Pavel Kostyrko, Department of Algebra and Number Theory, Comenius University, Mlynská Dolina, 842 15 Bratislava, Slovakia, e-mail: kostyrko@fmph.uniba.sk Martin Mačaj, Department of Algebra and Number Theory, Comenius University, Mlynská Dolina, 842 15 Bratislava, Slovakia, e-mail: Martin.Macaj@fmph.uniba.sk Tibor Šalát, Department of Algebra and Number Theory, Comenius University, Mlynská Dolina, 842 15 Bratislava, Slovakia

Statistical convergence and \mathcal{I} -convergence

Abstract

In this paper we introduce the concept of \mathcal{I} -convergence of sequences of real numbers based on the notion of the ideal of subsets of N. The \mathcal{I} convergence gives a unifying look on several types of convergence related to the statistical convergence. In a sense it is equivalent to the concept of μ -statistical convergence introduced by J. Connor (μ being a two valued measure defined on a subfield of 2^N).

2000 Mathematics Subject Classifications: 40A05.

Introduction

This paper comes out from the concept of statistical convergence which is introduced in [9] and [26] and further developed in other papers (cf e.g. [5], [6], [8], [11], [12], [13], [17]). Several new types of convergence of sequences appeared, many of them are related to the statistical convergence. The concept of \mathcal{I} -convergence gives a unifying approach to these types of convergence.

Definition and Notations

Recall the concept of asymptotic density of set $A \subseteq N$ (cf. [20], p. 71, 95-96).

If $A \subseteq N = \{1, 2, ..., n, ...\}$, then χ_A denotes characteristic function of the set A, i.e. $\chi_A(k) = 1$ if $k \in A$ and $\chi_A(k) = 0$ if $k \in N \setminus A$. Put $d_n(A) = \frac{1}{n} \sum_{k=1}^n \chi_A(k)$, $\delta_n(A) = \frac{1}{S_n} \sum_{k=1}^n \frac{\chi_A(k)}{k}$ (n = 1, 2, ...), where $S_n = \sum_{k=1}^n \frac{1}{k}$ (n = 1, 2, ...).

Then the numbers $\underline{d}(A) = \liminf_{n \to \infty} d_n(A)$, $\overline{d}(A) = \limsup_{n \to \infty} d_n(A)$ are called the lower and upper asymptotic density of A, respectively.

Similarly, the numbers $\underline{\delta}(A) = \liminf_{n \to \infty} \delta_n(A)$, $\overline{\delta}(A) = \limsup_{n \to \infty} \delta_n(A)$ are called the lower and upper logarithmic density of A, respectively.

If there exist $\lim_{n\to\infty} d_n(A) = d(A)$ and $\lim_{n\to\infty} \delta_n(A) = \delta(A)$ then d(A) and $\delta(A)$ are called the asymptotic and logarithmic density of A, respectively.

It is well-known fact, that for each $A \subseteq N$

(1)
$$\underline{d}(A) \le \underline{\delta}(A) \le \delta(A) \le d(A)$$

(cf. [20], p. 95).

Hence if exists d(A), then $\delta(A)$ exists as well and $d(A) = \delta(A)$.

Note that number $\underline{d}(A)$, $\overline{d}(A)$, d(A), $\underline{\delta}(A)$, $\overline{\delta}(A)$, $\delta(A)$ belong to the interval [0, 1].

Owing to the well-known formula

(2)
$$S_n = \sum_{k=1}^n \frac{1}{k} = \ln n + \gamma + o(\frac{1}{n}), \ n \to \infty,$$

(γ is the Euler constant), we can write $\ln n$ instead of S_n (n > 1) in the definition of $\delta_n(A)$ (cf [20], p. 45).

Recall the concept of statistical convergence (cf. [9], [26]):

Definition A. A sequence $x = (x_n)_1^\infty$ of real numbers is said to be statistically convergent to $\xi \in R$ provided that for each $\epsilon > 0$ we have $d(A(\epsilon)) = 0$, where $A(\epsilon) = \{n \in N : |x_n - \xi| \ge \epsilon\}.$

In what follows we will use the concept of an ideal and filter of sets.

Definition B. Let $X \neq \emptyset$. A class $S \subseteq 2^X$ of subsets of X is said to be an ideal in X provided that S is additive and hereditary, i.e if S satisfies these conditions:

(i)
$$\emptyset \in \mathcal{S}$$
,

$$(ii) \ A, B \in \mathcal{S} \Rightarrow A \cup B \in \mathcal{S},$$

$$(iii) \ A \in \mathcal{S}, \ B \subseteq A \Rightarrow B \in \mathcal{S}$$

(cf. [14], p. 34).

An ideal is called *non-trivial* if $X \notin S$.

Definition C. Let $X \neq \emptyset$. A non-empty class $\mathcal{F} \subseteq 2^X$ of subsets of X is said to be a filter in X provided that:

 $(j) \ \emptyset \notin \mathcal{F},$

$$(jj) A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F},$$

$$(jjj) A \in \mathcal{F}, B \supseteq A \Rightarrow B \in \mathcal{F}$$

(cf. [18], p. 44).

The following proposition expresses a relation between the notions of ideal and filter:

Proposition A. Let S be a non-trivial ideal in X, $X \neq \emptyset$. Then the class

$$\mathcal{F}(\mathcal{S}) = \{ M \subseteq X : \exists A \in \mathcal{S} : M = X \setminus A \}$$

is a filter on X (we will call $\mathcal{F}(\mathcal{S})$ the filter associated with \mathcal{S}).

The proof of Proposition A is easy and so it can be left to the reader. **Definition D.** A non-trivial ideal S in X is called admissible if $\{x\} \in S$ for each $x \in X$.

We will also use the concept of porosity of subsets of a metric space (cf. [27], pp. 183-212, [28]).

Let (Y, ρ) be a metric space, $M \subseteq Y$. Let $B(y, \delta)$ $(y \in Y, \delta >))$ denote the ball with centre y and radius δ , i.e. $B(y, \delta) = \{x \in Y : \rho(x, y) < \delta\}$. For $y \in Y$, $\delta > 0$ we put

$$\gamma(y,\delta,M) = \sup\{t > 0 : \exists z \in B(y,\delta) : [B(z,t) \subseteq B(y,\delta)] \land [B(z,t) \cap M = \emptyset]\}.$$

If such a t > 0 does not exist, then we put $\gamma(y, \delta, M) = 0$. The numbers

$$\underline{p}(y,M) = \liminf_{\delta \to 0^+} \frac{\gamma(y,\delta,M)}{\delta}, \ \overline{p}(y,M) = \limsup_{\delta \to 0^+} \frac{\gamma(y,\delta,M)}{\delta}$$

are called the lower and upper porosity of set M at y. If for all $y \in Y$ we have $\overline{p}(y, M) > 0$ then M is said to be porous in Y. Obviously every set porous in Y is nowhere dense in Y.

If $\overline{p}(y, M) \ge c > 0$ then M is said to be c-porous at y and it is said to be c-porous in Y if it is c-porous at each $y \in Y$.

If $\underline{p}(y, M) > 0$ then M is said to be very porous at y. If M is very porous at y for each $y \in Y$, then M is said to be very porous in Y. The concept of very c-porous set at y and very c-porous set in y can be defined analogously. If $\underline{p}(y, M) = \overline{p}(y, M)(=p(y, M))$ then the number p(y, M) is called the porosity of M at y. If p(y, M) = 1 then M is said to be strongly porous at y.

