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“Ob es ein d gibt, sodaß Od euklidisch, aber nicht

normeuklidisch ist, ist unbekannt.”

E. Hlawka & J. Schoißengeier, 1990 (in [11], p. 155)
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Chapter 1

Introduction

This diploma thesis deals with quadratic number fields that are Euclidean but

not Norm-Euclidean. All Norm-Euclidean quadratic number fields Q(
√
d)

for squarefree d 6= 0, 1 are known since 1950: Chatland & Davenport [3] and

independently Inkeri [12] have shown that Q(
√
d) is Norm-Euclidean exactly

for integers d in the set

{−1,−2,−3,−7,−11, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73} .

Additionally, for squarefree d < 0 the number field Q(
√
d) is Euclidean if

and only if d is in

{−1,−2,−3,−7,−11} .

This shows that all imaginary quadratic number fields are Euclidean if and

only if they are Norm-Euclidean. However, in the real quadratic case it has

been unknown for several decades if Euclidean implies Norm-Euclidean or

not.

In Chapter 3 we present the proof of D. A. Clark that Q(
√

69) is Euclidean

but not Norm-Euclidean in full detail (see [4]). This was the first example of

a quadratic number field with this property. We are able to explicitely spec-

ify an Euclidean algorithm for which Q(
√

69) becomes an Euclidean domain.

Parts of the proof rely on a computer program for which the source code is

included in Appendix A.
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In Chapter 4 we investigate another quadratic number field: Q(
√

14). It

has been conjectured for a long time that Q(
√

14) is Euclidean because it

possesses all the properties an Euclidean domain has, e.g., its ring of integers

is a principal ideal domain. But it took until 2004 when M. Harper was able

to prove that Q(
√

14) is Euclidean (see [8]). In fact, Harper proved that

all real quadratic number fields with class number 1 and discrimant ≤ 500

are Euclidean without publishing the details. This time we are not able

to specify an Euclidean algorithm. Instead we deduce this property from a

characterization of Euclidean domains and with the help of sieving methods

in number fields.

Recently, W. Narkiewicz (in [16]) was able to prove that all real quadratic

number fields with class number one are Euclidean, except for at most two

fields. There are no exceptions known yet. If one is found, then this would

immediately contradict the Generalized Riemann hypothesis. This follows

from a result of P. J. Weinberger, who showed in [21] that the Generalized

Riemann hypothesis implies that every real quadratic number field with class

number one is Euclidean.
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Chapter 2

Prerequisites

2.1 Binary quadratic forms

The theory of binary quadratic forms is a well-studied branch in elementary

number theory. The reason why we need it here is the strong connection to

quadratic number fields via the norm function and hence to Norm-Euclidean

quadratic number fields.

Definition 2.1. A binary quadratic form is a function f : R × R → R
with f(x, y) = ax2 + bxy + cy2 for integers a, b, c. The value d = b2 − 4ac is

called its discriminant.

As b2 ≡ 0, 1 (mod 4) for integral b, we conclude that d ≡ 0, 1 (mod 4).

Definition 2.2. Two forms f and f ′ are called equivalent, if there exists

a transformation T ∈ GL(2,Z) with |det(T )| = 1 such that f ′ ◦ T = f .

Equivalent forms share some important properties: for example they take

the same values. That is, if f(x0, y0) = m for real x0, y0 and f ′ is equivalent

to f , then there exist real x1, y1 such that f ′(x1, y1) = m.

There are several types of binary quadratic forms:

Definition 2.3. A binary quadratic form f is called positive (respectively

negative) definite if for all real x, y with (x, y) 6= (0, 0) f(x, y) > 0 (re-

spectively f(x, y) < 0).
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f is called indefinite if there exist (x0, y0), (x1, y1) ∈ R2 such that f(x0, y0) <

0 < f(x1, y1).

f is called positive (respectively negative) semidefinite, if f(x, y) ≥
0 (respectively f(x, y) ≤ 0) for all real x, y and for some real x0, y0 with

(x0, y0) 6= (0, 0) we have that f(x0, y0) = 0.

It is the discriminant of a binary quadratic form which tells us of what

type it is:

Proposition 2.1. Let f(x, y) = ax2 + bxy + cy2 be a binary quadratic form

with discriminant d = b2 − 4ac. Then

1. f is semidefinite if and only if d = 0.

2. f is positive definite if and only if d < 0 and a > 0.

3. f is indefinite if and only if d > 0.

Proof. See for example [11], page 82.

Proposition 2.2. For every indefinite binary quadratic form there exists an

equivalent form f(x, y) = ax2 + bxy + cy2 such that 0 < |a| <
√
b2 − 4ac.

Proof. A proof can be found in [6], page 97.

2.2 Algebraic number theory

In this section we review some definitions and results of basic algebraic num-

ber theory. We mainly focus on quadratic number fields. Most of the proofs

are omitted, as they can be found in (almost) any book on algebraic number

theory, for example [1].

Definition 2.4. An algebraic number field K ⊆ C is a finite field exten-

sion of Q. Its elements are called algebraic numbers. An algebraic number

is called algebraic integer if it is a root of a monic polynomial with integer

coefficients.
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Every algebraic number field contains a ring of special interest:

Definition 2.5. Let K be an algebraic number field. The set of algebraic

integers in K is called ring of integers of K and is denoted by OK.

In general, the ring of integers of an algebraic number field is not a unique

factorization domain. But there exists an analog of the Fundamental Theo-

rem of Arithmetic for ideals:

Theorem 2.1 (Fundamental Theorem of Arithmetic in Number Fields).

Let K be an algebraic number field and OK its ring of integers. Then every

non-zero ideal I in OK can be written as a product

I =
r∏
i=1

P ei
i

where the Pi are distinct non-zero prime ideals in OK and ei positive integers.

This representation is unique up to rearrangement of the factors.

We now consider the splitting and ramification of primes in algebraic

number fields. For this let p be a prime in Z. Then p · OK is a (principal)

ideal in OK and by the Theorem above, it can be written as a product

p ·OK =
r∏
i=1

P ei
i

for distinct non-zero prime ideals Pi and positive integers ei. The exponent

ei of a prime ideal Pi which divides p ·OK is called ramification index of Pi

over p and denoted by e(Pi|p). Furthermore, OK/Pi is a finite field extension

of the finite field Z/pZ for each prime ideal Pi. The degree of this extension

is called inertial degree of Pi over p and denoted by f(Pi|p). The formula

r∑
i=1

e(Pi|p)f(Pi|p) = [K : Q]

shows the connection between the ramification indices, the inertial degrees

and the degree of the field extension K over Q.

There is a famous theorem on the structure of the group of units in a ring of

integers:
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Theorem 2.2 (Dirichlet Unit Theorem). Let K be an algebraic number field

and OK its ring of integers. Then

O×K
∼= µ(K)× Zr+s−1

where µ(K) is the finite cyclic group of roots of unity of O×K, r the number of

real embeddings K → R and 2s the number of non-real complex embeddings

K → C.

Next we introduce the ideal class group and the class number of an al-

gebraic number field. The class number is a measure of how far the ring of

integers in the number field is away from being a principal ideal domain (and

hence from possessing unique factorization).

First we need a generalization of ideals, called fractional ideals :

Definition 2.6. Let K be an algebraic number field and OK its ring of inte-

gers. A fractional ideal is a subset J of K such that there exists a non-zero

element b in OK with the property that b · J is an ideal in OK.

The product of two fractional ideals is a fractional ideal. Furthermore, ev-

ery non-zero fractional ideal is invertible: that is, for any non-zero fractional

ideal J1 there exists a fractional ideal J2 such that J1 · J2 = OK . Therefore,

the set of all non-zero fractional ideals in OK form an abelian group JK . The

principal fractional ideals a ·OK for a ∈ K× form a subgroup of JK denoted

by PK .

Definition 2.7. The factor group JK/PK is called (ideal) class group of

K.

It is an important result in algebraic number theory that the class group

is always finite:

Theorem 2.3 (Finiteness of the class group). Let K be an algebraic number

field. Then the class group of K is finite.

Thus we are able make the following definition:
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Definition 2.8. Let K be an algebraic number field. The order of the class

group of K is called class number of K.

Computing the class number in general is not that easy. For small dis-

criminants, there exists a method based on a theorem by Minkowski that

enables one to calculate the class number by hand. For other number fields,

one can use a computer algebra system such as Pari/GP1 to calculate the

class number.

The following proposition can be used to show that a ring of integers is

a principal ideal domain:

Proposition 2.3. Let K be an algebraic number field and OK its ring of

integers. Then OK has class number one if and only if it is a principal ideal

domain.

There is a version of the Chinese Remainder Theorem for the ring of

integers in an algebraic number field that we use:

Proposition 2.4 (Generalized Chinese Remainder Theorem). Let K be an

algebraic number field, OK its ring of integers and I1, . . . , In pairwise coprime

ideals in OK, that is Ij+Ik = OK for j 6= k. Then the product I := I1·. . .·In is

equal to the intersection I1∩. . .∩In and the quotient ring OK/I is isomorphic

to OK/I1 × . . .×OK/In.

2.2.1 Quadratic number fields

We now consider field extensions K of Q of degree 2, that is [K : Q] = 2.

This fields are called quadratic number fields. It is well known how these

look:

Proposition 2.5. If K is a quadratic number field, then there exists a unique

squarefree integer d 6= 0, 1 such that K = Q(
√
d). On the other side, every

squarefree integer d 6= 0, 1 defines a quadratic number field Q(
√
d).

1Pari/GP can be downloaded for free from http://pari.math.u-bordeaux.fr/
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Here Q(
√
d) is the smallest field that contains Q and

√
d. It is the inter-

section of all fields that contain Q and
√
d.

If K = Q(
√
d) is a quadratic number field for some squarefree integer d,

there are two possible cases:

1. d > 0: then K ⊆ R and K is called a real quadratic number field.

2. d < 0: then K 6⊆ R and K is called an imaginary quadratic number

field.

Definition 2.9. Let K = Q(
√
d) be a quadratic number field, d 6= 0, 1 a

squarefree integer. The discriminant of K is d if d ≡ 1 (mod 4) and 4d

if d ≡ 2, 3 (mod 4).

Note that the case d ≡ 0 (mod 4) is not possible, as this would imply that

d is not squarefree. We also see that the discriminant is always congruent to

0 or 1 modulo 4.

For quadratic number fields, we also know exactly how the rings of integers

look like:

Proposition 2.6. Let K = Q(
√
d) for a squarefree integer d 6= 0, 1. Then

OK =

{
Z + Z ·

√
d if d ≡ 2, 3 (mod 4)

Z + Z ·
(

1+
√
d

2

)
if d ≡ 1 (mod 4)

The Dirichlet Unit Theorem tells us more about the structure of O×K in

the quadratic case:

If K = Q(
√
d) for some squarefree d > 1 we have that r = 2 and s = 0. As

−1 is the only real primitive root of unity, we obtain that every unit u ∈ O×K
is of the form u = ±εn0 for a unique element ε0 (called the fundamental

unit of Q(
√
d)) and an integer n. This also shows that there are infinitely

many roots of unity in a real quadratic number field.

Definition 2.10. Let K = Q(
√
d) be a quadratic number field and x+y

√
d ∈

K. The norm of x+ y
√
d is defined as N(x+ y

√
d) := x2 − d · y2.
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In the case d ≡ 1 (mod 4), we will use the canonical form x+ y ·
(

1+
√
d

2

)
for elements in Q(

√
d) (x and y rational). This corresponds to the structure

of OK = Z + Z ·
(

1+
√
d

2

)
. The norm of an element can then be expressed as

N
(
x+ y ·

(
1+
√
d

2

))
= N

((
x+ y

2

)
+ y

2
·
√
d
)

=
(
x+ y

2

)2 − d ·
(
y
2

)2

= x2 + xy + y2

4
− d · y2

4

= x2 + xy +
(

1−d
4

)
· y2.

As d ≡ 1 (mod 4), the fraction 1−d
4

is always an integer.

The norm function is completely multiplicative, that is

N(z1 · z2) = N(z1) ·N(z2)

for all z1, z2 ∈ Q(
√
d). An element u ∈ OK is a unit if and only if N(u) = ±1.

Now we also see the connection between the norm function and binary

quadratic forms. Every norm in a quadratic number field actually corre-

sponds to a binary quadratic form f(x, y) (the domain is not the same, but

can easily be extended to R × R). Note that in the case that K = Q(
√
d)

with d ≡ 1 (mod 4), we consider the binary quadratic form deduced above,

that is f(x, y) = x2 + xy +
(

1−d
4

)
· y2.

Definition 2.11. Let K = Q(
√
d) be a quadratic number field and I a non-

zero ideal in OK. The norm of I is defined to be N (I) := |OK/I|.

Here |OK/I| is the order of the factor group OK/I. The norm of ideals

is also completely multiplicative, that is

N (I · J) = N (I) · N (J)

for non-zero ideals I, J .

The ideal-norm corresponds to the norm of an element: if I is a principal

ideal a ·OK for a non-zero element a ∈ OK , then N (I) = |N(a)|.
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Now let us have a closer look on the splitting and ramification of primes in

the quadratic case. As [K : Q] = 2 for a quadratic number field K = Q(
√
d),

we have the formula
r∑
i=1

e(Pi|p)f(Pi|p) = 2.

From this equation we deduce that r ≤ 2, as e(Pi|p) and f(Pi|p) are positive

integers. When we write ei for e(Pi|p) and fi for f(Pi|p), we see that

e1f1 = 2

if r = 1, or

e1f1 + e2f2 = 2

if r = 2. Thus there are the following possibilities:

1. e1 = 1, f1 = 2:

That is p ·OK itself is a prime ideal, p is called inert in this case.

2. e1 = 2, f1 = 1:

Then p·OK = P 2 for a prime ideal P and p is called (totally) ramified.

3. e1 = 1, f1 = 1, e2 = 1, f2 = 1:

In this case, p ·OK = P1 ·P2 for distinct prime ideals P1, P2, p is called

(totally) split.

If we consider a prime ideal P in OK , then OK/P is a finite field because P

is maximal. Therefore, the order of OK/P equals pf for a prime p in Z and a

positive integer f . We say that P is inert, (totally) ramified or (totally)

split, if p is. If P is a principal prime ideal P = π · OK for an element π in

OK , then π is said to be inert, (totally) ramified or (totally) split if P is.

With the Jacobi symbol we can decide if a rational prime p is inert, split

or ramified:

Proposition 2.7. Let K = Q(
√
d) be a quadratic number field and p a

rational prime.
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1. If p > 2,
(
d
p

)
= 1 or p = 2, d ≡ 1 (mod 8), then p is split.

2. If p > 2, p|d or p = 2, d ≡ 2, 3 (mod 4), then p is ramified.

3. If p > 2,
(
d
p

)
= −1 or p = 2, d ≡ 5 (mod 8), then p is inert.

Now we prove some results to be able to show that the group
(
OK/(π

s)
)×

is cyclic for unramified prime elements π ∈ OK with odd prime norm (when

OK is a unique factorization domain).

Lemma 2.1. Let R be a finite commutative ring with identity and x ∈ R.

Then x ∈ R× if and only if x is not a zero divisor.

Proof. “⇒”: If x ∈ R×, then there exists y ∈ R with xy = 1. Suppose there

exists z ∈ R \ {0} such that xz = 0. Then

z = 1 · z = (xy) · z = (xz) · y = 0 · y = 0,

a contradiction to z 6= 0.

“⇐”: If x = 1, then x ∈ R× because 1 · 1 = 1. Now let x 6= 1 be no

zero divisor. Then xn is no zero divisor for n ≥ 1: Suppose the claim has

been proved for n ≥ 1. If xn+1 · y = 0 for y ∈ R \ {0}, then x · (xn · y) = 0.

Because x is no zero divisor, xn · y = 0 which is a contradiction to the as-

sumption that xn is no zero divisor.

