Regular t-balanced Cayley maps from cyclic and Abelian groups

Martin Mačaj

GEMS 2009 30th June

Maps

• map: 2-cell embedding $G \to S$ of a graph G into a surface S.

• combinatorial description: $\mathcal{M} = (K; R, L)$, where

K: connected graph,

R: permutation of D(K) (dart set of K),

L: involution of D(K),

 $\langle R, L \rangle$ transitive on D(K).

- Aut(\mathcal{M}) acts semiregularly on D(K).
- regular map: Aut(\mathcal{M}) acts transitively (i.e, regularly) on D(K).

Cayley Maps

Let G be a group, Ω be a generating set s.t. $e_G \notin \Omega = \Omega^{-1}$ and p be a cyclic permutation of Ω .

• Cayley graph $C(G, \Omega)$:

vertex set: G,

dart set: $G \times \Omega$

incidence: $g \xrightarrow{(g,x)} gx$

• Cayley map $CM(G, \Omega, p)$: $(C(G, \Omega); R, L)$, where

$$R(g,x) = (g,p(x))$$
 and $L(g,x) = (gx,x^{-1}).$

t-balanced Cayley maps

Cayley map $\mathcal{M} = \mathsf{CM}(G, \Omega, p)$ is

- balanced if $p(x^{-1}) = (p(x))^{-1}$ (1992 Širáň, Škoviera),
- anti-balanced if $p(x^{-1}) = (p^{-1}(x))^{-1}$ (1994 Škoviera, Širáň),
- t-balanced if $p(x^{-1}) = (p^t(x))^{-1}$ (1998 Martino, Schultz).

Necessarily, $t^2 \equiv 1 \pmod{|\Omega|}$.

Note: balanced \Leftrightarrow 1-balanced, antibalanced \Leftrightarrow -1-balanced.

Groups with sign structure

Širáň, Škoviera 1992:

• group with sign structure: group G with a given subgroup G^+ of index at most 2,

Let G be a group with a generating set Ω .

• sign structure induced by Ω :

$$G^{+} = \{g \in G; g = y_1 \dots y_{2n}, y_i \in \Omega, n \in \mathbb{N}_0\}$$

• trivial sign structure: $G = G^+$.

Theorem. Let $\mathcal{M} = CM(G, \Omega, p)$ be a regular t-balanced Cayley map. Then either Ω induces a nontrivial sign structure on G or \mathcal{M} is balanced.

Trivial sign structure

It can be shown, that canonical double cover of regular balanced Cayley map with trivial sign structure is regular balanced Cayley map with *nontrivial* sign structure.

Therefore, we can assume that sign structures induced by our maps are nontrivial. Equivalently, underlying graph is *bipartite*.

If $[G:G^+]=2$ we say that G is a \mathbb{Z}_2 -extension of G^+ .

t-automorphisms

Martino, Schultz, Škoviera : Let $G = G^+(\theta, s)$ be a group with sign structure and $t \in \mathbb{Z} \setminus \{0\}$.

• t-automorphism: $\varphi \in \operatorname{Sym}(G)$, $\varphi(x) \in G^+ \Leftrightarrow x \in G^+$ and $\varphi(xy) = \varphi(x)\varphi^{\pi(x)}(y)$, $(\pi : G \to \{1, t\}, \ \pi(x) = 1, \ \text{for} \ x \in G^+, \ \pi(x) = t, \ \text{for} \ x \not\in G^+)$.

Note:
$$t^2 \equiv 1 \pmod{\operatorname{ord}(\varphi)}$$
.

Theorem. Let $\mathcal{M} = CM(G, \Omega, p)$ be a Cayley map such that Ω induces a nontrivial sign structure on G. Then \mathcal{M} is regular and t-balanced if and only if there exists a t-automorphism φ of G whose restriction to Ω is equal to p.

 φ is called the rotary t-automorphism of \mathcal{M} .