The paper is divided into four sections. In the first one the concept of \mathcal{I} -convergence is introduced and its fundamental properties are studied. It is shown here that this concept gives a unifying approach to many various types of convergence related to statistical convergence.

In the second section fundamental arithmetical properties of this convergence are established.

In the third section a convergence (so called $\mathcal{I}^*\text{-convergence}$) is introduced. This is a convergence parallel to $\mathcal{I}\text{-convergence}$. Necessary and sufficient conditions are given for equivalence of these two types of convergence.

In the fourth section the convergence fields of \mathcal{I} -convergence and \mathcal{I}^* -convergence are investigated.

1 \mathcal{I} -convergence of sequences of real numbers examples

The concept of statistical convergence and the study of similar types of convergence (cf. [3], [4], [17], [26]) lead us to introducing the notion of \mathcal{I} -convergence of sequences. This notion gives a unifying look at many types of convergence related to statistical convergence.

Definition 1.1 Let \mathcal{I} be a non-trivial ideal in N. A sequence $x = (x_n)_1^{\infty}$ of real numbers is said to be \mathcal{I} -convergent to $\xi \in R$ if for every $\epsilon > 0$ the set $A(\epsilon) = \{n : |x_n - \xi| \ge \epsilon\}$ belongs to \mathcal{I} . If $x = (x_n)_1^\infty$ is \mathcal{I} -convergent to ξ we write $\mathcal{I} - \lim x_n = \xi$ (or $\mathcal{I} - \lim x = \xi$) and the number ξ is called the \mathcal{I} -limit of $x = (x_n)_1^\infty$.

A question arises whether the concept of \mathcal{I} -convergence satisfies some usual axioms of convergence (cf. [16]). The most known axioms of convergence are the following axioms (formulated for \mathcal{I} -convergence):

(S) Every stationary sequence $x = (\xi, \xi, \dots, \xi, \dots)$ *I*-converges to ξ .

- (H) The uniqueness of limit: If $\mathcal{I} \lim x = \xi$ and $\mathcal{I} \lim x = \eta$, then $\xi = \eta$.
- (F) If $\mathcal{I} \lim x = \xi$, then for each subsequence y of x we have $\mathcal{I} \lim y = \xi$.
- (U) If each subsequence y of a sequence x has a subsequence $z \mathcal{I}$ -convergent to ξ , then x is \mathcal{I} -convergent to ξ .

Theorem 1.1 Let \mathcal{I} be an admissible ideal in N. Then

(i) \mathcal{I} -convergence satisfies the axioms (S), (H) and (U).

(ii) if \mathcal{I} contains an infinite set, then \mathcal{I} -convergence does not satisfy the axiom (F).

Remark. If an admissible ideal \mathcal{I} contains no infinite set, then \mathcal{I} coincides with the class of all finite subsets of N and the \mathcal{I} -convergence is equal to the usual convergence in R, therefore it satisfies the axiom (F) (see ideal \mathcal{I}_f in (III) in what follows).

Proof of Theorem 1.1. It is obvious that \mathcal{I} -convergence (\mathcal{I} being an admissible ideal) satisfies the axiom (S). We prove that it satisfies (H) as well.Suppose that $\mathcal{I} - \lim x_n = \xi$, $\mathcal{I} - \lim x_n = \eta$, $\xi \neq \eta$. Choose

(3)
$$\epsilon \in (0, \frac{|\xi - \eta|}{2}).$$

Then by assumption and Proposition A the sets $N \setminus A(\epsilon) = \{n : |x_n - \xi| < \epsilon\}$, $N \setminus B(\epsilon) = \{n : |x_n - \eta| < \epsilon\}$ belong to the filter $\mathcal{F}(\mathcal{I})$. But then the set $(N \setminus A(\epsilon)) \cap (N \setminus B(\epsilon))$ belongs to $\mathcal{F}(\mathcal{I})$, too. Hence there is an $m \in N$ such that $|x_m - \xi| < \epsilon$, $|x_m - \eta| < \epsilon$. From this $|\xi - \eta| < 2\epsilon$ which is a contradiction to (3).

We prove that \mathcal{I} -convergence satisfies the axiom (U). We prove the following statement equivalent to (U):

If $\mathcal{I} - \lim x_n = \xi$ does not hold, then there exist a subsequence y of x such that no subsequence z of y is \mathcal{I} -convergent to ξ .

By Definition 1.1 there exist an ϵ_0 such that

(4)
$$A(\epsilon_0) = \{n : |x_n - \xi| \ge \epsilon_o\} \notin \mathcal{I}.$$

Then $A(\epsilon_0)$ is an infinite set since \mathcal{I} is an admissible ideal. Let

$$A(\epsilon_0) = \{ n_1 < n_2 < \ldots < n_k < n_{k+1} < \ldots \} \subseteq N$$

Put $y_k = x_{n_k}$, (k = 1, 2, ...). Then $y = (y_k)_1^\infty$ is a subsequence of x and by (4):

$$(4^{*}) |y_k - \xi| \ge \epsilon_0, \ (k = 1, 2, \ldots)$$

From (4^{*}) we see that no subsequence $z = (z_m)_1^{\infty}$ of y can be \mathcal{I} -convergent, since in the opposite case the set N would belong to \mathcal{I} .

(*ii*)Suppose that an infinite set $A = \{n_1 < n_2 < \ldots < n_k < \ldots\} \subseteq N$ belongs to \mathcal{I} . Put

$$B = N \setminus A = \{m_1 < m_2 < \ldots < m_k < \ldots\}.$$

The set B is again infinite because in the opposite case N would belong to \mathcal{I} . Define the sequence $x = (x_n)_1^{\infty}$ as follows

$$x_{n_k} = 0, \ x_{m_k} = 1 \ (k = 1, 2, \ldots).$$

Obviously $\mathcal{I} - \lim x_n = 1$.. Simultaneously the subsequence $y = (x_{n_k})_{k=1}^{\infty}$ of x is stationary and so $\mathcal{I} - \lim y = 0$ (see axiom (S)). Hence \mathcal{I} -convergence does not satisfy the axiom (F). \Box

In what follows we introduce several examples of \mathcal{I} -convergence .

(I) Put $\mathcal{I}_0 = \{\emptyset\}$. This is the minimal non-empty non-trivial ideal in N. Obviously a sequence is \mathcal{I}_0 -convergent if and only if it is constant.

(II) Let $\emptyset \neq M \subseteq N$, $M \neq N$. Put $\mathcal{I}_M = 2^M$. Then \mathcal{I}_M is a non-trivial ideal in N. A sequence $x = (x_n)_1^\infty$ is \mathcal{I}_M -convergent if and only if it is constant on $N \setminus M$, i.e. if there is a $\xi \in R$ such that $x_n = \xi$ for each $n \in N \setminus M$. (Obviously (I) is a special case of (II) for $M = \emptyset$.)

(III) Denote by \mathcal{I}_f the class of all finite subsets of N. Then \mathcal{I}_f is an admissible ideal in N and \mathcal{I}_f -convergence coincides with the usual convergence in R.

(IV) Put $\mathcal{I}_d = \{A \subseteq N : d(A) = 0\}$. Then \mathcal{I}_d is an admissible ideal in N and \mathcal{I}_d -convergence coincides with the statistical convergence.

(V) Put $\mathcal{I}_{\delta} = \{A \subseteq N : \delta(A) = 0\}$. Then \mathcal{I}_{δ} is an admissible ideal in Nand we will call the \mathcal{I}_{δ} -convergence the logarithmic statistical convergence. If $\mathcal{I}_{\delta} - \lim x_n = \xi$ then $\mathcal{I}_d - \lim x_n = \xi$ (see (1)). The converse is not true.