Because R is finite, also the set {xn | n ≥ 1} is finite. Therefore we can find

positive integers m < n such that xm = xn. Then

0 = xn − xm = xm · (xn−m − 1).

Because xm is no zero divisor, we have that xn−m−1 = 0. Therefore xn−m = 1

which implies that x · xn−m−1 = 1. This shows that x ∈ R×.

The following proof has been adopted from [19], page 127f:

Lemma 2.2. Let K = Q(
√
d) be a quadratic number field and P a non-zero

prime ideal in OK. Then (P n/P n+1,+) ∼= (OK/P,+) for n ≥ 1.
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Proof. First note that P n+1 $ P n. Furthermore, there exists no ideal I with

P n+1 $ I $ P n: because if P n+1 ⊆ I ⊆ P n, then

P = P n+1P−n ⊆ IP−n ⊆ P nP−n = OK

and therefore IP−n = P or IP−n = OK (in OK every prime ideal is maximal).

It follows that I = P n+1 or I = P n.

Now choose α ∈ P n \ P n+1. Then P n+1 $ P n+1 + (α) ⊆ P n which implies

that P n+1 + (α) = P n.

Consider the map ϕ : (OK ,+)→ (P n/P n+1,+), ϕ(x) := αx+ P n+1:

• ϕ is well defined. If α ∈ P n, then αx ∈ P n for all x ∈ OK and therefore

αx+ P n+1 ∈ P n/P n+1 for all x ∈ OK .

• ϕ is a group homomorphism. It is the composition of the two homo-

morphisms (OK ,+)→ (P n,+), x 7→ αx and (P n,+)→ (P n/P n+1,+),

y 7→ y + P n+1.

• ϕ is surjective. Because (α) + P n+1 = P n.

• ker(ϕ) = P . Note that P ⊆ ker(ϕ), because if x ∈ P then αx ∈
P n · P = P n+1 and therefore ϕ(x) = P n+1.

Furthermore, ker(ϕ) is an OK-module (if x ∈ ker(ϕ), that is ϕ(x) =

P n+1, then αx + P n+1 = P n+1, so αx ∈ P n+1; therefore αxy ∈ P n+1

for all y ∈ OK which implies that xy ∈ ker(ϕ) for all y ∈ OK). As an

OK-submodule of OK , ker(ϕ) is a integral ideal. As P is a maximal

ideal in OK , either ker(ϕ) = P or ker(ϕ) = OK . Suppose ker(ϕ) = OK ,

then from the First Isomorphism Theorem for groups we deduce that

P n/P n+1 = Im(ϕ) ∼= OK/ ker(ϕ) = {0} ,

which contradicts the fact that P n+1 $ P n. Therefore ker(ϕ) = P , and

the claim follows from the First Isomorphism Theorem.
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Proposition 2.8. Let K = Q(
√
d) be a quadratic number field such that OK

is a unique factorization domain. If π is a prime element in OK, then∣∣(OK/(π
n)
)×∣∣ = |N (π)|n−1 · (|N(π)| − 1)

for n ≥ 1.

Proof. By the properties of the norm it follows that

|OK/ (πn)| = |N (πn)| = |N (π)|n .

If α+(πn) is a zero divisor in OK/ (πn), then there exists β+(πn) with πn 6 |β
such that

(
α + (πn)

)(
β + (πn)

)
= (πn). This means that πn|αβ. Because

πn 6 |β, it follows that α ∈ (π).

On the other side, if α ∈ (π), then π|α and therefore α+(πn) is a zero divisor

in OK/(π
n) because(

α + (πn)
)(
πn−1 + (πn)

)
= απn−1 + (πn) = πn · α

π
+ (πn) = (πn).

Therefore the set of zero divisors in OK/(π
n) is (π)/(πn).

Next we show by induction on n that |(π)/(πn)| = |N(π)|n−1: The case n = 1

is trivial. Let n ≥ 2, and note that(
(π)/(πn)

)
/
(
(πn−1)/(πn)

) ∼= (π)/(πn−1).

Then

|(π)/(πn)| = |(π)/(πn−1)| · |(πn−1)/(πn)|

= |N(π)|n−2 · |OK/(π)|

= |N(π)|n−2 · |N(π)| = |N(π)|n−1

where we used the induction hypotheses and Lemma 2.2. The proposition

now follows from Lemma 2.1:∣∣(OK/(π
n)
)×∣∣ = |N(π)|n − |N(π)|n−1 = |N(π)|n−1 · (|N(π)| − 1).
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Let OK be a unique factorization domain and π a prime element in OK .

Then
(
OK/(π)

)×
is cyclic as a finite subgroup of

(
OK/(π)

)×
(because every

finite subgroup of the multiplicative group of a field is cyclic). The order of(
OK/(π)

)×
is |N(π)| − 1.

Lemma 2.3. If γ ∈ OK is a generator of
(
OK/(π)

)×
, then also γ + π.

Proof. We calculate that

(γ + π)n =
n∑
i=0

(
n

i

)
γiπn−i

=
n−1∑
i=0

(
n

i

)
γiπn−i + γn

≡ γn (π)

for 0 ≤ n < |N(π)|.

Lemma 2.4. Let γ ∈ OK be a generator of
(
OK/(π)

)×
. Then

γ|N(π)|−1 6≡ 1 (π2) or (γ + π)|N(π)|−1 6≡ 1 (π2).

Proof. Suppose that γ|N(π)|−1 ≡ (γ + π)|N(π)|−1 ≡ 1 (π2). Then

1 ≡ (γ + π)|N(π)|−1 =

|N(π)|−1∑
i=0

(
|N(π)| − 1

i

)
γiπ|N(π)|−1−i

=

|N(π)|−3∑
i=0

(
|N(π)| − 1

i

)
γiπ|N(π)|−1−i + (|N(π)| − 1)γ|N(π)|−2π + γ|N(π)|−1

≡ 1 + (|N(π)| − 1)γ|N(π)|−2π (π2)

where we used that

π|N(π)|−1−i ≡ 0 (π2)

for 0 ≤ i ≤ |N(π)| − 3 and

γ|N(π)|−1 ≡ 1 (π2).
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Therefore

(|N(π)| − 1)γ|N(π)|−2π ≡ 0 (π2)

which implies that

π2
∣∣(|N(π)| − 1)γ|N(π)|−2π

and so

π
∣∣(|N(π)| − 1)γ|N(π)|−2.

Because π|N(π) we have that π
∣∣|N(π)|. But this means that π 6

∣∣(|N(π)|−1).

Therefore π|γ|N(π)|−2 and so π|1 or π|γ, which is not possible.

Lemma 2.5. Suppose that π is unramified and of odd prime norm. Let

γ ∈ OK be a generator of
(
OK/(π)

)×
such that γ|N(π)|−1 6≡ 1 (π2). Then γ

is a generator of
(
OK/(π

s)
)×

for all s ≥ 1.

Proof. We first show inductively that

γ(|N(π)|−1)|N(π)|s−2 6≡ 1 (πs) (2.1)

for all s ≥ 2. The case s = 2 is assumed. By Proposition 2.8, we know that∣∣(OK/(π
s−1)

)×∣∣ = |N(π)|s−2 · (|N(π)| − 1).

Therefore

γ|N(π)|s−2·(|N(π)|−1) = γ|(OK/(π
s−1))×| ≡ 1 (πs−1)

and so there exists α ∈ OK , π 6 |α such that

γ|N(π)|s−2·(|N(π)|−1) = 1 + απs−1.

It follows that

γ|N(π)|s−1·(|N(π)|−1) = (1 + απs−1)|N(π)| =

|N(π)|∑
i=0

(
|N(π)|
i

)
αiπi(s−1)

= 1 + |N(π)|απs−1 +

(
|N(π)|

2

)
α2π2s−2 (2.2)

+

|N(π)|∑
i=3

(
|N(π)|
i

)
αiπi(s−1).
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As π has odd prime norm, the fraction |N(π)|−1
2

is an integer. Furthermore

|N(π)| ≡ 0 (π). Therefore(
|N(π)|

2

)
α2π2s−2 =

|N(π)| − 1

2
|N(π)|α2π2s−2 ≡ 0 (π2s−1).

Note that

3(s− 1) ≥ 2s− 1⇐⇒ 3s− 3 ≥ 2s− 1⇐⇒ s ≥ 2

implies that

i(s− 1) ≥ 3(s− 1) ≥ 2s− 1

for all i ≥ 3, s ≥ 2. Therefore

|N(π)|∑
i=3

(
|N(π)|
i

)
αiπi(s−1) ≡ 0 (π2s−1)

and from equation (2.2) it follows that

γ|N(π)|s−1·(|N(π)|−1) ≡ 1 + |N(π)|απs−1 (π2s−1).

As 2s− 1 ≥ s+ 1 for all s ≥ 2, we deduce that

γ|N(π)|s−1·(|N(π)|−1) ≡ 1 + |N(π)|απs−1 (πs+1).

Now suppose that

γ|N(π)|s−1·(|N(π)|−1) ≡ 1 (πs+1).

Then

1 + |N(π)|απs−1 ≡ 1 (πs+1)

and therefore

πs+1
∣∣|N(π)|απs−1.

This implies that

π2
∣∣|N(π)|α.

As π 6 |α, it follows that π2
∣∣|N(π)|. But this contradicts the assumption that

π is unramified and we have shown that

γ|N(π)|s−1·(|N(π)|−1) 6≡ 1 (πs+1)
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for all s ≥ 2.

Let e be the order of γ in
(
OK/(π

s)
)×

. By Proposition 2.8 we have that∣∣(OK/(π
s)
)×∣∣ = |N(π)|s−1(|N(π)| − 1)

and therefore e
∣∣|N(π)|s−1(|N(π)| − 1). Furthermore, γe ≡ 1 (πs) which

implies that γe ≡ 1 (π). As
∣∣(OK/(π)

)×∣∣∣∣∣e we deduce that (|N(π)| − 1)
∣∣e.

Because |N(π)| = p for some rational prime p, we have that e|ps−1(p − 1)

and (p − 1)|e. Therefore e = pk(p − 1) for an element k ∈ {0, 1, . . . , s− 1}.
If k < s− 1, then

1 ≡ γe = γp
k(p−1) (πs)

from which it follows that

γp
s−2(p−1) = (γp

k(p−1))p
s−2−k ≡ 1p

s−2−k

= 1 (πs).

But this contradicts equation (2.1). Therefore k = s− 1 and so we have

e = ps−1(p− 1) = |N(π)|s−1(|N(π)| − 1) =
∣∣(OK/(π

s)
)×∣∣.

It follows that γ is a generator of
(
OK/(π

s)
)×

.

Now we are able to combine these results to prove that
(
OK/(π

s)
)×

is

cyclic:

Proposition 2.9. Let K = Q(
√
d) be a quadratic number field such that OK

is a unique factorization domain. If π is an unramified prime element in OK

with odd prime norm, then
(
OK/(π

s)
)×

is cyclic for all s ≥ 1.

Proof. For s = 1, the group
(
OK/(π)

)×
is cyclic as a finite subgroup of the

multiplicative group
(
OK/(π)

)×
of the field OK/(π).

For s ≥ 2, let γ be a generator of
(
OK/(π)

)×
. By Lemma 2.3, the element

γ + π also generates
(
OK/(π)

)×
. Now by Lemma 2.4 it follows that

γ|N(π)|−1 6≡ 1 (π2) or (γ + π)|N(π)|−1 6≡ 1 (π2).

We then apply Lemma 2.5 to show that γ or γ + π generates
(
OK/(π

s)
)×

.

20



2.3 Euclidean domains

Definition 2.12. Let R be an integral domain. An Euclidean algorithm

on R is a function φ : R → N0 with the property that for all a, b ∈ R, b 6= 0

there exist q, r ∈ R such that a = qb+ r and φ(r) < φ(b).

Definition 2.13. An integral domain R is called Euclidean with respect to

φ, if φ : R→ N0 is an Euclidean algorithm.

For example, Z is Euclidean with the absolute value as Euclidean algo-

rithm.

2.3.1 Basic properties of Euclidean domains

What makes Euclidean domains interesting is the fact that they are principal

ideal domains:

Proposition 2.10. Every integral domain that posseses an Euclidean algo-

rithm is a principal ideal domain.

Proof. Let R be an integral domain and φ : R→ N0 an Euclidean algorithm.

We have to show that every ideal I in R is a principal ideal, that is I = a ·R
for some element a ∈ R. Let I 6= (0) be an ideal in R. Choose a ∈ I, a 6= 0

such that φ(a) ≤ φ(b) for all b ∈ I, b 6= 0. This is possible, because φ(I \{0})
is a subset of N0, and N0 is well-ordered.

We show that I ⊆ a · R: For this choose an arbitrary b ∈ I. As R is

Euclidean and a, b ∈ R, a 6= 0 there exist q, r ∈ R such that b = aq + r with

φ(r) < φ(a). But r = b − aq ∈ I because a, b ∈ I and I is an ideal. By the

minimality of φ(a) it follows that r = 0. So b = aq for some q ∈ R.

We also have I ⊇ a ·R: this is true because a ∈ I and I is an ideal in R.

Proposition 2.11. Let φ be an Euclidean algorithm on a domain R. Then

φ(0) is the smallest element of φ(R), that is φ(b) > φ(0) for all b ∈ R \ 0.

Proof. Choose b ∈ R, b 6= 0. Then there exist q1, b1 ∈ R such that 0 = q1b+b1

and φ(b1) < φ(b). We define a sequence b, b1, . . . , bn inductively: if bn = 0,
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stop. If bn 6= 0, there exist qn+1, bn+1 ∈ R such that 0 = qn+1bn + bn+1

with φ(bn+1) < φ(bn). As the sequence φ(b1) > φ(b2) > φ(b3) > . . . is

strictly decreasing in a well-ordered set, it has to be finite. Therefore bn = 0

for some positive integer n. This shows that φ(0) = φ(bn) < φ(b) for all

non-zero b. Therefore φ(0) is the smallest element in φ(R).

Proposition 2.12. Let φ be an Euclidean algorithm on a domain R. Every

element b ∈ R such that φ(b) is the smallest element of φ(R \ {0}) is a unit

in R.

Proof. Let b be an element such that φ(b) is the smallest element of φ(R\{0}).
Then b 6= 0 by the last proposition. There exist q, r ∈ R such that 1 = qb+ r

with φ(r) < φ(b). By the choice of b, we have that r = 0. Therefore 1 = qb,

which shows that b is a unit.

In every Euclidean domain there exists an Euclidean algorithm with some

special properties:

Proposition 2.13. If φ : R→ N0 is an Euclidean algorithm on an Euclidean

domain R, then φ1, defined by

φ1(0) := φ(0)

φ1(a) := min {φ(b) | b ∈ Ra \ {0}} , a 6= 0

is an Euclidean algorithm such that

1. φ1(ac) ≥ φ1(a) for ac 6= 0,

2. φ1(ac) = φ1(a) if and only if Rac = Ra,

3. φ1(a) ≤ φ(a) for all a ∈ R.

Proof. First note that φ1 is well defined, since N0 is well ordered.

3. Let a ∈ R. If a = 0, then φ1(0) ≤ φ(0) by definition. If a 6= 0, then

a ∈ Ra \ {0} and therefore φ1(a) ≤ φ(a).

Let a, b ∈ R, b 6= 0. By definition, φ1(b) = φ(bc) for some non-zero c ∈ R. As

22



φ is an Euclidean algorithm on R, there exist q, r ∈ R such that a = qbc+ r

and φ(r) < φ(bc). Now φ1(r) ≤ φ(r) by point 3 above. Therefore φ1(r) ≤
φ(r) < φ(bc) = φ1(b). This shows that φ1 is Euclidean.

