A′;

(b) there is an A′′ ∈ A such that B ⊆ A′′, and |λ(C)| < ε, whenever C ∈ Ã
satisfies C ⊆ A′′ r B.

Moreover, the variation |λ| of λ is the Loeb measure induced by the internal
variation |ν| of ν, i.e.,

|λ| = |L(ν)| = L(|ν|),

in particular, ‖λ‖ = ◦‖ν‖ < ∞.

Proof. We will prove just the last statement. To this end it is enough to show

|λ|(A) = ◦|ν|(A),

for any A ∈ A. Let the sets B1, . . . , Bn ∈ Ã form a finite partition of A. Take
any standard ε > 0. Then there are sets Ai ∈ A such that Ai ⊆ Bi and
|λ(Bi r Ai)| < ε/n. Therefore,

n∑
i=1

|λ(Bi)| <
n∑

i=1

|λ(Ai)|+ ε =
n∑

i=1

∣∣◦ν(Ai)
∣∣ + ε ≤ ◦|ν|(A) + ε,

since the sets Ai are pairwise disjoint. As ε was arbitrary, we have |λ|(A) ≤ ◦|ν|(A).
To prove the converse, take some hyperfinite partition {A1, . . . , Am} ⊆ A of A,

and any standard ε > 0. Let cj = |ν(Aj)|/ν(Aj) if ν(Aj) 6= 0, and cj = 1 otherwise.
As a = |ν|(A) is finite, there is a finite integer n > 2πa/ε; put dk = exp

(
2πik/n

)
,

for 0 ≤ k < n. Then the set {1, . . . ,m} can be partitioned into n hyperfinite sets
J0, . . . , Jn−1 such that |cj − dk| < ε/2a for j ∈ Jk. The sets Bk =

⋃
j∈Jk

Aj ∈ A,
0 ≤ k < n, form a finite partition of A. Therefore,

m∑
j=1

|ν(Aj)| =
n−1∑
k=0

∑
j∈Jk

cjν(Aj) =
n−1∑
k=0

(
dkν(Bk) +

∑
j∈Jk

(cj − dk)ν(Aj)
)

<
n−1∑
k=0

|ν(Bk)|+ ε

2a

m∑
j=1

|ν(Aj)| ≤
n−1∑
k=0

|ν(Bk)|+ ε

2

<
n−1∑
k=0

|λ(Bk)|+ ε ≤ |λ|(A) + ε.

This proves ◦|ν|(A) ≤ |λ|(A).

The partial τ -smoothness of complex Loeb measures can be formulated in terms
of limits of nets over (downward or upward) directed systems of sets.
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2.2. Proposition. Let X, A and ν be as above, and λ = L(ν). Then for any
directed system S ⊆ A of admissible size we have either

λ
(⋂

S
)

= lim
S∈S↓

λ(S), or λ
(⋃

S
)

= lim
S∈S↑

λ(S),

depending on whether S is downward or upward directed.

Partial τ -smoothness of Loeb measures implies the following strengthening of
the first part of proposition 2.1 for monadic and galactic sets.

2.3. Proposition. Let X, A and ν be as above, and λ = L(ν).
(a) If B ∈ Ã is an A-monadic set, then there is an A ∈ A such that A ⊆ B and

λ(B) ≈ ν(A).
(b) Dually, if B ∈ Ã is an A-galactic set, then there is an A ∈ A such that

B ⊆ A and λ(B) ≈ ν(A).

Proof. It suffices to prove just (a), (b) then follows by passing to complements. We
can assume that B /∈ A and B =

⋂
S for some downward directed system S ⊆ A

of admissible size. By saturation, there is a hyperfinite downward directed system
H ⊆ A extending S. By proposition 2.2,

λ(B) = lim
S∈S↓

λ(S) = lim
S∈S↓

◦ν(S).

Thus there is an H ∈ Hr S such that λ(B) ≈ ν(A) whenever H ⊆ A ∈ Hr S.