(VI) The examples (IV), (V) can be generalized. Choose $c_n > 0$, (n = 1, 2, ...) such that $\sum_{n=1}^{\infty} c_n = +\infty$. Put

$$h_m(A) = \frac{\sum_{i \le m, i \in A} c_i}{\sum_{i=1}^m c_i}, \ (m = 1, 2, \ldots).$$

Denote by h(A) the limit $\lim_{m\to\infty}h_m(A)$ (if it exists) (cd. [1]). Then $\mathcal{I}_h = \{A \subseteq N : h(A) = 0\}$ is an admissible ideal in N and \mathcal{I}_d -convergence and \mathcal{I}_{δ} -convergence are special cases of I_h -convergence.

(VII) Denote by u(A) the uniform density of the set A (cf [2]). then $I_u = \{A \subseteq N : u(A) = 0\}$ is an admissible ideal and \mathcal{I}_u -convergence will be called the uniform statistical convergence.

(VIII) A wide class of \mathcal{I} -convergences can be obtained in the following manner: Let $T = (t_{nk})$ be a non-negative regular matrix (cf. [21], p. 8). Then for each $A \subseteq N$ the series

$$d_T^{(n)}(A) = \sum_{k=1}^{\infty} t_{nk} \chi_A(k) \ (n = 1, 2, \ldots)$$

converge. If there exists

$$d_T(A) = \lim_{n \to \infty} d_T^{(n)}(A)$$

then $d_T(A)$ is called the *T*-density of *A* (cf. [17]). By the regularity of *T* we have

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} t_{nk} = 1$$

and from this we can see that $d_T(A) \in [0, 1]$. Put $\mathcal{I}_{d_T} = \{A \subseteq N : d_T(A) = 0\}$. Then \mathcal{I}_{d_T} is an admissible ideal in N and \mathcal{I}_{d_T} -convergence contains as special case the \mathcal{I}_h -convergence from (VI) (choosing $t_{nk} = \frac{c_k}{\sum_{i=1}^{nc_i} nc_i}$ for $k \leq n, t_{nk} = 0$

for k > n, n = 1, 2, ...).

The \mathcal{I}_{d_T} -convergence includes also the ϕ -convergence of Schoenberg (cf. [26]) (choosing $t_{nk} = \frac{\phi(k)}{n}$ for $k \leq n, k$ divides $n, t_{nk} = 0$ for $k \leq n, k$ does not divide n and $t_{nk} = 0$ for $k > n, n = 1, 2, \ldots$), ϕ being the Euler function.

(IX) Let v be a finite additive measure defined on a class \mathcal{U} of subsets of N (cf. [7], [10], [15], [23], [24], [25]) which contain all finite subsets of Nand $v(\{n\}) = 0$ for each $n \in N$, $v(A) \leq v(B)$ if $A, B \in \mathcal{U}, A \subseteq B$. Then $\mathcal{I}_v = \{A \subseteq N : v(A) = 0\}$ is an admissible ideal in N. The \mathcal{I}_d - and \mathcal{I}_δ convergences are included in \mathcal{I}_v -convergence. Further for v we can take the measure density of R. C. Buck (cf. [3]).

(X) Let $\mu_m : 2^N \to [0, 1], m = 1, 2, ...$ be finitely additive measures defined on 2^N . If there exists $\mu(A) = \lim_{m \to \infty} \mu_m(A)$, then $\mu(A)$ is called the measure of A. Obviously μ is a finitely additive measure defined on a class $\mathcal{E} \subseteq 2^N$, so $\mathcal{I}_{\mu} = \{A \subseteq N : \mu(A) = 0\}$ is an admissible ideal in N. For μ_m we can take d_m , δ_m (see Definitions and Notations).

(XI) Let $N = \bigcup_{j=1}^{\infty} D_j$ be a decomposition of N (i.e. $D_k \cap D_l = \emptyset$ for $k \neq l$), assume that D_j (j = 1, 2, ...) are infinite sets (e.g we can choose $D_j = \{2^{j-1}(2s-1) : s = 1, 2...\}$). Denote by \mathcal{J} the class of all $A \subseteq N$ such that A intersects only a finite number of D_j . Then it is easy to see that \mathcal{J} is an admissible ideal in N.

(XII) In [11] the concept of density ρ of sets $A \subseteq N$ is axiomatically introduced. Using this concept we can define the ideal $\mathcal{I}_{\rho} = \{A \subseteq N : \rho(A) = 0\}$ and obtain \mathcal{I}_{ρ} -convergence as a generalization of statistical convergence.

(XIII) We introduce yet the following admissible ideal \mathcal{I}_c in N connected with the convergence of subseries of the harmonic series : $\mathcal{I}_c = \{A \subseteq N : \sum_{a \in A} a^{-1} < +\infty\}$ (for $A = \emptyset$ we put $\sum_{a \in A} a^{-1} = 0$). Then from \mathcal{I}_c -convergence the \mathcal{I}_d -convergence follows since $\mathcal{I}_c \subset \mathcal{I}_d$ (cf [22]).

In the end of this section we introduce some remarks on the relation between our \mathcal{I} -convergence and μ -statistical convergence of J. Connor (cf. [7]). The approach of J. Connor to generalization of statistical convergence is based on using a finite additive measure μ defined on a field Γ of subsets of N with $\mu(\{k\}) = 0$ for each $k \in N$ and such that $A, B \in \Gamma, A \subseteq B$ implies $\mu(A) \leq \mu(B)$. Put

$$\mathcal{I} = \{ A \in \Gamma : \mu(A) = 0 \}$$

Then it is easy to verify that \mathcal{I} is an admissible ideal in N and $\mathcal{F}(\mathcal{I}) = \{B \subseteq N : \mu(B) = 1\}.$

Conversely, if \mathcal{I} is an admissible ideal in N, then we put

$$\Gamma = \mathcal{I} \cup \mathcal{F}(\mathcal{I}).$$

Then Γ is a field (algebra) of subsets of N. Define $\mu : \Gamma \to \{0, 1\}$ as follows:

$$\mu(M) = 0 \text{ if } M \in \mathcal{I},$$

$$\mu(M) = 1$$
 if $M \in \mathcal{F}(\mathcal{I})$.

This definition is correct since it is easy to see that $\mathcal{I} \cap \mathcal{F}(\mathcal{I}) = \emptyset$. Further $\mu(\{k\}) = 0$ since \mathcal{I} is admissible, the monotonity and additivity of μ can be easily checked.

Hence these two approaches to generalization of statistical convergence seem to be equivalent in such a sense that each of them can be replaced (by the method mentioned above) by other approach.

2 Fundamental arithmetical properties of *I*-convergence

We show that \mathcal{I} -convergence has many arithmetical properties similar to properties of the usual convergence.

Theorem 2.1 Let \mathcal{I} be a non-trivial ideal in N.

- (i) If $\mathcal{I} \lim x_n = \xi$, $\mathcal{I} \lim y_n = \eta$, then $\mathcal{I} \lim (x_n + y_n) = \xi + \eta$.
- (*ii*) If $\mathcal{I} \lim x_n = \xi$, $\mathcal{I} \lim y_n = \eta$, then $\mathcal{I} \lim (x_n y_n) = \xi \eta$.

(iii) If \mathcal{I} is an admissible ideal in N, then $\lim_{n\to\infty} x_n = \xi$ implies $\mathcal{I} - \lim x_n = \xi$.

