#### Group Theory and Cryptography

Simon R. Blackburn

Joint work with Carlos Cid, Ciaran Mullan



10th June 2010

#### Overview

- 1 The Discrete Log Problem
- 2 The DLP and groups
- 3 Logarithmic signatures
- 4 MST<sub>3</sub>

Let G be a group (represented in some specified way). For example, let p be a prime and let  $G = \mathbb{Z}_p^*$ .

Let G be a group (represented in some specified way). For example, let p be a prime and let  $G = \mathbb{Z}_p^*$ .

The Discrete Logarithm Problem (DLP): Given  $g, h \in G$ , find an integer x (if it exists) such that  $h = g^x$ .

Let G be a group (represented in some specified way). For example, let p be a prime and let  $G = \mathbb{Z}_p^*$ .

The Discrete Logarithm Problem (DLP): Given  $g, h \in G$ , find an integer x (if it exists) such that  $h = g^x$ .

• When  $G = \mathbb{Z}_p^*$ , this seems to be a hard computational problem (for large p).

Let G be a group (represented in some specified way). For example, let p be a prime and let  $G = \mathbb{Z}_p^*$ .

The Discrete Logarithm Problem (DLP): Given  $g, h \in G$ , find an integer x (if it exists) such that  $h = g^x$ .

- When  $G = \mathbb{Z}_p^*$ , this seems to be a hard computational problem (for large p).
- Taking G the group of points of an elliptic curve is thought to be more secure (no 'index-calculus').

Let G be a group (represented in some specified way). For example, let p be a prime and let  $G = \mathbb{Z}_p^*$ .

The Discrete Logarithm Problem (DLP): Given  $g, h \in G$ , find an integer x (if it exists) such that  $h = g^x$ .

- When  $G = \mathbb{Z}_p^*$ , this seems to be a hard computational problem (for large p).
- Taking G the group of points of an elliptic curve is thought to be more secure (no 'index-calculus').
- The DLP makes sense for any group. But it's really about cyclic groups, since we can replace G by  $\langle g \rangle$ .

Suppose Alice and Bob want to agree on a random key K. They decide upon a large prime p and some  $g \in G = \mathbb{Z}_p^*$  and perform the following protocol:

Suppose Alice and Bob want to agree on a random key K. They decide upon a large prime p and some  $g \in G = \mathbb{Z}_p^*$  and perform the following protocol:

• Alice chooses a random integer  $0 \le a < |G|$  and sends  $c_1 = g^a$  to Bob.

Suppose Alice and Bob want to agree on a random key K. They decide upon a large prime p and some  $g \in G = \mathbb{Z}_p^*$  and perform the following protocol:

- Alice chooses a random integer  $0 \le a < |G|$  and sends  $c_1 = g^a$  to Bob.
- Bob chooses a random integer  $0 \le b < |G|$  and sends  $c_2 = g^b$  to Alice.

Suppose Alice and Bob want to agree on a random key K.

They decide upon a large prime p and some  $g \in G = \mathbb{Z}_p^*$  and perform the following protocol:

- Alice chooses a random integer  $0 \le a < |G|$  and sends  $c_1 = g^a$  to Bob.
- Bob chooses a random integer  $0 \le b < |G|$  and sends  $c_2 = g^b$  to Alice.

Alice and Bob both share the same key  $K = g^{ab}$ .

Suppose Alice and Bob want to agree on a random key K.

They decide upon a large prime p and some  $g \in G = \mathbb{Z}_p^*$  and perform the following protocol:

- Alice chooses a random integer  $0 \le a < |G|$  and sends  $c_1 = g^a$  to Bob.
- Bob chooses a random integer  $0 \le b < |G|$  and sends  $c_2 = g^b$  to Alice.
- On receiving  $c_2$  Alice computes  $K = c_2^a$ .

Alice and Bob both share the same key  $K = g^{ab}$ .

Suppose Alice and Bob want to agree on a random key K.

They decide upon a large prime p and some  $g \in G = \mathbb{Z}_p^*$  and perform the following protocol:

- Alice chooses a random integer  $0 \le a < |G|$  and sends  $c_1 = g^a$  to Bob.
- Bob chooses a random integer  $0 \le b < |G|$  and sends  $c_2 = g^b$  to Alice.
- On receiving  $c_2$  Alice computes  $K = c_2^a$ .
- On receiving  $c_1$  Bob computes  $K = c_1^b$ .