1. Let ac 6= 0. Then Rac ⊆ Ra. Therefore by definition φ1(ac) ≥ φ1(a).

2. If Rac = Ra, then φ1(ac) = φ1(a) by definition. On the other side, let

φ1(ac) = φ1(a). Without restriction we can assume that φ1(ac) = φ1(a) 6= 0.

Therefore ac, a 6= 0. As φ1 is an Euclidean algorithm, there exist q, r ∈ R

such that a = qac + r and φ1(r) < φ1(ac) = φ1(a). As r = a(1 − cq), by 1.

it follows that r = 0. So we see that Rac = Ra.

For this kind of Euclidean algorithm the converse of Proposition 2.12 is

also true:

Corollary 2.1. If φ1 is an Euclidean algorithm as in Proposition 2.13 and

u a unit in R, then φ1(u) is the smallest element of φ1(R \ {0}).

Proof. Let β be the smallest element of φ1(R \ {0}) and u′ an element with

φ1(u′) = β. Then by Proposition 2.12 the element u′ is a unit in R. As u

and u′ are associates, by point 2 of Proposition 2.13, we have that φ1(u′) =

φ1(u) = β.

2.3.2 The smallest Euclidean algorithm

This section is devoted to the smallest Euclidean algorithm. A very readable

treatment is P. Samuel’s paper [18]. We give a proof of Motzkin’s Lemma,

which will play an important role in showing that Q(
√

14) is Euclidean (see

Chapter 4).

Proposition 2.14. If φα : R → N0 is any nonempty family of Euclidean

algorithms on an Euclidean domain R, then φ := infα φα is also an Euclidean

algorithm.

Proof. Let a, b ∈ R, b 6= 0. Then there exists an index α such that φ(b) =

φα(b). As φα is an Euclidean algorithm on R, there exist q, r ∈ R with
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a = qb+ r and φα(r) < φα(b). Then φ(r) ≤ φα(r) < φα(b) = φ(b). Therefore

φ is an Euclidean algorithm on R.

If we now consider the family φα : R → N0 of all Euclidean algorithms

on R and define θ := infα φα as above, then θ is an Euclidean algorithm with

the property that θ(x) ≤ φ(x) for all x ∈ R and every Euclidean algorithm

φ on R.

Definition 2.14. The infimum of all Euclidean algorithms on R is called

the smallest Euclidean algorithm on R.

Proposition 2.15. Let R be an Euclidean domain and φ an Euclidean algo-

rithm on R. The smallest Euclidean algorithm θ : R→ N0 has the following

properties:

1. θ(ac) ≥ θ(a) for ac 6= 0

2. θ(ac) = θ(a) if and only if Rac = Ra

3. θ(a) ≤ φ(a) for all a ∈ R

4. θ(x) = 0⇔ x = 0

5. θ(x) = 1⇔ x is a unit

Proof. 3. follows from the definition of the smallest Euclidean algorithm.

1. and 2. follow from Proposition 2.13: because if θ1 is constructed out of

θ, then θ1(x) ≤ θ(x) for all x ∈ R (this is 3. in Proposition 2.13). But on

the other hand, θ(x) ≤ θ1(x) for all x ∈ R, as θ is the smallest Euclidean

algorithm. Therefore θ equals θ1 and they have the same properties.

4. is a consequence of Proposition 2.11. Note that two Euclidean algorithms

φ, φ′ for which there exists an order-isomorphism h : φ(R) → φ′(R) with

φ′ = h ◦φ, have the same properties. In this case they are called isomorphic.

Therefore θ(0) = 0.

5. follows from Proposition 2.12, Corollary 2.1 and the last note on isomor-

phic Euclidean algorithms.
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The next result gives a hint on how to construct the smallest Euclidean

algorithm:

Proposition 2.16. Let R be an Euclidean domain and θ : R → N0 the

smallest Euclidean algorithm on R. For n ∈ N0 define

An := {x ∈ R \ {0} | θ(x) ≤ n+ 1} .

Then An is the set of all non-zero b ∈ R such that the canonical map

An−1 ∪ {0} → R/Rb

is surjective.

Proof. “⊆”: Let b ∈ An be a non-zero element. Consider any class a + Rb

with a ∈ R. As R is Euclidean, we find q, r ∈ R such that a = qb + r with

θ(r) < θ(b) ≤ n + 1. From the equation we see that r is a representative of

a + Rb with the property θ(r) ≤ n. Therefore r is in An−1 ∪ {0} and the

canonical map An−1 ∪ {0} → R/Rb is surjective.

“⊇”: Let b 6= 0 and An−1 ∪ {0} → R/Rb surjective. Indirectly suppose

that θ(b) > n + 1. We define θ1(b) := n + 1 and θ1(x) := θ(x) for x 6= b.

Then θ1(x) ≤ θ(x) for all x in R. We claim that θ1 is an Euclidean algorithm

on R: for a, b1 ∈ R, b1 6= 0, there exist q, r ∈ R such that a = qb1 + r and

θ(r) < θ(b1). If b1 6= b, then θ1(r) ≤ θ(r) < θ(b1) = θ1(b1). In the case

that b1 = b, there exists a representative r in An−1 ∪ {0} of a+ Rb. That is

a = qb1 +r for some q ∈ R with θ1(r) ≤ θ(r) ≤ n < n+1 = θ1(b1). Therefore

θ1 is an Euclidean algorithm on R.

But in an equation a = cq + b for c 6= 0, where b is the remainder, we

have that θ1(b) = n+ 1 < θ(b) < θ(c). But this contradicts the fact that θ is

the smallest Euclidean algorithm on R. Therefore θ(b) ≤ n+1 which implies

that b ∈ An.

But what is A0? From Proposition 2.15 it follows that

A0 = {x ∈ R \ {0} | θ(x) ≤ 1} = {x ∈ R | θ(x) = 1} = R×.
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This motivates the following definition:

Definition 2.15. Let R be an integral domain. Then we define

A0 := R×

An := {b ∈ R \ {0} | An−1 ∪ {0} → R/Rb is surjective} , n ≥ 1

A :=
⋃
n≥0

An,

where the map in the definition of the An’s (n ≥ 1) is the canonical map.

We refer to this sets as Motzkin’s construction.

Note that An (for n ≥ 1) is the set of all non-zero elements b ∈ R such

that every non-zero residue class (mod Rb) has a representative in An−1.

Additionally, (An)n≥0 is an increasing sequence of sets. We show this by

induction on n:

For n = 0, A0 consists of units of R. And every unit u is in A1, because the

canonical map A0 ∪ {0} → R/Ru = R/R = {0} is surjective.

If n > 0 and b ∈ An, then the canonical map An−1 ∪ {0} → R/Rb is sur-

jective. As An−1 ⊆ An by induction hypothesis, we have that the canonical

map An ∪ {0} → R/Rb is also surjective and therefore b ∈ An+1.

Now we are able to prove the following characterization of Euclidean do-

mains:

Proposition 2.17 (Motzkin’s Lemma). Let R be an integral domain. Then

R is Euclidean if and only if every non-zero element of R is in A.

Proof. “⇒”: Let R be Euclidean and θ : R → N0 the smallest Euclidean

algorithm on R. For a non-zero b ∈ R we have that θ(b) = n + 1 for some

non-negative integer n. Then b ∈ An ⊆ A by Proposition 2.16.

“⇐”: Suppose that every non-zero b ∈ R is in A and therefore in one An for

n ≥ 0. We define an Euclidean algorithm on R as follows: define θ(0) := 0.

For b ∈ R \ {0}, define θ(b) := n + 1 where n is the unique non-negative
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integer with b ∈ An \ An−1. Please note that n is unique as (An)n∈N is an

increasing sequence of sets. Now let a, b ∈ R, b 6= 0. Then θ(b) = n + 1 for

some non-negative integer n. As An−1 ∪ {0} → R/Rb is surjective, the class

a + Rb has a representative r ∈ An−1. That is, a = qb + r for some q ∈ R
and θ(r) ≤ n < θ(b) = n+ 1. This shows that θ is an Euclidean algorithm.

2.3.3 Euclidean number fields

In this section we extend the property “Euclidean” to quadratic number

fields. Of special interest will be number fields for which the absolute value

of the norm defines an Euclidean algorithm on the ring of integers.

Definition 2.16. Let K be a quadratic number field and OK its ring of

integers. K is called Euclidean if OK is. K and OK are called Norm-

Euclidean if OK is Euclidean with respect to the absolute value of the norm.

Note that if OK is Euclidean with respect to the absolute value of the

norm, then it is also Euclidean. The converse is not true as we will see in

Chapter 3.

Let K be a quadratic number field and OK its ring of integers. If OK is

Euclidean with respect to a function φ and φ is completely multiplicative,

that is φ(ab) = φ(a)φ(b), then φ can be extended to a completely multiplica-

tive function φ : K → Q. As OK is Euclidean with respect to φ, for any

a, b ∈ OK , b 6= 0 there exist q, r ∈ OK such that a = qb + r and φ(r) < φ(b).

This can be rewritten to the following property: for any a, b ∈ OK , b 6= 0 there

exist q, r ∈ OK such that a
b
− q = r

b
with φ(r) < φ(b) where a

b
∈ K, q ∈ OK .

If we apply the extended φ : K → Q to the last equation we get:

Proposition 2.18. Let K be a quadratic number field and OK its ring of

integers. Let φ : OK → N0 be completely multiplicative and φ : K → Q its

extension to K. Then OK is Euclidean with respect to φ if and only if for all

x ∈ K there exists γ ∈ OK such that φ(x− γ) < 1.

As the absolute value of the norm is completely multiplicative, we have

the following result:
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Corollary 2.2. The quadratic number field K is Norm-Euclidean if and only

if for all x ∈ K there exists γ ∈ OK such that |N(x− γ)| < 1.

2.4 Inhomogeneous minima of binary quadratic

forms

In this chapter we develop some of the theory of inhomogeneous minima for

binary quadratic forms. We are specially interested in the minimum of the

norm form in Q(
√

69). We will follow the papers [2] and [13]. In [13], the

first explicit calculation of this minimum is given.

Let f(x, y) = ax2 + bxy+ cy2 be an indefinite binary quadratic form with

integral a, b, c and discriminant d = b2 − 4ac.

Definition 2.17. Let x0, y0 be real numbers. We define

M(f ;x0, y0) := inf |f(x+ x0, y + y0)|,

where the infimum is taken over all integer values x, y.

It is clear from this definition, that if x0 ≡ x1, y0 ≡ y1 (mod 1) then

M(f ;x0, y0) = M(f ;x1, y1). If we identify tuples (x0, y0) with points P ∈ R2,

we can write M(f ;P ) instead of M(f ;x0, y0).

Definition 2.18. For an indefinite binary quadratic form f we define

M(f) := supM(f ;P ),

where the supremum is taken over all points P in the plane. M(f) is called

the inhomogeneous minimum of f(x, y).

Proposition 2.19. Equivalent forms have the same inhomogeneous mini-

mum.

Proof. Let f and f ′ be equivalent forms and T ∈ GL(2,Z) with | det(T )| = 1

such that f ′ ◦ T = f . For any point P0 in the plane we have M(f ′, T (P0)) =
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M(f, P0), because

inf |f(P + P0)| = inf |(f ′ ◦ T )(P + P0)|

= inf |f ′(T (P ) + T (P0))|

= inf |f ′(P + T (P0))|,

where the last equality is valid because the infimum is taken over all P ∈ Z2

and T is a bijection of Z2. Now M(f) = M(f ′) follows again, because we

take the supremum over all P0 ∈ R2 and T is a bijection of Z2.

We are now able to develop the (minimal) theory needed to calculate the

inhomogeneous minimum of the norm form in Q(
√

69). We follow Inkeris

paper [13] closely. The interested reader may consult this paper also for a

much more general theory applicable to other forms.

We restrict ourselves to indefinite binary quadratic forms f(x, y) = ax2 +

bxy + cy2 with discriminant d = b2 − 4ac such that 0 < |a| <
√
d. We can

assume this last condition, as every binary quadratic form is equivalent to a

form with this property (see Proposition 2.2).

If we define D := d
4a2 , then D > 1

4
.

We will use the following definitions in this section (X, Y and r will be

specified later):

G(X, Y ) := G(x, y;X, Y ; r) = (x−X + rY )2 −D(y − Y )2

C1 := 1
4

(
1− (D−r2−r)2

D

)
C2 := 1

4

(
(r + 1)2 −D

)
C4 := 1

4
(
√

2D − r2 − r)2

Please note that we use C4 instead of C3 here to go with Inkeri’s definitions.

Lemma 2.6. Let C be a positive constant and D = d
4a2 . If for any real x1, y1

with

−(C +Dy2
1)

1
2 ≤ x1 < 1− (C +Dy2

1)
1
2 , 0 ≤ y1 ≤ 1

2
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there exist integral X, Y such that

|(x1 −X − b
2a
Y )2 −D(y1 − Y )2| ≤ C,

then M(f) ≤ C|a|.

Proof. Let x0, y0 be real. We show that there exist real x, y with x ≡ x0, y ≡
y0 (mod 1) such that |f(x, y)| ≤ C|a|. That M(f) ≤ C|a| then follows from

the definition of M(f ;x0, y0) and M(f).

If x ≡ x0, y ≡ y0 (mod 1) and |f(x, y)| ≤ C|a|, then −x ≡ −x0,−y ≡ −y0

(mod 1) and |f(−x,−y)| = |f(x, y)| ≤ C|a|. Therefore it suffices to consider

x0, y0 for which there exists y1 ∈
[
0, 1

2

]
such that y0 ≡ y1 (mod 1).

Now choose x1 such that −(C + Dy2
1)

1
2 ≤ x1 < 1 − (C + Dy2

1)
1
2 with

x1 ≡ b
2a
y1 + x0 (mod 1). By assumption, there exist integers X, Y such that

|(x1 −X − b
2a
Y )2 −D(y1 − Y )2| ≤ C.

Now define x := x1− b
2a
y1−X and y := y1−Y . Then x ≡ x0, y ≡ y0 (mod 1)

and

|f(x, y)| = |a((x+ b
2a
y)2 −Dy2)|

= |a||(x1 −X − b
2a

(y1 − (y1 − Y )))2 −D(y1 − Y )2| ≤ C|a|.

Lemma 2.7. Let C be a positive constant, D = d
4a2 and r a constant satis-

fying r ≡ − b
2a

(mod 1). If for any real x, y with

−(C +Dy2)
1
2 ≤ x < 1− (C +Dy2)

1
2 , 0 ≤ y ≤ 1

2
(2.3)

there exist integral X, Y such that

|G(X, Y )| = |(x−X + rY )2 −D(y − Y )2| ≤ C,

then M(f) ≤ C|a|.

Proof. As r ≡ − b
2a

(mod 1), r = n− b
2a

for an integral n. The assumption of

the lemma tells us that for any x, y satisfying (2.3) there exist integral X, Y

such that |(x−X+rY )2−D(y−Y )2| = |(x−(X−nY )− b
2a
Y )2−D(y−Y )2| ≤

C. As X − nY is integral, we can apply Lemma 2.6.
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Lemma 2.8. If x, y are numbers for which (2.3) is valid and |G(0, 0)| >
C ≥ 1

4
D, then

(C +Dy2)
1
2 < x < 1− (C +Dy2)

1
2 , 0 ≤ y ≤ 1

2
. (2.4)

Proof. We calculate that G(0, 0) = x2 − Dy2 ≥ −Dy2 ≥ −1
4
D ≥ −C.

Because |G(0, 0)| > C by assumption, we get that G(0, 0) = x2 −Dy2 > C.

From that we deduce that x2 > C + Dy2 and therefore |x| > (C + Dy2)
1
2 .

Now (2.4) follows from (2.3).

Lemma 2.9. If r ≥ 0, r2 + r ≤ D < (r + 1)2 and x, y satisfy (2.4) and the

relations

|G(0, 1)| > C ≥ C1, (2.5)

then

G(0, 1) < −C. (2.6)

Proof. First we show that C1 > 0: because D < (r + 1)2 and D > r2, it

follows that

(D − r2 − r)2 −D =
(
D − (r + 1)2

) (
D − r2

)
< 0.

