Search for properties of the missing Moore graph

M. Mačaj and J. Širáň

SGT in Rio December 3th 2008

Moore graphs

Single graph Γ with maximum degree k and diameter d is a *Moore* graph if

$$|\Gamma| = 1 + k + k(k-1) + k(k-1)^2 + \dots + k(k-1)^{d-1}.$$

Moore graphs with diameter 2 are strongly regular graphs with parameters $(k^2+1, k, 0, 1)$, i.e., *k*-regular graph on k^2+1 vertices such that

$$a \sim b \Rightarrow |N(a) \cap N(b)| = 0 \text{ and } a \not\sim b \Rightarrow |N(a) \cap N(b)| = 1.$$
 (1)

Moore graphs

Theorem. A. J. Hoffman, R.R. Singleton (1960) Moore graph with d = 2 exists only if k is equal to 2, 3, 7 or (maybe) 57.

Theorem. E. Bannai, T. Ito (1973), R.M. Damerell (1973) Nontrivial Moore graphs exist only for d = 2.

- k = 2, v = 5: a pentagon
- k = 3, v = 10: the Petersen graph
- k = 7, v = 50: the Hoffman-Singleton graph
- k = 57, v = 3250: ???

The missing Moore graph

From now on, let Γ be a Moore graph of valency 57 and diameter 2 and X a group of automorphisms of Γ .

Lemma. The eigenvalues of Γ are $\lambda_0 = k = 57$, $\lambda_1 = r = 7$ and $\lambda_2 = s = -8$. Their multiplicities are 1, f = 1729 and g = 1520, respectively.

The eigenspace for an eigenvalue λ_i will be denoted V_i .

Known properties of $Aut(\Gamma)$

Theorem. M. Aschbacher (1971) $Aut(\Gamma)$ is not a rank 3 group.

Theorem. D. Higman (??) $|\operatorname{Aut}(\Gamma)|$ is not divisible by 4. In particular, $\operatorname{Aut}(\Gamma)$ is solvable and Γ is not vertex transitive.

Theorem. A.A. Makhnev , D.V. Paduchikh (2001) *If* | Aut $(\Gamma)|$ *is even, then* | Aut $(\Gamma)| \le 550$.

Lemma. $|\operatorname{Aut}(\Gamma)|$ divides $2 \cdot 5^6 \cdot 3^4 \cdot 7^2 \cdot 11 \cdot 13 \cdot 19 = 33699206250$.

Linear representations of groups

Let G be a finite group and F be a field. A *linear representation* of G over F is any homomorphism $R: G \to GL(V, F)$, where V is a finite-dimensional linear space over F. A *character* of R is the mapping $\rho: G \to F, g \mapsto \operatorname{Tr} g^R$.

A subspace U of V is R-invariant if for any $g \in G$ we have $U^{g^R} = U$. Linear representation R is irreducible if V has only trivial R-invariant subspaces.

Characters and combinatorics

Theorem. D. Higman Let χ_i be the character of the projection of Aut(Γ) onto the eigenspace V_i (i = 0, 1, 2). Let $x \in Aut(\Gamma)$ and let $a_i(x) = |\{v \in \Gamma; d(v, v^x) = i\}|$ (i = 0, 1, 2). Then

$$(a_0(x), a_1(x), a_2(x))^T = \begin{pmatrix} 1 & 1 & 1 \\ 57 & 7 & -8 \\ 3192 & -8 & 7 \end{pmatrix} (\chi_0(x), \chi_1(x), \chi_2(x))^T.$$

Corollary. $\chi_1(x) = (8a_0(x) - a_1(x) + 50)/15$ is an integer.

Q-linear representations of groups

Rational classes of a finite group G are equivalence classes of

$$x \sim y \Leftrightarrow \exists z \in G : \langle x \rangle = \langle y \rangle^z.$$

Theorem. Every character of \mathbb{Q} -linear representation of G is constant on rational classes of G and the number of irreducible \mathbb{Q} -linear representation of G is equal to the number of rational classes of G.

Theorem. Let ρ be a character of a Q-linear representation of G. Let $\rho_1, \rho_2, \ldots \rho_m$ be the Q-irreducible characters of G and let x_1, \ldots, x_m be representatives of rational classes of G. Then the $(\rho_1(x_1) \ \rho_2(x_1) \ \ldots \ \rho_m(x_1) \ | \ \rho(x_1))$

 $system \begin{pmatrix} \rho_{1}(x_{1}) & \rho_{2}(x_{1}) & \dots & \rho_{m}(x_{1}) & | & \rho(x_{1}) \\ \rho_{1}(x_{2}) & \rho_{2}(x_{2}) & \dots & \rho_{m}(x_{2}) & | & \rho(x_{2}) \\ \vdots & \vdots & & \vdots & | & \vdots \\ \rho_{1}(x_{m}) & \rho_{2}(x_{m}) & \dots & \rho_{m}(x_{m}) & | & \rho(x_{m}) \end{pmatrix} \text{ of linear equations has an solution in } \mathbb{N}_{0}.$

$$x \in \operatorname{Aut}(\Gamma)$$
, $|x| = pq$, $p < q$

pq	$a_0(x)$	$a_0(x^p)$	$a_0(x^q)$	$a_1(x)$	$a_1(x^p)$	$a_1(x^q)$
6	2	10	56	4 + 90k	0	112
10	1	5	56	102 + 150k	10 + 150l	112
10	6	50	56	62 + 150k	100 + 150l	112
14	7	9	56	84 + 210k	98 + 210l	112
14	14	16	56	28 + 210k	42 + 210l	112
14	21	23	56	182 + 210k	196 + 210l	112
14	28	30	56	126 + 210k	140 + 210l	112
14	35	37	56	70 + 210k	84 + 210l	112
14	42	44	56	14 + 210k	28 + 210l	112
22	1	5	56	222	220	112
15	0	0	10	5 + 75k + 225m	50 + 75k	0
35	1	16	50	42 + 105k	147 + 105k	175
55	5	5	5	55	55	385

Adjacency matrix of an automorphism group

Lemma. Let X be an automorphism group of Γ having orbits O_1, O_2, \ldots, O_m of size s_1, s_2, \ldots, s_m , respectively. Let $a \in O_i$. Then the number $b_{i,j} = |N(a) \cap O_j|$ does not depend on a and the matrix $B = ||b_{i,j}||$ satisfies:

1) $s_i b_{i,j} = s_j b_{j,i}$; 2) $B^2 + B - 56I = (1, 1, ..., 1)^T (s_1, s_2, ..., s_m)$, 3) eigenvalues of B belong to $\{57, 7, -8\}$.

Corollary.

$$Tr(B) \equiv 80 - 8m \mod 15. \tag{2}$$

Additional ingredients

- Sylow's theorems
- subgroups lattices
- small groups libraries
- computations in GAP

New results

Theorem. M.M., J. Širáň 2008 *Size of* $Aut(\Gamma)$ *is at most* 375*. In particular,*

- *if* $|\operatorname{Aut}(\Gamma)|$ *is odd, then* $|G| \in \{1, 3, 5, 7, 11, 13, 15, 19, 21, 25, 27, 35, 39, 45, 55, 57, 75, 81, 125, 135, 147, 171, 275, 375\}$;
- *if* $|\operatorname{Aut}(\Gamma)|$ *is even, then* $|G| \in \{2, 6, 10, 14, 18, 22, 38, 50, 54, 110\}$.

Thank You