Alice and Bob both share the same key  $K = g^{ab}$ .

Suppose Alice and Bob want to agree on a random key K.

They decide upon a large prime p and some  $g \in G = \mathbb{Z}_p^*$  and perform the following protocol:

- Alice chooses a random integer  $0 \le a < |G|$  and sends  $c_1 = g^a$  to Bob.
- Bob chooses a random integer  $0 \le b < |G|$  and sends  $c_2 = g^b$  to Alice.
- On receiving  $c_2$  Alice computes  $K = c_2^a$ .
- On receiving  $c_1$  Bob computes  $K = c_1^b$ .

Alice and Bob both share the same key  $K = g^{ab}$ .

Alice and Bob have the same key:  $(g^a)^b = (g^b)^a$ .

• The DLP makes sense for any cyclic group.

- The DLP makes sense for any cyclic group.
- ullet The DLP seems hard sometimes:  $G=\mathbb{Z}_p^*$ , or  $G=E(\mathbb{F}_q)$ .

- The DLP makes sense for any cyclic group.
- The DLP seems hard sometimes:  $G = \mathbb{Z}_p^*$ , or  $G = E(\mathbb{F}_q)$ .
- But not always hard:  $G = (\mathbb{Z}_p, +)$ .

- The DLP makes sense for any cyclic group.
- The DLP seems hard sometimes:  $G = \mathbb{Z}_p^*$ , or  $G = E(\mathbb{F}_q)$ .
- But not always hard:  $G = (\mathbb{Z}_p, +)$ .
- Another bad idea:  $G \leq GL(n, q)$ .

- The DLP makes sense for any cyclic group.
- The DLP seems hard sometimes:  $G = \mathbb{Z}_p^*$ , or  $G = E(\mathbb{F}_q)$ .
- But not always hard:  $G = (\mathbb{Z}_p, +)$ .
- Another bad idea:  $G \leq GL(n, q)$ .
- But what about non-abelian groups?

• Let G be a (non-abelian) group. For  $a, g \in G$  define

$$g^a = a^{-1}ga.$$

• Let G be a (non-abelian) group. For  $a,g\in G$  define

$$g^a = a^{-1}ga$$
.

• Problem:  $(g^a)^b \neq (g^b)^a$ , in general.

• Let G be a (non-abelian) group. For  $a,g\in G$  define

$$g^a = a^{-1}ga$$
.

- Problem:  $(g^a)^b \neq (g^b)^a$ , in general.
- Solution: Choose  $a \in A \leq G$  and  $b \in B \leq G$  where  $[A, B] = \{1\}$ .

• Let G be a (non-abelian) group. For  $a, g \in G$  define

$$g^a = a^{-1}ga.$$

- Problem:  $(g^a)^b \neq (g^b)^a$ , in general.
- Solution: Choose  $a \in A \le G$  and  $b \in B \le G$  where  $[A, B] = \{1\}$ .
- How do you choose a group G and subgroups A and B?

• Let G be a (non-abelian) group. For  $a,g\in G$  define

$$g^a = a^{-1}ga$$
.

- Problem:  $(g^a)^b \neq (g^b)^a$ , in general.
- Solution: Choose  $a \in A \le G$  and  $b \in B \le G$  where  $[A, B] = \{1\}$ .
- How do you choose a group G and subgroups A and B?
- Ko et al. suggest using a braid group.

- How difficult is the conjugacy search problem?
- There's a nice survey: 'Braid based cryptography' by Patrick Dehornoy.

- How difficult is the conjugacy search problem?
- There's a nice survey: 'Braid based cryptography' by Patrick Dehornoy.
- Length based attacks work for many instances.

- How difficult is the conjugacy search problem?
- There's a nice survey: 'Braid based cryptography' by Patrick Dehornoy.
- Length based attacks work for many instances.
- How can we generate hard instances?

- How difficult is the conjugacy search problem?
- There's a nice survey: 'Braid based cryptography' by Patrick Dehornoy.
- Length based attacks work for many instances.
- How can we generate hard instances?
- There are no braid based schemes that are competitive with (say) elliptic curve DLP-based schemes.

• Let G be a group generated by  $x_1, x_2, \ldots, x_n$ .

