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Statistical convergence and I-convergence

Abstract

In this paper we introduce the concept of I-convergence of sequences
of real numbers based on the notion of the ideal of subsets of N . The I-
convergence gives a unifying look on several types of convergence related
to the statistical convergence. In a sense it is equivalent to the concept of
µ-statistical convergence introduced by J. Connor (µ being a two valued
measure defined on a subfield of 2N ).

2000 Mathematics Subject Classifications: 40A05.

Introduction

This paper comes out from the concept of statistical convergence which is in-
troduced in [9] and [26] and further developed in other papers (cf e.g. [5], [6],
[8], [11], [12], [13], [17]). Several new types of convergence of sequences ap-
peared, many of them are related to the statistical convergence. The concept
of I-convergence gives a unifying approach to these types of convergence.

Definition and Notations

Recall the concept of asymptotic density of set A ⊆ N (cf. [20], p. 71, 95-96).
If A ⊆ N = {1, 2, . . . , n, . . .}, then χA denotes characteristic function of the

set A, i.e. χA(k) = 1 if k ∈ A and χA(k) = 0 if k ∈ N \ A. Put dn(A) =
1
n

∑n
k=1 χA(k), δn(A) = 1

Sn

∑n
k=1

χA(k)
k (n = 1, 2, . . .), where Sn =

∑n
k=1

1
k

(n = 1, 2, . . .).
Then the numbers d(A) = lim infn→∞dn(A), d(A) = lim supn→∞dn(A) are

called the lower and upper asymptotic density of A, respectively.
Similarly, the numbers δ(A) = lim infn→∞δn(A), δ(A) = lim supn→∞δn(A)

are called the lower and upper logarithmic density of A, respectively.
If there exist limn→∞dn(A) = d(A) and limn→∞δn(A) = δ(A) then d(A)

and δ(A) are called the asymptotic and logarithmic density of A, respectively.
It is well-known fact, that for each A ⊆ N

(1) d(A) ≤ δ(A) ≤ δ(A) ≤ d(A)
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(cf. [20], p. 95).
Hence if exists d(A), then δ(A) exists as well and d(A) = δ(A).
Note that number d(A), d(A), d(A), δ(A), δ(A), δ(A) belong to the interval

[0, 1].
Owing to the well-known formula

(2) Sn =
∑n

k=1
1
k = ln n + γ + o( 1

n ), n →∞,

(γ is the Euler constant), we can write lnn instead of Sn (n > 1) in the definition
of δn(A) (cf [20], p. 45).

Recall the concept of statistical convergence (cf. [9], [26]):
Definition A. A sequence x = (xn)∞1 of real numbers is said to be statis-

tically convergent to ξ ∈ R provided that for each ε > 0 we have d(A(ε)) = 0,
where A(ε) = {n ∈ N : |xn − ξ| ≥ ε}.

In what follows we will use the concept of an ideal and filter of sets.
Definition B. Let X 6= ∅. A class S ⊆ 2X of subsets of X is said to be

an ideal in X provided that S is additive and hereditary , i.e if S satisfies these
conditions:

(i) ∅ ∈ S,

(ii) A,B ∈ S ⇒ A ∪B ∈ S,

(iii) A ∈ S, B ⊆ A ⇒ B ∈ S

(cf. [14], p. 34).
An ideal is called non-trivial if X 6∈ S.
Definition C. Let X 6= ∅. A non-empty class F ⊆ 2X of subsets of X is

said to be a filter in X provided that:

(j) ∅ 6∈ F ,

(jj) A,B ∈ F ⇒ A ∩B ∈ F ,

(jjj) A ∈ F , B ⊇ A ⇒ B ∈ F

(cf. [18], p. 44).
The following proposition expresses a relation between the notions of ideal

and filter:
Proposition A. Let S be a non-trivial ideal in X, X 6= ∅. Then the class

F(S) = {M ⊆ X : ∃A ∈ S : M = X \A}

is a filter on X (we will call F(S) the filter associated with S).
The proof of Proposition A is easy and so it can be left to the reader.

Definition D. A non-trivial ideal S in X is called admissible if {x} ∈ S for
each x ∈ X.

We will also use the concept of porosity of subsets of a metric space (cf. [27],
pp. 183-212, [28]).
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Let (Y, ρ) be a metric space, M ⊆ Y . Let B(y, δ) (y ∈ Y, δ >)) denote the
ball with centre y and radius δ, i.e. B(y, δ) = {x ∈ Y : ρ(x, y) < δ}. For y ∈ Y ,
δ > 0 we put

γ(y, δ, M) = sup{t > 0 : ∃z ∈ B(y, δ) : [B(z, t) ⊆ B(y, δ)] ∧ [B(z, t) ∩M = ∅]}.

If such a t > 0 does not exist, then we put γ(y, δ, M) = 0.
The numbers

p(y, M) = lim inf
δ→0+

γ(y, δ, M)
δ

, p(y, M) = lim sup
δ→0+

γ(y, δ, M)
δ

are called the lower and upper porosity of set M at y. If for all y ∈ Y we have
p(y, M) > 0 then M is said to be porous in Y . Obviously every set porous in
Y is nowhere dense in Y .

