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Abstract

We show that AKS-algorithm for primality testing ( see [1]) can be
modified to run in Õ(log7.5 n) time. We present some remarks and ask
two questions related to this algorithm.

1 Introduction

In August 2002 M. Agrawal, N. Kayal and N. Saxena presented ‘a deterministic
polynomial-time algorithm that determines whether an input number n is prime
or composite’ (see [1]). They showed that their algorithm runs in Õ(log12 n) time
and under hypothesis about the density of Sophie Germain primes in Õ(log6 n)
time. They also stated conjecture which, if true, enables to make a deterministic
primality-testing algorithm running in Õ(log3 n) time.

In second section we ask two question related to this algorithm. In third
section we show that it suffices to find r such that order of n (mod r) is greater
than log2 n and set S of size

√
r log n. Using Fouvry’s result we get Õ(log7.5 n)

time complexity. Last two sections address Question 1 and Question 2, respec-
tively.

We assume that reader is familiar with papers [1] and [3]. We get results
modifying proof from these articles so we point only to main differences. log
means logarithm with base 2.

2 Questions

Here we ask two questions related to the AKS-algorithm. We present motivation
to these questions in later sections.

Question 1 Given a pair of integers n and α what is the best way to find
integer r, s.t. order of n (mod r) is ≥ α? (We are interested in the case
α = log2 n).

Question 2 Denote by PCn the number of polynomials f(x) ∈ Z[x] of degree
n which are products of cyclotomic polynomials. The generating function for
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the sequence {PCn}∞n=1 is the function

PC(x) =
∞∏

k=1

(1− xϕ(k))−1,

where ϕ(k) denotes the Euler totient function. Are there real numbers a > 1
2

and A > 1 such that PCn ≥ Ana

?

3 Introducing order dr(n, p)

In this section we slightly modify Theorem 2 from [3]. This result implies
existence of Õ(log7.5 n) version of AKS.

Let r be an integer and X be a set of positive integers coprime to r. Denote
by dr(X) the order of the subgroup of (Z∗

r , ·) generated by the set X.

Theorem 3.1 Let n and r be positive integers such that (r, n) = 1. Let
p be a prime such that p|n and p ≤

√
n. Denote d = dr(n, p). Let S be a

finite set of integers. Assume that (n, b − b′) = 1 for all distinct b, b′ ∈ S;(
d+|S|−1
|S|−1

)
≥ n(−1+

√
8d+1)/4; and that (x + b)n = xn + b (mod n, xr − 1) for all

b ∈ S. Then n is a power of p.

We put difference from [3] to following three lemmas:

Lemma 3.2 Let r, n, p and d be as above. Let h(x) ∈ Zp[x] be an irreducible
polynomial dividing the rth cyclotomic polynomial Φr(x) and y be a root of
h(x). If a polynomial g(x) ∈ Zp[x] satisfies g(xna

) = 0 in Zp[x]/(h(x)) for
every integer a then g(x) has at least d roots in Zp[x]/(h(x)) (namely ynupv

, u,
v ∈ N).

Lemma 3.3 Let r, n, p, d and S be as above. The set of all products∏
b∈S(x− b)eb where

∑
b∈S eb = d has

(
d+|S|−1
|S|−1

)
elements.

Lemma 3.4 Let r, n, p, and d be as above. Let n = pα (If we assume
that α 6∈ N then we get α 6∈ Q). Let Ec = {(i, j) ∈ N0 × Z : nipj ∈ N and
nipj ≤ nc}. Then

1. The set Ec has more than α2

2(α−1)c
2 + α

2 c elements.

2. If c ≥ 1+
√

8d+1
4 then Ec has more than d elements.

Proof . 1 Since n = pα, the condition nipj ≤ nc is equivalent to the condition
j ≤ bα(c− i)c.

If j ≥ −i then nipj ∈ N. Therefore

|Ec| ≥
∞∑

i=0

max{bα(c− i)c+ i + 1, 0}.
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Let C = b α
α−1cc. If i ≤ C then −i ≤ bα(c− i)c and we get

|Ec| ≥
C∑

i=0

bα(c− i)c+ i + 1.