- Let G be a group generated by  $x_1, x_2, \ldots, x_n$ .
- Alice chooses a product  $a \in G$  of generators and their inverses:

$$a=x_{i_1}^{\epsilon_1}x_{i_2}^{\epsilon_2}\cdots x_{i_k}^{\epsilon_k}$$

with  $i_j \in \{1, 2, \dots, n\}$  and  $\epsilon_j = \pm 1$ .

- Let G be a group generated by  $x_1, x_2, \ldots, x_n$ .
- Alice chooses a product  $a \in G$  of generators and their inverses:

$$a=x_{i_1}^{\epsilon_1}x_{i_2}^{\epsilon_2}\cdots x_{i_k}^{\epsilon_k}$$

with  $i_j \in \{1, 2, \dots, n\}$  and  $\epsilon_j = \pm 1$ .

• Alice sends  $x_1^a, x_2^a, \dots, x_n^a$  to Bob.

- Let G be a group generated by  $x_1, x_2, \ldots, x_n$ .
- Alice chooses a product  $a \in G$  of generators and their inverses:

$$a=x_{i_1}^{\epsilon_1}x_{i_2}^{\epsilon_2}\cdots x_{i_k}^{\epsilon_k}$$

with  $i_i \in \{1, 2, \dots, n\}$  and  $\epsilon_i = \pm 1$ .

- Alice sends  $x_1^a, x_2^a, \dots, x_n^a$  to Bob.
- Bob chooses  $b \in G$  and sends  $x_1^b, x_2^b, \dots, x_n^b$  to Alice.

- Let G be a group generated by  $x_1, x_2, \ldots, x_n$ .
- Alice chooses a product  $a \in G$  of generators and their inverses:

$$a=x_{i_1}^{\epsilon_1}x_{i_2}^{\epsilon_2}\cdots x_{i_k}^{\epsilon_k}$$

with  $i_j \in \{1, 2, \dots, n\}$  and  $\epsilon_j = \pm 1$ .

- Alice sends  $x_1^a, x_2^a, \dots, x_n^a$  to Bob.
- Bob chooses  $b \in G$  and sends  $x_1^b, x_2^b, \dots, x_n^b$  to Alice.
- Common key:

$$[a,b] = a^{-1}b^{-1}ab.$$

- Let G be a group generated by  $x_1, x_2, \ldots, x_n$ .
- Alice chooses a product  $a \in G$  of generators and their inverses:

$$a=x_{i_1}^{\epsilon_1}x_{i_2}^{\epsilon_2}\cdots x_{i_k}^{\epsilon_k}$$

with  $i_j \in \{1, 2, \dots, n\}$  and  $\epsilon_j = \pm 1$ .

- Alice sends  $x_1^a, x_2^a, \dots, x_n^a$  to Bob.
- Bob chooses  $b \in G$  and sends  $x_1^b, x_2^b, \dots, x_n^b$  to Alice.
- Common key:

$$[a,b] = a^{-1}b^{-1}ab.$$

• Why can Alice calculate [a, b]?

- Why can Alice calculate [a, b]?
- She knows

$$b^{-1}ab = (b^{-1}x_{i_1}b)^{\epsilon_1}(b^{-1}x_{i_2}b)^{\epsilon_2}\cdots(b^{-1}x_{i_k}b)^{\epsilon_k}.$$

- Why can Alice calculate [a, b]?
- She knows

$$b^{-1}ab = (b^{-1}x_{i_1}b)^{\epsilon_1}(b^{-1}x_{i_2}b)^{\epsilon_2}\cdots(b^{-1}x_{i_k}b)^{\epsilon_k}.$$

• So she knows  $a^{-1}(b^{-1}ab) = [a, b]$ .

- Why can Alice calculate [a, b]?
- She knows

$$b^{-1}ab = (b^{-1}x_{i_1}b)^{\epsilon_1}(b^{-1}x_{i_2}b)^{\epsilon_2}\cdots(b^{-1}x_{i_k}b)^{\epsilon_k}.$$

- So she knows  $a^{-1}(b^{-1}ab) = [a, b]$ .
- Similarly: Bob knows  $a^{-1}ba$ ,

- Why can Alice calculate [a, b]?
- She knows

$$b^{-1}ab = (b^{-1}x_{i_1}b)^{\epsilon_1}(b^{-1}x_{i_2}b)^{\epsilon_2}\cdots(b^{-1}x_{i_k}b)^{\epsilon_k}.$$