If p(y, M) ≥ c > 0 then M is said to be c-porous at y and it is said to be
c-porous in Y if it is c-porous at each y ∈ Y .

If p(y, M) > 0 then M is said to be very porous at y. If M is very porous
at y for each y ∈ Y , then M is said to be very porous in Y . The concept of
very c-porous set at y and very c-porous set in y can be defined analogously. If
p(y, M) = p(y, M)(= p(y, M)) then the number p(y, M) is called the porosity
of M at y. If p(y, M) = 1 then M is said to be strongly porous at y.

The paper is divided into four sections. In the first one the concept of
I-convergence is introduced and its fundamental properties are studied. It is
shown here that this concept gives a unifying approach to many various types
of convergence related to statistical convergence.

In the second section fundamental arithmetical properties of this convergence
are established.

In the third section a convergence ( so called I∗-convergence ) is introduced.
This is a convergence parallel to I-convergence . Necessary and sufficient con-
ditions are given for equivalence of these two types of convergence.

In the fourth section the convergence fields of I-convergence and I∗-convergence
are investigated.

1 I-convergence of sequences of real numbers -
examples

The concept of statistical convergence and the study of similar types of conver-
gence (cf. [3], [4], [17], [26]) lead us to introducing the notion of I-convergence
of sequences . This notion gives a unifying look at many types of convergence
related to statistical convergence.

Definition 1.1 Let I be a non-trivial ideal in N . A sequence x = (xn)∞1
of real numbers is said to be I-convergent to ξ ∈ R if for every ε > 0 the set
A(ε) = {n : |xn − ξ| ≥ ε} belongs to I.
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If x = (xn)∞1 is I-convergent to ξ we write I − lim xn = ξ (or I − lim x = ξ)
and the number ξ is called the I-limit of x = (xn)∞1 .

A question arises whether the concept of I-convergence satisfies some usual
axioms of convergence (cf. [16]). The most known axioms of convergence are
the following axioms (formulated for I-convergence ):

(S) Every stationary sequence x = (ξ, ξ, . . . , ξ, . . .) I-converges to ξ.

(H) The uniqueness of limit: If I − lim x = ξ and I − lim x = η, then ξ = η.

(F) If I − lim x = ξ, then for each subsequence y of x we have I − lim y = ξ.

(U) If each subsequence y of a sequence x has a subsequence z I-convergent to
ξ, then x is I-convergent to ξ.

Theorem 1.1 Let I be an admissible ideal in N . Then
(i) I-convergence satisfies the axioms (S), (H) and (U).
(ii) if I contains an infinite set, then I-convergence does not satisfy the

axiom (F ).

Remark. If an admissible ideal I contains no infinite set, then I coincides
with the class of all finite subsets of N and the I-convergence is equal to the
usual convergence in R, therefore it satisfies the axiom (F) (see ideal If in (III)
in what follows).

Proof of Theorem 1.1. It is obvious that I-convergence (I being an ad-
missible ideal) satisfies the axiom (S). We prove that it satisfies (H) as well.Suppose
that I − limxn = ξ, I − limxn = η, ξ 6= η. Choose

(3) ε ∈ (0, |ξ−η|
2 ).

Then by assumption and Proposition A the sets N \A(ε) = {n : |xn−ξ| < ε},
N \ B(ε) = {n : |xn − η| < ε} belong to the filter F(I). But then the set
(N \ A(ε)) ∩ (N \ B(ε)) belongs to F(I), too. Hence there is an m ∈ N such
that |xm − ξ| < ε, |xm − η| < ε. From this |ξ − η| < 2ε which is a contradiction
to (3).

We prove that I-convergence satisfies the axiom (U). We prove the following
statement equivalent to (U):

If I − limxn = ξ does not hold, then there exist a subsequence y of x such
that no subsequence z of y is I-convergent to ξ.

By Definition 1.1 there exist an ε0 such that

(4) A(ε0) = {n : |xn − ξ| ≥ εo} 6∈ I.

Then A(ε0) is an infinite set since I is an admissible ideal. Let

A(ε0) = {n1 < n2 < . . . < nk < nk+1 < . . .} ⊆ N.

Put yk = xnk
, (k = 1, 2, . . .). Then y = (yk)∞1 is a subsequence of x and by (4):

(4∗) |yk − ξ| ≥ ε0, (k = 1, 2, . . .).
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From (4∗) we see that no subsequence z = (zm)∞1 of y can be I-convergent
, since in the opposite case the set N would belong to I.

(ii)Suppose that an infinite set A = {n1 < n2 < . . . < nk < . . .} ⊆ N
belongs to I. Put

B = N \A = {m1 < m2 < . . . < mk < . . .}.

The set B is again infinite because in the opposite case N would belong to I.
Define the sequence x = (xn)∞1 as follows

xnk
= 0, xmk

= 1 (k = 1, 2, . . .).

Obviously I − lim xn = 1.. Simultaneously the subsequence y = (xnk
)∞k=1 of x

is stationary and so I − lim y = 0 (see axiom (S)). Hence I-convergence does
not satisfy the axiom (F). 2

In what follows we introduce several examples of I-convergence .
(I) Put I0 = {∅}. This is the minimal non-empty non-trivial ideal in N .