If X is hyperfinite and A = ∗P(X) is the algebra of all internal subsets of X,
then any internal finitely additive measure ν : ∗P(X) → ∗C is determined by its
values on singletons, i.e., by the function f : X → ∗C, given by f(x) = ν{x}, for
x ∈ X. Conversely, every internal function f : X → ∗C defines an internal finitely
additive measure νf : ∗P(X) → ∗C by

νf (A) =
∑
x∈A

f(x),

for A ∈ ∗P(X). Then the Loeb measure induced by the internal measure νf will
be denoted by λf and referred to as the Loeb measure induced by the internal
function f . In this case, |νf | = ν|f |, in particular,

‖νf‖ = ‖f‖1 =
∑
x∈X

|f(x)|.

As a consequence, we have the following

2.4. Proposition. Let X be a hyperfinite set and f : X → ∗C be an internal
function such that ‖f‖1 < ∞. Then the Loeb measure λf is a σ-additive, partially τ -
smooth complex measure, defined on the σ-algebra ∗̃P(X) generated by all monadic
(and galactic) subsets of X, with finite total variation ‖λf‖ = ◦‖f‖1.

The adjustment of the remaining parts of propositions 2.1–3, to this particular
situation is left to the reader.
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3. Pushing down Loeb measures

Through this and the following two sections X will be a Hausdorff locally compact
space, represented as the observable trace X = Xω/E = X[ of some hyperfinite
condensating IMG space (X, E,Xω), with a base B ⊆ ∗P(X) of admissible size.

Let us start with the observation that the set Xω =
⋃
V itself belongs to the

algebra ∗̃P(X), and so do all the sets EA =
⋂

R∈R RA for any internal A ⊆ X.
Thus the system

∗̃P(Xω) = ∗̃P(X) ∩ P(Xω) =
{
B ∈ ∗̃P(X); B ⊆ Xω

}
is the least σ-algebra of subsets of Xω containing all its monadic and galactic
subsets.

Let Bo(X) denote the σ-algebra of all Borel subsets of X.

3.1. Proposition. If Y ∈ Bo(X) then Y] ∈ ∗̃P(Xω). Consequently,

Bo(X)] =
{
Y]; Y ∈ Bo(X)

}
is a σ-subalgebra of the σ-algebra ∗̃P(Xω), and the observable trace map x 7→ x[,(
Xω, ∗̃P(Xω)

)
→

(
X,Bo(X)

)
is surjective and measurable.

Proof. As the pretrace operation Y 7→ Y] preserves the set-theoretical difference
and arbitrary unions and intersections, it suffices to show that Y] ∈ ∗̃P(Xω) for
each open set Y ⊆ X. Then Y] is open in Xω, as well, hence it can be written as
the union

Y] =
⋃ {

B ∈ B;
(
∃ y ∈ Y]

)(
E{y} ⊆ B ⊆ Y]

)}
.

Thus Y] is even a galactic set.

If f : X → ∗C is an internal function such that ‖f‖1 < ∞, then the Loeb measure
λf can be restricted to the σ-algebra ∗̃P(Xω), as well as to its σ-subalgebra Bo(X)].
Thus one can put

θf (B) = λf

(
B]

)
,

for B ∈ Bo(X).

3.2. Proposition. Let f : X → ∗C be an internal function such that ‖f‖1 < ∞.
Then θf : Bo(X) → C is a regular complex Borel measure on X, with total variation
‖θf‖ ≤ ◦‖f‖1. If, additionally,

νf (A) =
∑
x∈A

f(x) ≈ 0,

for any internal set A ⊆ X r Xω, then λf is concentrated on Xω and

θf (X) = λf (Xω) ≈
∑
x∈X

f(x) = νf (X).

Proof. Concerning the first part of the theorem, in view of propositions 2.1 and 2.4
it remains to prove just the inner-compact regularity of θf , i.e.,

|θf |(B) = sup
{
|θf |(K); K ⊆ B is compact

}
,
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for every Borel set B ⊆ X. This can be done in an obvious way.
Turning to the second part of the theorem, we have θf (X) = λf (Xω) by the

definition. According to proposition 2.3, λ(Xω) ≈ νf (Y ) for some internal set Y
such that Xω ⊆ Y ⊆ X. Then X r Y ⊆ X r Xω, hence νf (X r Y ) ≈ 0, and

νf (X) = νf (Y ) + νf (X r Y ) ≈ λf (Xω) = θf (X).

Let us introduce the following notation:

I1∗CX =
{
f ∈ ∗CX ; ‖f‖1 ≈ 0

}
,

F1
∗CX =

{
f ∈ ∗CX ; ‖f‖1 < ∞

}
,

Mω(X) =
{
f ∈ F1

∗CX ;
(
∀ intA ⊆ X r Xω

)(
|νf |(A) ≈ 0

)}
.