- So she knows  $a^{-1}(b^{-1}ab) = [a, b]$ .
- Similarly: Bob knows  $a^{-1}ba$ , so knows  $a^{-1}b^{-1}a$ ,

- Why can Alice calculate [a, b]?
- She knows

$$b^{-1}ab = (b^{-1}x_{i_1}b)^{\epsilon_1}(b^{-1}x_{i_2}b)^{\epsilon_2}\cdots(b^{-1}x_{i_k}b)^{\epsilon_k}.$$

- So she knows  $a^{-1}(b^{-1}ab) = [a, b]$ .
- Similarly: Bob knows  $a^{-1}ba$ , so knows  $a^{-1}b^{-1}a$ , so knows  $(a^{-1}b^{-1}a)b = [a, b]$ .

#### Covers

• A cover is an (ordered) collection of sets

$$A_1, A_2, \ldots, A_s \subseteq G$$

such that for all  $h \in G$ 

$$h = a_1 a_2 \cdots a_s$$

in at least one way, where  $a_i \in A_i$ .

#### Covers

• A cover is an (ordered) collection of sets

$$A_1, A_2, \ldots, A_s \subseteq G$$

such that for all  $h \in G$ 

$$h = a_1 a_2 \cdots a_s$$

in at least one way, where  $a_i \in A_i$ .

• Example in  $G = \mathbb{Z}_2^3$ :

$$A_1 = \{000, 001, 100, 101\} \ A_2 = \{000, 111, 011\}.$$

#### Covers

A cover is an (ordered) collection of sets

$$A_1, A_2, \ldots, A_s \subseteq G$$

such that for all  $h \in G$ 

$$h = a_1 a_2 \cdots a_s$$

in at least one way, where  $a_i \in A_i$ .

• Example in  $G = \mathbb{Z}_2^3$ :

$$A_1 = \{000, 001, 100, 101\}$$
  $A_2 = \{000, 111, 011\}.$ 

This generalises the DLP:

$$A_i = \{1, g^{2^i}\} \text{ for } 1 \leq i \leq \log_2 |\langle g \rangle|.$$

is a cover for  $\langle g \rangle$ .

 A logarithmic signature or factorisation is an (ordered) collection of sets

$$A_1, A_2, \ldots, A_s \subseteq G$$

such that for all  $h \in G$ 

$$h = a_1 a_2 \cdots a_s$$

in exactly one way, where  $a_i \in A_i$ .

 A logarithmic signature or factorisation is an (ordered) collection of sets

$$A_1, A_2, \ldots, A_s \subseteq G$$

such that for all  $h \in G$ 

$$h = a_1 a_2 \cdots a_s$$

in exactly one way, where  $a_i \in A_i$ .

• Example in  $G = \mathbb{Z}_2^3$ :

$$A_1 = \{000,001,100,101\} \ A_2 = \{000,111\}.$$

 A logarithmic signature or factorisation is an (ordered) collection of sets

$$A_1, A_2, \ldots, A_s \subseteq G$$

such that for all  $h \in G$ 

$$h = a_1 a_2 \cdots a_s$$

in exactly one way, where  $a_i \in A_i$ .

• Example in  $G = \mathbb{Z}_2^3$ :

$$A_1 = \{000, 001, 100, 101\}$$
  $A_2 = \{000, 111\}.$ 

More general example (transversal logarithmic signatures): Given a chain

$$1 = H_0 < H_1 < \dots < H_s = G$$

of subgroups, set  $A_i$  to be a complete set of coset representatives for  $H_i$  in  $H_{i-1}$ .

• Let  $A_1, A_2, \ldots, A_s$  be a logarithmic signature, with  $|A_i| = r_i$ . Then

$$|G|=r_1r_2\cdots r_s.$$

• Let  $A_1, A_2, \ldots, A_s$  be a logarithmic signature, with  $|A_i| = r_i$ . Then

$$|G| = r_1 r_2 \cdots r_s$$
.

The logarithmic signature induces a bijective function

$$\breve{\alpha}: \mathbb{Z}_{r_1} \times \mathbb{Z}_{r_2} \times \cdots \times \mathbb{Z}_{r_s} \to G$$

defined by

$$\check{\alpha}(k_1,k_2,\ldots,k_r)=a_1a_2\ldots a_r$$

where  $a_i$  is the  $k_i$ th element of  $A_i$ .