Obviously a sequence is I0-convergent if and only if it is constant.
(II) Let ∅ 6= M ⊆ N , M 6= N . Put IM = 2M . Then IM is a non-trivial ideal

in N . A sequence x = (xn)∞1 is IM -convergent if and only if it is constant on
N \M , i.e. if there is a ξ ∈ R such that xn = ξ for each n ∈ N \M . (Obviously
(I) is a special case of (II) for M = ∅.)

(III) Denote by If the class of all finite subsets of N . Then If is an ad-
missible ideal in N and If -convergence coincides with the usual convergence in
R.

(IV) Put Id = {A ⊆ N : d(A) = 0}. Then Id is an admissible ideal in N
and Id-convergence coincides with the statistical convergence.

(V) Put Iδ = {A ⊆ N : δ(A) = 0}. Then Iδ is an admissible ideal in N
and we will call the Iδ-convergence the logarithmic statistical convergence. If
Iδ − limxn = ξ then Id − limxn = ξ (see (1)). The converse is not true.

(VI) The examples (IV), (V) can be generalized. Choose cn > 0, (n =
1, 2, . . .) such that

∑∞
n=1 cn = +∞. Put

hm(A) =

∑
i≤m,i∈A ci∑m

i=1 ci
, (m = 1, 2, . . .).

Denote by h(A) the limit limm→∞hm(A) (if it exists) (cd. [1]). Then Ih =
{A ⊆ N : h(A) = 0} is an admissible ideal in N and Id-convergence and
Iδ-convergence are special cases of Ih-convergence.

(VII) Denote by u(A) the uniform density of the set A (cf [2]). then Iu =
{A ⊆ N : u(A) = 0} is an admissible ideal and Iu-convergence will be called
the uniform statistical convergence.

(VIII) A wide class of I-convergences can be obtained in the following man-
ner: Let T = (tnk) be a non-negative regular matrix (cf. [21], p. 8). Then for
each A ⊆ N the series

d
(n)
T (A) =

∞∑
k=1

tnkχA(k) (n = 1, 2, . . .)
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converge. If there exists

dT (A) = limn→∞d
(n)
T (A)

then dT (A) is called the T -density of A (cf. [17]). By the regularity of T we
have

limn→∞

∞∑
k=1

tnk = 1

and from this we can see that dT (A) ∈ [0, 1]. Put IdT
= {A ⊆ N : dT (A) = 0}.

Then IdT
is an admissible ideal in N and IdT

-convergence contains as special
case the Ih-convergence from (VI) (choosing tnk = ck∑

i=1
nci

for k ≤ n, tnk = 0

for k > n, n = 1, 2, . . .).
The IdT

-convergence includes also the φ-convergence of Schoenberg (cf. [26])
(choosing tnk = φ(k)

n for k ≤ n, k divides n, tnk = 0 for k ≤ n, k does not divide
n and tnk = 0 for k > n, n = 1, 2, . . .), φ being the Euler function.

(IX) Let υ be a finite additive measure defined on a class U of subsets
of N (cf. [7], [10], [15], [23], [24], [25]) which contain all finite subsets of N
and υ({n}) = 0 for each n ∈ N , υ(A) ≤ υ(B) if A,B ∈ U , A ⊆ B. Then
Iυ = {A ⊆ N : υ(A) = 0} is an admissible ideal in N . The Id- and Iδ-
convergences are included in Iυ-convergence. Further for υ we can take the
measure density of R. C. Buck (cf. [3]).

(X) Let µm : 2N → [0, 1], m = 1, 2, . . . be finitely additive measures defined
on 2N . If there exists µ(A) = limm→∞µm(A), then µ(A) is called the measure
of A. Obviously µ is a finitely additive measure defined on a class E ⊆ 2N , so
Iµ = {A ⊆ N : µ(A) = 0} is an admissible ideal in N . For µm we can take dm,
δm (see Definitions and Notations).

(XI) Let N =
⋃∞

j=1 Dj be a decomposition of N (i.e. Dk ∩ Dl = ∅ for
k 6= l), assume that Dj (j = 1, 2, . . .) are infinite sets (e.g we can choose Dj =
{2j−1(2s − 1) : s = 1, 2 . . .}). Denote by J the class of all A ⊆ N such that
A intersects only a finite number of Dj . Then it is easy to see that J is an
admissible ideal in N .

(XII) In [11] the concept of density ρ of sets A ⊆ N is axiomatically intro-
duced. Using this concept we can define the ideal Iρ = {A ⊆ N : ρ(A) = 0}
and obtain Iρ-convergence as a generalization of statistical convergence.

(XIII) We introduce yet the following admissible ideal Ic in N connected with
the convergence of subseries of the harmonic series : Ic = {A ⊆ N :

∑
a∈A a−1 <

+∞} ( for A = ∅ we put
∑

a∈A a−1 = 0). Then from Ic-convergence the Id-
convergence follows since Ic ⊂ Id (cf [22]).

In the end of this section we introduce some remarks on the relation between
our I-convergence and µ-statistical convergence of J. Connor (cf. [7]). The
approach of J. Connor to generalization of statistical convergence is based on
using a finite additive measure µ defined on a field Γ of subsets of N with
µ({k}) = 0 for each k ∈ N and such that A,B ∈ Γ, A ⊆ B implies µ(A) ≤ µ(B).
Put

I = {A ∈ Γ : µ(A) = 0}.
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Then it is easy to verify that I is an admissible ideal in N and F(I) = {B ⊆
N : µ(B) = 1}.