Additionally, M(X) denotes the classical Banach space of all (inner-compact) reg-
ular complex Borel measures on X, with the total variation norm—each µ ∈ M(X)
is indeed outer-open regular and satisfies ‖µ‖ = |µ|(X) < ∞, see, e.g., [27].

The following two facts are obvious.

3.3. Proposition. (a) I1∗CX ⊆ Mω(X) ⊆ F1
∗CX are F ∗C-linear subspaces of

the internal Banach space
(∗CX , ‖·‖1

)
.

(b) θ : F1
∗CX → M(X) is a bounded F ∗C-linear mapping.

From the last part of proposition 3.2 it follows that the condition f ∈Mω(X) is
even stronger than necessary to guarantee θf (X) ≈ νf (X). On the other hand, as
shown by the following, rather trivial example, even this condition is not sufficient
to ensure |θf |(X) ≈ |νf |(X) or, which is the same, ‖θf‖ ≈ ‖f‖1.

3.4. Example. Let u, v ∈ Xω be two distinct elements such that u ≈ v. Let the
internal function f : X → ∗C be defined by f(u) = 1, f(v) = −1 and f(x) = 0 for
any other x ∈ X. Then ‖f‖1 = 2, and for each internal set A ⊆ X r Xω we even
have

∑
x∈A |f(x)| = 0. Nonetheless, θf is the zero measure on X, hence ‖θf‖ = 0.

For “well behaved” internal functions, the integration of their ◦-images with
respect to the Loeb measure, as well as of their [-images with respect to the pushed
down Loeb measure, can be represented by the internal inner product on ∗CX :

〈f, g〉 =
∑
x∈X

f(x)g(x).

3.5. Proposition. Let either f ∈ C(X), g ∈ Mω(X), or f ∈ Cω(X), g ∈ F1
∗CX .

Then fg ∈ Mω(X), the functions ◦f : X → C, f [ : X → C are integrable with
respect to the measures λg, θg, respectively, and

dλfg = ◦f dλg, dθfg = f [ dθg.

In particular, ∫
X

f [ dθg =
∫

Xω

◦f dλg =
∫

X

◦f dλg = ◦〈f, g〉.

Analogous results even hold under weaker assumptions on f and g; however, the
above formulation is sufficient for our purpose.
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4. Representing regular Borel measures by internal functions

Let µ : Bo(X) → C be a fixed regular complex Borel measure on X. In this section
we will construct an internal function f : X → ∗C such that f ∈ Mω(X), θf = µ
and ‖f‖1 ≈ ‖µ‖.

A finite ordered (n + 1)-tuple β = (B0, B1, . . . , Bn) of internal subsets of X is
called a bounded separated partition of the IMG space (X, E,Xω), briefly, a BS par-
tition, if B1, . . . , Bn are nonempty subsets of Xω with pairwise disjoint observable
traces, and B0 = X r (B1 ∪ . . . ∪Bn). (However, if X = Xω then the “waste bin”
B0 may be empty; on the other hand, B[

0 ∩B[
i 6= ∅ may happen for 1 ≤ i ≤ n).

For BS partitions α = (A0, A1, . . . , Am), β = (B0, B1, . . . , Bn) we put α 4 β if
A0 ⊆ B0 and for each 1 ≤ i ≤ m there is a j ≤ n such that Ai ⊆ Bj . Similarly,
α ∧ β = (C0, C1, . . . , Ck), where C0 = A0 ∩ B0 and C1, . . . , Ck is the lexicographic
enumeration of all the nonempty sets from the list Ai ∩ Bj , i ≤ m, j ≤ n, (i, j) 6=
(0, 0). One can readily verify that α∧ β is a BS partition, again,—in fact the meet
of the BS partitions α, β with respect to the partial order 4.

For any BS partition β = (B0, B1, . . . , Bn) we denote by Fβ(µ) the set of all
internal functions f : X → ∗C satisfying the following conditions:

‖f‖1 ≤ ‖µ‖, and νf (Bi) = µ
(
B[

i

)
,

for 1 ≤ i ≤ n. Obviously, Fβ(µ) is internal and Fα(µ) ⊆ Fβ(µ) for any BS parti-
tions α 4 β.