Therefore, 0 ≤ (D−r2−r)2
D

< 1 and so C1 > 0.

Now we show thatG(0, 1) ≤ C: for that, suppose indirectly thatG(0, 1) >

C. From (2.4) we deduce that

0 < x+ r < r + 1− (C +Dy2)
1
2 .

Combination of these two gives us

G(0, 1) = (x+ r)2 −D(y − 1)2 = (x+ r)2 −Dy2 + 2Dy −D > C

and therefore(
r + 1−

(
C +Dy2

) 1
2

)2

−Dy2 + 2Dy −D

= (r + 1)2 − 2(r + 1)(C +Dy2)
1
2 + (C +Dy2)−Dy2 + 2Dy −D

= (r + 1)2 − 2(r + 1)(C +Dy2)
1
2 + C + 2Dy −D > C.
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This implies that

(r + 1)2 −D > 2(r + 1)(C +Dy2)
1
2 − 2Dy

and from that we have

(r + 1)(C +Dy2)
1
2 −Dy < 1

2

(
(r + 1)2 −D

)
= 2C2.

Now let us define

F (u, y) := (r + 1)(u+Dy2)
1
2 −Dy.

Because C ≥ C1 ≥ 0, we also have that

F (C1, y) < 2C2. (2.7)

If we calculate the partial derivate of F (u, y) to the variable y, we get

Fy(u, y) =
D

(u+Dy2)
1
2

(
(r + 1)y − (u+Dy2)

1
2

)
= K(u, y)(4C2y

2 − u)

where

K(u, y) =
D

(u+Dy2)
1
2

(
(r + 1)y + (u+Dy2)

1
2

) .
Note that K(u, y) > 0 for u > 0, y ≥ 0.

Now consider the function F (C1, y). Let y1 be the non-negative root of

the equation

(C1 +Dy2)
1
2 = 1

2
,

that is

y1 =
D − r2 − r

2D

because D ≥ r2 + r. As C ≥ C1 ≥ 0, we have

(C1 +Dy2)
1
2 ≤ (C +Dy2)

1
2 < 1

2

which implies 0 ≤ y < y1. The last inequality follows from (2.4).
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Since C2 > 0, the expression 4C2y
2−C1 increases for increasing y ∈

[
0, 1

2

]
.

Therefore, if Fy(C1, y) > 0 for a y with 0 ≤ y ≤ y1, then also Fy(C1, y1) > 0.

But

(r + 1)y1 − (C1 +Dy2
1)

1
2 = (r + 1)

D − r2 − r
2D

− 1

2

= − r

2D

(
(r + 1)2 −D

)
≤ 0.

Therefore Fy(C1, y) ≤ 0 for all y with 0 ≤ y ≤ y1. This means that F (C1, y)

is monotonically decreasing in the intervall 0 ≤ y ≤ y1. This implies that

F (C1, y) ≥ F (C1, y1) for 0 ≤ y ≤ y1. But

F (C1, y1) =
1

2
(r + 1)−D · D − r

2 − r
2D

= 2C2,

and therefore F (C1, y) ≥ 2C2 which is a contradiction to (2.7). ThusG(0, 1) ≤
C.

Now G(0, 1) < −C because |G(0, 1)| > C by assumption.

Theorem 2.4 (K. Inkeri). Suppose D < 1 and set

C = max(1
4
D,C1, C4). (2.8)

If r ≡ − b
2a

(mod 1), r ∈
[
0, 1

2

]
with D ≥ r2 + r, then M(f) ≤ C|a|.

Proof. The constant C4 is real, because D > r2. This follows for r > 0 from

the assumption D ≥ r2 + r and for r = 0 from D > 1
4
.

Let x, y be arbitrary fixed values satisying (2.3). Indirectly suppose that

|G(x, y;X, Y ; r)| > C (2.9)

for all integral X, Y . By Lemma 2.8 and the definition of C we have that

(C +Dy2)
1
2 < x < 1− (C +Dy2)

1
2 , 0 ≤ y ≤ 1

2
.

From Lemma 2.9 we deduce that

G(0, 1) < −C
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because D < (r + 1)2 which follows from D < 1. Since

√
C ≥

√
C4 =

√
2D − r2 − r

2
(2.10)

we have that

x+ r > (C +Dy2)
1
2 + r ≥

√
C4 + r ≥ 1

2
(
√

2D − r2 + r) ≥ 0.

Now

G(0, 1) >
((
C +Dy2

) 1
2 + r

)2

−D(1− y)2 = C + r2 −D + 2f1(y), (2.11)

where f1(y) = Dy + r(C + Dy2)
1
2 . Since y, r ≥ 0 we have that f1(y) ≥

f1(0) = r
√
C. From G(0, 1) < −C and (2.11) we deduce that

D > 2C + 2r
√
C + r2.

On the other side, we know from (2.10) that 2
√
C + r ≥ 2

√
C4 + r =

√
2D − r2. If we square this result, we get

2C + 2r
√
C + r2 ≥ D

which is a contradiction to the inequality above.

Therefore equation (2.9) cannot be true for all integral X, Y . That is,

there exist integral X, Y such that

|G(x, y;X, Y ; r)| ≤ C.

By Lemma 2.7 it follows that M(f) ≤ C|a|.

2.4.1 Application to the norm in Q(
√

69)

We are now able to calculate the minimum of the form f69(x, y) = x2 +

xy − 17y2. We first apply the transformation T =

(
3 1

1 0

)
to f69 and

get the equivalent form −5x2 + 7xy + y2. We now apply the transformation
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U =

(
−1 0

0 1

)
and obtain the form f(x, y) = −5x2 − 7xy + y2. Note that

f69 and f are equivalent and therefore have the same inhomogeneous mini-

mum according to Proposition 2.19.

Now let us use Theorem 2.4 to calculate an upper bound for M(f):

As a = −5, b = −7, c = 1 we get that r ≡ − b
2a
≡ − 7

10
≡ 3

10
(mod 1), so

r = 3
10
∈ [0, 1

2
]. Also D = d

4a2 = 69
100

and therefore 1
4
< D < 1.

What is the constant C: C = max(1
4
D,C1, C4)

• 1
4
D = 69

400
= 0.1725

• C1 = 1
4

(
1− (D−r2−r)2

D

)
= 1

4

(
1− ( 69

100
− 9

100
− 30

100
)2

69
100

)
= 1

4

(
1− ( 30

100
)2

69
100

)
=

1
4

(
1− 3

23

)
= 1

4

(
20
23

)
= 5

23
= 0.217 . . .

• C4 = 1
4

(√
2D − r2 − r

)2
= 1

4

(√
138
100
− 9

100
− 3

10

)2

= 1
4

(√
129−3
10

)2

=

(
√

129−3)2

400
= 0.174 . . .

Therefore we have C = 5
23

.

What about the condition D ≥ r2 + r? We calculate that D = 69
100

> 1
2

and r2 + r = 9
100

+ 3
10

= 39
100

< 1
2
, so the condition is satisfied.

If we apply the theorem, we get that C|a| = 25
23

is an upper bound for the

form f(x, y) and therefore M(f) ≤ 25
23

.

We will prove now that M(f) = 25
23

: If there exist real x0, y0 such that

M(f ;x0, y0) ≥ 25
23

, that is

|f(x0 + x, y0 + y)| ≥ 25
23

for all integral x, y, then M(f) ≥ 25
23

.

Now note that f69(x, y) = N
(
x+ y(1+

√
69

2
)
)

for rational x, y where N :

Q(
√

69) → R is the norm in Q(
√

69). So we have to show that there exists

z ∈ Q(
√

69) such that

|N(γ + z)| ≥ 25
23
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for all γ ∈ OQ(
√

69). Now set z = − 4
23

√
69 ∈ Q(

√
69). An algebraic integer in

Q(
√

69) has the form γ = 1
2
(u+v

√
69) with integral u, v and u ≡ v (mod 2).

We calculate that

|N(γ − 4
23

√
69)| = |N(1

2
(u+ v

√
69)− 4

23

√
69)|

= |N(u
2

+ (v
2
− 4

23
)
√

69)|

= |(u
2

+ (v
2
− 4

23
)
√

69) · (u
2
− (v

2
− 4

23
)
√

69)|

= |u2

4
− 69(v

2
− 4

23
)2|

= |u2

4
− 69 (23v−8)2

(2·23)2
|

= |u2

4
− 3

4·23
(23v − 8)2|

= 1
4·23
· |23u2 − 3(23v − 8)2|

and therefore

4 · 23 · |N(γ − 4
23

√
69)| = |U |, (2.12)

where U = 23u2 − 3(23v − 8)2. Now note that U ≡ −8 (mod 23) and

U ≡ 23u2 − 3 · 232v2 ≡ −u2 + v2 ≡ 0 (mod 4). This implies that U ≡ −8

(mod 4 · 23).

If we assume U = −8, then −8 ≡ 23u2 ≡ −u2 (mod 3) and therefore

u2 ≡ 2 (mod 3). But this is not possible as 2 is not a quadratic residue

modulo 3. So we have U 6= −8.

In the case U = 4 · 23 − 8 = 84 we get 3 ≡ 5u2 + 6v2 + 6v + 6 (mod 9)

and this is equivalent to 0 ≡ 5u2 + 6(v2 + v − 1) (mod 9). For integral

v we calculate that v2 + v − 1 ≡ 1, 2, 5 or 8 (mod 9). This implies that

6(v2 + v − 1) ≡ 3 or 6 (mod 9). For integral u we get u2 ≡ 0, 1, 4 or 7

(mod 9) and therefore 5u2 ≡ 0, 2, 5 or 8 (mod 9). From that we deduce that

5u2 +6(v2 +v−1) ≡ 2, 3, 5, 6 or 8 (mod 9) but not ≡ 0 (mod 9). So U 6= 84.

Therefore |U | ≥ 100 and from (2.12) we deduce that

|N(γ − 4
23

√
69)| ≥ 25

23
.

This implies that M(f) ≥ 25
23

.

Noting the results above, we proved the following:
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Proposition 2.20. The inhomogeneous minimum of f69(x, y) = x2 + xy −
17y2 is M(f69) = 25

23
. It is attained (at least) in the points z1 = (19

23
, 8

23
), z2 =

( 4
23
, 15

23
).
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Chapter 3

Q(
√

69) is Euclidean

In this chapter we will give a detailed outline of the proof of D. A. Clark

that the ring of integers of Q(
√

69) is Euclidean. This is the first exam-

ple of a quadratic number field which is Euclidean but not Norm-Euclidean.

For the original proof see [4]. For this we will explicitly define a completely

multiplicative Euclidean algorithm on the prime elements which can then be

extended to the ring of integers.

If we set α = 1+
√

69
2

, then Z[α] is the ring of integers of Q(
√

69). Note

that {1, α} is a Z-basis for Z[α]. So every element γ ∈ Z[α] can be uniquely

written as γ = a+ b · α where a and b are integers.

Let N : Q(
√

69)→ Q denote the norm in the number field Q(
√

69). That

is N(x+ y · α) = x2 + x · y − 17 · y2 for rational x, y.

Please note that in this section we use the following notion of divisibility:

if z ∈ Q(
√

69), z 6= 0 and γ ∈ Z[α], then “z is divisible by γ” (in symbols

γ|z) means that if z = z1
z2

with z1, z2 ∈ Z[α] and gcd(z1, z2) = 1, then z1 does

not contain the factor γ when written as a product of elements of Z[α]. The

element 0 is not divisible by any other element.

The following lemma tells us how to define an Euclidean algorithm:

Lemma 3.1 (Clark, [4]). Let z ∈ Q(
√

69). If z is not congruent to ±26+7α
10+3α

modulo Z[α], then there exists a translate γ ∈ Z[α] such that |N(z + γ)| < 1
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and z + γ is not divisible by 10 + 3α.

Proof. Without loss of generality we can assume that z = x+y ·α where x, y

are rational numbers and 0 ≤ x, y < 1. So we can identify z with an element

of the 2-torus X = R2/Z2, where the second component is the α-coordinate.

We then use a computer program that splits X ∼= [0, 1)× [0, 1) into small

rectangles. For every rectangle it searches for two translates γ1, γ2 ∈ Z[α]

such that for every point z in the rectangle we have |N(z + γ1)| < 1 and

|N(z + γ2)| < 1 and γ1 − γ2 is not divisible by 10 + 3α. The last condition

ensures that z + γ1 or z + γ2 is not divisible by 10 + 3α. If both would be

divisible by 10 + 3α, then also the difference (z + γ1) − (z + γ2) = γ1 − γ2

would be - a contradiction. The program shows that this works for almost

all parts of X except for three small areas (Proposition A.3). If we define a

norm on X = R2/Z2 via |z| = min{‖r‖ : r ∈ R2, r + Z2 = z} (where ‖.‖ is

the Euclidean norm on R2), then these areas are all contained in balls with

radius δ = 6
1000

and center points (0, 0), (19
23
, 8

23
) and ( 4

23
, 15

23
). Please note

that the last two points are congruent to ±26+7·α
10+3α

modulo Z[α]. So every

point that does not lie in one of these balls fulfills the lemma. Have a look

at Appendix A for an example implementation of such a computer program.

Now we want to show the following: let z be an element for which there

exists a unit u in Z[α] such that u · z modulo Z[α] lies outside of all three

balls, then z fulfills the lemma.

Let u · z = y be an element outside of the three balls. Then there exists

γ ∈ Z[α] such that |N(y+ γ)| < 1 and y+ γ is not divisible by 10 + 3α. This

implies that |N(z + u−1 · γ)| = |N(u · z + γ)| < 1 where u−1 · γ is an element

of Z[α]. We also have 10 + 3α 6 |z + u−1 · γ, because 10 + 3α 6 |u · z + γ and

the right parts only differ by a product of a unit in Z[α]. Therefore z fulfills

the lemma with u−1 · γ as an appropriate translate.

Now we show that for every point z ∈ X not congruent to (0, 0), (19
23
, 8

23
)

and ( 4
23
, 15

23
) there exists a unit u in Z[α] such that u · z modulo Z[α] lies

outside of the three balls. This can be shown with the principle of expan-
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siveness from the theory of dynamical systems. We especially used ideas of

M. Einsiedler from his notes [7].

If z is an element that lies outside of the three balls there is nothing

to show (choose u = 1). So first take z 6= (0, 0) to be an element with

|z| < δ, that is z lies in the δ-ball around (0, 0). By Dirichlet’s Unit The-

orem (see Theorem 2.2) there exists a unit ε0 (the fundamental unit), such

that every unit is of the form ±εn0 for integral n. If we consider Q(
√

69),

then ε0 = 11 + 3α (see for example [11] on how to calculate the fundamen-

tal unit). In matrix notation ε0 corresponds to the fundamental automorph

T =

(
11 51

3 14

)
.

Let us interpret T as a toral automorphism, that is an automorphism on

R2/Z2. The eigenvalues of T are λ = 25+3
√

69
2

and µ = 1
λ
. The corresponding

eigenvectors vλ and vµ form a basis of R2. There exists an element v ∈ R2

with ‖v‖ < δ and π(v) = z, where π : R2 → R2/Z2 is defined as π(x) = x+Z2.

There exist real a1, a2 such that v = a1vλ + a2vµ. If we apply powers of T to

v we deduce that

T nv = λna1vλ + µna2vµ

because λ and µ are eigenvalues of the eigenvectors vλ and vµ. Note that n

is an integer, so also negative values for n are allowed. The matrix T−1 also

has integer entries because T has determinant 1.

First let a1 6= 0. The equation above tells us that for increasing n the

point T nv expands to the direction vλ by a factor λ < 25 (note that λ > 1).