• Let  $A_1, A_2, \ldots, A_s$  be a logarithmic signature, with  $|A_i| = r_i$ . Then

$$|G| = r_1 r_2 \cdots r_s$$
.

The logarithmic signature induces a bijective function

$$\breve{\alpha}: \mathbb{Z}_{r_1} \times \mathbb{Z}_{r_2} \times \cdots \times \mathbb{Z}_{r_s} \to G$$

defined by

$$\breve{\alpha}(k_1,k_2,\ldots,k_r)=a_1a_2\ldots a_r$$

where  $a_i$  is the  $k_i$ th element of  $A_i$ .

• If  $\check{\alpha}$  is easy to invert, we say that  $\alpha$  is tame.

• Let  $A_1, A_2, \ldots, A_s$  be a logarithmic signature, with  $|A_i| = r_i$ . Then

$$|G| = r_1 r_2 \cdots r_s$$
.

• The logarithmic signature induces a bijective function

$$\breve{\alpha}: \mathbb{Z}_{r_1} \times \mathbb{Z}_{r_2} \times \cdots \times \mathbb{Z}_{r_s} \to G$$

defined by

$$\check{\alpha}(k_1,k_2,\ldots,k_r)=a_1a_2\ldots a_r$$

where  $a_i$  is the  $k_i$ th element of  $A_i$ .

- If  $\check{\alpha}$  is easy to invert, we say that  $\alpha$  is tame.
- If we have a cover, the function  $\check{\alpha}$  makes sense and is onto, but is not necessarily injective.

• Let G be a group with centre Z. Let random  $A_1, A_2, \ldots, A_s \subseteq G$  have  $\prod |A_i| = |Z|$ . These are public.

- Let G be a group with centre Z. Let random  $A_1, A_2, \ldots, A_s \subseteq G$  have  $\prod |A_i| = |Z|$ . These are public.
- Let  $B_1, B_2, \ldots, B_s$  be a secret tame logarithmic signature for Z with  $|B_i| = |A_i|$ . Let  $t \in G$  be secret.

- Let G be a group with centre Z. Let random  $A_1, A_2, \ldots, A_s \subseteq G$  have  $\prod |A_i| = |Z|$ . These are public.
- Let  $B_1, B_2, \ldots, B_s$  be a secret tame logarithmic signature for Z with  $|B_i| = |A_i|$ . Let  $t \in G$  be secret.
- Idea: use  $t^{-1}A_it$  to disguise  $B_i$ .

- Let G be a group with centre Z. Let random  $A_1, A_2, \ldots, A_s \subseteq G$  have  $\prod |A_i| = |Z|$ . These are public.
- Let  $B_1, B_2, \ldots, B_s$  be a secret tame logarithmic signature for Z with  $|B_i| = |A_i|$ . Let  $t \in G$  be secret.
- Idea: use  $t^{-1}A_it$  to disguise  $B_i$ .
- If  $A_i = \{a_{i,1}, \dots, a_{i,r_i}\}$  and  $B_i = \{b_{i,1}, \dots, b_{i,r_i}\}$  define  $G_i = B_i \cdot (t^{-1}A_it) = \{b_{i,j}t^{-1}a_{i,j}t\}.$

- Let G be a group with centre Z. Let random  $A_1, A_2, \ldots, A_s \subseteq G$  have  $\prod |A_i| = |Z|$ . These are public.
- Let  $B_1, B_2, \ldots, B_s$  be a secret tame logarithmic signature for Z with  $|B_i| = |A_i|$ . Let  $t \in G$  be secret.
- Idea: use  $t^{-1}A_it$  to disguise  $B_i$ .
- If  $A_i = \{a_{i,1}, \dots, a_{i,r_i}\}$  and  $B_i = \{b_{i,1}, \dots, b_{i,r_i}\}$  define  $G_i = B_i \cdot (t^{-1}A_it) = \{b_{i,j}t^{-1}a_{i,j}t\}.$
- Public key: the sets  $G_i$ . Secret key: t and the sets  $B_i$ .