As the sets B[
1, . . . , B

[
n ⊆ X are Borel and pairwise disjoint, we have

n∑
i=1

∣∣µ(
B[

i

)∣∣ ≤ ‖f‖1 ≤ ‖µ‖,

for each f ∈ Fβ(µ).
For any BS partition β = (B0, B1, . . . , Bn) let us introduce the function

fµ
β =

n∑
i=1

µ
(
B[

i

)
|Bi|

χBi
,

where χA : X → {0, 1} denotes the characteristic function of the set A ⊆ X. Then
fµ

β : X → ∗C is an internal function which clearly satisfies the second condition of
the definition of the set Fβ(µ), and also∥∥fµ

β

∥∥
1

=
n∑

i=1

∣∣µ(
B[

i

)∣∣ ≤ ‖µ‖.

Hence, fµ
β ∈ Fβ(µ).

Recall that B denotes some base of admissible size of the IMG space (X, E,Xω).
Let Π be the set of all BS partitions β = (B0, B1, . . . , Bn) such that Bi ∈ B for each
i ≤ n. Then (Π,4) clearly is a partially ordered set of admissible size, closed with
respect to the meet operation α ∧ β. Hence,

(
Fβ(µ)

)
β∈Π

is a downward directed
system of admissible size, consisting of nonempty internal sets. By the virtue of
saturation,

F(µ) =
⋂

β∈Π

Fβ(µ) 6= ∅.

The following technical lemma can be proved by some straightforward compu-
tational arguments which can be omitted.
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4.1. Lemma. For each standard ε > 0 there is a β = (B0, B1, . . . , Bn) ∈ Π such
that

‖µ‖ − ε <
n∑

i=1

∣∣µ(
B[

i

)∣∣ ≤ ‖µ‖.

Then for each f ∈ Fβ(µ) we have

‖µ‖ − ε < ‖f‖1 ≤ ‖µ‖, and |νf |(B0) < ε.

4.2. Proposition. Let f ∈ F(µ). Then f satisfies the following conditions:
(a) f ∈Mω(X);
(b) ‖f‖1 ≈ ‖µ‖;
(c) θf = µ.

Proof. (a) We have ‖f‖1 ≤ ‖µ‖ < ∞. Let A ⊆ X r Xω be internal. We will prove
that |νf |(A) ≈ 0 by showing |νf |(A) < ε for each standard ε > 0. By lemma 4.1,
there is a β = (B0, B1, . . . , Bn) ∈ Π such that |νg|(B0) < ε for any g ∈ Fβ(µ). As
A0 ⊆ B0 and f ∈ Fβ(µ), the conclusion follows.

(b) It suffices to prove ‖µ‖ − ε < ‖f‖1 for any standard ε > 0. By the same
lemma, there is a β = (B0, B1, . . . , Bn) ∈ Π such that ‖µ‖ − ε < ‖g‖1 for any
g ∈ Fβ(µ). As f ∈ Fβ(µ), we are done.

(c) As both the measures θf and µ are regular, it suffices to show that they agree
on compact subsets of X, i.e., on sets of the form A[ where A ⊆ Xω is internal.
Then

BA = {B ∈ B; EA ⊆ B ⊆ Xω}
is a downward directed system of admissible size, and we have

EA =
⋂

BA, A[ =
⋂

B∈BA

B[.

For each B ∈ BA the couple B0 = X r B, B1 = B forms a BS partition πB =
(B0, B1) ∈ Π. For g ∈ FπB

(µ) we have

λg(B) = ◦νg(B) = µ
(
B[

)
.

Thus for f ∈ F(µ) ⊆
⋂

B∈BA
FπB

(µ), using partial τ -smoothness of the Loeb
measure λf and outer-open regularity of µ, we obtain

θf

(
A[

)
= λf (EA) = lim

B∈BA↓
λf (B) = lim

B∈BA↓
µ

(
B[

)
= µ

(
A[

)
.

Propositions 4.2 and 3.1 immediately yield the following consequence.

4.3. Theorem. Let µ ∈ M(X) and f ∈ F(µ). Then µ = θf , and the observ-
able trace map [ :

(
Xω, ∗̃P(Xω), λf ) →

(
X,Bo(X),µ

)
is surjective, measurable and

measure preserving, i.e.,

Y] ∈ ∗̃P(Xω), and µ(Y) = λf

(
Y]

)
= θf (Y),

for any Y ∈ Bo(X).