At the same time, T nv contracts to the direction vµ because µ = 1
λ
< 1.

Therefore we can find an integer n ≥ 0 such that δ < |T nv| < 25 · δ. But this

means we have found a unit u = εn0 such that u · z modulo Z[α] lies outside

of the three balls.

If a1 = 0, then T nv converges to (0, 0) for increasing n. Therefore we have

to consider negative values of n. As v 6= 0 we know that a2 6= 0. Because

T nv = µna2vµ, there exists an integer n ≤ 0 such that δ < |T nv| < 25 · δ.
Again we have found a unit u = εn0 for which u · z modulo Z[α] is an element

ouside of the tree balls.
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Note that for the point (0, 0) this cannot work, because it is a fixed point

of the toral automorphism T . This is also true for the two other center points

z0 = (19
23
, 8

23
) and z1 = ( 4

23
, 15

23
).

What remains to show is that for every point in the δ-balls around z0

and z1 (and not equal to the center points) there again exists a unit such

that multiplication with it brings us out of the tree balls. To show this, let

z be an element with 0 < |z − zi| < δ where i ∈ {0, 1}. As the element

z − zi 6= (0, 0) lies in the δ-ball around (0, 0) there exists an integer n such

that δ < |T n(z − zi)| < 25 · δ. But this implies that δ < |T nz − T nzi| =

|T nz − zi| < 25 · δ, where we used that z0, z1 are fixed points of T . So we

again found a unit u = εn0 such that u · z modulo Z[α] is not contained in

any of the three δ-balls.

So for every point not congruent to (0, 0), (19
23
, 8

23
) and ( 4

23
, 15

23
) there exists

a unit u in Z[α] such that u · z modulo Z[α] lies outside of the balls. From

what we have shown above, it follows that all these points fulfill the lemma.

The point (0, 0) satisfies the conditions of the lemma, because |N(0)| =

0 < 1.

We are now able to show that Z[α] is Euclidean. For every prime element

π in Z[α] define

φ(π) =

{
|N(π)|, if π 6= 10 + 3α

26, if π = 10 + 3α

Then φ extends to a completely multiplicative function φ : Z[α] → N. We

write φ : Q(
√

69)→ Q for the extension to the number field.

Now let z be an element of Q(
√

69). If z is congruent to ±26+7α
10+3α

modulo

Z[α] there exists γ ∈ Z[α] such that z + γ = ±26+7α
10+3α

. We calculate that

φ(z + γ) = φ(±26+7α
10+3α

) = φ(±(26+7α))

φ(10+3α)
= |N(±(26+7α))|

26
= 25

26
< 1. If z is not

congruent to ±26+7α
10+3α

, then by Lemma 3.1 there exists a translate γ ∈ Z[α]

such that |N(z + γ)| < 1 and z + γ is not divisible by 10 + 3α. The last

condition ensures that φ(z + γ) ≤ |N(z + γ)| < 1.

So for every z ∈ Q(
√

69) we have found an element γ ∈ Z[α] such that
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φ(z + γ) < 1. Now by Proposition 2.18 it follows that Q(
√

69) is Euclidean

with respect to φ.

It remains to show that Q(
√

69) is not Norm-Euclidean. From section 2.4.1

we know that there exists an element z ∈ Q(
√

69) such that for all γ ∈ Z[α]

we have |N(γ − z)| ≥ 25
23
> 1. Corollary 2.2 implies that Q(

√
69) cannot be

Norm-Euclidean.
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Chapter 4

Q(
√

14) is Euclidean

In this chapter we prove that another quadratic number field, namely Q(
√

14),

is Euclidean. This has first been proven by M. Harper in his paper [8]. This

time we are not able to explicitely write down an Euclidean algorithm as in

the previous chapter.

Let K denote a real quadratic number field and OK its ring of integers.

We only consider OK that are principal ideal domains, as this is a necessary

condition for OK to be Euclidean (see Proposition 2.10). That Z[
√

14] is

a principal ideal domain follows from Proposition 2.3 because it has class

number one. This can be verified by a computer algebra system, for example

Pari/GP1.

4.1 Characterization of Euclidean domains

We first repeat the main result of section 2.3.2 - Motzkin’s Lemma. The

definitions of A and An (n ≥ 0) are as follows:

1Pari/GP can be downloaded for free from http://pari.math.u-bordeaux.fr/
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Definition 4.1. Let R be an integral domain. Then we define

A0 := R×

An := {b ∈ R \ {0} | An−1 ∪ {0} → R/Rb is surjective} , n ≥ 1

A :=
⋃
n≥0

An,

where the map in the definition of the An (n ≥ 1) is the canonical map. We

refer to this sets as Motzkin’s construction.

Proposition 4.1 (Motzkin’s Lemma). Let R be an integral domain. R is

Euclidean if and only if every non-zero element of R is in A.

Proof. See Proposition 2.17 for a proof.

Harper then used a similar definition of the An to show an analog of

Motzkin’s Lemma. For this we need the concept of an admissible set of

primes :

Definition 4.2. Let π1, . . . , πs ∈ OK be distinct non-associate primes. The

set {π1, . . . , πs} is an admissible set of primes if for all β = π1
a1 . . . πs

as

with ai ∈ N0, every coprime residue class modulo β can be represented by a

unit of OK.

By a proposition of Clark and Murty (see [5], page 160), it suffices to

check this condition for all β = π1
2 . . . πs

2:

Proposition 4.2 (Clark and Murty). Let π1, . . . , πs ∈ OK be distinct non-

associate primes. Further suppose that each πi is unramified and of odd prime

norm. If every coprime residue class modulo π1
2 . . . πs

2 contains a unit, then

{π1, . . . , πs} is an admissible set of s primes in OK.

Proof. We show that if O×K maps onto
(
OK/(π

2
1 . . . π

2
s)
)×

, then O×K maps

onto
(
OK/(π

a1
1 . . . πas

s )
)×

for all ai ∈ N0, i = 1, . . . , s. Here the map is just

the canonical map. The proposition then directly follows from the definition

of an admissible set of primes.
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Suppose this statement is true for all products πm1
1 . . . πms

s , where mi ≤ ni

for i = 1, . . . , s and at least one of the inequalities is strict. By the Gen-

eralized Chinese Remainder Theorem (Proposition 2.4) and the fact that

(R× S)× ∼= R× × S× for rings R, S, we have that(
OK/(π

a1
1 . . . πas

s )
)× ∼= (OK/(π

a1
1 )
)× × . . .× (OK/(π

as
s )
)×

(4.1)

for all non-negative integers ai, i = 1, . . . , s. From Proposition 2.9 it follows

that
(
OK/(π

n1−1
1 )

)×
is cyclic. Let x + (πn1−1

1 ), x ∈ OK be a generator of(
OK/(π

n1−1
1 )

)×
. As O×K maps onto(

OK/(π
n1−1
1 )

)× × (OK/(π
n2
2 )
)× × . . .× (OK/(π

ns
s )
)×

by equation (4.1), there exists an element ε1 ∈ O×K that maps to(
x+ (πn1−1

1 ), 1 + (πn2
2 ), . . . , 1 + (πns

s )
)
.

This element satisfies ε1 ≡ 1 (πni
i ) for i = 2, . . . , s. Furthermore, by Proposi-

tion 2.8, ε1 has order pn1−2
1 (p1 − 1) modulo πn1−1

1 and therefore also modulo

πn1−1
1 πn2

2 . . . πns
s , where p1 = |N(π1)|.

Additionally we have that

ε
p

n1−3
1 (p1−1)

1 ≡ 1 (πn1−2
1 ),

as
∣∣(OK/(π

n1−2
1 )

)×∣∣ = pn1−3
1 (p1 − 1). Because ε1 ≡ 1 (πni

i ), i = 2, . . . , s it

follows that

ε
p

n1−3
1 (p1−1)

1 ≡ 1 (πn1−2
1 πn2

2 . . . πns
s )

which means that

ε
p

n1−3
1 (p1−1)

1 = 1 + kπn1−2
1 πn2

2 . . . πns
s , where π1 6 |k. (4.2)

Because if π1|k, then k = π1 · l for some l, and so

ε
p

n1−3
1 (p1−1)

1 = 1 + lπ1π
n1−2
1 πn2

2 . . . πns
s = 1 + lπn1−1

1 πn2
2 . . . πns

s

from which it follows that

ε
p

n1−3
1 (p1−1)

1 ≡ 1 (πn1−1
1 πn2

2 . . . πns
s ),
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a contradiction to the order of ε1 modulo πn1−1
1 πn2

2 . . . πns
s .

Furthermore, we have that 0 ≡ k′πn1
1 (πn1−1

1 πn2
2 . . . πns

2 ) for some k′ with

π1 6 |k′ (e.g. k′ = πn2
2 . . . πns

s ). This implies the equation

ε
p

n1−2
1 (p1−1)

1 ≡ 1 + k′πn1
1 (πn1−1

1 πn2
2 . . . πns

s ), where π1 6 |k′. (4.3)

From equations (4.2) and (4.3) we deduce that ε1 has order pn1−1
1 (p1 − 1)

modulo πn1
1 πn2

2 . . . πns
s .

In the same way, we can show that there exist elements εi ∈ O×K , i = 2, . . . , s

such that εi ≡ 1 (π
nj

j ) for j 6= i and εi has order pni−1
i (pi − 1) modulo

πn1
1 πn2

2 . . . πns
s , where pi = |N(πi)|.

If we consider the multiplicative group G generated by ε1, . . . , εs, then G

is a subgroup of O×K and maps onto
(
OK/(π

n1
1 . . . πns

s )
)×

. Therefore also O×K
maps onto

(
OK/(π

n1
1 . . . πns

s )
)×

.

Definition 4.3. Let B0 be the monoid generated by the unit group of OK

and an admissible set of primes. For n ≥ 1 define

Bn :=
{
primes π ∈ OK | Bn−1 ∪B0 → (OK/π)× is surjective

}
where the map is the canonical map. We define

B :=
⋃
n≥0

Bn.

Note that for the construction of Bn (n ≥ 1) only primes of the ring of

integers are considered. Then the variant of Motzkin’s Lemma that Harper

proved is as follows:

Lemma 4.1. Let OK be a principal ideal domain. If all primes of OK are

in B, then OK is Euclidean.

Proof. Let all primes of OK be in B. By Proposition 4.1, if every non-zero

element of OK is in A, then OK is Euclidean. That is what we want to use.
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To show that a non-zero β ∈ OK is in A, it suffices to show that every

non-zero residue class (mod β) has a representative in A:

Because if β 6= 0 and every non-zero residue class (mod β) has a repre-

sentative in A, then each of this representatives lie in one An. Now there

are only finitely many such representatives (this follows from the fact that

|OK/(β · OK)| = N (β · OK) < ∞) and An ⊆ An+1 as we have seen next to

the definition of the An’s in section 2.3.2. From this we deduce that all these

representatives lie in one An for n sufficiently large. But this means that

β ∈ An+1 which implies that β ∈ A.

Now we continue with induction to show that a non-zero β of OK is in A. For

this we need the following definitions: Ω0(β) counts the prime divisors of β

that are in B0 (according to multiplicity) and Ω1(β) those prime divisors that

are not in B0 (again according to their multiplicity). For a prime element π

of OK we define

λ(π) =

{
0, if π ∈ B0

n, if π ∈ Bn \Bn−1

Then we extend λ to OK \ {0} by complete additivity: if β = π1
a1 · . . . · πsas ,

then

λ(β) =
∑
i

aiλ(πi)

Ω0(β) =
∑
πi∈B0

ai

Ω1(β) =
∑
πi 6∈B0

ai

Note that λ, Ω0 and Ω1 are well defined: OK is a principal ideal domain and

therefore has unique factorization; by assumption, all primes of OK are in

B; Bn ⊆ Bn+1 (same proof as for the An’s); Bn is closed under taking of

associates.

For induction we use the triple (Ω1(β),Ω0(β), λ(β)) which we order lexi-

cographically:
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If β ∈ O×K , then (Ω1(β),Ω0(β), λ(β)) = (0, 0, 0) and β ∈ A by definition

of A.

Now take β 6= 0 to be no unit and consider a non-zero residue class α

(mod β). We will show there exists an α′ ≡ α (mod β) that precedes β in

the ordering. By the induction hypothesis, we have that α′ ∈ A. Therefore

α (mod β) has a representative in A and by what we have shown at the

beginning of this proof, β is in A.

We first consider the case when α and β are coprime. There are several

possibilities:

1. β ∈ B0: that is Ω1(β) = 0,Ω0(β) ≥ 1

By the definition ofB0 (admissible primes), we can represent α (mod β)

by a unit α′ so that Ω1(α′) = 0 and Ω0(α′) = 0 < Ω0(β).

2. β is a prime not in B0: Ω1(β) = 1,Ω0(β) = 0

Then β ∈ Bn \ Bn−1 for some n ≥ 1 and λ(β) = n. By the definition

of Bn, α (mod β) can be represented by an element α′ in Bn−1 ∪ B0:

If α′ ∈ B0, then Ω1(α′) = 0.

If α′ 6∈ B0, then α′ ∈ Bn−1 for some n > 1. α′ is a prime with

Ω1(α′) = 1,Ω0(α′) = 0 and λ(α′) < n = λ(β).

3. Otherwise: Ω1(β) = 1 and Ω0(β) ≥ 1 or else Ω1(β) ≥ 2

We use an analog of Dirichlet’s theorem on primes in arithmetic pro-

gression (see H. Hasse [9], page 32). From this theorem follows the

existence of a prime element α′ with α′ ≡ α (mod β). There are two

possible cases:

α′ ∈ B0: then Ω1(α′) = 0 and Ω0(α′) = 1.

α′ 6∈ B0: then Ω1(α′) = 1 and Ω0(α′) = 0.

In each case we were able to find an element α′ preceding β with α′ ≡ α

(mod β).

Now let us assume that α and β are not coprime, that is gcd(α, β) = δ 6= 1.

Then a = α
δ

and b = β
δ

are coprime. If β
δ

is no unit, we can find a′ preceding b

with a′ ≡ a (mod b). But then a′ ·δ ≡ α (mod β) and a′ ·δ precedes β = b ·δ
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in our ordering (because Ω0,Ω1 and λ are completely additive). If β
δ

is a unit,

then β
δ

divides α
δ

and therefore β divides α. But then α (mod β) is the zero

class which we need not consider.

Therefore, every non-zero residue class α (mod β) (for β 6= 0) has a

representative in A. This implies that every non-zero β ∈ OK is in A. By

Proposition 4.1 (Motzkin’s Lemma), OK is Euclidean.

4.2 Numerical criterion for Euclidean rings

To be able to apply Lemma 4.1 to some ring of integers OK , one has to verify

that all primes of OK are in B. In this section we prove a numerical estimate

that enables us to show that a number field is Euclidean. Remember that

we only consider OK that are principal ideal domains.

Definition 4.4. For S ⊆ OK, we define S to be the set of ideals generated

by elements of S:

S = {α ·OK | α ∈ S}.

For a set S of ideals, S(x) denotes the set of those ideals in S with norm less

then or equal to x:

S(x) = {a ∈ S | N (a) ≤ x}.

Definition 4.5. Let M be a monoid in OK whose elements are coprime to

an ideal a. Under reduction (mod a), the image of M forms a subgroup of

(OK/a)×. The order of this subgroup will be denoted by fM(a). If M = O×K,

we write f(a).

Definition 4.6. α1, . . . , αt ∈ K are called multiplicatively independent

if α1
a1 · . . . · αtat = 1 with ai ∈ Z implies ai = 0 for all 1 ≤ i ≤ t.

Then Gupta and Murty provided the following bound on prime ideals:

Proposition 4.3 (Gupta-Murty). Let M be a monoid in OK. If M contains

a set of t multiplicatively independent elements, then

#{prime ideals p | fM(p) ≤ Y } � Y
t+1

t .
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The implied constant depends only on K and M.