- Let G be a group with centre Z. Let random  $A_1, A_2, \ldots, A_s \subseteq G$  have  $\prod |A_i| = |Z|$ . These are public.
- Let  $B_1, B_2, \ldots, B_s$  be a secret tame logarithmic signature for Z with  $|B_i| = |A_i|$ . Let  $t \in G$  be secret.
- Idea: use  $t^{-1}A_it$  to disguise  $B_i$ .
- If  $A_i = \{a_{i,1}, \dots, a_{i,r_i}\}$  and  $B_i = \{b_{i,1}, \dots, b_{i,r_i}\}$  define  $G_i = B_i \cdot (t^{-1}A_it) = \{b_{i,j}t^{-1}a_{i,j}t\}.$
- Public key: the sets  $G_i$ . Secret key: t and the sets  $B_i$ .
- Encrypt x as the pair  $(\check{\alpha}(x), \check{\gamma}(x))$ .

- Let G be a group with centre Z. Let random  $A_1, A_2, \ldots, A_s \subseteq G$  have  $\prod |A_i| = |Z|$ . These are public.
- Let  $B_1, B_2, \ldots, B_s$  be a secret tame logarithmic signature for Z with  $|B_i| = |A_i|$ . Let  $t \in G$  be secret.
- Idea: use  $t^{-1}A_it$  to disguise  $B_i$ .
- If  $A_i = \{a_{i,1}, \dots, a_{i,r_i}\}$  and  $B_i = \{b_{i,1}, \dots, b_{i,r_i}\}$  define  $G_i = B_i \cdot (t^{-1}A_it) = \{b_{i,j}t^{-1}a_{i,j}t\}.$
- Public key: the sets  $G_i$ . Secret key: t and the sets  $B_i$ .
- Encrypt x as the pair  $(\check{\alpha}(x), \check{\gamma}(x))$ .
- To Decrypt  $(y_1, y_2)$ : use  $y_2 = \breve{\beta}(x) t^{-1} \breve{\alpha}(x) t$ .

• Lempken, Magliveras, van Trung, Wei suggest G should be a Suzuki 2-group. Let g be a power of 2, and  $\theta \in \operatorname{Aut}(\mathbb{F}_q)$ . Then:

$$G = \left\{ egin{pmatrix} 1 & 0 & 0 \ a & 1 & 0 \ b & a^{ heta} & 1 \end{pmatrix} ext{ where } a,b \in \mathbb{F}_q 
ight\}.$$

• Lempken, Magliveras, van Trung, Wei suggest G should be a Suzuki 2-group. Let q be a power of 2, and  $\theta \in \operatorname{Aut}(\mathbb{F}_q)$ . Then:

$$G = \left\{ egin{pmatrix} 1 & 0 & 0 \ a & 1 & 0 \ b & a^{ heta} & 1 \end{pmatrix} ext{ where } a,b \in \mathbb{F}_q 
ight\}.$$

• Z consists of the matrices with a = 0.

• Lempken, Magliveras, van Trung, Wei suggest G should be a Suzuki 2-group. Let q be a power of 2, and  $\theta \in \operatorname{Aut}(\mathbb{F}_q)$ . Then:

$$G = \left\{ egin{pmatrix} 1 & 0 & 0 \ a & 1 & 0 \ b & a^{ heta} & 1 \end{pmatrix} ext{ where } a,b \in \mathbb{F}_q 
ight\}.$$

- Z consists of the matrices with a = 0.
- G/Z is abelian of order q, and Z also has order q.

• Lempken, Magliveras, van Trung, Wei suggest G should be a Suzuki 2-group. Let g be a power of 2, and  $\theta \in \operatorname{Aut}(\mathbb{F}_g)$ . Then:

$$G = \left\{ egin{pmatrix} 1 & 0 & 0 \ a & 1 & 0 \ b & a^{ heta} & 1 \end{pmatrix} ext{ where } a,b \in \mathbb{F}_q 
ight\}.$$

- Z consists of the matrices with a=0.
- G/Z is abelian of order q, and Z also has order q.
- Unanswered question: How to generate  $B_1, B_2, \ldots, B_s$ .

• Lempken et al. gave several  $O(q^2)$  attacks. Magliveras, Svaba, van Trung and Zajac give the following attack.

- Lempken et al. gave several  $O(q^2)$  attacks. Magliveras, Svaba, van Trung and Zajac give the following attack.
- We are given covers  $A_i$  and  $G_i$ , where

$$G_i = B_i \cdot (t^{-1}A_it).$$

- Lempken et al. gave several  $O(q^2)$  attacks. Magliveras, Svaba, van Trung and Zajac give the following attack.
- We are given covers  $A_i$  and  $G_i$ , where

$$G_i = B_i \cdot (t^{-1}A_it).$$

The decryption process uses t and  $B_i$ .