From proposition 4.2 and propositions 3.3 and 3.2, respectively, we also get

4.4. Corollary. θ : F1
∗CX → M(X) is a surjective F ∗C-linear mapping, such that

‖θf‖ ≤ ◦‖f‖1 for any f ∈ F1
∗CX . Moreover, for any µ ∈ M(X) there even is an

f ∈Mω(X) such that µ = θf and ‖µ‖ = ◦‖f‖1.

4.5. Corollary. For any function g ∈ F1
∗CX there is a function f ∈Mω(X) such

that θf = θg and ‖f‖1 ≈ ‖θg‖.
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5. Internal functions inducing zero measures

In this section we will examine under which conditions the measures θf and θg

coincide, for f, g ∈Mω(X). To this end it is enough to determine the kernel of the
restriction θ �Mω(X).

Each measure µ ∈ M(X) is induced by some internal function f ∈Mω(X) (i.e.,
µ = θf ), satisfying νf (X) ≈ µ(X) and ‖f‖1 ≈ ‖µ‖. On the other hand, from
the mere facts f ∈ Mω(X) and µ = θf one can infer just ‖µ‖ ≤ ◦‖f‖1 and not
‖µ‖ ≈ ‖f‖1.

In the fairly special case of E coinciding on Xω with the equality relation we ob-
viously have ‖θf‖ ≈ ‖f‖1 for any f ∈Mω(X). However, as shown by example 3.4,
this is no more true once E ∩X2

ω 6= IdXω . The point is that possible fluctuations
of f inside each monad E{x} get averaged and compensated passing to the mea-
sure θf ; on the other hand, they still contribute to the norm ‖f‖1, ignoring the
equivalence relation E, i.e., in fact the topology of X.

Let us denote

M0(X) = Ker θ ∩Mω(X) = {f ∈Mω(X); θf = 0}

the set of all internal functions f ∈Mω(X) inducing zero measure on X. Obviously,
it is an F ∗C-linear subspace of ∗CX .

Using regularity of θf and the particular form of compact sets in X, M0(X) can
be described explicitly, as well. An alternative description can be given using the
hyperfinite dimensional representation of the space C0(X) ∼= Cω(X)/I∞∗CX from
section 1 and (half of) the Riesz representation theorem, namely uniqueness of the
measure representing a given bounded linear functional on C0(X).

5.1. Proposition. For each internal function g ∈Mω(X) the following conditions
are equivalent:

(i) g ∈M0(X), i.e., θg = 0;
(ii) limR∈R↓

◦νg(RA) = 0, for each internal A ⊆ Xω;
(iii) 〈f, g〉 ≈ 0, for each f ∈ Cω(X).

Proof. (i)⇔ (ii) Due to regularity of θg, (i) is equivalent to θg(K) = 0 for each
compact set K ⊆ X. This is equivalent to λg(EA) = 0 for each internal set
A ⊆ Xω, and—as

λg(EA) = lim
R∈R↓

λg(RA) = lim
R∈R↓

◦νg(RA)

by partial τ -smoothness of λg—to (ii), as well.
(i)⇔ (iii) follows from the uniqueness part of the Riesz representation theorem

through the equality ∫
f [ dθg = ◦〈f, g〉,

for f ∈ Cω(X), g ∈Mω(X),—see proposition 3.5.

Similarly as in section 1, there is a chain of F ∗C-linear subspaces of the hyper-
finite dimensional vector space ∗CX :

I1∗CX ⊆M0(X) ⊆Mω(X) ⊆ F1
∗CX .
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As shown in example 3.4, the inclusion I1∗CX ⊆ M0(X) is proper, in general.
It can easily be seen that both M0(X), Mω(X) are closed in ∗CX with respect
to the pseudonorm ◦‖·‖1, and so are the quotients M0(X)/I1∗CX , Mω(X)/I1∗CX

in the nonstandard hull F1
∗CX/I1∗CX of the hyperfinite dimensional Banach space(∗CX , ‖·‖1

)
.