Proof. See [5], Lemma 6.

To be able to apply the large sieve inequality, we use the following objects

and definitions:

• A . . . a finite set of non-associated elements of OK

• P . . . a finite set of non-ramifying prime ideals of K

• Z . . . the cardinality of A

• Z(α, p) . . . the cardinality of {β ∈ A | β ≡ α (mod p)}

• w(p) . . . the number of residue classes α (mod p) with Z(α, p) = 0

• X . . . a bound such that X ≥ max
β∈A

|N(β)|

• Q . . . a bound such that Q ≥ max
p∈P
N (p)

Then we are able to formulate a Theorem on the large sieve in number fields:

Proposition 4.4 (The Large Sieve in Number Fields).

∑
p∈P

N (p)
∑

α (mod p)

(
Z(α, p)− Z

N (p)

)2
� (Q2 +X) · Z

where the implied constant depends only on K.

Proof. See [22], Theorem 1.

From the inequality∑
α (mod p)

(
Z(α, p)− Z

N (p)

)2

≥ Z2 ·w(p)

N (p)2

we deduce that

N (p)2

Z2
·

∑
α (mod p)

(
Z(α, p)− Z

N (p)

)2

≥ w(p).

With the help of the inequality we can prove the following corollary:
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Corollary 4.1. ∑
p∈P

w(p)

N (p)
� Q2 +X

Z

Proof. By applying the last result and Proposition 4.4 we deduce that:

∑
p∈P

w(p)

N (p)
≤ 1

Z2

∑
p∈P

N (p)
∑

α (mod p)

(
Z(α, p)− Z

N (p)

)2

� Q2 +X

Z
.

The next result is the numerical criterion that helps us to show that some

rings of integers are Euclidean:

Lemma 4.2. If

#B1(x)� x

log2(x)

then OK is Euclidean.

Proof. We show that #B2(x) ∼ x
log(x)

. Then all primes must be in B3 (and

therefore in B): indirectly suppose that there is a prime π 6∈ B3. This means

there is a residue class (mod π) which has no representative in B2. By the

Dirichlet density theorem (see [17], page 567f), the density of prime ideals in

a class are the same for every class. Therefore, the density of B2 is less than

1 (if it exists). On the other side, from #B2(x) ∼ x
log(x)

it follows that B2 has

density 1, a contradiction. A more detailed explanation of this step can be

found in [16].

Therefore, if #B2(x) ∼ x
log(x)

, then by Lemma 4.1 the ring of integers OK is

Euclidean.

Note that #B2(x) ∼ x
log(x)

is equivalent to #Bc2(x) = o
(

x
log(x)

)
, where Bc2

is the complement of B2 in the set of prime ideals. By the Landau prime

ideal theorem (see [14]) we know that #{prime ideals p | N (p) ≤ x} ∼ x
log(x)

.
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We therefore have #B2(x) + #Bc2(x) ∼ x
log(x)

. Then

lim
x→∞

#Bc2(x)
x

log(x)

= lim
x→∞

#{prime ideals p | N (p) ≤ x} −#B2(x)
x

log(x)

= lim
x→∞

#{prime ideals p | N (p) ≤ x}
x

log(x)

− lim
x→∞

#B2(x)
x

log(x)

= 1− lim
x→∞

#B2(x)
x

log(x)

.

Now if #Bc2(x) = o
(

x
log(x)

)
, then lim

x→∞
#Bc

2(x)
x

log(x)
= 0 and therefore lim

x→∞
#B2(x)

x
log(x)

= 1,

so #B2(x) ∼ x
log(x)

. The other direction is also true, because we can invert

the implications of the last sentence.

We apply the large sieve as follows:

• A . . . a set of representatives of B1(x2)

• Z := #A = #B1(x2)

• X := x2

• P := Bc2(x)

• Q := x

Then X and Q are upper bounds on the norms of all elements of A and P
respectively.

By Corollary 4.1 and the assumption that #B1(x) � x
log2(x)

, we deduce

that∑
p∈Bc

2(x)

w(p)

N (p)
� Q2 +X

Z
=

2 · x2

#B1(x2)
� x2(

x2

log2(x2)

) = log2(x2) = 4 · log2(x)

and therefore ∑
p∈Bc

2(x)

w(p)

N (p)
� log2(x). (4.4)

As we want to measure the number of elements of Bc2, we need a lower bound

on w(p). We show that for p ∈ Bc2, w(p) ≥ f(p):
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If p ∈ Bc2, then p 6∈ B2. This means that there exists a non-zero residue class

(mod p) which has no representative in B1. Note that f(p) is the size of the

unit group reduced (mod p) embedded into (OK/p)× and that by definition,

B1 is closed under the taking of associates. So if one non-zero residue class

(mod p) is not represented by an element in B1, then at least f(p) aren’t.

Therefore w(p) ≥ f(p).

By the Gupta-Murty bound (Prop. 4.3), if OK has a unit of infinite order

(e.g., the fundamental unit) then

#{prime ideals p | f(p) ≤ Y } � Y 2.

If we set Y = x
1
2
−ε (where 0 < ε < 1/2), then

#{prime ideals p | N (p) ≤ x and f(p) ≤ N (p)
1
2
−ε} � x1−2ε.

Because

lim
x→∞

#{prime ideals p | N (p) ≤ x and f(p) ≤ N (p)
1
2
−ε}

x
log(x)

≤ lim
x→∞

c · x
x2ε

x
log(x)

= lim
x→∞

c · log(x)

x2ε
= 0

for some c > 0, it follows that

#{prime ideals p | N (p) ≤ x and f(p) ≤ N (p)
1
2
−ε} = o

(
x

log(x)

)
. (4.5)

From equation (4.4) above, we deduce that

log2(x) �
∑

p∈Bc
2(x)

f(p)>N (p)
1
2−ε

w(p)

N (p)
≥

∑
p∈Bc

2(x)

f(p)>N (p)
1
2−ε

f(p)

N (p)

>
∑

p∈Bc
2(x)

f(p)>N (p)
1
2−ε

1

N (p)
1
2

+ε
>

#{p ∈ Bc2(x) | f(p) > N (p)
1
2
−ε}

x
1
2

+ε

where we use that w(p) ≥ f(p) and N (p) ≤ x for p ∈ Bc2(x). Then

#{p ∈ Bc2(x) | f(p) > N (p)
1
2
−ε} = o

(
x

log(x)

)
, (4.6)
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because

lim
x→∞

#{p ∈ Bc2(x) | f(p) > N (p)
1
2
−ε}

x
log(x)

≤ lim
x→∞

c · log2(x) · x 1
2

+ε

x
log(x)

= lim
x→∞

c · log3(x)

x
1
2
−ε

= 0.

If we combine equations (4.5) and (4.6), then

#Bc2(x) = o
(

x
log(x)

)
,

as we see from

#Bc2(x) ≤ #{p ∈ Bc2(x) | f(p) > N (p)
1
2
−ε}

+ #{prime ideals p | N (p) ≤ x and f(p) ≤ N (p)
1
2
−ε}

= o
(

x
log(x)

)
+ o

(
x

log(x)

)
= o

(
x

log(x)

)
.

At the beginning we have shown that this is equivalent to #B2(x) ∼ x
log(x)

.

This implies that all primes are in B3 and therefore by Lemma 4.1 that OK

is Euclidean.

4.3 Admissible set of primes in Z[
√

14]

We construct an admissible set of two primes here. This will guarantee the

existence of three multiplicatively independent elements in the set B0. For

this let ε0 = 15 + 4
√

14 be the fundamental unit of Z[
√

14]. If we set

• π1 := 5−
√

14

• π2 := 3− 2
√

14

then

Proposition 4.5. {π1, π2} is an admissible set of primes in Z[
√

14].
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Proof. We use Proposition 4.2 to show that {π1, π2} is an admissible set of

primes. The norms of π1 and π2 are

N(π1) = 52 − (−1)2 · 14 = 25− 14 = 11

N(π2) = 32 − (−2)2 · 14 = 9− 56 = −47

and therefore π1, π2 are distinct non-associate primes with odd prime norm.

Furthermore, the Jacobi symbols
(

14
11

)
and

(
14
47

)
both equal 1 and by Propo-

sition 2.7, π1 and π2 are split primes and therefore unramified.

Next we show that ε0 is a generator of
(
Z[
√

14]/(π2
1)
)×

and −ε0 a gener-

ator of
(
Z[
√

14]/(π2
2)
)×

:

By Proposition 2.8,
∣∣(Z[
√

14]/(π1)
)×∣∣ = |N(π1)| − 1 = 10. ε0 is a generator

of
(
Z[
√

14]/(π1)
)×

, if ε0, ε
2
0 and ε5

0 6≡ 1 (π1) and ε10
0 ≡ 1 (π1):

• ε0 6≡ 1 (π1):

ε0 − 1

π1

=
14 + 4

√
14

5−
√

14
=

(14 + 4
√

14)(5 + 4
√

14)

25− 14

=
70 + 20

√
14 + 14

√
14 + 56

11
=

126 + 34
√

14

11
6∈ Z[
√

14]

• ε2
0 6≡ 1 (π1):

ε2
0 = (15 + 4

√
14)2 = 225 + 120

√
14 + 224 = 449 + 120

√
14

ε2
0 − 1

π1

=
448 + 120

√
14

5−
√

14
=

(448 + 120
√

14)(5 +
√

14)

11

=
2240 + 600

√
14 + 448

√
14 + 1680

11

=
3920 + 1048

√
14

11
6∈ Z[
√

14]
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• ε5
0 6≡ 1 (π1):

ε5
0 = (449 + 120

√
14)2(15 + 4

√
14)

= (201601 + 107760
√

14 + 201600)(15 + 4
√

14)

= (403201 + 107760
√

14)(15 + 4
√

14)

= 6048015 + 1616400
√

14 + 1612804
√

14 + 6034560

= 12082575 + 3229204
√

14

ε5
0 + 1

π1

=
12082576 + 3229204

√
14

5−
√

14

=
(12082576 + 3229204

√
14)(5 +

√
14)

11

=
60412880 + 16146020

√
14 + 12082576

√
14 + 45208856

11

=
105621736 + 28228596

√
14

11

= 9601976 + 2566236
√

14 ∈ Z[
√

14]

Therefore ε5
0 ≡ −1 (π1). Because−1 6≡ 1 (π1), it follows that ε5

0 6≡ 1 (π1).

• ε10
0 ≡ 1 (π1):

From above we know that π1|(ε5
0 + 1). This implies that

π1|(ε5
0 + 1)(ε5

0 − 1) = (ε10
0 − 1).

Therefore ε0 is a generator of
(
Z[
√

14]/(π1)
)×

. Additionally, ε10
0 6≡ 1 (π2

1):

Suppose that π2
1|(ε10

0 − 1), then π2
1|(ε5

0− 1)(ε5
0 + 1). As π1 6 |(ε5

0− 1) it follows

that π2
1|(ε5

0 + 1). But

ε5
0 + 1

π2
1

=
9601976 + 2566236

√
14

5−
√

14

=
(9601976 + 2566236

√
14)(5 +

√
14)

11

=
48009880 + 12831180

√
14 + 9601976

√
14 + 35927304

11

=
83937184 + 22433156

√
14

11
6∈ Z[
√

14].
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We get that ε10
0 6≡ 1 (π2

1). The fact that ε0 is a generator of
(
Z[
√

14]/(π2
1)
)×

now follows from Lemma 2.5 (as a principal ideal domain, Z[
√

14] is also a

unique factorization domain). By Proposition 2.8,∣∣(Z[
√

14]/(π2
1)
)×∣∣ = |N(π1)| · (|N(π1)| − 1) = 11 · 10 = 110.

The order of
(
Z[
√

14]/(π2)
)×

is |N(π2)| − 1 = 46. Therefore −ε0 generates(
Z[
√

14]/(π2)
)×

, if −ε0, (−ε0)2 and (−ε0)23 6≡ 1 (π2) and (−ε0)46 ≡ 1 (π2):

• −ε0 6≡ 1 (π2):

−ε0 − 1

π2

=
−16− 4

√
14

3− 2
√

14
=

(−16− 4
√

14)(3 + 2
√

14)

−47

=
(16 + 4

√
14)(3 + 2

√
14)

47
=

48 + 12
√

14 + 32
√

14 + 112

47

=
160 + 44

√
14

47
6∈ Z[
√

14]

• (−ε0)2 6≡ 1 (π2):

(−ε0)2 = ε2
0 = 449 + 120

√
14

(−ε0)2 − 1

π2

=
448 + 120

√
14

3− 2
√

14
=

(448 + 120
√

14)(3 + 2
√

14)

−47

= −1344 + 360
√

14 + 896
√

14 + 3360

47

= −4704 + 1256
√

14

47
6∈ Z[
√

14]

• (−ε0)23 6≡ 1 (π2):
We used Mathematica2 for the following calculation:

In[1] := Epsilon = 15 + 4*Sqrt[14];

In[2] := ((-Epsilon)^23 + 1)*(3 + 2*Sqrt[14])/-47//Simplify//Expand

Out[2] = 1023393020653197993190258226750950 +

273513289664281073438698673954768 Sqrt[14]

2Mathematica is a product of Wolfram Research, Inc., http://www.wolfram.com/
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This shows that (−ε0)23 ≡ −1 (π2). Therefore (−ε)23 6≡ 1 (π2), as

−1 6≡ 1 (π2).

• (−ε0)46 ≡ 1 (π2):

We have shown that π2

∣∣((−ε0)23 + 1
)

above. It follows that

π2

∣∣((−ε0)23 + 1
)(

(−ε0)23 − 1
)

=
(
(−ε0)46 − 1

)
and so (−ε0)46 ≡ 1 (π2).

Therefore −ε0 generates
(
Z[
√

14]/(π2)
)×

. Furthermore, (−ε0)46 6≡ 1 (π2
2):

Suppose that π2
2

∣∣((−ε0)46 − 1
)
, then π2

2

∣∣((−ε0)23 − 1
)(

(−ε0)23 + 1
)
. As

π2 6
∣∣((−ε0)23 − 1

)
, we deduce that π2

2

∣∣((−ε0)23 + 1
)
. But (−ε0)23+1

π2
2

6∈ Z[
√

14],

as the following calculation with Mathematica shows:

In[1] := Epsilon = 15 + 4*Sqrt[14];

In[2] := ((-Epsilon)^23 + 1)*(3 + 2*Sqrt[14])^2/(-47)^2//Simplify//Expand

Out[2] = -10728551172559464035854337550986354/47 -

(2867325910299239206696612475366204 Sqrt[14])/47

Therefore (−ε0)46 6≡ 1 (π2
2). By Lemma 2.5, the element −ε0 generates(

Z[
√

14]/(π2
2)
)×

. The order of
(
Z[
√

14]/(π2
2)
)×

is 2162 (by Proposition 2.8).

Next we calculate the order of ε0 in
(
Z[
√

14]/(π2
2)
)×

:

First note that ε0 6≡ 1 (π2), as

ε0 − 1

π2

=
14 + 4

√
14

3− 2
√

14
=

(14 + 4
√

14)(3 + 2
√

14)

−47

=
42 + 12

√
14 + 28

√
14 + 112

−47
= −154 + 40

√
14

47
6∈ Z[
√

14]

As

ε23
0 = −(−ε0)23 ≡ 1 (π2),

we see that ε0 has order 23 in
(
Z[
√

14]/(π2)
)×

. Let n be the order of

ε0 in
(
Z[
√

14]/(π2
2)
)×

, then n
∣∣∣∣∣(Z[

√
14]/(π2

2)
)×∣∣ = 47 · 46 = 2162. As

εn0 ≡ 1 (π2
2) we have that εn0 ≡ 1 (π2) and therefore 23|n. We conclude that

n ∈ {23, 23 · 2, 23 · 47, 23 · 2 · 47}:

• ε23
0 6≡ 1 (π2

2):
With the help of Mathematica, we compute that:
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In[1] := Epsilon = 15 + 4*Sqrt[14];

In[2] := (Epsilon^23 - 1)*(3 + 2*Sqrt[14])^2/(-47)^2//Simplify//Expand

Out[2] = 10728551172559464035854337550986354/47 +

(2867325910299239206696612475366204 Sqrt[14])/47

This shows that ε23
0 6≡ 1 (π2

2).

