Some remarks and questions about the AKS algorithm and related conjecture

Martin Mačaj

Abstract

We show that AKS-algorithm for primality testing (see [1]) can be modified to run in $\tilde{O}\left(\log ^{7.5} n\right)$ time. We present some remarks and ask two questions related to this algorithm.

1 Introduction

In August 2002 M. Agrawal, N. Kayal and N. Saxena presented 'a deterministic polynomial-time algorithm that determines whether an input number n is prime or composite' (see [1]). They showed that their algorithm runs in $\tilde{O}\left(\log ^{12} n\right)$ time and under hypothesis about the density of Sophie Germain primes in $\tilde{O}\left(\log ^{6} n\right)$ time. They also stated conjecture which, if true, enables to make a deterministic primality-testing algorithm running in $\tilde{O}\left(\log ^{3} n\right)$ time.

In second section we ask two question related to this algorithm. In third section we show that it suffices to find r such that order of $n(\bmod r)$ is greater than $\log ^{2} n$ and set S of size $\sqrt{r} \log n$. Using Fouvry's result we get $\tilde{O}\left(\log ^{7.5} n\right)$ time complexity. Last two sections address Question 1 and Question 2, respectively

We assume that reader is familiar with papers [1] and [3]. We get results modifying proof from these articles so we point only to main differences. log means logarithm with base 2 .

2 Questions

Here we ask two questions related to the AKS-algorithm. We present motivation to these questions in later sections.

Question 1 Given a pair of integers n and α what is the best way to find integer r, s.t. order of $n(\bmod r)$ is $\geq \alpha$? (We are interested in the case $\left.\alpha=\log ^{2} n\right)$.

Question 2 Denote by PC_{n} the number of polynomials $f(x) \in \mathbb{Z}[x]$ of degree n which are products of cyclotomic polynomials. The generating function for
the sequence $\left\{\mathrm{PC}_{n}\right\}_{n=1}^{\infty}$ is the function

$$
\mathrm{PC}(x)=\prod_{k=1}^{\infty}\left(1-x^{\varphi(k)}\right)^{-1}
$$

where $\varphi(k)$ denotes the Euler totient function. Are there real numbers $a>\frac{1}{2}$ and $A>1$ such that $\mathrm{PC}_{n} \geq A^{n^{a}}$?

3 Introducing order $d_{r}(n, p)$

In this section we slightly modify Theorem 2 from [3]. This result implies existence of $\tilde{O}\left(\log ^{7.5} n\right)$ version of AKS.

Let r be an integer and X be a set of positive integers coprime to r. Denote by $d_{r}(X)$ the order of the subgroup of $\left(\mathbb{Z}_{r}^{*}, \cdot\right)$ generated by the set X.

Theorem 3.1 Let n and r be positive integers such that $(r, n)=1$. Let p be a prime such that $p \mid n$ and $p \leq \sqrt{n}$. Denote $d=d_{r}(n, p)$. Let S be a finite set of integers. Assume that $\left(n, b-b^{\prime}\right)=1$ for all distinct $b, b^{\prime} \in S$; $\binom{d+|S|-1}{|S|-1} \geq n^{(-1+\sqrt{8 d+1}) / 4}$; and that $(x+b)^{n}=x^{n}+b\left(\bmod n, x^{r}-1\right)$ for all $b \in S$. Then n is a power of p.

We put difference from [3] to following three lemmas:
Lemma 3.2 Let r, n, p and d be as above. Let $h(x) \in \mathbb{Z}_{p}[x]$ be an irreducible polynomial dividing the rth cyclotomic polynomial $\Phi_{r}(x)$ and y be a root of $h(x)$. If a polynomial $g(x) \in \mathbb{Z}_{p}[x]$ satisfies $g\left(x^{n^{a}}\right)=0$ in $\mathbb{Z}_{p}[x] /(h(x))$ for every integer a then $g(x)$ has at least d roots in $\mathbb{Z}_{p}[x] /(h(x))$ (namely $y^{n^{u} p^{v}}, u$, $v \in \mathbb{N}$).

Lemma 3.3 Let r, n, p, d and S be as above. The set of all products $\prod_{b \in S}(x-b)^{e_{b}}$ where $\sum_{b \in S} e_{b}=d$ has $\binom{d+|S|-1}{|S|-1}$ elements.