Conversely, if I is an admissible ideal in N , then we put

Γ = I ∪ F(I).

Then Γ is a field (algebra) of subsets of N . Define µ : Γ → {0, 1} as follows:

µ(M) = 0 if M ∈ I,

µ(M) = 1 if M ∈ F(I).

This definition is correct since it is easy to see that I ∩ F(I) = ∅. Further
µ({k}) = 0 since I is admissible, the monotonity and additivity of µ can be
easily checked.

Hence these two approaches to generalization of statistical convergence seem
to be equivalent in such a sense that each of them can be replaced (by the method
mentioned above) by other approach.

2 Fundamental arithmetical properties of I-convergence

We show that I-convergence has many arithmetical properties similar to prop-
erties of the usual convergence.

Theorem 2.1 Let I be a non-trivial ideal in N .

(i) If I − lim xn = ξ, I − lim yn = η, then I − lim(xn + yn) = ξ + η.

(ii) If I − lim xn = ξ, I − lim yn = η, then I − lim(xnyn) = ξη.

(iii) If I is an admissible ideal in N , then limn→∞xn = ξ implies I−lim xn = ξ.

Proof . (i) Let ε > 0. Then the inclusion

(5) {n : |xn + yn − (ξ + η)| ≥ ε} ⊆ {n : |xn − ξ| ≥ ε
2} ∪ {n : |yn − η| ≥ ε

2}

can be easily verified. The sets on the right-hand side of (5) belong to I. By
Definition B the set on the left-hand side of (5) belongs to I, too.

(ii) Let ε > 0. The following inclusion can be checked.

(6) {n : |xnyn − ξη| < ε} = {n : |xn(yn − η) + η(xn − ξ)| < ε} ⊇ {n : {|xn| <
|ξ|+ 1} ∩ {n : |yn − η| < ε

2(|ξ|+1} ∩ {n : |xn − ξ| < ε
2|η|}.

Observe that if |xn − ξ| < 1, then |xn| = |xn − ξ + ξ| ≤ |xn − ξ|+ |ξ| < 1 + |ξ|.
Consequently, if ε

2|η| ≤ 1

{n : |xn| < |ξ|+ 1} ⊇ {n : |xn − ξ| < 1} ⊇ {n : |xn − ξ| < ε

2|η|
}.

So from (6) we get
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(6∗) {n : |xnyn − ξη| < ε} ⊇ {n : |xn − ξ| < ε
2|η|} ∩ {n : |yn − η| < ε

2(|ξ|+1)}.

By the assumption each of the sets on the right-hand side of (6∗) belongs
to F(I), from this it easily follows that the set on the left-hand side of (6∗)
belongs to F(I). But then its complement {n : |xnyn − ξη| ≥ ε} belongs to I.

(iii) This part of theorem follows from the fact that If is contained as a
subset in every admissible ideal. 2

3 I-convergence and I∗-convergence

In connection with Definition 1.1 we introduce yet another type of convergence
which corresponds to convergence in µ-density of J. Connor (cf. [7])

Definition 3.1 Let I be an admissible ideal in N . A sequence x = (xn)∞1
of real numbers is said to be I∗-convergent to ξ ∈ R (shortly I∗ − limxn = ξ
or I∗ − limx = ξ) if there is a set H ∈ I, such that for M = N \H = {m1 <
m2 < . . .} we have

(7) limk→∞xmk
= ξ.

Remark. We write also limn→∞,n∈M xn = ξ instead of (7).
We now have two types of “ideal convergence”. For every admissible ideal

I the following relation between them holds:

Theorem 3.1 Suppose that I is an admissible ideal in N . If I∗−lim xn = ξ
then I − lim xn = ξ.

Proof . By assumption there is a set H ∈ I such that (7) holds, where
M = N \H = {m1 < m2 < . . .}. Let ε > 0. By (7) there is a ko ∈ N , such that
|xmk

− ξ| < ε for k > k0. Put A(ε) = {n : |xn − ξ| ≥ ε}. Then

(8) A(ε) ⊆ H ∪ {m1,m2, . . . ,mk0}.

Since I is admissible and H ∈ I, the union on the right-hand side of (8) belongs
to I and so A(ε) ∈ I. 2

Remark. For some ideals the converse of Theorem 3.1 holds (e.g for Id in
(IV ), cf [23]). In [10] it is proved that (in our terminology) the converse of
Theorem 3.1. does not hold for Iu-convergence ( see (V II)). We now give a
new example of such an ideal.

Example 3.1. Put I = J (see (XI)). Define x = (xn)∞1 as follows: For
n ∈ Dj we put xn = 1

j (j = 1, 2, . . .). Then obviously I − lim xn = 0. But we
show that I∗ − lim xn = 0 does not hold.

If namely H ∈ I then there is (by definition of I) a p ∈ N such that

H ⊆ D1 ∪D2 ∪ . . . ∪Dp.
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But then Dp+1 ⊆ N \H and so by notation used in proof of Theorem 3.1. we
have xmk

= 1
p+1 for infinitely many of k’s. Therefore limk→∞xmk

= 0 cannot
be true.