Regular *t*-balanced Cayley maps

Regular t-balanced Cayley map \mathcal{M} is fully characterized by a triple (G, φ, x) where

- \bullet G is a group with sign structure,
- ullet φ is a t-automorphism of G, and
- $x \in G$ is a member of a generating self-inverse orbit of φ .

New point of view

underlying graph is bipartite,

• t is fixed, not necessarily $1 \le t < |\Omega|$, i.e., 6-valent balanced map is also 7-balanced, -5-balanced, etc.

• basic object is G^+ , instead of G.

We say that $\mathcal{M} = CM(G, \Omega, p)$ is **from** G and **over** G^+ .

G^+ as basic object: \mathbb{Z}_2 -extensions

Širáň, Škoviera 1992:

Proposition. Let G^+ be a group, $\theta \in \operatorname{Aut}(G^+)$, $s \in G^+$ be such that

$$\theta(s) = s$$
$$\theta^2 = \nu_s$$

 $(\nu_s(g) = sgs^{-1})$. Then the set $G^+ \times \mathbb{Z}_2$ together with the binary operation \cdot defined by

$$(g,i)(h,j) = (g\theta^{i}(h)s^{ij}, i+j)$$

is a group denoted by $G^+(\theta,s)$. Moreover any \mathbb{Z}_2 -extension of G^+ is isomorphic to some $G^+(\theta,s)$.

G^+ as basic object: t-automorphisms

Líšková, M, Škoviera 2007:

Let $G=G^+(\theta,s)$ be a group with sign structure. Let φ be a t-automorphism of G, $\xi=\varphi|_{G^+}$ and $w=\varphi(e,1)(e,1)^{-1}$ $(e=e_{G^+})$. Then $\xi\in \operatorname{Aut}(G^+)$, $w\in G^+$ and

$$\varphi(g,i) = (\xi(g)w^i,i).$$

We will write $\varphi \sim (\xi, w)$

Theorem. Let $G = G^+(\theta, s)$ be a group with sign structure. Let $\xi \in \operatorname{Aut}(G^+)$, $w \in G^+$ be given, and put $\overline{w} = \xi^{-t}(\xi^{t-1}(w)\xi^{t-2}(w)\dots\xi(w)w)$. Then the mapping $\varphi : (h,i) \mapsto (\xi(h)w^i,i)$ is a t-automorphism of G iff:

$$\xi \theta(\overline{w}^{-1}s) = ws$$

$$\xi \theta = \nu_w \theta \xi^t = \nu_{ws} \theta^{-1} \xi^t.$$

G^+ as basic object: regular t-balanced Cayley maps

Regular t-balanced Cayley map \mathcal{M} is fully characterized by a sextuple $(G^+, \theta, s, \xi, w, g)$ where $\theta, \xi \in \operatorname{Aut}(G^+)$, $s, w, g \in G^+$ and

- $G = G^+(\theta, s)$ is a group with sign structure,
- ullet mapping $\varphi \sim (\xi, w)$ is a t-automorphism of G, and
- \bullet (g,1) is a member of a generating self-inverse orbit of φ .

t-algebras

Universal algebra $\mathcal{A} = (G^+, \circ, e^{-1}, \theta, s, \xi, w, g)$ of type (2, 1, 0, 1, 0, 1, 0, 0) is a *t-algebra* if

- ullet it satisfies all equations from the last three slides (they depend of t), and
- ξ is a permutation on G^+ ,

i.e, (G^+, \circ, e, e^{-1}) is a group, $G = G^+(\theta, s)$ is a group with sign structure and $\varphi \sim (\xi, w)$ is a *t*-automorphism of G.

If x = (g, 1) is a member of a generating self inverse orbit of φ , we say that \mathcal{A} represents the corresponding regular t-balanced Cayley map \mathcal{M} .

Product of regular t-balanced Cayley maps

Theorem. Let $A = A_1 \times A_2$ be a direct product of t-algebras. If A represents a regular t-balanced Cayley map \mathcal{M} , then there exist regular t-balanced Cayley maps \mathcal{M}_1 and \mathcal{M}_2 such that A_1 represents \mathcal{M}_1 and A_2 represents \mathcal{M}_2 , respectively.