Lemma 3.4 Let r, n, p, and d be as above. Let $n=p^{\alpha}$ (If we assume that $\alpha \notin \mathbb{N}$ then we get $\alpha \notin \mathbb{Q})$. Let $E_{c}=\left\{(i, j) \in \mathbb{N}_{0} \times \mathbb{Z}: n^{i} p^{j} \in \mathbb{N}\right.$ and $\left.n^{i} p^{j} \leq n^{c}\right\}$. Then

1. The set E_{c} has more than $\frac{\alpha^{2}}{2(\alpha-1)} c^{2}+\frac{\alpha}{2} c$ elements.
2. If $c \geq \frac{1+\sqrt{8 d+1}}{4}$ then E_{c} has more than d elements.

Proof . 1 Since $n=p^{\alpha}$, the condition $n^{i} p^{j} \leq n^{c}$ is equivalent to the condition $j \leq\lfloor\alpha(c-i)\rfloor$.

If $j \geq-i$ then $n^{i} p^{j} \in \mathbb{N}$. Therefore

$$
\left|E_{c}\right| \geq \sum_{i=0}^{\infty} \max \{\lfloor\alpha(c-i)\rfloor+i+1,0\}
$$

Let $C=\left\lfloor\frac{\alpha}{\alpha-1} c\right\rfloor$. If $i \leq C$ then $-i \leq\lfloor\alpha(c-i)\rfloor$ and we get

$$
\left|E_{c}\right| \geq \sum_{i=0}^{C}\lfloor\alpha(c-i)\rfloor+i+1
$$

Let $z_{i}=1+\lfloor\alpha(c-i)\rfloor-\alpha(c-i)>0$. We get $\lfloor\alpha(c-i)\rfloor+i+1=\alpha c-(\alpha-1) i+z_{i}$ and

$$
\left|E_{c}\right| \geq \alpha c(C+1)-\frac{1}{2}(\alpha-1) C(C+1)+\sum_{i=0}^{C} z_{i}
$$

Let $0 \leq z=\frac{\alpha}{\alpha-1} c-C<1$ Then

$$
\begin{gathered}
\left|E_{c}\right| \geq\left(\frac{1}{2} \alpha c+\frac{\alpha-1}{2} z\right)\left(\frac{\alpha}{\alpha-1} c+1-z\right)+\sum_{i=0}^{C} z_{i}= \\
\frac{\alpha^{2}}{2(\alpha-1)} c^{2}+\frac{\alpha}{2} c+\frac{\alpha-1}{2} z(1-z)+\sum_{i=0}^{C} z_{i}
\end{gathered}
$$

Since $0 \leq z(1-z)$ and $z_{i}>0$ we have

$$
\left|E_{c}\right|>\frac{\alpha^{2}}{2(\alpha-1)} c^{2}+\frac{\alpha}{2} c
$$

2 For $\alpha>2$ we have $\frac{\alpha^{2}}{2(\alpha-1)}>2$ and $\frac{\alpha}{2}>1$. Hence E_{c} has more than $2 c^{2}+c$ elements. $\frac{1+\sqrt{8 d+1}}{4}$ is greater root of the polynomial $2 x^{2}+x-d \in \mathbb{R}[x]$. Thus $2 c^{2}+c>d$ and $\left|E_{c}\right|>d$.

If we use $\binom{2 d}{d} \geq 2^{d}$ we get
Proposition 3.5 Let n, p, r and d are as above. Let S be a finite set of integers with cardinality $d+1$. Assume that $\left(n, b-b^{\prime}\right)=1$ for all distinct $b, b^{\prime} \in S$; and that $(x+b)^{n}=x^{n}-1\left(\bmod n, x^{r}-1\right)$ for all $b \in S$. If $d \geq \log ^{2} n$ then n is a power of p.

Remark. Using bound

$$
\binom{2 d}{d} \geq \frac{\sqrt{5}}{4} \frac{2^{2 d}}{\sqrt{d+\frac{1}{4}}}
$$

we can show that if we assume that $n \geq 2^{13}$ then it suffices to take $d \geq \frac{1}{8} \log ^{2}(n)$.
Using $d_{r}(n) \mid d_{r}(n, p)$ and $d_{r}(n, p) \mid \phi(r) \leq r-1$ we get
Theorem 3.6 Let n and r be positive integers such that $d_{r}(n) \geq \log ^{2} n$. Let $s=\left\lceil\sqrt{\frac{r}{2}} \log n\right\rceil$ Assume that every prime divisor of n is greater than s and that $(x+b)^{n}=x^{n}+b\left(\bmod n, x^{r}-1\right)$ for all $b \in\{0,1,2, \ldots s\}$. Then n is a power of a prime.

Proof . Let $p \leq \sqrt{n}$ be a prime divisor of n. Let $d=d_{r}(p, n)$. By previous theorem it suffices to show that $\binom{s+d}{s}=\binom{s+d}{d} \geq n^{\sqrt{d / 2}} \geq n^{(-1+\sqrt{8 d+1}) / 4}$.