Proof. (i) Let $\epsilon > 0$. Then the inclusion

(5)
$$\{n: |x_n + y_n - (\xi + \eta)| \ge \epsilon\} \subseteq \{n: |x_n - \xi| \ge \frac{\epsilon}{2}\} \cup \{n: |y_n - \eta| \ge \frac{\epsilon}{2}\}$$

can be easily verified. The sets on the right-hand side of (5) belong to \mathcal{I} . By Definition B the set on the left-hand side of (5) belongs to \mathcal{I} , too.

(*ii*) Let $\epsilon > 0$. The following inclusion can be checked.

(6)
$$\{n: |x_n y_n - \xi\eta| < \epsilon\} = \{n: |x_n (y_n - \eta) + \eta (x_n - \xi)| < \epsilon\} \supseteq \{n: \{|x_n| < |\xi| + 1\} \cap \{n: |y_n - \eta| < \frac{\epsilon}{2(|\xi| + 1\}} \cap \{n: |x_n - \xi| < \frac{\epsilon}{2|\eta|}\}.$$

Observe that if $|x_n - \xi| < 1$, then $|x_n| = |x_n - \xi + \xi| \le |x_n - \xi| + |\xi| < 1 + |\xi|$. Consequently, if $\frac{\epsilon}{2|n|} \le 1$

$$\{n: |x_n| < |\xi| + 1\} \supseteq \{n: |x_n - \xi| < 1\} \supseteq \{n: |x_n - \xi| < \frac{\epsilon}{2|\eta|}\}.$$

So from (6) we get

 $(6^*) \quad \{n: |x_n y_n - \xi \eta| < \epsilon\} \supseteq \{n: |x_n - \xi| < \frac{\epsilon}{2|\eta|}\} \cap \{n: |y_n - \eta| < \frac{\epsilon}{2(|\xi|+1)}\}.$

By the assumption each of the sets on the right-hand side of (6^*) belongs to $\mathcal{F}(\mathcal{I})$, from this it easily follows that the set on the left-hand side of (6^*) belongs to $\mathcal{F}(\mathcal{I})$. But then its complement $\{n : |x_n y_n - \xi \eta| \ge \epsilon\}$ belongs to \mathcal{I} .

(*iii*) This part of theorem follows from the fact that \mathcal{I}_f is contained as a subset in every admissible ideal. \Box

3 \mathcal{I} -convergence and \mathcal{I}^* -convergence

In connection with Definition 1.1 we introduce yet another type of convergence which corresponds to convergence in μ -density of J. Connor (cf. [7])

Definition 3.1 Let \mathcal{I} be an admissible ideal in N. A sequence $x = (x_n)_1^{\infty}$ of real numbers is said to be \mathcal{I}^* -convergent to $\xi \in R$ (shortly $\mathcal{I}^* - \lim x_n = \xi$ or $\mathcal{I}^* - \lim x = \xi$) if there is a set $H \in \mathcal{I}$, such that for $M = N \setminus H = \{m_1 < m_2 < \ldots\}$ we have

(7)
$$\lim_{k \to \infty} x_{m_k} = \xi.$$

Remark. We write also $\lim_{n\to\infty,n\in M} x_n = \xi$ instead of (7).

We now have two types of "ideal convergence". For every admissible ideal \mathcal{I} the following relation between them holds:

Theorem 3.1 Suppose that \mathcal{I} is an admissible ideal in N. If $\mathcal{I}^* - \lim x_n = \xi$ then $\mathcal{I} - \lim x_n = \xi$.

Proof. By assumption there is a set $H \in \mathcal{I}$ such that (7) holds, where $M = N \setminus H = \{m_1 < m_2 < \ldots\}$. Let $\epsilon > 0$. By (7) there is a $k_o \in N$, such that $|x_{m_k} - \xi| < \epsilon$ for $k > k_0$. Put $A(\epsilon) = \{n : |x_n - \xi| \ge \epsilon\}$. Then

(8)
$$A(\epsilon) \subseteq H \cup \{m_1, m_2, \dots, m_{k_0}\}.$$

Since \mathcal{I} is admissible and $H \in \mathcal{I}$, the union on the right-hand side of (8) belongs to \mathcal{I} and so $A(\epsilon) \in \mathcal{I}$. \Box

Remark. For some ideals the converse of Theorem 3.1 holds (e.g for \mathcal{I}_d in (IV), cf [23]). In [10] it is proved that (in our terminology) the converse of Theorem 3.1. does not hold for \mathcal{I}_u -convergence (see (VII)). We now give a new example of such an ideal.

Example 3.1. Put $\mathcal{I} = \mathcal{J}$ (see (XI)). Define $x = (x_n)_1^\infty$ as follows: For $n \in D_j$ we put $x_n = \frac{1}{j}$ (j = 1, 2, ...). Then obviously $\mathcal{I} - \lim x_n = 0$. But we show that $\mathcal{I}^* - \lim x_n = 0$ does not hold.

If namely $H \in \mathcal{I}$ then there is (by definition of \mathcal{I}) a $p \in N$ such that

$$H \subseteq D_1 \cup D_2 \cup \ldots \cup D_p.$$

But then $D_{p+1} \subseteq N \setminus H$ and so by notation used in proof of Theorem 3.1. we have $x_{m_k} = \frac{1}{p+1}$ for infinitely many of k's. Therefore $\lim_{k\to\infty} x_{m_k} = 0$ cannot be true.

In what follows we give a necessary and sufficient condition for equivalency of \mathcal{I} and \mathcal{I}^* -convergences. This condition is similar to the condition (APO) in [7], [10].

Definition 3.2 An admissible ideal \mathcal{I} in N is said to satisfy the condition (AP) if for every countable system $\{A_1, A_2, \ldots\}$ of mutually disjoint sets belonging to \mathcal{I} there exist sets $B_j \subseteq N$ $(j = 1, 2, \ldots)$ such that the symmetric differences $A_j \div B_j$ $(j = 1, 2, \ldots)$ are finite and $B = \bigcup_{j=1}^{\infty} B_j$ belongs to \mathcal{I} .

Remark. Observe that each B_i from previous definition belongs to \mathcal{I} .

Theorem 3.2 From $\mathcal{I} - \lim x_n = \xi$ the statement $\mathcal{I}^* - \lim x_n = \xi$ follows if and only if \mathcal{I} satisfies the condition (AP).

Corollary 3.1 From Theorems 3.1. and 3.2 we obtain : The equivalency $\mathcal{I} - \lim x_n = \xi \Leftrightarrow \mathcal{I}^* - \lim x_n = \xi$ holds if and only if \mathcal{I} satisfies the condition (AP).

Proof of Theorem 3.2. 1) Suppose that \mathcal{I} satisfies the condition (AP).

Let $\mathcal{I} - \lim x_n = \xi$. Then for every $\epsilon > 0$ the set $A(\epsilon) = \{n : |x_n - \xi| \ge \epsilon\}$ belongs to \mathcal{I} .

Consequently each of the following sets A_j (j = 1, 2, ...) belongs to \mathcal{I}

$$A_1 = \{n : |x_n - \xi| \ge 1\} = A(1),$$
$$A_k = \{n : \frac{1}{k} \le |x_n - \xi| < \frac{1}{k-1}\} = A(\frac{1}{k}) \setminus A(\frac{1}{k-1}).$$

Obviously $A_i \cap A_j = \emptyset$ for $i \neq j$.

Since \mathcal{I} satisfies (AP) there are sets $B_j \subseteq N$ such that $A_j \div B_j$ is a finite set (j = 1, 2, ...) and $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{I}$.