• ε23·2
0 6≡ 1 (π2

2):

We have shown above that ε46
0 = (−ε0)46 6≡ 1 (π2

2).

• ε23·47
0 ≡ 1 (π2

2):
We performed the following calculation in Mathematica:

In[1] := Epsilon = 15 + 4*Sqrt[14];

In[2] := (Epsilon^1081 - 1)*(3 + 2*Sqrt[14])^2/(-47)^2//Simplify//Expand

The output is an element in Z[
√

14]. We omitted it here for lack of

space.

This shows that ε0 has order 1081 in
(
Z[
√

14]/(π2
2)
)×

.

As 110 and 1081 are coprime, ε1081
0 is also a generator of

(
Z[
√

14]/ (π2
1)
)×

such that ε1081
0 ≡ 1 (mod π2

2). There exists a positive integer a such that

ε1081a
0 ≡ (−ε0)−1 (mod π2

1). This implies that −ε1081a+1
0 ≡ 1 (mod π2

1). The

element −ε1081a+1
0 generates

(
Z[
√

14]/ (π2
2)
)×

.

By the Chinese Remainder Theorem (see Proposition 2.4), we know that(
Z[
√

14]/
(
π2

1 · π2
2

)) ∼= (Z[
√

14]/
(
π2

1

))
×
(
Z[
√

14]/
(
π2

2

))
,

because (π2
1) and (π2

2) are coprime ideals. The isomorphism is given by

z +
(
π2

1 · π2
2

) σ7→
(
z +

(
π2

1

)
, z +

(
π2

2

))
.

For rings R, S we have the relation (R × S)× ∼= R× × S×, so we conclude

that (
Z[
√

14]/
(
π2

1 · π2
2

))× ∼= (Z[
√

14]/
(
π2

1

))×
×
(
Z[
√

14]/
(
π2

2

))×
.
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Now consider an arbitrary coprime residue class modulo π2
1 · π2

2 – that is an

element z + (π2
1 · π2

2) in
(
Z[
√

14]/ (π2
1 · π2

2)
)×

. The isomorphism above tells

us that we can interpret the residue class as an element in(
Z[
√

14]/
(
π2

1

))×
×
(
Z[
√

14]/
(
π2

2

))×
.

Because ε1081
0 is a generator for

(
Z[
√

14]/ (π2
1)
)×

and −ε1081a+1
0 is a generator

for
(
Z[
√

14]/ (π2
2)
)×

, there exist non-negative integers x, y such that(
z +

(
π2

1

)
, z +

(
π2

2

))
=
((
ε1081

0

)x
+ (π2

1),
(
−ε1081a+1

0

)y
+ (π2

2)
)
.

Now the unit u := (ε1081
0 )x · (−ε1081a+1

0 )y is a representative of this element:

Let π : OK → (OK/ (π2
1 · π2

2)) be the canonical map. Then

σ(π(u)) =
(
u+

(
π2

1

)
, u+

(
π2

2

))
=

(
(ε1081

0 )x · (−ε1081a+1
0 )y +

(
π2

1

)
, (ε1081

0 )x · (−ε1081a+1
0 )y +

(
π2

2

))
=

(
(ε1081

0 )x · 1 +
(
π2

1

)
, 1 · (−ε1081a+1

0 )y +
(
π2

2

))
=

(
(ε1081

0 )x +
(
π2

1

)
, (−ε1081a+1

0 )y +
(
π2

2

))
.

Therefore every coprime residue class modulo π2
1 · π2

2 can be represented by

a unit.

By Proposition 4.2, {π1, π2} is an admissible set of primes.

4.4 The Lower Bound Sieve

In this section we present a result which allows us to estimate the number

of certain primes. This will later allow us to show that the ring of integers

Z[
√

14] fulfills the numerical condition of Lemma 4.2.

Lemma 4.3. Suppose a and k are coprime integers. Set d = gcd(a − 1, k)

and suppose gcd(a−1
d
, d) = 1. The number of primes p ≤ x such that

• p ≡ a (mod k) and
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• p−1
d

is divisible only by primes l exceeding x
2
7
−ε

is � x
log2(x)

.

Proof. For a similar proof see Heath-Brown [10], Lemma 1.

4.5 Proof that Q(
√

14) is Euclidean

Now we are able to prove the main result of this chapter:

Theorem 4.1 (M. Harper). Z[
√

14] is an Euclidean domain.

Proof. Let B0 be the monoid generated by the units of Z[
√

14] and the two

admissible primes π1, π2 of section 4.3. With the help of Lemma 4.3 we will

show that #B1(x) � x
log2(x)

. Then by Lemma 4.2 it follows that Z[
√

14] is

Euclidean.

To apply Lemma 4.3, we set a = 11 and k = 56. Then d = gcd(a − 1, k) =

gcd(10, 56) = 2, a and k are coprime and gcd(a−1
d
, d) = gcd(5, 2) = 1. There-

fore the set of primes p ≤ x with p ≡ 11 (mod 56) and p−1
2

is only divisible

by primes l with l > x
2
7
−ε has cardinality � x

log2(x)
.

Each prime p ≡ 11 (mod 56) splits in Z[
√

14]: As p 6= 2, if the Jacobi

symbol
(

14
p

)
equals 1, then p splits (this follows from Proposition 2.7). By

the properties of the Jacobi symbol, it follows that
(

14
p

)
=
(

2
p

)
·
(

7
p

)
. Be-

cause p ≡ 3 (mod 8),
(

2
p

)
= −1 (because of the second supplementary

law). By quadratic reciprocity we deduce that
(

7
p

)
= −

(
p
7

)
, as p ≡ 7 ≡ 3

(mod 4). Additionally,
(
p
7

)
=
(

4
7

)
because p ≡ 4 (mod 7). Therefore(

14
p

)
=
(

4
7

)
=
(

2
7

)2
= 1.

As every p ≡ 11 (mod 56) splits in Z[
√

14], there exist two different prime

ideals p, p′ in Z[
√

14] such that p ·OK = p · p′. From

p2 = N (p ·OK) = N (p · p′) = N (p) · N (p′),
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we deduce that p = N (p) = N (p′). So for two different rational primes

p, p ≤ x, the corresponding prime ideals are also different and have norm less

or equal to x.

Therefore, we have shown that the set of prime ideals p in Z[
√

14] such

that N (p) ≡ 11 (mod 56), N (p) ≤ x and N (p)−1
2

is only divisible by primes

l > x
2
7
−ε has cardinality � x

log2(x)
.

Now we show that p ∈ B1 if and only if fB0(p) = N (p)− 1:

fB0(p) is definded to be the order of B0 (mod p) embedded into
(
Z[
√

14]/p
)×

.

Note that N (p) − 1 =
∣∣∣(Z[
√

14]/p
)×∣∣∣ for prime ideals p: as Z[

√
14] is a

principal ideal domain and p a prime ideal, p is also a maximal ideal in

Z[
√

14]. Therefore Z[
√

14]/p is a field which implies that (Z[
√

14]/p)× =

(Z[
√

14]/p) \ {(0)}. The equation follows because N (p) =
∣∣Z[
√

14]/p
∣∣ by

definition. Now if p ∈ B1, then the embedding is surjective. Therefore

fB0(p) =
∣∣∣(Z[
√

14]/p
)×∣∣∣ = N (p) − 1. On the other hand, if fB0(p) =

N (p) − 1 =
∣∣∣(Z[
√

14]/p
)×∣∣∣ then the embedding is surjective which implies

that p ∈ B1.

As N (p) ≡ 11 (mod 56), we deduce that N (p) ≡ 3 (mod 4). Without

loss of generality, we can assume that 2|fB0(p) (since −1 ∈ B0). Therefore

2 6 |N (p)−1
fB0

(p)
, as N (p)− 1 ≡ 2 (mod 4).

Then N (p)−1
fB0

(p)
= 1 or N (p)−1

fB0
(p)

> x
2
7
−ε:

Set l = N (p)−1
fB0

(p)
. Note that fB0(p) ≤ N (p) − 1. Now there are two possible

cases:

1. fB0(p) = N (p)− 1, that is l = 1.

2. fB0(p) < N (p)− 1, then l > 1 and l is a natural number (because fB0(p)

denotes the order of a subgroup of
(
Z[
√

14]/p
)×

). Also l|N (p)−1
2

, because

2|fB0(p) and therefore l = N (p)−1
fB0

(p)
> x

2
7
−ε.

62



In the second case above, as N (p) ≤ x, it follows that

x
2
7
−ε <

N (p)− 1

fB0(p)
≤ x− 1

fB0(p)
<

x

fB0(p)
.

From this inequality, we easily deduce that fB0(p) ≤ x
5
7

+ε. By the Gupta-

Murty bound (Prop. 4.3), as B0 has three multiplicatively independent ele-

ments (Prop. 4.5),

#{prime ideals p | fB0(p) ≤ x
5
7

+ε} � x( 5
7

+ε)· 43 .

If we choose ε < 1
28

, then x( 5
7

+ε)· 43 = o
(

x
log2(x)

)
:

Set ε = 1
28
− δ with 0 < δ < 1

28
, then 0 < ε < 1

28
. We deduce that

lim
x→∞

x( 5
7

+ε)· 43
x

log2(x)

= lim
x→∞

x( 5
7

+ 1
28
−δ)· 43

x
log2(x)

= lim
x→∞

x( 20
21

+ 4
84
− 4

3
·δ) · log2(x)

x

= lim
x→∞

x(1− 4
3
·δ) · log2(x)

x
= lim

x→∞

log2(x)

x
4
3
·δ

= 0.

Therefore

#{prime ideals p | fB0(p) ≤ x
5
7

+ε} = o
(

x
log2(x)

)
.

This implies that

#{prime ideals p | N (p) ≤ x,N (p) ≡ 11 (mod 56), N (p)−1
fB0

(p)
> x

2
7
−ε}

= o
(

x
log2(x)

)
.

Then

#{prime ideals p | N (p) ≤ x and fB0(p) = N (p)− 1} � x

log2(x)
.

This follows from

# {p prime | N (p) ≤ x,N (p) ≡ 11 (mod 56), fB0(p) = N (p)− 1}

≥ #{p prime | N (p) ≤ x,N (p) ≡ 11 (mod 56), l|N (p)−1
2
⇒ l > x

2
7
−ε}

−#{p prime | N (p) ≤ x,N (p) ≡ 11 (mod 56), N (p)−1
fB0

(p)
> x

2
7
−ε}

� x

log2(x)
.
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Because fB0(p) = N (p)− 1 if and only if p ∈ B1, we have shown that

#B1(x) = {p prime | N (p) ≤ x, p ∈ B1} �
x

log2(x)
.

By Lemma 4.2 it follows that Z[
√

14] is Euclidean.
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Appendix A

Computer proof

For the proof of Lemma 3.1, a computer program is needed. We first analyse

the problem that has to be solved and present an example implementation.

The used definitions are the same as in Chapter 3.

A.1 Analysis

The program has to split the square [0, 1] × [0, 1] into small rectangles. For

every rectangle it has to search for two translates γ1, γ2 ∈ Z[α] such that:

1. |N(z + γi)| < 1 for all points z in the rectangle, i ∈ {1, 2}

2. γ1 − γ2 is not divisible by 10 + 3α

Let us analyse the first point from above. What we actually have to do is

to calculate global maxima. If, for a given rectangle R and translate γ, the

global maximum of the function |N(z+ γ)| in the area R is less then 1, then

the translate γ is good.

As the calculation of global maxima for functions in several variables is

in general a little bit tricky, we will make use of the following proposition:

Proposition A.1. Let R be a rectangle and γ ∈ Z[α] a translate. Then

the global maximum of the function |N(z + γ)|, where z is a point from the

rectangle, is attained at the border.
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Proof. Let z = x + y · α for rational x, y with 0 ≤ x, y < 1. Then |N(z)| =

|f(x, y)|, where f(x, y) = x2 +xy−17y2. Especially, if γ ∈ Z[α] is a translate

with γ = a+ b · α, then |N(z + γ)| = |f(x+ a, y + b)|.
Let R ⊆ [0, 1] × [0, 1] be a rectangle. Note that |N((x + y · α) + γ)| is

actually only defined for rational x, y. But it is clear that if the maximum

of |f(x+ a, y+ b)| in R, where x, y could be real, is less than 1 then also the

maximum of |N((x+ y · α) + γ)|, where x, y are restricted to be rational, is

less than 1.

Now where is |f(x+ a, y + b)| maximal for (x, y) ∈ R?

It is necessary for the partial derivatives (if they exist) to equal 0 to be a

maximum that lies inside the rectangle (not at the border). When does this

happen:

|f(x+ a, y + b)| = |(x+ a)2 + (x+ a)(y + b)− 17(y + b)2|

= |x2 + 2xa+ a2 + xy + xb+ ya+ ab− 17y2 − 34yb− 17b2|

= |x2 + x(2a+ b) + xy − 17y2 + y(a− 34b) + (a2 + ab− 17b2)|.

The partial derivatives of the function are:

• ∂
∂x
|f(x+ a, y + b)| = sgn(f(x+ a, y + b)) · (2x+ (2a+ b) + y)

• ∂
∂y
|f(x+ a, y + b)| = sgn(f(x+ a, y + b)) · (−34y + (a− 34b) + x)

If sgn(f(x+ a, y + b)) = 0, then both partial derivatives would be 0 and the

function is probably not differiantiable there. But we can ignore these points

as |f(x+ a, y+ b)| would be zero and therefore cannot be a global maximum

for our function. So let us assume that sgn(f(x+ a, y + b)) 6= 0. Then both

derivatives equal 0 if

1. 2x+ (2a+ b) + y = 0

2. −34y + (a− 34b) + x = 0

From the second equation we deduce that x = 34y − a + 34b. If we insert

this value for x in the first equation, we get 68y − 2a+ 68b+ (2a+ b) + y =

69y+69b = 0 and therefore y = −b. Therefore 34b+(a−34b)+x = 0, which
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leads to x = −a. As a and b are both integers, this is only possible if (x, y)

is a corner point of [0, 1]× [0, 1].

Therefore, the global maximum is not attained inside the rectangle. That

the global maximum exists follows from the fact that |f(x + a, y + b)| is a

continuous real function defined on a compact set R. So the global maximum

has to be attained at the border.

We therefore reduced the problem of finding the global maximum of a 2-

variable function to finding the maximum at the border of a rectangle, which

is of course just a one-dimensional problem.

Now let us consider the second point from above: when is the difference

of two translates not divisible by 10 + 3α. Here calculation takes place in

Z[α], that is γ ∈ Z[α] is divisible by ρ ∈ Z[α] if there exists σ ∈ Z[α] such

that ρ · σ = γ. We use the notation ρ|γ if γ is divisible by ρ in Z[α].

If 10+3α|γ, then also N(10+3α)|N(γ) (now in Z!). Therefore, if N(10+

3α) 6 |N(γ) then we are sure that γ is not divisible by 10 + 3α. That will be

the sufficient condition we use in our program:

Proposition A.2. If N(10 + 3α) 6 |N(γ), then 10 + 3α 6 |γ.

A.2 Implementation

The source code for an example implementation can be found in section A.4.

Because speed matters, the program has been implemented in “C++”. If

you are not familiar with this language, then the standard reference [20] is

highly recommended. As “C++” does not support rational arithmetic out

of the box, we used the “GNU MP Bignum Library”1.