For each g ∈Mω(X) let us denote by

[g] = g +M0(X)

its equivalence class in the quotient Mω(X)/M0(X). Then the formula∥∥[g]
∥∥ = inf

h∈[g]

◦‖h‖1 = inf
{◦‖h‖1; g − h ∈M0(X)

}
defines a norm on the vector space Mω(X)/M0(X), turning it into a (classical)
Banach space (over C).

For each g ∈Mω(X) we have ‖θg‖ ≤ ◦‖g‖1. On the other hand, by corollary 4.5,(
∀ g ∈Mω(X)

)(
∃h ∈Mω(X)

)(
θg = θh & ‖θg‖1 = ◦‖h‖1

)
.

Then ∥∥[g]
∥∥ = ◦‖h‖1 = ‖θg‖.

Summing up we get

5.2. Theorem. Let (X, E,Xω) be a hyperfinite condensating IMG space and
X ∼= X[. Then the mapping [g] 7→ θg is an isometric linear isomorphism of the
Banach space Mω(X)/M0(X) onto the Banach space M(X).

However, unless M0(X) = I1∗CX , this gives just a representation of M(X) as
a subspace of the quotient

Mω(X)/M0(X) ∼=
Mω(X)/I1∗CX

M0(X)/I1∗CX

of subspaces of F1
∗CX/I1∗CX , but not as a subspace of this nonstandard hull itself.

6. The algebra of measures on a group

An IMG group is a triple (G, G0, Gω) consisting of an internal group G, and two
its subgroups G0 ⊆ Gω ⊆ G, such that G0 is monadic, Gω is galactic, and G0 is
normal in Gω. Similarly like in section 1, the monad G0 is viewed as the subgroup
of infinitesimals in G, and so is the galaxy Gω as the subgroup of its elements
situated in front of some horizon.

With any IMG group, in fact, two IMG spaces can be associated: (G, El, Gω)
and (G, Er, Gω), where El, Er is the left and the right equivalence relation on G
corresponding to G0, respectively. Though they agree on the galaxy Gω, they still
may induce different uniformities on G and even on Gω. However, as far as we are
interested just in the topology of the galaxy Gω and its observable trace G[, we
need not care about this subtle difference.

The groups G, Gω, as well as the observable trace G[ = Gω/G0, endowed with
the topologies described in section 1, become topological groups, and the observable
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trace map x 7→ x[ is a continuous surjective homomorphism of topological groups
Gω → G[.

The systems R and V can be supplied by a single system S of admissible size,
directed both upward and downward, consisting of symmetric internal subsets of G,
such that

G0 =
⋂

S, Gω =
⋃

S,

and

(∀S ∈ S)(∃R, T ∈ S)(R ·R ⊆ S & S · S ⊆ T ),

(∀S, T ∈ S)(∃R ∈ S)(∀x ∈ T )
(
xRx−1 ⊆ S

)
.

Again, an IMG group (G, G0, Gω) is called condensating if it is condensating
as an IMG space (no matter whether (G, El, Gω) or (G, Er, Gω)). This is equiv-
alent to relative compactness of all the sets S ∈ S. The observable trace G[ of
a condensating IMG group (G, G0, Gω) is a locally compact topological group.

The other way round, every Hausdorff locally compact group G is isomorphic to
the observable trace G[ of some condensating IMG group (G, G0, Gω). In particular,
this works with G = ∗G, G0 = mon(1) and Gω = ns(∗G), cf. [25] and [24].

However, in comparison with topological spaces (cf. section 1), the situation be-
comes essentially different if one additionally requires G to be hyperfinite. As proved
by Gordon [8], every Abelian metrizable, locally compact and σ-compact group can
be represented as G ∼= G[ with G hyperfinite Abelian. Since the Haar measure on
G can be obtained by pushing down the Loeb measure induced by the constant
function x 7→ 1/|S| on G, for any S ∈ S, it can easily be seen that every G admit-
ting such a representation is necessarily unimodular. On the other hand, as shown
in [2], the compact (hence unimodular) metrizable group SO(3) cannot be repre-
sented as G[ with hyperfinite G. A reasonable intrinsic characterization of locally
compact groups G, isomorphic to observable traces G[ of hyperfinite condensating
IMG groups (G, G0, Gω), is still missing.