Let zi = 1+bα(c−i)c−α(c−i) > 0. We get bα(c−i)c+i+1 = αc−(α−1)i+zi

and

|Ec| ≥ αc(C + 1)− 1
2
(α− 1)C(C + 1) +

C∑
i=0

zi.

Let 0 ≤ z = α
α−1c− C < 1 Then

|Ec| ≥ (
1
2
αc +

α− 1
2

z)(
α

α− 1
c + 1− z) +

C∑
i=0

zi =

α2

2(α− 1)
c2 +

α

2
c +

α− 1
2

z(1− z) +
C∑

i=0

zi.

Since 0 ≤ z(1− z) and zi > 0 we have

|Ec| >
α2

2(α− 1)
c2 +

α

2
c.

2 For α > 2 we have α2

2(α−1) > 2 and α
2 > 1. Hence Ec has more than 2c2 + c

elements. 1+
√

8d+1
4 is greater root of the polynomial 2x2 + x− d ∈ R[x]. Thus

2c2 + c > d and |Ec| > d. 2

If we use
(
2d
d

)
≥ 2d we get

Proposition 3.5 Let n, p, r and d are as above. Let S be a finite set of
integers with cardinality d + 1. Assume that (n, b − b′) = 1 for all distinct
b, b′ ∈ S; and that (x + b)n = xn − 1 (mod n, xr − 1) for all b ∈ S. If d ≥ log2 n
then n is a power of p.

Remark. Using bound (
2d

d

)
≥
√

5
4

22d√
d + 1

4

we can show that if we assume that n ≥ 213 then it suffices to take d ≥ 1
8 log2(n).

Using dr(n)|dr(n, p) and dr(n, p)|φ(r) ≤ r − 1 we get

Theorem 3.6 Let n and r be positive integers such that dr(n) ≥ log2 n. Let
s = d

√
r
2 log ne Assume that every prime divisor of n is greater than s and that

(x + b)n = xn + b (mod n, xr − 1) for all b ∈ {0, 1, 2, . . . s}. Then n is a power
of a prime.
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Proof . Let p ≤
√

n be a prime divisor of n. Let d = dr(p, n). By previous
theorem it suffices to show that

(
s+d

s

)
=

(
s+d

d

)
≥ n

√
d/2 ≥ n(−1+

√
8d+1)/4.

If d ≤ s then this follows from log2 n ≤ dr(n) ≤ d.

If d > s then log
(
s+d

s

)
≥ log

(
2s
s

)
≥ s ≥

√
r
2 log n ≥

√
d
2 log n = log n

√
d/2.
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4 How to find required r?

So, for given integer n, we want to find an integer r such that dr(n) > log2 n.
We also want to find such an r as small as possible and as soon as possible.

If the conjecture about distribution of Sophie Germain primes holds, then
it suffice to seek r between co-Sophie Germain primes. What we can do if this
conjecture does not hold? Here are some possible ways.

1) PRIMES Copying [1] we can use results from [5], [2] to find a prime r
in the range O(log3 n) such that dr(n) has a prime factor q ≥ log2 n.

Remark. If we copy the proof of Lemma 4.2 from [1], we are able to prove
that r lies in range O(log3+ε n). To lose ε it suffices to bound the number of
prime divisors of an integer m by c log m/ log log m.

As we showed, it is not necessary for dr(n) to have large prime factor. Thus,
it is possible that we can find better r.

2)(SQUAREFREE) COMPOSITES Maybe we can use the Chinese Re-
mainder Theorem to get required r as a product of some small primes.

3) POWERS OF PRIMES If n ≡ ±3 (mod 8) then for r = 2d2 log log ne+2

we have dr(n) = 2d2 log log ne ≥ log2 n and r < 8 log2 n. So for half of odd integers
we have instantly very small r. So it seems appropriate to seek r between prime
powers.

Lemma 4.1 Let n be an odd integer. Let ν2(n, k) be an integer such that
2ν2(n,k)||n2k − 1. Then

1. ν2(n, k) = k − 1 + ν2(n, 1),

2. for l ≥ ν2(n, 1) we have d2l(n) = 2l+1−ν2(n,1).