The program has been compiled under GNU/Linux with the “GNU Compiler

Collection”2.

1The library and documentation can be found at http://gmplib.org/
2The “GNU Compiler Collection” website is http://gcc.gnu.org/
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The program has to be started with six parameters. The first four param-

eters (xmin, xmax, ymin, ymax ) define the rectangle R to be checked. The

next parameter (n) defines the size of the translates. The last one (md) sets

the maximum recursion depth.

The first five parameters and a sixth parameter called depth and initially

set to 0 are given to the function checkrect. This function searches for two

translates γ1, γ2 such that

1. |N(z + γi)| < 1 for all points z in the rectangle R, i ∈ {0, 1} (imple-

mented in the function checkmax, see Proposition A.1)

2. γ1−γ2 is not divisible by 10 + 3α (implemented in the function check-

div, see Proposition A.2).

As we are not able to check all possible translates, we only consider translates

γ = a + b · α with |a|, |b| ≤ n. If the program fails to find two translates

that fulfill the two points from above, then the rectangle is split into four

smaller rectangles and the function checkrect is applied to this rectangles

again (but now with the depth parameter increased by one). Therefore it is

a recursive algorithm. Now two things could happen:

1. We are able to find two translates for the rectangle that satisfy the

points 1 and 2 from above.

2. The value of depth equals md (max depth). This happens if we are not

able to find translates and go deeper and deeper in the recursion (that

is, the rectangles get smaller and smaller). As we don’t want to go down

to infinity, it is natural to stop at a given maximum recursion depth.

In this case the program goes up to the level bmd
2
c in the recursion and

prints the coordinates of this rectangle.

For further details on how the program works, have a look at the source code

in section A.4.
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A.3 Example session

Here is the output of an example session of our program:

xmin = 0

xmax = 1

ymin = 0

ymax = 0.5

n = 50

md = 10

No translates: 0.00000000, 0.06250000, 0.00000000, 0.03125000

No translates: 0.93750000, 1.00000000, 0.00000000, 0.03125000

No translates: 0.00000000, 0.06250000, 0.37500000, 0.40625000

No translates: 0.75000000, 0.81250000, 0.34375000, 0.37500000

No translates: 0.81250000, 0.87500000, 0.34375000, 0.37500000

No translates: 0.87500000, 0.93750000, 0.34375000, 0.37500000

No translates: 0.56250000, 0.62500000, 0.37500000, 0.40625000

Bounding box:

xmin = 0.00000000, xmax = 1.00000000

ymin = 0.00000000, ymax = 0.40625000

This means that the program succeeded in finding translates except for five

connected areas (note that the lines 4-6 of “No translates” above define one

connected area). We continue with handling each of this five areas separately.

Please note that we increased the parameters n and md to get smaller areas

where the program fails to find “good” translates:

1. xmin = 0

xmax = 0.0625

ymin = 0

ymax = 0.03125

n = 100

md = 20

No translates: 0.00000000, 0.00012207, 0.00000000, 0.00006104

Bounding box:

xmin = 0.00000000, xmax = 0.00012207

ymin = 0.00000000, ymax = 0.00006104

2. xmin = 0.9375

xmax = 1
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ymin = 0

ymax = 0.03125

n = 100

md = 20

No translates: 0.99987793, 1.00000000, 0.00000000, 0.00006104

Bounding box:

xmin = 0.99987793, xmax = 1.00000000

ymin = 0.00000000, ymax = 0.00006104

3. xmin = 0

xmax = 0.0625

ymin = 0.375

ymax = 0.40625

n = 100

md = 50

Success.

4. xmin = 0.75

xmax = 0.9375

ymin = 0.34375

ymax = 0.375

n = 100

md = 20

No translates: 0.82580566, 0.82617188, 0.34777832, 0.34783936

No translates: 0.82543945, 0.82580566, 0.34783936, 0.34790039

No translates: 0.82580566, 0.82617188, 0.34783936, 0.34790039

No translates: 0.82507324, 0.82543945, 0.34796143, 0.34802246

No translates: 0.82543945, 0.82580566, 0.34790039, 0.34796143

No translates: 0.82434082, 0.82470703, 0.34814453, 0.34820557

No translates: 0.82324219, 0.82360840, 0.34832764, 0.34838867

No translates: 0.82360840, 0.82397461, 0.34832764, 0.34838867

No translates: 0.82617188, 0.82653809, 0.34777832, 0.34783936

No translates: 0.82617188, 0.82653809, 0.34783936, 0.34790039

No translates: 0.82617188, 0.82653809, 0.34790039, 0.34796143

No translates: 0.82653809, 0.82690430, 0.34796143, 0.34802246

No translates: 0.82727051, 0.82763672, 0.34814453, 0.34820557

No translates: 0.82800293, 0.82836914, 0.34832764, 0.34838867

Bounding box:

xmin = 0.82324219, xmax = 0.82836914

ymin = 0.34777832, ymax = 0.34838867
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5. xmin = 0.5625

xmax = 0.625

ymin = 0.375

ymax = 0.40625

n = 100

md = 50

Success.

If we combine the results of points 1 and 2 from above, we see that the area

(modulo Z2) is contained in a circle with center point (0, 0) and a radius of
6

1000
. For the areas three and five the program succeeded in finding translates.

The fourth area is contained in a circle with center point (19
23
, 8

23
) and radius

6
1000

.

Please note that up to this point, we have only checked the points (x, y)

with 0 ≤ y ≤ 1
2
. If we consider the transformation z 7→ −z then we get all

the remaining points (x, y) with 1
2
≤ y ≤ 1 (modulo Z2, but this is enough).

If for a point z there exist γ1, γ2 ∈ Z[α] such that |N(z + γi)| < 1, i ∈ {0, 1}
and 10 + 3α 6 |γ1 − γ2 then this is also true for −z - just replace γ1, γ2 by

−γ1,−γ2.

Under this transformation, the areas in the corners (0, 0) and (1, 0) are

mirrored to the upper corners (1, 1) and (0, 1). Modulo Z2, they still lie in

the circle with center (0, 0) and radius 6
1000

. The point (19
23
, 8

23
) is transformed

to (−19
23
,− 8

23
) which is congruent to ( 4

23
, 15

23
) modulo Z2.

With the help of a computer program we therefore proved the following

result:

Proposition A.3. Let z ∈ Q(
√

69) and z0 = (0, 0), z1 = (19
23
, 8

23
), z2 =

( 4
23
, 15

23
). If |z − zi| > 6

1000
for i = 0, 1, 2, then there exists γ1, γ2 ∈ Z[α] such

that |N(z + γ1)| < 1, |N(z + γ2)| < 1 and γ1− γ2 is not divisible by 10 + 3α.

A.4 Source code

#include <iostream>
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#include <gmpxx.h>

using namespace std;

#define MAXTRANS 100

int maxdepth;

long lasta1 = 0, lastb1 = 0, lasta2 = 0, lastb2 = 1;

int bound_init = 0;

mpq_class bound_xmin, bound_xmax, bound_ymin, bound_ymax;

// Calculate the absolute value of the norm of the algebraic number of

// the form x+y*(1+sqrt(69))/2.

mpq_class

f (const mpq_class x, const mpq_class y)

{

return abs(x*x + x*y - 17*y*y);

}

// Check if $10+3\alpha$ does not divide $a+b\alpha$ in $\Z[\alpha]$.

// It is sufficient to check if the norm of $10+3\alpha$ does not divide

// the norm of $a+b\alpha$ in $\Z$.

// Return 0 if not divisible, 1 otherwise.

int

checkdiv (const long a, const long b)

{

mpz_class z(a*a + a*b - 17*b*b);

if (!mpz_divisible_ui_p (z.get_mpz_t(), 23))

return 0; // not divisible

return 1; // divisible

}
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// Check if f(x, y) is < 1 in the given square.

// Returns 1 if it is, 0 otherwise.

int

checkmax (const mpq_class x1, const mpq_class x2, const mpq_class y1,

const mpq_class y2, long a, long b)

{

// Check corners

if (f(x1+a, y1+b) >= 1)

return 0;

if (f(x2+a, y1+b) >= 1)

return 0;

if (f(x1+a, y2+b) >= 1)

return 0;

if (f(x2+a, y2+b) >= 1)

return 0;

// Check border

if ((x1 <= (-2*a-b-y1)/2) && ((-2*a-b-y1)/2 <= x2)) {

if (f((-b-y1)/2, y1+b) >= 1)

return 0;

}

if ((x1 <= (-2*a-b-y2)/2) && ((-2*a-b-y2)/2 <= x2)) {

if (f((-b-y2)/2, y2+b) >= 1)

return 0;

}

if ((y1 <= (x1+a-34*b)/34) && ((x1+a-34*b)/34 <= y2)) {

if (f(x1+a, (x1+a)/34) >= 1)

return 0;

}

if ((y1 <= (x2+a-34*b)/34) && ((x2+a-34*b)/34 <= y2)) {

if (f(x2+a, (x2+a)/34) >= 1)

return 0;
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}

return 1;

}

void

update_bounding (const mpq_class xmin, const mpq_class xmax,

const mpq_class ymin, const mpq_class ymax)

{

if (bound_init) {

if (xmin < bound_xmin)

bound_xmin = xmin;

if (bound_xmax < xmax)

bound_xmax = xmax;

bound_ymax = ymax;

} else {

bound_xmin = xmin;

bound_xmax = xmax;

bound_ymin = ymin;

bound_ymax = ymax;

bound_init = 1;

}

}

int

checkrect (const mpq_class xmin, const mpq_class xmax, const mpq_class ymin,

const mpq_class ymax, long n, const int depth)

{

mpq_class xhalf(0), yhalf(0);

long a, b;

long transa[MAXTRANS + 1], transb[MAXTRANS + 1];

long pos = 0, i;

if (checkmax (xmin, xmax, ymin, ymax, lasta1, lastb1) &&

checkmax (xmin, xmax, ymin, ymax, lasta2, lastb2))
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return 1;

for (a = 0; a <= n; a = -a) {

for (b = 0; b <= a || b <= -a; b = -b) {

if (checkmax (xmin, xmax, ymin, ymax, a, b)) {

for (i = 0; i < pos; i++) {

if (!checkdiv (a - transa[i], b - transb[i])) {

lasta1 = a;

lastb1 = b;

lasta2 = transa[i];

lastb2 = transb[i];

return 1;

}

} // for (i=0)

// Append current translate to list.

if (pos < MAXTRANS) {

transa[pos] = a;

transb[pos] = b;

pos++;

} else {

cerr << "ERROR: MAXTRANS overflow: " << pos << endl;

exit(1);

}

} // if (checkmax)

if (b >= 0)

b++;

} // for (b)

if (a >= 0)

a++;

} // for (a)

if (depth >= maxdepth) {

return 0;

} else {
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xhalf = (xmin + xmax) / 2;

yhalf = (ymin + ymax) / 2;

n = n + 100;

if (!checkrect (xmin, xhalf, ymin, yhalf, n, depth + 1) ||

!checkrect (xhalf, xmax, ymin, yhalf, n, depth + 1) ||

!checkrect (xmin, xhalf, yhalf, ymax, n, depth + 1) ||

!checkrect (xhalf, xmax, yhalf, ymax, n, depth + 1)) {

if (depth >= maxdepth / 2) {

return 0;

} else {

update_bounding (xmin, xmax, ymin, ymax);

printf("No translates: %.8f, %.8f, %.8f, %.8f\n", xmin.get_d(),

xmax.get_d(), ymin.get_d(), ymax.get_d());

}

}

}

return 1;

}

int

main (int argc, char **argv)

{

if (argc != 7)

{

cout << "Usage: " << argv[0] << " xmin xmax ymin ymax n md" << endl;

exit(1);

}

mpq_class xmin(atof(argv[1]));

mpq_class xmax(atof(argv[2]));

mpq_class ymin(atof(argv[3]));

mpq_class ymax(atof(argv[4]));

long n = atol(argv[5]);

maxdepth = atoi(argv[6]);
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xmin.canonicalize();

xmax.canonicalize();

ymin.canonicalize();

ymax.canonicalize();

cout << "xmin = " << xmin.get_d() << endl;

cout << "xmax = " << xmax.get_d() << endl;

cout << "ymin = " << ymin.get_d() << endl;

cout << "ymax = " << ymax.get_d() << endl;

cout << "n = " << n << endl;

cout << "md = " << maxdepth << endl;

checkrect (xmin, xmax, ymin, ymax, n, 0);

if (bound_init) {

cout << "Bounding box:" << endl;

printf("xmin = %.8f, xmax = %.8f\n", bound_xmin.get_d(),

bound_xmax.get_d());

printf("ymin = %.8f, ymax = %.8f\n", bound_ymin.get_d(),

bound_ymax.get_d());

} else {

cout << "Success." << endl;

}

return 0;

}
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Zusammenfassung

Diese Diplomarbeit befasst sich mit quadratischen Zahlkörpern welche euk-

lidisch aber nicht normeuklidisch sind. Alle normeuklidischen quadratischen

Zahlkörper Q(
√
d) für quadratfreies d 6= 0, 1 sind seit 1950 bekannt: Chat-

land & Davenport [3] und davon unabhängig Inkeri [12] haben gezeigt, dass

Q(
√
d) genau dann normeuklidisch ist, wenn d eine ganze Zahl in

{−1,−2,−3,−7,−11, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73}

ist. Zusätzlich gilt, dass für quadratfreies d < 0 der Zahlkörper Q(
√
d) genau

dann euklidisch ist, wenn d eine ganze Zahl in

{−1,−2,−3,−7,−11}

ist. Dies zeigt, dass ein imaginärquadratischer Zahlkörper genau dann eu-

klidisch ist, wenn er normeuklidisch ist. Im reellquadratischen Fall war es

jedoch jahrzehntelang unbekannt, ob aus euklidisch automatisch normeuk-

lidisch folgt oder nicht.

In Kapitel 3 präsentieren wir den Beweis von D. A. Clark, dass Q(
√

69) eu-

klidisch aber nicht normeuklidisch ist (siehe [4]). Dies ist das erste Beispiel

für einen quadratischen Zahlkörper mit dieser Eigenschaft. Dabei ist es uns

möglich, explizit einen euklidischen Algorithmus anzugeben. Teile des Be-

weises beruhen auf einem Computerprogramm, für welches der Quellcode in

Appendix A enthalten ist.

In Kapitel 4 untersuchen wird den quadratischen Zahlkörper Q(
√

14). Es

wurde lange Zeit vermutet, dass Q(
√

14) euklidisch ist, da er alle Eigen-

schaften eines euklidischen Bereiches besitzt (zum Beispiel ist desses Ganzheit-

sring ein Hauptidealbereich). Erst 2004 gelang es M. Harper zu beweisen,

dass Q(
√

14) tatsächlich euklidisch ist (siehe [8]). Er konnte sogar zeigen,

dass alle reellquadratischen Zahlkörper mit Klassenzahl 1 und Diskrimi-
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nante ≤ 500 euklidisch sind. Diesmal ist es uns nicht möglich, einen eu-

klidischen Algorithmus anzugeben. Stattdessen verwenden wir eine Charak-

terisierung von euklidischen Bereichen und die Hilfe von Siebmethoden in

Zahlkörpern.

Kürzlich konnte W. Narkiewicz (in [16]) zeigen, dass alle - mit Ausnahme

höchstens zweier - reellquadratischen Zahlkörper mit Klassenzahl 1 euk-

lidisch sind. Bisher sind keine solchen Ausnahmen bekannt. Falls jedoch eine

gefunden würde, so wäre dies ein Widerspruch zur Verallgemeinerten Rie-

mannschen Hypothese. Dies folgt aus einem Resultat von P. J. Weinberger,

der in [21] aus der Verallgemeinerten Riemannschen Hypothese folgerte, dass

alle reellquadratischen Zahlkörper mit Klassenzahl 1 euklidisch sind.
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