It suffices to prove that

(9)

$$\lim_{n \to \infty, \ n \in M} x_n = \xi,$$

where $M = N \setminus B$.

Let $\eta > 0$. Choose a $k \in N$ such that $\frac{1}{k+1} < \eta$. Then

$$\{n: |x_n-\xi| \ge \eta\} \subseteq \bigcup_{j=1}^{k+1} A_j.$$

The set on the right hand-side belongs to \mathcal{I} by the additivity of \mathcal{I} . Since $A_j \div B_j$ is finite (j = 1, 2, ..., k + 1), there is an $n_0 \in N$, such that

$$\bigcup_{j=1}^{k+1} B_j \cap (n_0, +\infty) = \bigcup_{j=1}^{k+1} A_j \cap (n_0, +\infty).$$

If now $n \notin B$, $n > n_0$ then $n \notin \bigcup_{j=1}^{k+1} B_j$ and so $n \notin \bigcup_{j=1}^{k+1} A_j$. But then $|x_n - \xi| < \frac{1}{k+1} < \eta$. Hence (9) hold. 2) Suppose that from $\mathcal{I} - \lim x_n = \xi$ the statement $\mathcal{I}^* - \lim x_n = \xi$ follows.

We prove that \mathcal{I} fulfils the condition (AP).

Let $\{A_1, A_2, \ldots\}$ be a class of disjoint sets of \mathcal{I} . Define $x = (x_n)_1^\infty$ as follows $x_n = \frac{1}{j} \text{ for } n \in A_j \ (j = 1, 2, \ldots), \ x_n = 0 \text{ for } n \in N \setminus \bigcup_j A_j.$ First of all we show that $\mathcal{I} - \lim x_n = 0$. Let $\epsilon > 0$. Choose an m such that $\frac{1}{m} < \epsilon$. Then

$$A(\epsilon) = \{n : |x_n - \xi| \ge \epsilon\} \subseteq A_1 \cup A_2 \cup \ldots \cup A_m$$

From this we see that $A(\epsilon) \in \mathcal{I}$, hence $\mathcal{I} - \lim x_n = 0$. Consequently by the assumption we have

$$\mathcal{I}^* - \lim x_n = 0$$

But then there is a set $B \in \mathcal{I}$ such that

(10)
$$\lim_{n \to \infty, n \in N \setminus B} x_n = 0.$$

Put $B_j = A_j \cap B$, (j = 1, 2, ...). It suffices to show that $A_j \div B_j$ (j = 1, 2, ...)is finite. Indeed if this is true, then

$$\bigcup_{j=1}^{\infty} B_j = \bigcup_{j=1}^{\infty} (B \cap A_j) = B \cap \bigcup_{j=1}^{\infty} A_j \subseteq B.$$

Since $B \in \mathcal{I}$, we see that $\bigcup_j B_j \in \mathcal{I}$.

Put $N \setminus B = \{m_1 < m_2 < \ldots\}$. Then by (10) $\lim_{k\to\infty} x_{m_k} = 0$. From this we see that the set A_j has only a finite number of elements common with the set $N \setminus B$.

$$A_j \div B_j \subseteq A_j \cap (N \setminus B)_j$$

we have $A_j \div B_j$ is finite. \Box

Convergence fields of \mathcal{I} -convergence and \mathcal{I}^* -4 convergence

The \mathcal{I} -convergence and also \mathcal{I}^* -convergence can be considered as a summability methods that (in the case of admissibility of \mathcal{I}) are regular. Denote by $F(\mathcal{I})$ and $F(\mathcal{I}^*)$ the convergence field of \mathcal{I} - and \mathcal{I}^* -convergence, respectively. Hence in detail

$$F(\mathcal{I}) = \{ x = (x_n) \in \ell_{\infty} : \text{ there exists } \mathcal{I} - \lim x_n \in R \},\$$

$$F(\mathcal{I}^*) = \{ x = (x_n) \in \ell_{\infty} : \text{ there exists } \mathcal{I}^* - \lim x_n \in R \}.$$

These convergence fields will be studied in what follows as subsets of the linear normed space ℓ_{∞} of all bounded real sequence with the sup -norm

$$||x|| = \sup_{n=1,2,\dots} |x_n|, \ x = (x_n)_1^{\infty} \in \ell_{\infty}$$

As we have already seen, $F(\mathcal{I})$ is a linear subspace of ℓ_{∞} (see Theorem 2.1.). The similar fact for $F(\mathcal{I}^*)$ is obvious.

We shall see that the properties of $F(\mathcal{I})$ and $F(\mathcal{I}^*)$ depend on the ideal \mathcal{I} . therefore we shall study at first some properties of ideals, mainly maximality of ideals in N.

The class \mathcal{Z} of all admissible ideals in N can be partially ordered by inclusion. If $\mathcal{Z}_0 \subseteq \mathcal{Z}$ is a non-empty (linearly) ordered subclass of \mathcal{Z} , then it can be easily checked that $\bigcup \mathcal{Z}_0$ is again an admissible ideal in N, which is an upper bound for \mathcal{Z}_0 . Thus we can use the Zorn lemma which gives the existence of a maximal ideal in \mathcal{Z} .

We give in what follows a characterization of maximal admissible ideals in N.

Lema 4.1 An ideal \mathcal{I}_0 in N is a maximal admissible ideal in N if and only if for every $A \subseteq N$ following statement holds:

$$(V) (A \in \mathcal{I}_0) \lor (N \setminus A \in \mathcal{I}_0).$$

Proof. 1. Suppose that \mathcal{I}_0 satisfies (V). We show that \mathcal{I}_0 is maximal admissible. Suppose in contrary that there is an admissible ideal \mathcal{I}_1 in N such that $\mathcal{I}_1 \supset \mathcal{I}_0$. Then there is a set $A \subseteq N$, such that $A \in \mathcal{I}_1 \setminus \mathcal{I}_0$. Hence $A \notin \mathcal{I}_0$ and consequently by (V) we have $N \setminus A \in \mathcal{I}_0$. But then $A \in \mathcal{I}_1$, $N \setminus A \in \mathcal{I}_1$ which gives $N \in \mathcal{I}_1$ - a contradiction.

2. Suppose that \mathcal{I}_0 is a maximal admissible ideal. We prove (V). We proceed indirectly. Then there is a set $A \subseteq N$ such that we have:

(11)
$$(A \notin \mathcal{I}_0) \land (N \setminus A \notin \mathcal{I}_0).$$

Construct the class $\mathcal{K} = \{X \subseteq N : X \cap A \in \mathcal{I}_0\}$. We show that

a) $\mathcal{K} \supseteq \mathcal{I}_0$,

b) \mathcal{K} is an admissible ideal in N.

a) Let $X \in \mathcal{I}_0$. Then $X \cap A \subseteq X$. Therefore $X \cap A \in \mathcal{I}_0$ and so $X \in \mathcal{K}$.

b) Evidently $N \notin \mathcal{K}$ and \mathcal{K} contains each singleton $\{n\}, n \in N$.

Further if $X_1, X_2 \in \mathcal{K}$, then $X_1 \cap A, X_2 \cap A \in \mathcal{I}_0$, therefore $(X_1 \cup X_2) \cap A = (X_1 \cap A) \cup (X_2 \cap A)$ belongs to \mathcal{I}_0 and $X_1 \cup X_2$ belongs to \mathcal{K} .

Let $X \in \mathcal{K}$ and $X_1 \subseteq X$. Then $X_1 \cap A \subseteq X \cap A \in \mathcal{I}_0$, hence $X_1 \cap A \in \mathcal{I}_0$, $X_1 \in \mathcal{K}$.

