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1. Introduction

How large should be the moduli in public key cryptosystems such as RSA and DSS (the
US Digital Signature Standard)? The answer depends on the anticipated threats. Even if
those are known, there is no way to provide a definitive answer, since progress in integer
factorization and discrete logarithm algorithms is not predictable. (Furthermore, there is still
the possibility that RSA and DSS could be broken by other methods than factoring or discrete
log approaches.) However, since choices of moduli have to be made, it is necessary to make
some estimates, and this note attempts to do so, taking into account both the increase in
available computing power and future algorithmic developments. The projections made below
suggest that RSA and DSS moduli might have to be unpleasantly large. In particular, the
512-bit moduli that have been adopted in a variety of cryptosystems are already unsafe for all
applications except those with very modest security requirements.

I would like to stress that while the assertion about insecurity of 512-bit moduli is easy to
support with solid technical evidence, the projections about the future are much less certain,
and should not be treated as firm forecasts, but as possible ways that computational number
theory might develop.

Only conventional algorithms and standard integrated circuit technologies will be consid-
ered. If either quantum computers (& la Shor) or DNA computers (4 la Adleman) become
practical, the outlook might change, and even larger moduli might become necessary.

Computing power will be measured in units of MY, or mips-years. By convention, a 1
mips machine is equivalent to the DEC VAX 11/780 in computing power, and so 1 MY is
one year on a VAX 11/780. This measure has many defects, and nowadays a wide variety of
other benchmarks are used in preference to mips measures. Still, given the uncertainty in any
projection far into the future, this measure seems adequate.

43D will refer to an integer of 43 decimal digits.

Discussion will be restricted to integer factorization. Discrete logarithms are, with the
present state of knowledge, slightly more difficult to compute modulo an appropriately chosen
prime than it is to factor a “hard” integer of the same size, but the difference is not large
[Odlyzko]. Therefore to be on the safe side in designing cryptosystems, one should assume
that all the projections about sizes of integers that it will be possible to factor will also apply
to sizes of primes modulo which one can compute discrete logarithms.



Table 1: Historical records in integer factorization (see Appendix B).

year ‘ record factorizations

1964 20D
1974 45D
1984 71D
1994 129D

Table 2: Computing power used to achieve record factorizations (see Appendix C)

year | MY
1974 0.001
1984 0.1
1994 | 5000

2. Factorization records and historical estimates

There is a long record (see Appendix A) of estimates of sizes of integers that could be
factored. They have uniformly turned out to be too low, primarily because of unanticipated
algorithmic improvements. Faster than expected growth in available computing resources also
played a role, though. Table 1 summarizes the progress that has occurred in the last few
decades. Table 2 shows how much the computing power available for integer factorizations has
increased.

3. Projections of computing power available in the future

The dramatic increase in computing power used for factorization between 1984 and 1994 re-
sulted largely from the introduction of distributed computing, using the idle time on a network
of workstations. This trend was started by Bob Silverman. (An earlier instance was Richard
Schroeppel’s attempt to factor Fg, but that work did not attract much public attention.) It
was fully developed by Arjen Lenstra and Mark Manasse. The RSA129 factorization used idle
time on around 1600 computers around the world during an 8 month period. Most modern
factoring methods do lend themselves to distributed implementations.

In the remainder of this discussion, we will only consider factoring attempts similar to that
on RSA129, namely ones that use idle time on networks of computers. Unlike attacks on DES,
where effective attacks appear to require a special purpose machine (see Appendix J), these
attacks do not require any major commitment of financial or technical resources, and can even
be mounted surreptitiously.

Another projection of the future of integer factorization has been made by Ron Rivest
[Rivest]. Rivest’s expectations for progress in computer technology and algorithms do not
differ much from mine, but he considers what can be done with a fixed amount of money using
machines bought especially for factoring.

We note that even without an extensive effort, the organizers of the RSA129 project were
able to obtain about 0.03% of the total computing power of the Internet. They also estimated



Table 3: 1994 computing power (see Appendix D)

‘ mips rating
RSA129 project | 10*
Internet 3-107
the world 3-108

[AGLL] that without extraordinary effort they could have organized a project with 100 times
as much power, or about 3% of the capacity of the Internet.