In what follows we give a necessary and sufficient condition for equivalency
of I and I∗-convergences. This condition is similar to the condition (APO) in
[7], [10].

Definition 3.2 An admissible ideal I in N is said to satisfy the condition
(AP) if for every countable system {A1, A2, . . .} of mutually disjoint sets be-
longing to I there exist sets Bj ⊆ N (j = 1, 2, . . .) such that the symmetric
differences Aj ÷Bj (j = 1, 2, . . .) are finite and B =

⋃∞
j=1 Bj belongs to I.

Remark. Observe that each Bj from previous definition belongs to I.

Theorem 3.2 From I − lim xn = ξ the statement I∗ − lim xn = ξ follows
if and only if I satisfies the condition (AP).

Corollary 3.1 From Theorems 3.1. and 3.2 we obtain : The equivalency
I − lim xn = ξ ⇔ I∗ − limxn = ξ holds if and only if I satisfies the condition
(AP).

Proof of Theorem 3.2. 1) Suppose that I satisfies the condition (AP).
Let I − lim xn = ξ. Then for every ε > 0 the set A(ε) = {n : |xn − ξ| ≥ ε}

belongs to I.
Consequently each of the following sets Aj (j = 1, 2, . . .) belongs to I

A1 = {n : |xn − ξ| ≥ 1} = A(1),

Ak = {n :
1
k
≤ |xn − ξ| < 1

k − 1
} = A(

1
k

) \A(
1

k − 1
).

Obviously Ai ∩Aj = ∅ for i 6= j.
Since I satisfies (AP) there are sets Bj ⊆ N such that Aj ÷ Bj is a finite

set (j = 1, 2, . . .) and B =
⋃∞

j=1 Bj ∈ I.
It suffices to prove that

(9) limn→∞, n∈M xn = ξ,

where M = N \B.
Let η > 0. Choose a k ∈ N such that 1

k+1 < η. Then

{n : |xn − ξ| ≥ η} ⊆
k+1⋃
j=1

Aj .

The set on the right hand-side belongs to I by the additivity of I. Since Aj÷Bj

is finite (j = 1, 2, . . . , k + 1), there is an n0 ∈ N , such that

k+1⋃
j=1

Bj ∩ (n0,+∞) =
k+1⋃
j=1

Aj ∩ (n0,+∞).
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If now n 6∈ B, n > n0 then n 6∈
⋃k+1

j=1 Bj and so n 6∈
⋃k+1

j=1 Aj . But then
|xn − ξ| < 1

k+1 < η. Hence (9) hold.
2) Suppose that from I − lim xn = ξ the statement I∗ − limxn = ξ follows.

We prove that I fulfils the condition (AP).
Let {A1, A2, . . .} be a class of disjoint sets of I. Define x = (xn)∞1 as follows

xn = 1
j for n ∈ Aj (j = 1, 2, . . .), xn = 0 for n ∈ N \

⋃
j Aj .

First of all we show that I − lim xn = 0.
Let ε > 0. Choose an m such that 1

m < ε. Then

A(ε) = {n : |xn − ξ| ≥ ε} ⊆ A1 ∪A2 ∪ . . . ∪Am.

From this we see that A(ε) ∈ I, hence I − limxn = 0. Consequently by the
assumption we have

I∗ − limxn = 0.

But then there is a set B ∈ I such that

(10) limn→∞,n∈N\B xn = 0.

Put Bj = Aj∩B, (j = 1, 2, . . .). It suffices to show that Aj÷Bj (j = 1, 2, . . .)
is finite. Indeed if this is true, then

∞⋃
j=1

Bj =
∞⋃

j=1

(B ∩Aj) = B ∩
∞⋃

j=1

Aj ⊆ B.

Since B ∈ I, we see that
⋃

j Bj ∈ I.
Put N \ B = {m1 < m2 < . . .}. Then by (10) limk→∞xmk

= 0. From this
we see that the set Aj has only a finite number of elements common with the
set N \B.

Aj ÷Bj ⊆ Aj ∩ (N \B),

we have Aj ÷Bj is finite. 2

4 Convergence fields of I-convergence and I∗-
convergence

The I-convergence and also I∗-convergence can be considered as a summability
methods that (in the case of admissibility of I) are regular. Denote by F (I)
and F (I∗) the convergence field of I- and I∗-convergence , respectively. Hence
in detail

F (I) = {x = (xn) ∈ `∞ : there exists I − limxn ∈ R},

F (I∗) = {x = (xn) ∈ `∞ : there exists I∗ − limxn ∈ R}.
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These convergence fields will be studied in what follows as subsets of the
linear normed space `∞ of all bounded real sequence with the sup -norm

‖x‖ = sup
n=1,2,...

|xn|, x = (xn)∞1 ∈ `∞.

As we have already seen, F (I) is a linear subspace of `∞ (see Theorem 2.1.).
The similar fact for F (I∗) is obvious.

We shall see that the properties of F (I) and F (I∗) depend on the ideal I.
therefore we shall study at first some properties of ideals, mainly maximality of
ideals in N .