So we have proved that \mathcal{K} is an admissible ideal in N and $\mathcal{K} \supseteq \mathcal{I}_0$. By maximality of \mathcal{I}_0 we have $\mathcal{I}_0 = \mathcal{K}$. Observe that $N \setminus A \in \mathcal{K}$ as $(N \setminus A) \cap A = \emptyset \in \mathcal{I}_0$. But this contradicts (11). \Box

We return to linear subspaces $F(\mathcal{I})$, $F(\mathcal{I}^*)$. The "magnitude" of $F(\mathcal{I})$ depends very simply on \mathcal{I} . This fact is shown in the following statement:

Theorem 4.1 Let \mathcal{I} be an admissible ideal in N. Then $F(\mathcal{I}) = \ell_{\infty}$ if and only if \mathcal{I} is a maximal admissible ideal in N.

Proof. 1. Suppose that \mathcal{I} is a maximal admissible ideal in N. Let $x = (x_n)_1^{\infty} \in \ell_{\infty}$. We show that there exists $\mathcal{I} - \lim x_n \in R$.

Since $x \in \ell_{\infty}$ there are numbers $a, b \in R$ such that $a \leq x_n \leq b, (n = 1, 2, ...)$. Put $A_1 = \{n : a \leq x_n \leq \frac{a+b}{2}\}, B_1 = \{n : \frac{a+b}{2} \leq x_n \leq b\}$. Then $A_1 \cup B_1 = N$. Since \mathcal{I} is an admissible ideal both sets A_1, B_1 cannot belong to \mathcal{I} . Thus at least one of them does not belong to \mathcal{I} . Denote it by D_1 and interval corresponding to it denote by I_1 . So we have (infinite) set D_1 and interval I_1 such that $D_1 = \{n : x_n \in I_1\} \notin \mathcal{I}$.

So we can (by induction) construct a sequence of closed intervals $I_1 \supseteq I_2 \supseteq \ldots \supseteq I_n \supseteq \ldots$, $I_n = [a_n, b_n]$, $(n = 1, 2, \ldots, \lim_{n \to \infty} (a_n - b_n) = 0$ and sets $D_k = \{n : x_n \in I_k\} \notin \mathcal{I} \ (k = 1, 2, \ldots).$

Let $\xi \in \bigcap_{k=1}^{\infty} I_k$ and $\epsilon > 0$. Construct the set $M(\epsilon) = \{n : |x_n - \xi| < \epsilon\}$. For sufficiently large m we have $I_m = [a_m, b_m] \subseteq (\xi - \epsilon, \xi + \epsilon)$. Since $D_m \notin \mathcal{I}$ we see that $M(\epsilon) \notin \mathcal{I}$.

Since $M(\epsilon) \notin \mathcal{I}$, the maximality of \mathcal{I} implies (see Lemma 4.1.) that $A(\epsilon) = \{n : |x_n - \xi| \ge \epsilon\} = N \setminus M(\epsilon) \in \mathcal{I}$. Hence $\mathcal{I} - \lim x_n = \xi$.

2. Suppose that \mathcal{I} is not maximal. Then by Lemma 4.1. there is a set $M = \{m_1 < m_2 < \ldots\} \subseteq N$ such that $M \notin \mathcal{I}, N \setminus M \notin \mathcal{I}$. Define the sequence $x = (x_n)_1^{\infty}$ as follows: $x_n = \chi_M(n)$ $(n = 1, 2, \ldots)$. Then $x_n \in \ell_{\infty}$. We show that $\mathcal{I} - \lim x_n$ does not exist. This follows from the fact that for every $\xi \in R$ and sufficiently small ϵ the set $\{n : |x_n - \xi| \ge \epsilon\}$ is equal to M or $N \setminus M$ or to whole N and neither of these belongs to \mathcal{I} . \Box

Remark. The previous theorem cannot be extended for unbounded sequences. This is shown in the following:

Proposition 4.1 Let \mathcal{I} be an admissible ideal. Then there exists an unbounded sequence of real numbers for which $\mathcal{I} - \lim x$ does not exist.

Proof. It is easy to see that sequence $x_n = n, n = 1, 2, ...$ is a wanted example. \Box

In what follows we will deal with topological properties of convergence fields $F(\mathcal{I}), F(\mathcal{I}^*)$ and the relation between them.

Theorem 4.2 Suppose that \mathcal{I} is an admissible ideal in N. Then $F(\mathcal{I})$ is a closed linear subspace of ℓ_{∞} .

Proof. Let $x^{(m)} = (x_j^{(m)})_{j=1}^{\infty} \in F(\mathcal{I}) \ (m = 1, 2, ...), \lim_{m \to \infty} x^{(m)} = x,$ $x = (x_j)_1^{\infty} \text{ in } \ell_{\infty}, \text{ i.e. } \lim_{m \to \infty} ||x^{(m)} - x|| = 0.$ We prove that $x \in F(\mathcal{I}).$

By the assumption there exist $\mathcal{I} - \lim x^{(m)} = \xi_m \in \mathbb{R}, (m = 1, 2, ...)$. The proof will be realized in two steps:

1. We prove that $(\xi_m)_1^\infty$ is a Cauchy sequence (so that there exists $\lim_{m\to\infty} \xi_m = \xi \in \mathbb{R}$).

2. We prove that $\mathcal{I} - \lim x = \xi$.

1) Let $\eta > 0$. From $\lim_{m\to\infty} x^{(m)} = x$ we deduce that $(x^{(m)})_1^{\infty}$ is a Cauchy sequence in ℓ_{∞} . Therefore there is an $m_0 \in N$ such that for each $u, v > m_0$ we have

(12)
$$||x^{(u)} - x^{(v)}|| < \frac{\eta}{3}$$

Fix $u, v > m_0$. Note that sets $U(\frac{\eta}{3}) = \{j : |x_j^{(u)} - \xi_u| < \frac{\eta}{3}\}, V(\frac{\eta}{3}) = \{j : |x_j^{(v)} - \xi_v| < \frac{\eta}{3}\}$ belong to $\mathcal{F}(\mathcal{I})$, thus their intersection is non-void. For element $s \in U(\frac{\eta}{3}) \cap V(\frac{\eta}{3})$ we have

(13)
$$|x_s^{(u)} - \xi_u| < \frac{\eta}{3}, |x_s^{(v)} - \xi_v| < \frac{\eta}{3}.$$

By a simple estimate we get from (12), (13):

$$|\xi_u - \xi_v| \le |\xi_u - x_s^{(u)}| + |x_s^{(u)} - x_s^{(v)}| + |x_s^{(v)} - \xi_v| < \frac{\eta}{3} + \frac{\eta}{3} + \frac{\eta}{3} = \eta.$$

Hence $(\xi_m)_1^{\infty}$ is a Cauchy sequence and so there exists $\xi = \lim_{m \to \infty} \xi_m \in R$. 2) Let $\epsilon > 0$. Choose v_0 such that for $v > v_0$ we have simultaneously

(14)
$$|\xi_v - \xi| < \frac{\epsilon}{3}|, ||x^{(v)} - x|| \le \frac{\epsilon}{3}.$$

For each $n \in N$ we have

(15)
$$|x_n - \xi| \le |x_n - x_n^{(v)}| + |x_n^{(v)} - \xi_v| + |\xi_v - \xi|.$$