In view of these facts, the results of the present section should be understood
in the following way: Whenever a classical locally compact group G is isomorphic
(as a topological group) to the observable trace G[ = Gω/G0 of a hyperfinite
condensating IMG group (G, G0, Gω), then the algebra M(G) of regular complex
Borel measures on G is isomorphic to the algebra Mω(G)/M0(G) described below.

So let (G, G0, Gω) be a fixed hyperfinite condensating IMG group, and G = G[

be its observable trace. Then the triple
(
G2, G2

0, G
2
ω

)
obviously satisfies analogous

conditions, hence it is a hyperfinite condensating IMG group, as well. The corre-
sponding observable trace map G2

ω → G2, given by

(x, y) 7→ (x, y)[ =
(
x[, y[

)
,

induces a canonic isomorphism of topological groups
(
G2

)[ = G2
ω/G2

0 and G2 =(
G[

)2 = (Gω/G0)2, justifying their identification. Then

Z] =
{
(x, y) ∈ G2

ω;
(
x[, y[

)
∈ Z

}
denotes the pretrace of any set Z ⊆ G2.
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For any Y ⊆ G we put

Y (2) =
{
(s, t) ∈ G2; st ∈ Y

}
,

and similarly for subsets of G. Obviously, Y (2) is internal (in ∗̃P(G)) for internal
(Borel) Y ⊆ G, and Y(2) is Borel in G2 for any Borel Y ⊆ G. Then we trivially
have (

Y(2)
)] =

(
Y]

)(2) ∩G2
ω,

for any Y ⊆ G.
For internal functions f, g : G → ∗CG their “tensor product” f ⊗ g : G2 → ∗C

and convolution f ∗ g : G → ∗C are defined in the usual way:

(f ⊗ g)(x, y) = f(x)g(y),

(f ∗ g)(x) =
∑
st=x

f(s)g(t) =
∑
t∈G

f
(
xt−1

)
g(t),

for x, y ∈ G. Obviously, both f ⊗ g and f ∗ g are internal. Then, for each internal
set A ⊆ G, we have

νf∗g(A) =
∑
x∈A

(f ∗ g)(x) =
∑
st∈A

f(s)g(t) = νf⊗g

(
A(2)

)
.

Similarly, the inequality
‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1

can be verified by a straightforward computation. It follows that, with multiplica-
tion given by the convolution, F1

∗CG is an F ∗C-subalgebra of the internal Banach
algebra ∗CG, and I1∗CG is an F ∗C-ideal in F1

∗CG.
We also denote

tf(x) = f(tx), ft(x) = f(xt),

the left and the right shift, respectively, of a function f ∈ ∗CX by an element t ∈ G.
Next we will show that both the subspaces M0(G), Mω(G) of ∗CG are closed

with respect to shifts by elements t ∈ Gω, and Mω(G) is closed with respect to
convolution, i.e., it is an F ∗C-subalgebra of the internal Banach algebra ∗CG.

6.1. Proposition. (a) If f ∈Mω(G) and t ∈ Gω, then tf, ft,∈Mω(G).
(b) If f ∈M0(G) and t ∈ Gω, then tf, ft,∈M0(G).
(c) If f, g ∈Mω(G), then f ∗ g ∈Mω(G).

Proof. We will consider just the right shifts, both in (a) and (b).
(a) Clearly, ‖ft‖1 = ‖f‖1 for any f ∈ ∗CG, t ∈ G. Thus it suffices to verify

|νft
|(A) ≈ 0, for internal A ⊆ G r Gω and t ∈ Gω. Then At ⊆ G r Gω is internal,

as well, and, obviously,
|νft |(A) = |νf |(At) ≈ 0.

(b) In view of (a) and proposition 5.1, we have just to show that 〈h, ft〉 ≈ 0,
whenever h ∈ Cω(G), f ∈ M0(G) and t ∈ Gω. Then, obviously, ht−1 ∈ Cω(G),
hence

〈h, ft〉 = 〈ht−1 , f〉 ≈ 0.
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(c) Assume that ‖f‖1, ‖g‖1 < ∞ and both |νf |(A), |νg|(A) are infinitesimal, for
any internal A ⊆ G r Gω. It remains to show that, in such a case, |νf∗g|(A) is
infinitesimal, as well. One immediately gets

|νf∗g|(A) =
∑
x∈A

|(f ∗ g)(x)| =
∑
x∈A

∣∣∣∣ ∑
t∈G

f
(
xt−1

)
g(t)

∣∣∣∣ ≤ ∑
t∈G

h(t) |g(t)| ,

where
h(t) =

∑
x∈A

∣∣f(
xt−1

)∣∣ =
∑
x∈A

∣∣ft−1(x)
∣∣.