The class Z of all admissible ideals in N can be partially ordered by inclusion.
If Z0 ⊆ Z is a non-empty (linearly) ordered subclass of Z, then it can be easily
checked that

⋃
Z0 is again an admissible ideal in N , which is an upper bound

for Z0. Thus we can use the Zorn lemma which gives the existence of a maximal
ideal in Z.

We give in what follows a characterization of maximal admissible ideals in
N .

Lema 4.1 An ideal I0 in N is a maximal admissible ideal in N if and only
if for every A ⊆ N following statement holds:

(V ) (A ∈ I0) ∨ (N \A ∈ I0).

Proof . 1. Suppose that I0 satisfies (V ). We show that I0 is maximal
admissible. Suppose in contrary that there is an admissible ideal I1 in N such
that I1 ⊃ I0. Then there is a set A ⊆ N , such that A ∈ I1 \ I0. Hence A 6∈ I0

and consequently by (V ) we have N \ A ∈ I0. But then A ∈ I1, N \ A ∈ I1

which gives N ∈ I1- a contradiction.
2. Suppose that I0 is a maximal admissible ideal. We prove (V ). We proceed

indirectly. Then there is a set A ⊆ N such that we have:

(11) (A 6∈ I0) ∧ (N \A 6∈ I0).

Construct the class K = {X ⊆ N : X ∩A ∈ I0}. We show that

a) K ⊇ I0,

b) K is an admissible ideal in N .

a) Let X ∈ I0. Then X ∩A ⊆ X. Therefore X ∩A ∈ I0 and so X ∈ K.
b) Evidently N 6∈ K and K contains each singleton {n}, n ∈ N .
Further if X1, X2 ∈ K, then X1∩A, X2∩A ∈ I0, therefore (X1∪X2)∩A =

(X1 ∩A) ∪ (X2 ∩A) belongs to I0 and X1 ∪X2 belongs to K.
Let X ∈ K and X1 ⊆ X. Then X1 ∩ A ⊆ X ∩ A ∈ I0, hence X1 ∩ A ∈ I0,

X1 ∈ K.
So we have proved that K is an admissible ideal in N and K ⊇ I0. By max-

imality of I0 we have I0 = K. Observe that N \A ∈ K as (N \A)∩A = ∅ ∈ I0.
But this contradicts (11). 2

We return to linear subspaces F (I), F (I∗). The “magnitude” of F (I) de-
pends very simply on I. This fact is shown in the following statement:
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Theorem 4.1 Let I be an admissible ideal in N . Then F (I) = `∞ if and
only if I is a maximal admissible ideal in N .

Proof . 1. Suppose that I is a maximal admissible ideal in N . Let x =
(xn)∞1 ∈ `∞. We show that there exists I − lim xn ∈ R.

Since x ∈ `∞ there are numbers a, b ∈ R such that a ≤ xn ≤ b, (n = 1, 2, . . .).
Put A1 = {n : a ≤ xn ≤ a+b

2 }, B1 = {n : a+b
2 ≤ xn ≤ b}. Then A1 ∪ B1 = N .

Since I is an admissible ideal both sets A1, B1 cannot belong to I. Thus at least
one of them does not belong to I. Denote it by D1 and interval corresponding
to it denote by I1. So we have (infinite) set D1 and interval I1 such that
D1 = {n : xn ∈ I1} 6∈ I.

So we can (by induction) construct a sequence of closed intervals I1 ⊇ I2 ⊇
. . . ⊇ In ⊇ . . ., In = [an, bn], (n = 1, 2, . . ., limn→∞(an − bn) = 0 and sets
Dk = {n : xn ∈ Ik} 6∈ I (k = 1, 2, . . .).

Let ξ ∈
⋂∞

k=1 Ik and ε > 0. Construct the set M(ε) = {n : |xn − ξ| < ε}.
For sufficiently large m we have Im = [am, bm] ⊆ (ξ − ε, ξ + ε). Since Dm 6∈ I
we see that M(ε) 6∈ I.

Since M(ε) 6∈ I, the maximality of I implies (see Lemma 4.1.) that A(ε) =
{n : |xn − ξ| ≥ ε} = N \M(ε) ∈ I. Hence I − limxn = ξ.

2. Suppose that I is not maximal. Then by Lemma 4.1. there is a set
M = {m1 < m2 < . . .} ⊆ N such that M 6∈ I, N \M 6∈ I. Define the sequence
x = (xn)∞1 as follows: xn = χM (n) (n = 1, 2, . . .). Then xn ∈ `∞. We show
that I − limxn does not exist. This follows from the fact that for every ξ ∈ R
and sufficiently small ε the set {n : |xn − ξ| ≥ ε} is equal to M or N \M or to
whole N and neither of these belongs to I. 2

Remark. The previous theorem cannot be extended for unbounded se-
quences. This is shown in the following:

Proposition 4.1 Let I be an admissible ideal. Then there exists an un-
bounded sequence of real numbers for which I − lim x does not exist.

Proof . It is easy to see that sequence xn = n, n = 1, 2, . . . is a wanted exam-
ple. 2

In what follows we will deal with topological properties of convergence fields
F (I), F (I∗) and the relation between them.

Theorem 4.2 Suppose that I is an admissible ideal in N . Then F (I) is a
closed linear subspace of `∞.