We should also note that (and this is relevant for cryptosystem security) there are relatively
small organizations that have large amounts of computing power all by themselves. Silicon
Graphics, for example, has about 5,000 employees and 10,000 workstations, for total computing
power of perhaps 10° mips, about 10 times the computing power of the RSA129 project. Thus
it is conceivable that a few individuals, such as systems administrators at a large corporation,
could organize a covert effort at factoring that would dwarf that of the RSA129 project. In
particular, using the current implementations of the number field sieve, they could easily factor
a 512-bit integer in under a year of elapsed time, and could do so now.

It is also possible for small groups of people to assemble considerable amounts of distributed
computing power surreptitiously. As an example, a 384-bit RSA key was recently broken by
Muffett et al. [MuffettLLG] using about 400 MY. In a few years, we might see teenage system
administrators for local real estate agents or laundries breaking 512-bit RSA keys without
anyone being aware of the attack.

What about the future? Moore’s “Law” says that microprocessor processing speed doubles
every 18 months. In 10 years, that means an increase by a factor of about 100. Let us assume
that this “law” will hold for the next 10 years (Appendix E), and that a further increase in
processing power of between 10 and 100 will be achieved in the following 10 years. We then
find that the typical processor in 2004 might be rated at 10 mips, and in 2014 at 10* — 10°
mips.

Since there are already over 102 computers in the world, it seems safe to assume there will
be at least 2-10° by 2004. By the year 2014, we might have 10'° — 10! (Appendix F). Further,
by that time almost all are likely to be networked together. However, it is uncertain what
fraction might be available for a factoring experiment. Let us consider two scenarios:

(a) Widely known collaborative effort to break some challenge cipher. It does not seem out
of the question that up to 0.1% of the world’s computing power might be made available for a
year. (The RSA129 project organizers estimated they could have obtained access to 3% of the
computing power of the Internet, but this 3% factor might not scale as the networks grow.)
This yields 2 - 10 MY available in 2004, and 10'! — 10'3 MY in 2014.

(b) Surreptitious effort arranged by a handful of people at an organization such as a cor-
poration or university. They might have available to them 10° computers in 2004, and up
to 10° in 2014. Thus they might have 108 MY at their disposal in 2004, and 10'© — 10'! in
2014. (Would they attempt to attack a single cryptographic system, or would they attempt to
attack 1000 different systems? This would likely depend on what moduli are used, and on the
potential payoff.)

We summarize the projections above in Table 4.



Table 4: Computing power available for integer factorization (in MY)

year ‘ covert attack ‘ open project
2004 ‘ 108 ‘ 2-10°

2014 | 100 — 101! 101 — 1013

Table 5: Computing required to factor integers with current version of gnfs

bits of n | MY required
512 | 3-10%
768 | 2108
1024 | 3- 10"
1280 | 1-10™
1536 | 3-10'6
2048 | 3-10%°

4. Factorization using current algorithms

Of the methods that are currently known and apply to generally hard integers, the general
number field sieve (gnfs) has the best asymptotic running time estimate. It is also practical,
and runs faster than previous algorithms on generally hard integers of more than about 115D.
Since a 119D integer was factored recently using gnfs with 250 MY (see Appendix C), we can
project, using standard methods (see Appendix H), the amount of computing that is likely to
be required to factor various integers. The results are shown in Table 5.

Thus, based on tables 4 and 5, moduli of 1280 bits are likely to be safe for well over 20 years,
and even 1024-bit moduli are are not likely to be vulnerable, unless they conceal extremely
valuable information. However, Table 5 assumes that the current version of gnfs will remain
the best algorithm. This would be an extremely imprudent assumption, as history shows that
algorithmic improvements are often crucial.

It is important to note that 512-bit integers, which are used in a variety of commercial
implementations of RSA, can already be factored with the available computing power. There
is no need for new algorithms or faster or more computers, just the effort to find enough people
willing to let their workstations be used in their idle time. The machines at Silicon Graphics
alone could factor a single 512-bit integer in about half a year total time (under the assumption
that they are idle about two thirds of the time).