We say that $\mathcal M$ is a *product* of $\mathcal M_1$ and $\mathcal M_2$ and write

$$\mathcal{M} = \mathcal{M}_1 \odot \mathcal{M}_2$$

(this is a special case of the parallel product (Wilson 1994, Orbanic 2007))

Decomposition results I

Proposition. The direct product decompositions of a t-algebra $\mathcal{A} = (G^+, \circ, e, e^{-1}, \theta, s, \xi, w, g)$ are in one to one correspondence with the inner product decompositions of the group G^+ into factors which are both θ - and ξ -invariant

```
Theorem. Every regular t-balanced Cayley map cyclic from a/an Abelian group above nilpotent is a product of regular t-balanced Cayley maps cyclic "from" Abelian p-groups. (nilpotent)  (If 2 \nmid |H|, then "from" H \Leftrightarrow from <math>H \times \mathbb{Z}_2.)
```

Abelian groups

Lemma. Let G^+ be an Abelian group of odd order (in the additive notation). Then every regular t-balanced Cayley map \mathcal{M} from $G = G^+ \times \mathbb{Z}_2$ can be represented by a t-algebra \mathcal{A} such that

- 1) $\theta = id$ and s = 0,
- 2) $\xi^{t-1} = id$,
- 3) $(t+1) \times w = 0$ and
- 4) $\xi(w) = w$.

Lemma. Let G^+ be a finite Abelian group and let $\psi \in \operatorname{End}(G^+)$. Then there exists a positive integer n such that

$$G^+ = \operatorname{Ker} \psi^n \oplus \operatorname{Im} \psi^n$$
.

Abelian p-groups, p-odd

Lemma. Let G^+ be an Abelian p-group of odd order, let $\mathcal{A} = (G^+, +, 0, -, \operatorname{id}, 0, \xi, w, g)$ be a t-algebra representing regular t-balanced Cayley map \mathcal{M} and let $\psi = \xi - \operatorname{id}$. Then, either \mathcal{M} is balanced or

- 1) $G^+ = \operatorname{Ker} \psi \oplus \operatorname{Im} \psi$,
- 2) $\text{Ker } \psi = [w],$
- 3) $\mathcal{M} = \mathcal{M}_a \odot \mathcal{M}_b$, where \mathcal{M}_a is over [w] and \mathcal{M}_b is over $\mathrm{Im} \, \psi$,
- 4) \mathcal{M}_a is antibalanced, and
- 5) \mathcal{M}_b is balanced.

Both \mathcal{M}_a and \mathcal{M}_b are t-balanced, too, i.e., the valency of \mathcal{M}_a divides t+1 and the valency of \mathcal{M}_b divides t-1.

Decomposition results II

Theorem. Every regular t-balanced Cayley map \mathcal{M} from an Abelian group can be expressed as a product

$$\mathcal{M} = \mathcal{M}_a \odot \mathcal{M}_b \odot \mathcal{M}_2$$

where

• \mathcal{M}_a is antibalanced from $\mathbb{Z}_n \times \mathbb{Z}_2$,

• \mathcal{M}_b is balanced from $H \times \mathbb{Z}_2$, |H| is odd, and

• \mathcal{M}_2 is from a 2-group.

(We allow some factors to be trivial, i.e., K_2 .)

Abelian 2-groups?

Proposition. Any regular t-balanced Cayley map \mathcal{M} from $\mathbb{Z}_{2^{e+1}}$ is antibalanced. Moreover, the valency of \mathcal{M} is one of 2^e (e > 2 two embeddings), 4 and 2.

Proposition. Any regular t-balanced Cayley map \mathcal{M} from $\mathbb{Z}_{2^e} \times \mathbb{Z}_2$ with $G^+ = \mathbb{Z}_{2^e}$ has valency 2^e . Moreover it is antibalanced or $2^{e-1} - 1$ -balanced.

Thank You