Proof . Let x(m) = (x(m)
j )∞j=1 ∈ F (I) (m = 1, 2, . . .), limm→∞x(m) = x,

x = (xj)∞1 in `∞, i.e. limm→∞‖x(m) − x‖ = 0. We prove that x ∈ F (I).
By the assumption there exist I − lim x(m) = ξm ∈ R, (m = 1, 2, . . .).
The proof will be realized in two steps:

1. We prove that (ξm)∞1 is a Cauchy sequence (so that there exists limm→∞ξm =
ξ ∈ R).
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2. We prove that I − limx = ξ.

1) Let η > 0. From limm→∞x(m) = x we deduce that (x(m))∞1 is a Cauchy
sequence in `∞. Therefore there is an m0 ∈ N such that for each u, v > m0 we
have

(12) ‖x(u) − x(v)‖ < η
3 .

Fix u, v > m0. Note that sets U(η
3 ) = {j : |x(u)

j − ξu| < η
3}, V (η

3 ) = {j :

|x(v)
j − ξv| < η

3} belong to F(I), thus their intersection is non-void. For element
s ∈ U(η

3 ) ∩ V (η
3 ) we have

(13) |x(u)
s − ξu| < η

3 , |x(v)
s − ξv| < η

3 .

By a simple estimate we get from (12), (13):

|ξu − ξv| ≤ |ξu − x(u)
s |+ |x(u)

s − x(v)
s |+ |x(v)

s − ξv| <
η

3
+

η

3
+

η

3
= η.

Hence (ξm)∞1 is a Cauchy sequence and so there exists ξ = limm→∞ξm ∈ R.
2) Let ε > 0. Choose v0 such that for v > v0 we have simultaneously

(14) |ξv − ξ| < ε
3 |, ‖x

(v) − x‖ ≤ ε
3 .

For each n ∈ N we have

(15) |xn − ξ| ≤ |xn − x
(v)
n |+ |x(v)

n − ξv|+ |ξv − ξ|.

Let A(ε) = {n : |xn − ξ| ≥ ε}, CA(ε) = {n : |xn − ξ| < ε}, Av( ε
3 ) = {n :

|x(v)
n − ξv| ≥ ε

3}, CAv( ε
3 ) = {n : |x(v)

n − ξv| < ε
3}. Then by (14), (15) we get

|xn − ξ| < ε for every n ∈ Av( ε
3 ). So we have

(16) CAv( ε
3 ) ⊆ CA(ε).

Note that Av( ε
3 ) ∈ I. If we take complements of sets in (16) we find out

that A(ε) ∈ I. The proof of 2) is finished. 2

We can summarize our results concerning the convergence fields F (I), F (I∗).
From Theorem 3.1. we know that F (I∗) ⊆ F (I) and Theorem 3.2. says

that the equality F (I) = F (I∗) holds if and only if I satisfies the condition
(AP ). Further F (I) = `∞ if and only if I is a maximal ideal (see Theorem
4.1.). Thus if I is not maximal and does not satisfy the condition (AP ) then

F (I∗) ⊂ F (I) ⊂ `∞.

Now we show that for every admissible ideal I the set F (I∗) is dense in
F (I).

Theorem 4.3 For every admissible ideal I in N we have

F (I∗) = F (I).
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(M is the closure of M in `∞.) Proof . By Theorem 3.1. we have F (I∗) ⊆
F (I). Since F (I) is closed in `∞, we get F (I∗) ⊆ F (I). Hence it suffices to
prove that

F (I) ⊆ F (I∗).

Put B(z, δ) = {x ∈ `∞ : ‖x − z‖ < δ} for z ∈ `∞, δ > 0 (ball in `∞). It
suffices to prove that for each y ∈ F (I) and 0 < δ < 1 we have

(17) B(y, δ) ∩ F (I∗) 6= ∅.

Put L = I − lim y. Choose an arbitrary η ∈ (0, δ). Then

A(η) = {n : |yn − L| ≥ η} ∈ I.

Define x = (xn)∞1 as follows: xn = yn if n ∈ A(η) and xn = L otherwise.
Then obviously x ∈ `∞, I∗ − limx = L and x ∈ B(y, η). So (17) holds. 2

It is well known fact that if W is a closed linear subspace of a linear normed
space X and X 6= W , then W is a nowhere dense set in X (cd. [19], Lemma
1). This fact evokes the question about the porosity of W . We will give the
answer to this question in general and show some applications to convergence
fields F (I) and F (I∗).

Lema 4.2 Suppose that X is a linear normed space and W is its closed
linear subspace, W 6= X. Let

s(W ) = sup{δ > 0 : ∃B(y, δ) ⊆ B(Q, 1) \W}

(Q being the zero element of X). Then s(W ) = 1
2 .

Proof . We proceed indirectly. Suppose that s(W ) > 1
2 . Then there is a δ > 1

2
such that for suitable y we have

(18) B(y, δ) ⊆ B(Q, 1) \W .

There are two possible cases:

(α) ‖y‖ >
1
2
, (β)‖y‖ ≤ 1

2
.

(α) In this case for every c, 1
2 < c < δ we have

y +
c

‖y‖
y ∈ B(y, δ).

Simultaneously we have

‖y +
c

‖y‖
y‖ = (1 +

c

‖y‖
)‖y‖ = ‖y‖+ c > 1.