5. Algorithmic improvements

The special number field sieve (snfs) applies to integers such as the Fermat numbers. Based
on the recent factorization of a 162D special integer by Boender et al. in about 200 MY, we
can estimate how long snfs takes to factor various integers, and the results are presented in
Table 6.

In particular, it appears that it might be possible to factor Fip = 2'9%* 4 1 by the year
2000 (continuing the tradition in which F; was factored in 1970, Fg in 1980, and Fy in 1990).



Table 6: Computing required to factor integers with the snfs

bits of n | MY required
768 | 1.10°
1024 | 3-107
1280 | 3-10°
1536 | 2- 10!
2048 | 4-10'

Is it reasonable to expect a breakthrough that would enable generally hard integers to
be factored in about the same time that the snfs factors integers of comparable size? 1 feel
that it is prudent to expect even larger improvements. It is impossible to predict scientific
breakthroughs. However, just as in other disciplines (cf. “Moore’s Law”), one can observe a
steady progress in integer factoring. Every few years a new algorithm appears that allows for
factoring much larger integers, and then there is a steady stream of incremental improvements.
As one example, there were wide concerns that the linear algebra step that plays a crucial role
in most of the fast integer factorization algorithms might become a serious bottleneck when
factoring large integers, since it could not be executed easily in a distributed way. However,
new algorithms were developed in the last decade that have allayed these concerns.

To factor a 129D integer with the continued fraction method that was used in the 1970s
would have required about 6 - 10!! times more computing power than to factor a 45D integer,
but the factorization took only about 5 - 10 times as much because a much better algorithm
was used. Thus here the algorithmic improvement was comparable (on a logarithmic scale) to
the hardware one. This is similar to what has been reported in other areas, such as numerical
analysis, where again better mathematical ideas have contributed about as much as faster
computers.

Let us assume that algorithmic improvements will continue to be comparable to those from
increasing computing power. Then we can expect that even a covert attack in 2004, which
with present algorithms could only factor about a 768-bit integer, will instead be able to factor
a 1024-bit one. For the year 2014, the threshold of what might be achievable rises to 1500 bits
or even more.

6. Conclusions

For many applications, the conjectured progress in factorization is not a serious threat.
For example, for digital signatures, time-stamping (& la Haber and Stornetta) provides a way
to maintain their validity (although in a somewhat cumbersome way, requiring recourse to a
document trail) even as secret moduli are factored. (This assumes, or course, that there are
no totally unexpected breakthroughs, so that it is possible to estimate at any given time what
are the largest integers that might be factorable in the next year, say.) Also, for many records,
the security requirements are not serious, in that loss of secrecy after 10 years or sometimes
even 10 days is acceptable. Hardware improvements favor the cipher designer, since a 100-fold
speedup in commonly used processors allows for a 10-fold increase in the modulus in DSS
(assuming, as seems reasonable, that the auxiliary prime ¢ stays at 160 bits, or is increased
to at most 240 bits), for example. However, for some records, even 20-year protection is not



sufficient. In those cases extremely large moduli appear to be required for many of the most
popular public key systems, such as RSA and the various ElGamal-type algorithms, such as
the DSA. For extremely sensitive information, it might sometimes be prudent to use 10,000-bit
moduli.

The main reason that the projections for lengths of safe moduli are growing so fast is that
the asymptotic running time estimates for the latest factoring algorithms are subexponential.
In particular, the growth rate for the running time of the number field sieve is not fast. By
comparison, there are problems where the only known algorithms have exponential running
times, such as DES and related ciphers, and also many public key schemes on elliptic curves
(see Appendix I). It might therefore be prudent to consider even more seriously elliptic curve
cryptosystems.
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APPENDICES:

Appendix A: Historical estimates of the difficulty of factoring

The problem of factoring integers has fascinated mathematicians for a long time, and there
is a famous quote of Gauss on what a fundamental question this is. A concrete estimate of
how hard it might be was provided in 1874 by W. Stanley Jevons, the English economist and
logician. He conjectured [Jevons] that nobody but he would ever know the factors of the 10D
integer 8616460799. However, he was proved wrong by Bancroft Brown around 1925, and
perhaps by others even earlier. In an unpublished manuscript, a copy of which was kindly
provided by John Brillhart, Brown explained how he obtained the factorization

8616460799 = 96079 - 89681.