• The attack is: Guess t. Find  $B_i$  from the equation above.

- Lempken et al. gave several  $O(q^2)$  attacks. Magliveras, Svaba, van Trung and Zajac give the following attack.
- We are given covers  $A_i$  and  $G_i$ , where

$$G_i = B_i \cdot (t^{-1}A_it).$$

- The attack is: Guess t. Find  $B_i$  from the equation above.
- There are  $|G| = q^2$  possibilities for t. But we only need to check |G/Z| = q possibilities: it's only t modulo Z that matters.

- Lempken et al. gave several  $O(q^2)$  attacks. Magliveras, Svaba, van Trung and Zajac give the following attack.
- We are given covers  $A_i$  and  $G_i$ , where

$$G_i = B_i \cdot (t^{-1}A_it).$$

- The attack is: Guess t. Find  $B_i$  from the equation above.
- There are  $|G| = q^2$  possibilities for t. But we only need to check |G/Z| = q possibilities: it's only t modulo Z that matters.
- ullet This is an exponential attack. It works for any group G.

- Lempken et al. gave several  $O(q^2)$  attacks. Magliveras, Svaba, van Trung and Zajac give the following attack.
- We are given covers  $A_i$  and  $G_i$ , where

$$G_i = B_i \cdot (t^{-1}A_it).$$

- The attack is: Guess t. Find  $B_i$  from the equation above.
- There are  $|G| = q^2$  possibilities for t. But we only need to check |G/Z| = q possibilities: it's only t modulo Z that matters.
- ullet This is an exponential attack. It works for any group G.
- More practical attacks use knowledge of how the  $B_i$  are generated.

• We want to generate a tame logarithmic signature for

$$Z = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$$
.

We want to generate a tame logarithmic signature for

$$Z = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$$
.

Amalgamated Transversal Logarithmic Signatures (ATLS)

We want to generate a tame logarithmic signature for

$$Z = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$$
.

- Amalgamated Transversal Logarithmic Signatures (ATLS)
- Start with a chain  $1 = H_0 < H_1 < H_2 < \cdots < H_k = Z$  of subgroups.

We want to generate a tame logarithmic signature for

$$Z = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$$
.

- Amalgamated Transversal Logarithmic Signatures (ATLS)
- Start with a chain  $1 = H_0 < H_1 < H_2 < \cdots < H_k = Z$  of subgroups.
- Set  $X_i$  to be a set of coset representatives for  $H_i$  in  $H_{i-1}$ .

We want to generate a tame logarithmic signature for

$$Z = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2.$$

- Amalgamated Transversal Logarithmic Signatures (ATLS)
- Start with a chain  $1 = H_0 < H_1 < H_2 < \cdots < H_k = Z$  of subgroups.
- Set  $X_i$  to be a set of coset representatives for  $H_i$  in  $H_{i-1}$ .
- Do some of the following operations:
  - ▶ Shift: replace  $X_i$  by  $X_iz$  for some  $z \in Z$ .
  - ▶ Permute: swap  $X_i$  and  $X_j$ ; permute the elements in  $X_i$ .
  - ▶ Amalgamate: replace  $X_i$  and  $X_j$  by

$$X_iX_j = \{x_ix_j \mid x_i \in X_i \text{ and } x_j \in X_j\}.$$

• Suppose we generate an ATLS  $B_1, B_2, \ldots, B_s$  to use in MST<sub>3</sub>.

- Suppose we generate an ATLS  $B_1, B_2, \ldots, B_s$  to use in MST<sub>3</sub>.
- Without loss of generality, we can assume the ATLS is normalised:  $1 \in B_i$  for all i.

- Suppose we generate an ATLS  $B_1, B_2, \ldots, B_s$  to use in MST<sub>3</sub>.
- Without loss of generality, we can assume the ATLS is normalised:  $1 \in B_i$  for all i.
- For a normalised ATLS, there exists  $b = b_{j,\ell} \in B_j$  (for some j) such that  $B_i b = B_i$ .