Hence y + c
‖y‖y 6∈ B(Q, 1), which contradicts (18).
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(β) In this case Q ∈ B(y, δ) ∩W which contradicts (18) too.
Hence s(W ) ≤ 1

2 .
Let v ∈ X \W and put α = infu∈W ‖v−u‖. Obviously α > 0. Without loss

of generality we can assume α = 1
2 (if α 6= 1

2 we can take 1
2αv instead of v). For

ε ∈ (0, 1
2 ) there exists u0 ∈ W such that 1

2 ≤ ‖v − u0‖ < 1
2 + ε by definition of

α. Put y = v − u0 and δ = 1
2 − ε. We show that (18) holds for them.

If z ∈ B(y, δ) then ‖z−y‖ < 1
2−ε and ‖z‖ ≤ ‖z−y‖+‖y‖ < ( 1

2−ε)+(1
2 +ε) =

1, i.e B(y, δ) ⊆ B(Q, 1).
Suppose that z ∈ B(y, δ) ∩ W then ‖z − y‖ < 1

2 − ε. On the other hand
‖z − y‖ = ‖z − (v − u0)‖ = ‖(z + u0) − v‖ ≥ 1

2 , since z + v0 ∈ W . We get a
contradiction, hence B(y, δ) ∩W = ∅.

If ε → 0+ then δ → 1
2

− and we get s(W ) = 1
2 . 2

Theorem 4.4 Suppose that X is a linear normed space and W is its closed
linear subspace, W 6= X. Then W is a very porous set in X, in more detail

a) If x ∈ X \W then p(x,W ) = 1,

b) If x ∈ W then p(x,W ) = 1
2 .

Proof . The part a) is an easy consequence of the closedness of W in X.
We prove b). Since W 6= X, there is a u ∈ B(Q, 1) \W and δ > 0 such that

(19) B(u, δ) ⊆ B(Q, 1) \W .

First we show that

(20) ‖u‖+ δ ≤ 1.

We proceed indirectly. Assume that ‖u‖+δ > 1. Since ‖u‖ < 1 for a suitable
c > 0 we have 1 < ‖u‖+ c‖u‖ < ‖u‖+ δ. From this c‖u‖ < δ and so

(21) u + cu ∈ B(u, δ).

On the other hand

‖u + cu‖ = (1 + c)‖u‖ = ‖u‖+ c‖u‖ > 1

and so u + cu 6∈ B(Q, 1), which contradicts (19), (21). Hence (20) holds.
Let x ∈ W , ε > 0. We show that

(22) B(x + εu, εδ) ⊆ B(x, ε) \W ,

if (19) holds.
For z ∈ B(x + εu, εδ) we put w = z − x− εu. Then

(23) ‖w‖ = ‖z − x− εu‖ < εδ.
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Further z − x = εu + w, hence by (20), (23)

‖z − x‖ = ‖εu + w‖ ≤ ‖εu‖+ ‖w‖ < ε‖u‖+ εδ ≤ ε.

From this we get z ∈ B(x, ε).
We show yet z 6∈ W . In the contrary case we have z − x = εu + w ∈ W ,

hence

(24) u + 1
ε w ∈ W .

Since ‖ 1
ε w‖ < δ (see (23)), 1

ε w ∈ B(u, δ). But then by (19) we get u + 1
ε w 6∈

W , which contradicts (24).
Hence we have proved the inclusion (22) under the assumption that B(u, δ) ⊆

B(Q, 1) \W . But then by definition of γ(x, ε,W ) we have γ(x, ε,W ) ≥ εδ for
each δ > 0 such that (19) holds. From this we get γ(x, ε, w) ≥ εs(W ),

p(x, W ) ≥ s(W ),

where s(W ) = 1
2 is introduced in Lemma 4.2.

Since for every ball B(y, δ), δ > 1
2 , B(y, δ) ⊆ B(Q, 1) we have Q ∈ B(y, δ),

the assertion of Theorem 4.4 follows from Lemma 4.2. 2

We will apply Theorem 4.4 to the study of the structure of convergence fields
F (I), F (I∗), I being an admissible ideal in N . We take the linear normed space
`∞ of all bounded real sequences with the sup-norm

‖x‖ = sup
n=1,2,...

|xn|, x = (xn)∞1 ∈ `∞.

By Theorem 4.1. the convergence field F (I) coincides with `∞ if and only
if I is a maximal ideal. Hence it is convenient to deal with F (I) under the
assumption that I is not maximal. In this case we have F (I) ⊂ `∞ and by
Theorem 4.2 the set F (I) is a closed linear subspace of `∞.

The following theorem is an easy consequence of Theorem 4.4.

Theorem 4.5 Suppose that I is an admissible ideal in N which is not max-
imal. Then the following holds:

1. If x ∈ `∞ \ F (I), then p(x, F (I)) = 1.

2. If x ∈ F (I), then p(x, F (I)) = 1
2 .

Since F (I∗) ⊆ F (I) = (F (I∗) (see Theorem 3.1., Theorem 4.3.), we get

Corollary 4.1 Under the condition of Theorem 4.5. we have:

1. If x ∈ `∞ \ F (I), then p(x, F (I∗)) = 1.

2. If x ∈ F (I), then p(x, F (I∗)) = 1
2 .
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