In 1967, John Brillhart and John Selfridge [BS] stated that “... in general nothing but frus-
tration can be expected to come from an attack on a number of 25 or more digits, even with
the speeds available in modern computers.” By 1970 their estimate was out of date because of
a new factoring method that allowed Mike Morrison and John Brillhart to factor an integer
of 39D. In 1976, Richard Guy stated “I shall be surprised if anyone regularly factors numbers
of size 1080 without special form during the present century.” He was also shown to be too
cautious in a few years. The choice of a 129D integer for the RSA challenge number in 1977
[Gardner] was apparently motivated by an estimate of Ron Rivest that to factor such an integer
would require more than “40 quadrillion years” on a computer much faster than any that exist
even today. However, this challenge integer was factored in 1994.

Appendix B: Historical factorization records

In 1964, there was practically no organized activity in factoring integers, and so this entry
is based on the remarks in [BS].

The largest generally hard integer that had been factored by 1974 was Fr, the 7-th Fermat
number, 2'28 + 1, which is 39D. (Today it would not be classified as “generally hard,” since
the special number field sieve handles numbers of this type much more efficiently than general
ones. Also, as another technical point, the integer that was factored was 257 - F%, since the
use of a multiplier speeded up the algorithm.) F7 had been factored in 1970 by Mike Morrison
and John Brillhart, but their paper describing this work was only published in the 1975 D. H.
Lehmer special issue of Math.Comp. In those days, integer factorization was not fashionable,
and there was not much interest in going after records. Therefore inspection of the published
literature is not adequate to assess the state of the art. Experts who were active in this area
in the 1970s say that they thought that numbers of 45D were doable with the algorithms and
machines available then, and so 45D is the figure used here.

1984: This is the Sandia factorization of Jim Davis, Diane Holdridge, and Gus Simmons.

1994: This is RSA129, the RSA challenge integer of 1977, which was factored by a world-
wide collaborative effort organized and led by Derek Atkins, Michael Graff, Arjen Lenstra, and
Paul Leyland [AGLL)].

If we also consider integers of a special form, then the 162D integer (12!5! —1)/11 provides
another record. It was factored in 1994 by Henk Boender, Joe Buhler, Scott Huddleston,
Marije Huizing, Walter Lioen, Peter Montgomery, Herman te Riele, Robby Robson, Russell
Ruby, and Dik Winter.



Appendix C. Computing power of historical factorizations

According to John Brillhart, integer factorizations in the early 1970s usually used up only
about an hour of cpu time on the mainframes of those days, which are typically rated at 1-10
mips.

The 1984 Sandia factorization used 9.5 cpu hours on a Cray X-MP, which is on the order
of 100 mips.

1994: This is the Atkins et al. estimate [AGLL] for the computation, which used the
ppmpgs algorithm. Since then a 119D integer has been factored by Scott Contini, Bruce
Dodson, Arjen Lenstra, and Peter Montgomery in about 250 MY using gnfs (the general
number field sieve), suggesting that today the RSA129 factorization could be carried out in
about 1000 MY instead of the 5000 MY that was used. See [DL] for details.

Appendix D. Current computing power

The oft-quoted figure of 30M users of the Internet is questionable, as it is obtained by
assuming there are 10 users per computer. However, the estimate that about 3M machines
of one kind or another are hooked up to the Internet seems much more solid. Since many of
them are old, an average 10 mips rating seems reasonable for them.