If $d \leq s$ then this follows from $\log ^{2} n \leq d_{r}(n) \leq d$.
If $d>s$ then $\log \binom{s+d}{s} \geq \log \binom{2 s}{s} \geq s \geq \sqrt{\frac{r}{2}} \log n \geq \sqrt{\frac{d}{2}} \log n=\log n^{\sqrt{d / 2}}$.

4 How to find required r ?

So, for given integer n, we want to find an integer r such that $d_{r}(n)>\log ^{2} n$. We also want to find such an r as small as possible and as soon as possible.

If the conjecture about distribution of Sophie Germain primes holds, then it suffice to seek r between co-Sophie Germain primes. What we can do if this conjecture does not hold? Here are some possible ways.

1) PRIMES Copying [1] we can use results from [5], [2] to find a prime r in the range $O\left(\log ^{3} n\right)$ such that $d_{r}(n)$ has a prime factor $q \geq \log ^{2} n$.

Remark. If we copy the proof of Lemma 4.2 from [1], we are able to prove that r lies in range $O\left(\log ^{3+\varepsilon} n\right)$. To lose ε it suffices to bound the number of prime divisors of an integer m by $c \log m / \log \log m$.

As we showed, it is not necessary for $d_{r}(n)$ to have large prime factor. Thus, it is possible that we can find better r.
2)(SQUAREFREE) COMPOSITES Maybe we can use the Chinese Remainder Theorem to get required r as a product of some small primes.
3) POWERS OF PRIMES If $n \equiv \pm 3(\bmod 8)$ then for $r=2^{\lceil 2 \log \log n\rceil+2}$ we have $d_{r}(n)=2^{\lceil 2 \log \log n\rceil} \geq \log ^{2} n$ and $r<8 \log ^{2} n$. So for half of odd integers we have instantly very small r. So it seems appropriate to seek r between prime powers.

Lemma 4.1 Let n be an odd integer. Let $\nu_{2}(n, k)$ be an integer such that $2^{\nu_{2}(n, k)} \| n^{2^{k}}-1$. Then

1. $\nu_{2}(n, k)=k-1+\nu_{2}(n, 1)$,
2. for $l \geq \nu_{2}(n, 1)$ we have $d_{2^{l}}(n)=2^{l+1-\nu_{2}(n, 1)}$.

Proof .

1. by induction on k. Using $n^{2^{k+1}}-1=\left(n^{2^{k}}-1\right)\left(n^{2^{k}}+1\right)$ and $2 \| n^{2^{k}}+1$,
2. follows immediately from 1 .

Lemma 4.2 Let p be an odd prime. Let n be an integer coprime to p. Let $\alpha=d_{p}(n)$ and $m=n^{\alpha}$. Let $\nu_{p}(n, k)$ be an integer such that $p^{\nu_{p}(n, k)} \| m^{p^{k}}-1$. Then

1. $\nu_{p}(n, k)=k+\nu_{p}(n, 0)$,
2. for $l \geq \nu_{p}(n, 0)$ we have $d_{p^{l}}(n)=\alpha p^{l-\nu_{p}(n, 0)}$.

Proof .

1. by induction on k. Using

$$
m^{p^{k+1}}-1=\left(m^{p^{k}}-1\right)\left(\left(m^{p^{k}}\right)^{p-1}+\left(m^{p^{k}}\right)^{p-2}+\cdots+\left(m^{p^{k}}\right)+1\right)
$$

and

$$
p \|\left(m^{p^{k}}\right)^{p-1}+\left(m^{p^{k}}\right)^{p-2}+\cdots+\left(m^{p^{k}}\right)+1,
$$

2. follows immediately from 1.

So we can do following: If $n>2$ is even then it is composite. We find $\nu_{2}(n, 1)$. If $2^{\nu_{2}(n, 1)} \leq \log n$ then we have $r=2^{l}$ for some l. Else we look into primes $<\log n$. If $p \mid n$ then n is composite. We find $\nu_{p}(n, 0)$. If $p^{\nu_{p}(n, 0)} \leq \log n$ we have $r=p^{l}$ for some l.

If all primes $p<\log n$ fail (is it possible?), then n could be suitable for some test based on other tests (see [3] [9]).
(If a prime $p<\log n$ fails then $p^{2} \mid n^{d_{p}(n)}-1$. For random n this occurs with probability $(p-1) / p^{2}<1 / p$. Thus n for which all primes $p<\log n$ fail seems to be very rare.)

5 Conjecture

In [7] authors stated conjecture (in slightly different form):
Conjecture If n is an integer and r is a prime such that

$$
(x-1)^{n} \equiv x^{n}-1 \quad\left(\bmod n, x^{r}-1\right)
$$

then n is prime or $n^{2} \equiv 1(\bmod r)$.
They also showed that if this conjecture holds then there is a practical deterministic polynomial time algorithm for primality testing.