Let $A(\epsilon) = \{n : |x_n - \xi| \ge \epsilon\}, CA(\epsilon) = \{n : |x_n - \xi| < \epsilon\}, A_v(\frac{\epsilon}{3}) = \{n : |x_n^{(v)} - \xi_v| \ge \frac{\epsilon}{3}\}, CA_v(\frac{\epsilon}{3}) = \{n : |x_n^{(v)} - \xi_v| < \frac{\epsilon}{3}\}.$ Then by (14), (15) we get $|x_n - \xi| < \epsilon$ for every $n \in A_v(\frac{\epsilon}{3})$. So we have

(16)
$$CA_v(\frac{\epsilon}{3}) \subseteq CA(\epsilon).$$

Note that $A_v(\frac{\epsilon}{3}) \in \mathcal{I}$. If we take complements of sets in (16) we find out that $A(\epsilon) \in \mathcal{I}$. The proof of 2) is finished. \Box

We can summarize our results concerning the convergence fields $F(\mathcal{I}), F(\mathcal{I}^*)$. From Theorem 3.1. we know that $F(\mathcal{I}^*) \subseteq F(\mathcal{I})$ and Theorem 3.2. says that the equality $F(\mathcal{I}) = F(\mathcal{I}^*)$ holds if and only if \mathcal{I} satisfies the condition (AP). Further $F(\mathcal{I}) = \ell_{\infty}$ if and only if \mathcal{I} is a maximal ideal (see Theorem 4.1.). Thus if \mathcal{I} is not maximal and does not satisfy the condition (AP) then

$$F(\mathcal{I}^*) \subset F(\mathcal{I}) \subset \ell_{\infty}.$$

Now we show that for every admissible ideal \mathcal{I} the set $F(\mathcal{I}^*)$ is dense in $F(\mathcal{I})$.

Theorem 4.3 For every admissible ideal \mathcal{I} in N we have

$$\overline{F(\mathcal{I}^*)} = F(\mathcal{I}).$$

 $(\overline{M} \text{ is the closure of } M \text{ in } \ell_{\infty}.)$ **Proof**. By Theorem 3.1. we have $F(\mathcal{I}^*) \subseteq F(\mathcal{I})$. Since $F(\mathcal{I})$ is closed in ℓ_{∞} , we get $\overline{F(\mathcal{I}^*)} \subseteq F(\mathcal{I})$. Hence it suffices to prove that

$$F(\mathcal{I}) \subseteq \overline{F(\mathcal{I}^*)}$$

Put $B(z, \delta) = \{x \in \ell_{\infty} : ||x - z|| < \delta\}$ for $z \in \ell_{\infty}, \delta > 0$ (ball in ℓ_{∞}). It suffices to prove that for each $y \in F(\mathcal{I})$ and $0 < \delta < 1$ we have

(17)
$$B(y,\delta) \cap F(\mathcal{I}^*) \neq \emptyset.$$

Put $L = \mathcal{I} - \lim y$. Choose an arbitrary $\eta \in (0, \delta)$. Then

$$A(\eta) = \{n : |y_n - L| \ge \eta\} \in \mathcal{I}.$$

Define $x = (x_n)_1^\infty$ as follows: $x_n = y_n$ if $n \in A(\eta)$ and $x_n = L$ otherwise. Then obviously $x \in \ell_\infty$, $\mathcal{I}^* - \lim x = L$ and $x \in B(y, \eta)$. So (17) holds. \Box

It is well known fact that if W is a closed linear subspace of a linear normed space X and $X \neq W$, then W is a nowhere dense set in X (cd. [19], Lemma 1). This fact evokes the question about the porosity of W. We will give the answer to this question in general and show some applications to convergence fields $F(\mathcal{I})$ and $F(\mathcal{I}^*)$.

Lema 4.2 Suppose that X is a linear normed space and W is its closed linear subspace, $W \neq X$. Let

$$s(W) = \sup\{\delta > 0 : \exists B(y, \delta) \subseteq B(Q, 1) \setminus W\}$$

(Q being the zero element of X). Then $s(W) = \frac{1}{2}$.

Proof. We proceed indirectly. Suppose that $s(W) > \frac{1}{2}$. Then there is a $\delta > \frac{1}{2}$ such that for suitable y we have

$$(18) B(y,\delta) \subseteq B(Q,1) \setminus W.$$

There are two possible cases:

$$(\alpha) \|y\| > \frac{1}{2}, \quad (\beta)\|y\| \le \frac{1}{2}.$$

(α) In this case for every $c, \frac{1}{2} < c < \delta$ we have

$$y + \frac{c}{\|y\|} y \in B(y, \delta)$$

Simultaneously we have

$$||y + \frac{c}{||y||}y|| = (1 + \frac{c}{||y||})||y|| = ||y|| + c > 1.$$

Hence $y + \frac{c}{\|y\|} y \notin B(Q, 1)$, which contradicts (18).

(β) In this case $Q \in B(y, \delta) \cap W$ which contradicts (18) too. Hence $s(W) \leq \frac{1}{2}$.

Let $v \in X \setminus W$ and put $\alpha = \inf_{u \in W} ||v - u||$. Obviously $\alpha > 0$. Without loss of generality we can assume $\alpha = \frac{1}{2}$ (if $\alpha \neq \frac{1}{2}$ we can take $\frac{1}{2\alpha}v$ instead of v). For $\epsilon \in (0, \frac{1}{2})$ there exists $u_0 \in W$ such that $\frac{1}{2} \leq ||v - u_0|| < \frac{1}{2} + \epsilon$ by definition of α . Put $y = v - u_0$ and $\delta = \frac{1}{2} - \epsilon$. We show that (18) holds for them. If $z \in B(y, \delta)$ then $||z - y|| < \frac{1}{2} - \epsilon$ and $||z|| \leq ||z - y|| + ||y|| < (\frac{1}{2} - \epsilon) + (\frac{1}{2} + \epsilon) = 1$

1, i.e $B(y, \delta) \subseteq B(Q, 1)$.

Suppose that $z \in B(y, \delta) \cap W$ then $||z - y|| < \frac{1}{2} - \epsilon$. On the other hand $||z - y|| = ||z - (v - u_0)|| = ||(z + u_0) - v|| \ge \frac{1}{2}$, since $z + v_0 \in W$. We get a contradiction, hence $B(y, \delta) \cap W = \emptyset$.

If $\epsilon \to 0^+$ then $\delta \to \frac{1}{2}^-$ and we get $s(W) = \frac{1}{2}$. \Box

Theorem 4.4 Suppose that X is a linear normed space and W is its closed linear subspace, $W \neq X$. Then W is a very porous set in X, in more detail

- a) If $x \in X \setminus W$ then p(x, W) = 1,
- b) If $x \in W$ then $p(x, W) = \frac{1}{2}$.

Proof. The part a) is an easy consequence of the closedness of W in X. We prove b). Since $W \neq X$, there is a $u \in B(Q, 1) \setminus W$ and $\delta > 0$ such that

(19)
$$B(u,\delta) \subseteq B(Q,1) \setminus W$$

First we show that

$$\|u\| + \delta \le 1.$$

We proceed indirectly. Assume that $||u|| + \delta > 1$. Since ||u|| < 1 for a suitable c > 0 we have $1 < ||u|| + c||u|| < ||u|| + \delta$. From this $c||u|| < \delta$ and so

(21)
$$u + cu \in B(u, \delta).$$

On the other hand

$$||u + cu|| = (1 + c)||u|| = ||u|| + c||u|| > 1$$

and so $u + cu \notin B(Q, 1)$, which contradicts (19), (21). Hence (20) holds. Let $x \in W$, $\epsilon > 0$. We show that

(22)
$$B(x + \epsilon u, \epsilon \delta) \subseteq B(x, \epsilon) \setminus W,$$

if (19) holds.