There are well over 108 PCs in the world. Since several tens of millions of them already
have the 486 chips, which are usually rated at tens of mips, the estimate of 3 - 108 mips is
conservative. On the other hand, most of these machines are not easily usable for factoring,
since they are not networked, do not have enough memory, do not have operating systems that
allow for background jobs to run easily in idle time, etc. All these factors will change in a
few years, but now it would be hard to harness a large fraction of all the PCs in a factoring
project.

We might note that all the supercomputers in the world (about 10% in total) have a com-
puting power of about 3 - 106 mips, with several sites having between 5% and 10% of of that
capacity. (This estimate equates 1 megaflop with 1 mips, which is not very accurate, and
is based on the June 1995 version of the TOP500 report [DongarraMS].) IBM mainframes
shipped in 1994 (which was a record year in terms of mainframe computing power, although
not in dollar volume of sales) amounted to only 2 - 10° mips.

Appendix E. Moore’s “Law”

There is some skepticism whether this law will continue to hold much longer. Line widths
will eventually be so small that entire new technologies might be needed, architectural im-
provements (speculative execution, etc.) might run into the exponential complexity blowup,
and so on. Even if the bare technologies are not a barrier, economics might present one, since
the costs of state of the art fabrication facilities are also escalating. However, such concerns are
not new, and were already present a decade ago, and yet progress has continued unhindered.
Thus it seems imprudent to assume Moore’s “Law” will be violated any time soon. Since state
of the art microprocessors are already running close to 500 mips, the projection that by 2004
the typical processor will have a rating of 1000 mips (compared to around 10 mips today) seems
safe. Beyond that, there are bigger question marks. Even if raw processor speed continues to
increase, memories might be more of a bottleneck. Since most fast factorization algorithms
rely on substantial memories to perform sieving operations, they are often already limited by
memory system performance more than by the processor. However, this is a problem that is af-
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flicting an increasing range of problems. Therefore there are strong incentives towards dealing
with it, and again it seems imprudent to assume it will form an insurmountable barrier.

Appendix F. Number of computers

Since there will be about 10'° people on Earth in 2014, a projection of 10'' computers
implies that there will be over 10 computers per person. This may seem fanciful, but we
should remember that there are many embedded microprocessors in everyday appliances such
as cars, dishwashers, etc., and they will be getting increasingly powerful. To provide voice
recognition capability for the coffee pot will require considerable processing power. (The TV
set-top boxes being designed today have more computing power than the Cray-1, the first
supercomputer. The new 32-bit video game machines, of which tens of millions are expected
to be sold each year, will have similar power.) We might note, as a forerunner of what will be
common, that there were two fax machines among the approximately 1600 processors in the
RSA129 project.

There is still a question, even if we assume that there will be many computers around, of
whether they will all be networked together, and whether their computing power will be easily
accessible. Will there be computing-power brokers, selling time on millions of machines? Will
people be willing to tolerate somebody else running jobs on their machines, even in spare time?

Appendix G. Running time of algorithms

In a variant of the standard notation, we define
Lln,v,a] = exp(a- (logn)” - (loglogn)!~),

where logn refers to the natural logarithm of n.
The heuristic running time (there are no rigorous proofs, but experience and heuristics
support the calculations) of the gnfs to factor an integer n is

L[n,1/3,¢c0 +0(1)] as n — oo,

where ¢y = (64/9)'/3 = 1.9229.... There is also a variant, due to Don Coppersmith, which
does not seem to be practical, that allows the replacement of ¢y by ¢; = 1.9018.... See [LL,
Pomerance| for presentations of the gnfs.

The special number field sieve, which factors efficiently integers of the form a* + b, for
example, where a and b are small, and k large (k can also be small, but then has to fall into
certain ranges) has running time

L[n,1/3,¢c2 +0(1)] as n — oo,

where ¢, = (32/9)1/% = 1.5262....
Previous methods, such as variants of the quadratic sieve algorithm, have running times of
the form
L[n,1/2,1 4 o(1)] as n — oc.