In this section we present a modified version of this conjecture and show that if there is a positive answer to the Question 2 then this modified conjecture is true.

Modified Conjecture There exists a real number B and b such that following statement is true:

Let n and r be coprime integers such that

$$
(x-1)^{n} \equiv x^{n}-1 \quad\left(\bmod n, x^{r}-1\right)
$$

Let $p>r$ be a prime dividing n and $d=d_{r}(n, p)$. If $d \geq B \log ^{b} n$ then n is power of p.

Here we start an attempt to prove this modified conjecture. Main idea lies in following two lemmas:

Lemma 5.1 Let n and r are coprime integers. Let a be an integer. Assume that $(x-1)^{n} \equiv x^{n}-1\left(\bmod n, x^{r}-1\right)$. Then

1. $\left(x^{a}-1\right)^{n} \equiv x^{a n}-1\left(\bmod n, x^{r}-1\right)$,
2. if r Xa then $\Phi_{a}^{n}(x) \equiv \Phi_{a}\left(x^{n}\right)\left(\bmod n, \Phi_{r}(x)\right)$,
3. if $(r, a)=1$ then $\Phi_{a}^{n}(x) \equiv \Phi_{a}\left(x^{n}\right)\left(\bmod n, \frac{x^{r}-1}{x-1}\right)$,
4. if $(r, a)=1$ then $\Phi_{a}^{n}(x) \equiv \Phi_{a}\left(x^{n}\right)\left(\bmod n, x^{r}-1\right) \Leftrightarrow \Phi_{a}^{n}(1) \equiv \Phi_{a}\left(1^{n}\right)$ $(\bmod n)$.

Lemma 5.2 Let n and r are coprime integers. Let p be a prime such that $p \mid n$ and $r<p$. Let $d=d_{r}(n, p)$ and $h(x) \in \mathbb{Z}_{p}[x]$ be an irreducible divisor of $x^{r}-1$. Let S be a subgroup of $\left(\left(\mathbb{Z}_{p}[x] /(h(x))\right)^{*}, \cdot\right)$ generated by the set $\left\{\Phi_{a}(x)+\right.$ $(h(x)) ; r \nmid a\}$. Assume that $(x-1)^{n} \equiv x^{n}-1\left(\bmod n, x^{r}-1\right)$. Then S has at least $\mathrm{PC}_{d}-2$ elements.

From these two lemmas we get:
Proposition 5.3 Let n and r are coprime integers. Let $p<\sqrt{n}$ be a prime such that $p \mid n$ and $r<p$. Let $d=d_{r}(n, p)$. Assume that $(x-1)^{n} \equiv x^{n}-1$ $\left(\bmod n, x^{r}-1\right)$ and $\mathrm{PC}_{d}>n^{(1+\sqrt{8 d+1}) / 4}$. Then n is a power of p.

Thus, if answer to Question 2 is positive then Modified Conjecture holds for $b>(a-1 / 2)^{-1}$.

References

[1] M. Agrawal, N. Kayal and N. Saxena : PRIMES is in P. http://www.cse.iitk.ac.in/primality.html.
[2] R. C. Baker and G. Harman : The Brun-Titchmarsh Theorem on average. In Proceedings of a conference in Honor of Heini Halberstam, Volume 1, pages 39-103, 1996.
[3] D. Bernstein : An exposition of the Agrawal-Kayal-Saxena primality proving theorem. http://cr.yp.to/papers.html
[4] P. Berrizbeitia : Sharpening Primes is in P for a large family of numbers. http://xxx.langl.gov/pdf/math.nt/0211334
[5] R. Bhattacharjee and P. Pandey : Primality testing. http://www.cse.iitk.ac.in/research/btp2001/primality.html.
[6] E. Fouvry : Theoreme de Brun-Titchmarsh; application au theoreme de Fermat. Invent. Math. 79 (1985) 383-407.
[7] N. Kayal and N. Saxena : Towards a deterministic polynomial-time test. http://www.cse.iitk.ac.in/btp2002/primality.html.
[8] J. F. Voloch : On some subgroups of the multiplicative group of finite rings.
[9] P. Berrizbeitia, T. G. Berry and J. Tena-Ayuso : A Generalization of the Proth Theorem. http://www.ldc.usb.ve/ berry/preprints.html.

Authors' address:
Comenius University
Department of Algebra and Number Theory
Mlynská dolina
84215 Bratislava, Slovakia
e-mail: Martin.Macaj@fmph.uniba.sk