- Suppose we generate an ATLS  $B_1, B_2, \ldots, B_s$  to use in MST<sub>3</sub>.
- Without loss of generality, we can assume the ATLS is normalised:  $1 \in B_i$  for all i.
- For a normalised ATLS, there exists  $b=b_{j,\ell}\in B_j$  (for some j) such that  $B_ib=B_j$ .
- Recall that we are given  $G_i$ ,  $A_i$  and want to find  $B_i$ , t so that

$$G_i = B_i \cdot (t^{-1}A_it).$$

- Suppose we generate an ATLS  $B_1, B_2, \ldots, B_s$  to use in MST<sub>3</sub>.
- Without loss of generality, we can assume the ATLS is normalised:  $1 \in B_i$  for all i.
- For a normalised ATLS, there exists  $b=b_{j,\ell}\in B_j$  (for some j) such that  $B_jb=B_j$ .
- Recall that we are given  $G_i$ ,  $A_i$  and want to find  $B_i$ , t so that

$$G_i = B_i \cdot (t^{-1}A_it).$$

• If we guess j and  $\ell$  (few choices) the condition  $B_jb=B_j$  usually imposes very strong restrictions on t (so exhaustive search is possible).

- Suppose we generate an ATLS  $B_1, B_2, \ldots, B_s$  to use in MST<sub>3</sub>.
- Without loss of generality, we can assume the ATLS is normalised:  $1 \in B_i$  for all i.
- For a normalised ATLS, there exists  $b = b_{j,\ell} \in B_j$  (for some j) such that  $B_i b = B_i$ .
- Recall that we are given  $G_i$ ,  $A_i$  and want to find  $B_i$ , t so that

$$G_i = B_i \cdot (t^{-1}A_it).$$

- If we guess j and  $\ell$  (few choices) the condition  $B_jb=B_j$  usually imposes very strong restrictions on t (so exhaustive search is possible).
- This attack works for practical parameter sizes.

• Can you avoid this attack by generating  $\beta$  in some other way?

- Can you avoid this attack by generating  $\beta$  in some other way?
- $\beta$  cannot be periodic (cannot have  $bB_i = B_i$  for some  $b \in B_i$ ).
- $\beta$  should have full rank (must have  $\langle \bigcup_{i\neq i} B_i \rangle = G$  for all i).

- Can you avoid this attack by generating  $\beta$  in some other way?
- $\beta$  cannot be periodic (cannot have  $bB_i = B_i$  for some  $b \in B_i$ ).
- $\beta$  should have full rank (must have  $\langle \bigcup_{i\neq i} B_i \rangle = G$  for all i).
- What can be said about logarithmic signatures of finite elementary abelian 2-groups?

- Can you avoid this attack by generating  $\beta$  in some other way?
- $\beta$  cannot be periodic (cannot have  $bB_i = B_i$  for some  $b \in B_i$ ).
- $\beta$  should have full rank (must have  $\langle \bigcup_{i\neq i} B_i \rangle = G$  for all i).
- What can be said about logarithmic signatures of finite elementary abelian 2-groups?
- Related to perfect codes: Cohen, Litsyn, Vardy, Zémor 1996.

#### Summing up

- We've reviewed some of the cryptographic primitives based on groups (finite or infinite).
- We've sketched some problems with the security of MST<sub>3</sub>.

#### Summing up

- We've reviewed some of the cryptographic primitives based on groups (finite or infinite).
- We've sketched some problems with the security of MST<sub>3</sub>.
- Logarithmic signatures have applications to tiling problems; to perfect Gray codes and to other combinatorial problems in computer science.

## Summing up

- We've reviewed some of the cryptographic primitives based on groups (finite or infinite).
- We've sketched some problems with the security of MST<sub>3</sub>.
- Logarithmic signatures have applications to tiling problems; to perfect Gray codes and to other combinatorial problems in computer science.
- Can MST<sub>3</sub>, or any other group-theoretic cryptosystem, be made both secure and practical?

#### Some Links

This talk will appear soon on my home page:

http://www.ma.rhul.ac.uk/sblackburn

S.R. Blackburn, C. Cid, C. Mullan, 'Group theory in cryptography' (*Proc. Groups St Andrews at Bath 2009*, to appear) is available at:

http://arxiv.org/abs/0906.5545

The paper 'Cryptanalysis of the  $MST_3$  public key cryptosystem' (*J. Math Cryptology*, 2010) is also available at:

http://eprint.iacr.org/2009/248