The continued fraction method, which was the most widely used method in the 1970s, appears
(at least for the most common variant) to have running time

L[n,1/2,¢c3 +0(1)] as n — oo,

where c3 = 21/2 = 1.4142.. . ..
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Appendix H. Comparison of running times of algorithms

The o(1) terms in the estimates of running times of factorization algorithms are usually
not computed explicitly. Instead, to estimate how long an algorithm with asymptotic running
time L[n,v,a + o(1)] should take to factor an integer n, one takes the observed running time
X on an integer m and computes X - L[n,v,a|/L[m,v,a]. This has worked well in practice.
This method does ignore various important practical aspects, such as the need for memory
and communication capacity as well as cpu cycles, but those have been overcome in the past
either through better algorithms or general technological improvements, so it seems reasonable
to continue to ignore them.

Appendix I. Exponential algorithms

Public key cryptosystems such as RSA and DSA require use of large moduli because known
general algorithms for factoring integers and computing discrete logarithms are subexponential,
and so hardware improvements by themselves lead to substantial progress. In addition, there
have been steady and rapid improvements in algorithms. On the other hand, there are some
problems in which the best algorithms known are exponential, and where there has been no
recent algorithmic improvement. We cite here as an example attacks on DSA, the US Digital
Signature Algorithm, that do not use the structure of the multiplicative group of integers
modulo the large basic prime p. The DSA uses discrete exponentiation modulo a prime p, but
the exponents are computed modulo a prime g such that ¢ divides p — 1. (This is the Schnorr
method that speeds up the algorithm.) Therefore all the integers are inside an abelian group of
order g. To break DSA, one can either solve the general discrete log problem modulo p, which
can be done using a variant of the number field sieve, or else work inside the group of order q.
The best algorithms for the second attack are those of Dan Shanks and John Pollard, both of
which take about /g operations. Since these |/q operations involve multiplications modulo p,
though, even for ¢ of 160 bits and p of 1024 bits or more, it would take at least 10* MY on
general purpose computers to implement either the Shanks or the Pollard algorithm. Hence
we can conclude that 160 bits for g is likely to be safe for at least 20 years, and 200 bits (which
would require at least 10° as much computing power to break) for much longer. (As with all
the other projections about algorithms, this one could turn out to be faulty if a breakthrough
occurs.)

As another example where only exponential attacks are known, we can cite elliptic curve
cryptosystems [Menezes|, proposed initially by Neal Koblitz and Victor Miller. If the elliptic
curve is chosen carefully, only the Shanks and Pollard methods are known for computing
the analog of discrete logs on these curves. There is still some reluctance to use elliptic curve
cryptosystems, though, since they have not been scrutinized as carefully as integer factorization
and ordinary discrete logs.

Appendix J. Attacks on DES:

For comparison, we present some estimates of the computing power needed to break DES.
We consider known plaintext attacks on cipher codebook mode. We assume that only exhaus-
tive key search will be tried, so that on average 2% keys will have to be tested to find the right
one. The best software implementations (written in C) appear to achieve rates of up to about
200 KB/sec on 25 mips machines (such as 50 MHz 80486 PCs), which (since each iteration of
DES involves encrypting 8 bytes) corresponds to 25,000 encryptions per second, or about 1,000
encryptions per second on a 1 mips computer. Hence 1 MY allows us to test about 3 - 10'°
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encryptions. Therefore to find a single DES key will on average take 1.2 - 105 MY, or about
300 times as much as the factorization of RSA129 required.

DES was made to run fast in hardware, and special purpose machines can provide sub-
stantial assistance in breaking it. Michael Wiener [Wiener| has proposed a pipelined parallel
computer that could be built for about $1.5M (both development and construction cost) and
would find a single DES key in about 4 hours. What this shows is that special purpose hard-
ware can be of great help in breaking DES. On the other hand, general integer factorization
and discrete logarithm algorithms do not benefit that much from special designs, and it is the
threat of the free computing power on the Internet that seems most serious. Special designs for
sieve processors for factoring have been proposed (see [PST]), but the economics of the elec-
tronics industry favors general purpose computers. (Fast parallel modular multiplication units
could be of use in the implementation of the Pollard and Shanks exponential-time algorithms,
though, or of the subexponential-time elliptic curve method.)
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