For $z \in B(x + \epsilon u, \epsilon \delta)$ we put $w = z - x - \epsilon u$. Then $||w|| = ||z - x - \epsilon u|| < \epsilon \delta.$ (23)

Further $z - x = \epsilon u + w$, hence by (20), (23)

$$||z - x|| = ||\epsilon u + w|| \le ||\epsilon u|| + ||w|| < \epsilon ||u|| + \epsilon \delta \le \epsilon.$$

From this we get $z \in B(x, \epsilon)$.

We show yet $z \notin W$. In the contrary case we have $z - x = \epsilon u + w \in W$, hence

(24)
$$u + \frac{1}{\epsilon} w \in W.$$

Since $\|\frac{1}{\epsilon}w\| < \delta$ (see (23)), $\frac{1}{\epsilon}w \in B(u, \delta)$. But then by (19) we get $u + \frac{1}{\epsilon}w \notin W$, which contradicts (24).

Hence we have proved the inclusion (22) under the assumption that $B(u, \delta) \subseteq B(Q, 1) \setminus W$. But then by definition of $\gamma(x, \epsilon, W)$ we have $\gamma(x, \epsilon, W) \ge \epsilon \delta$ for each $\delta > 0$ such that (19) holds. From this we get $\gamma(x, \epsilon, w) \ge \epsilon s(W)$,

$$p(x, W) \ge s(W),$$

where $s(W) = \frac{1}{2}$ is introduced in Lemma 4.2.

Since for every ball $B(y, \delta)$, $\delta > \frac{1}{2}$, $B(y, \delta) \subseteq B(Q, 1)$ we have $Q \in B(y, \delta)$, the assertion of Theorem 4.4 follows from Lemma 4.2. \Box

We will apply Theorem 4.4 to the study of the structure of convergence fields $F(\mathcal{I}), F(\mathcal{I}^*), \mathcal{I}$ being an admissible ideal in N. We take the linear normed space ℓ_{∞} of all bounded real sequences with the sup-norm

$$||x|| = \sup_{n=1,2,\dots} |x_n|, \ x = (x_n)_1^{\infty} \in \ell_{\infty}.$$

By Theorem 4.1. the convergence field $F(\mathcal{I})$ coincides with ℓ_{∞} if and only if \mathcal{I} is a maximal ideal. Hence it is convenient to deal with $F(\mathcal{I})$ under the assumption that \mathcal{I} is not maximal. In this case we have $F(\mathcal{I}) \subset \ell_{\infty}$ and by Theorem 4.2 the set $F(\mathcal{I})$ is a closed linear subspace of ℓ_{∞} .

The following theorem is an easy consequence of Theorem 4.4.

Theorem 4.5 Suppose that \mathcal{I} is an admissible ideal in N which is not maximal. Then the following holds:

- 1. If $x \in \ell_{\infty} \setminus F(\mathcal{I})$, then $p(x, F(\mathcal{I})) = 1$.
- 2. If $x \in F(\mathcal{I})$, then $p(x, F(\mathcal{I})) = \frac{1}{2}$.

Since $F(\mathcal{I}^*) \subseteq F(\mathcal{I}) = \overline{(F(\mathcal{I}^*))}$ (see Theorem 3.1., Theorem 4.3.), we get

Corollary 4.1 Under the condition of Theorem 4.5. we have:

1. If
$$x \in \ell_{\infty} \setminus F(\mathcal{I})$$
, then $p(x, F(\mathcal{I}^*)) = 1$

2. If $x \in F(\mathcal{I})$, then $p(x, F(\mathcal{I}^*)) = \frac{1}{2}$.

References

- Alexander, R. : Density and multiplicative structure of sets of integers. Acta Arithm. 12 (1967), 321–332.
- [2] Brown, T.C Freedman, A.R. : The uniform density of sets of integers and Fermat's Last Theorem. Compt. Rendus Math. L'Acad. Sci. 12 (1990), 1–6.
- [3] Buck, R.C. : The measure theoretic approach to density. Amer J. Math 68 (1946), 560–580.
- [4] Buck, R.C. : Generalized asymptotic density. Amer. J. Math 75 (1953), 335–346.
- [5] Červeňanský, J. : Statistical convergence and statistical continuity. Zborník vedeckých prác MtF STU 6 (1998), 207–212.
- [6] Connor, J.S.: The statistical and strong *p*-Cesàro convergence of sequences. Analysis 8 (1988), 47–63.
- [7] Connor, J.S. : Two valued measures and summability. Analysis 10 (1990), 373–385.
- [8] Connor, J. Kline, J. : On statistical limit points and the consistency of statistical convergence. J. Math. Anal. Appl. 197 (1996), 392–399.
- [9] Fast, H.: Sur la convergence statistique. Coll. Math. 2 (1951), 241–244.
- [10] Freedman, A.R. Sember, J.J. : Densities and summability. Pacif. J. Math. 95 (1981), 293-305.
- [11] Fridy, J.A.: On statistical convergence. Analysis 5 (1985), 301–313.
- [12] Fridy, J.A. : Statistical limit points. Proc. Amer. Math. Soc. 118 (1993), 1187-1192.
- [13] Kostyrko, P. Mačaj, M. Šalát, T. Strauch, O. : On statistical limit points (to appear in Proc. Amer. Math. Soc.).
- [14] Kuratowski, C. : Topologie I. PWN Warszawa, 1958.
- [15] Mahaman, D. : Finitely additive measures on the integers. Sankhya: Indian J. Stat. 38A (1976), 44–54.
- [16] Mikusiánski, P. : Axiomatic theory of convergence (Polish). Univ. Slaski. Prace Matem. 12 (1982), 13–21.
- [17] Miller, H.I. : A measure theoretical subsequence characterization of statistical convergence. Trans. Amer. Math. Soc. 347 (1995), 1811–1819.
- [18] Nagata, J. : Modern General Topology. Noth-Holland Publ. Comp. Amsterdam-London, 1974.

- [19] Neubrun, T. Smítal, J. Šalát, T. : On the structure of the space M(0, 1). Rev. Roman. Math. Pures et Appl. 13 (1968), 377-386.
- [20] Ostmann, H.H. : Additive Zahlentheorie I. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956.
- [21] Petersen, G.M. : Regular Matrix Transformations. Mc Graw-Hill. London - New York - Toronto - Sydney, 1966.
- [22] Powell, B.J. Šalát, T. : Convergence of subseries of the harmonic series and asymptotic densities of sets of positive integers. Publ. Inst. Math. (Beograd) 50 (64) (1991), 60–70.
- [23] Šalát, T. : On statistically convergent sequences of real numbers. Math. Slov. 30 (1980), 139–150.
- [24] Šalát, T. Tijdeman, R. : Asymptotic densities of sets of positive integers. Math. Slov. 33 (1983), 199–207.
- [25] Šalát, T. Tijdeman, R. : On density measures of sets of positive integers. Coll. Math. Soc. J. Bólyai 34. Topics in Classicall Number Theory. Budapest, 1981, 1445–1457.
- [26] Schoenberg, I.J.: The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959), 361–375.
- [27] Thomson, B.S. : Real Functions. Springer-Verlag, Berlin-Göttingen-Heidelberg-New York-Tokyo, 1985.
- [28] Zajíček, L. : Porosity nad σ -porosity. Real Anal. Exchange 13 (1987–88), 314–350.

The work on this paper was supported by GRANT VEGA 1/4314/97, GRANT VEGA 1/7173/20