Obviously, h ∈ ∗CG, and 0 ≤ h(t) ≤ ‖f‖1 for any t ∈ G. Let us denote

T = {t ∈ G; h(t) ≈ 0}.

Then T is a monadic, Gω is galactic, and Gω ⊆ T by (b). Thus there is a hyperfinite
set B, such that Gω ⊆ B ⊆ T . Now, we have G r B ⊆ G r Gω, and

|νf∗g|(A) ≤
∑
t∈B

h(t) |g(t)|+
∑

t∈GrB

h(t) |g(t)|

≤ ‖g‖1 max
t∈B

h(t) + ‖f‖1|νg|(G r B) ≈ 0.

The product of Loeb measures λf , λg is defined in the usual way. However, it
should be noted that not even all internal subsets of Gω are necessarily measurable
with respect to λf × λg. Fortunately, the following fact is still true—see [4] or [1].

6.2. Lemma. Let f, g ∈ F1
∗CG and Z ⊆ G2 be a set measurable with respect to the

product measure λf × λg. Then Z is measurable with respect to the Loeb measure
λf⊗g, as well, and

(λf × λg)(Z) = λf⊗g(Z).

Recall that the Banach space of regular complex Borel measures on G is in fact
a Banach algebra, once multiplication of measures is defined as convolution

(µ1 ∗ µ2)(B) = (µ1 × µ2)
(
B(2)

)
,

for µ1,µ2 ∈ M(G), B ∈ Bo(G), see, e.g., [16].
As the the set-theoretical operations of complement and arbitrary unions are

preserved by the preimage under the observable trace map G2
ω → G2, we obviously

have

6.3. Lemma. Let f, g ∈ F1
∗CG and Z ⊆ G2 be measurable with respect to the

product measure θf × θg. Then Z] ⊆ G2
ω is measurable with respect to the product

of the Loeb measures λf , λg and

(λf × λg)
(
Z]

)
= (θf × θg)(Z).
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6.4. Proposition. Let f, g ∈Mω(G). Then θf∗g = θf ∗ θg.

Proof. As the measures on both sides are regular, it is enough to show that they
coincide on compact subsets of G. If K ⊆ G is compact, then K = A[ for some
internal A ⊆ Gω. Hence K] = G0A =

⋂
S∈S SA and

(
K(2)

)] = (G0A)(2) ∩ G2
ω.

Therefore,

(θf ∗ θg)(K) = (θf × θg)
(
K(2)

)
= (λf × λg)

(
(G0A)(2) ∩G2

ω

)
= (λf × λg)

(
(G0A)(2)

)
,

by the virtue of lemma 6.3 and the fact that both |λf |, |λg| are finite and con-
centrated on Gω,—see proposition 3.2. Thus the monadic set (G0A)(2) ⊆ G2 is
measurable with respect to the product of the Loeb measures λf , λg. By lemma 6.2
and partial τ -smoothness of Loeb measures,

(λf × λg)
(
(G0A)(2)

)
= λf⊗g

(
(G0A)(2)

)
= lim

S∈S↓
λf⊗g

(
(SA)(2)

)
= lim

S∈S↓
◦νf⊗g

(
(SA)(2)

)
= lim

S∈S↓
◦νf∗g(SA)

= lim
S∈S↓

λf∗g(SA) = λf∗g(G0A) = θf∗g(K).

6.5. Corollary. M0(G) = Ker θ∩Mω(G) is an F ∗C-ideal in the F ∗C-subalgebra
Mω(G) of the hyperfinite dimensional internal Banach algebra

(∗CG, ∗, ‖·‖1
)
.

Thus the quotient Mω(G)/M0(G) naturally becomes a (classical) Banach alge-
bra (over C). From proposition 6.4 and theorem 5.2 we get our final result.

6.6. Theorem. Let (G, G0, Gω) be a hyperfinite condensating IMG group, and
G ∼= G[. Then the mapping [g] 7→ θg is an isometric isomorphism of the Banach
algebra Mω(G)/M0(G) onto the Banach algebra M(G).
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