Proof .

1. by induction on k. Using n2k+1 − 1 = (n2k − 1)(n2k

+ 1) and 2||n2k

+ 1,

2. follows immediately from 1.

2

Lemma 4.2 Let p be an odd prime. Let n be an integer coprime to p. Let
α = dp(n) and m = nα. Let νp(n, k) be an integer such that pνp(n,k)||mpk − 1.
Then
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1. νp(n, k) = k + νp(n, 0),

2. for l ≥ νp(n, 0) we have dpl(n) = αpl−νp(n,0).

Proof .

1. by induction on k. Using

mpk+1
− 1 = (mpk

− 1)((mpk

)p−1 + (mpk

)p−2 + · · ·+ (mpk

) + 1)

and
p||(mpk

)p−1 + (mpk

)p−2 + · · ·+ (mpk

) + 1,

2. follows immediately from 1.

2

So we can do following: If n > 2 is even then it is composite. We find
ν2(n, 1). If 2ν2(n,1) ≤ log n then we have r = 2l for some l. Else we look into
primes < log n. If p|n then n is composite. We find νp(n, 0). If pνp(n,0) ≤ log n
we have r = pl for some l.

If all primes p < log n fail (is it possible?), then n could be suitable for
some test based on other tests (see [3] [9]).

(If a prime p < log n fails then p2|ndp(n) − 1. For random n this occurs with
probability (p − 1)/p2 < 1/p. Thus n for which all primes p < log n fail seems
to be very rare.)

5 Conjecture

In [7] authors stated conjecture (in slightly different form):
Conjecture If n is an integer and r is a prime such that

(x− 1)n ≡ xn − 1 (mod n, xr − 1)

then n is prime or n2 ≡ 1 (mod r).
They also showed that if this conjecture holds then there is a practical de-

terministic polynomial time algorithm for primality testing.
In this section we present a modified version of this conjecture and show that

if there is a positive answer to the Question 2 then this modified conjecture is
true.

Modified Conjecture There exists a real number B and b such that fol-
lowing statement is true:

Let n and r be coprime integers such that

(x− 1)n ≡ xn − 1 (mod n, xr − 1).

Let p > r be a prime dividing n and d = dr(n, p). If d ≥ B logb n then n is
power of p.

Here we start an attempt to prove this modified conjecture. Main idea lies
in following two lemmas:
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Lemma 5.1 Let n and r are coprime integers. Let a be an integer. Assume
that (x− 1)n ≡ xn − 1 (mod n, xr − 1). Then

1. (xa − 1)n ≡ xan − 1 (mod n, xr − 1),

2. if r 6 |a then Φn
a(x) ≡ Φa(xn) (mod n, Φr(x)),

3. if (r, a) = 1 then Φn
a(x) ≡ Φa(xn) (mod n, xr−1

x−1 ),

4. if (r, a) = 1 then Φn
a(x) ≡ Φa(xn) (mod n, xr − 1) ⇔ Φn

a(1) ≡ Φa(1n)
(mod n).

Lemma 5.2 Let n and r are coprime integers. Let p be a prime such that
p|n and r < p. Let d = dr(n, p) and h(x) ∈ Zp[x] be an irreducible divisor of
xr−1. Let S be a subgroup of ((Zp[x]/(h(x)))∗, ·) generated by the set {Φa(x)+
(h(x)); r 6 |a}. Assume that (x− 1)n ≡ xn − 1 (mod n, xr − 1). Then S has at
least PCd −2 elements.

From these two lemmas we get:

Proposition 5.3 Let n and r are coprime integers. Let p <
√

n be a prime
such that p|n and r < p. Let d = dr(n, p). Assume that (x − 1)n ≡ xn − 1
(mod n, xr − 1) and PCd > n(1+

√
8d+1)/4. Then n is a power of p.

Thus, if answer to Question 2 is positive then Modified Conjecture holds for
b > (a− 1/2)−1.
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