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1/q. Now for any fixed z,

(3.4) dim fn(z) = [J(1=25)7" 0 =3 gm" = (1 2q)7,
k=1 n=0
and the limiting function has a first order pole at z = 1/¢, and thus has a small
singularity. Therefore for m large, say m > n(loglogn)(logn)~?!, Soundararajan
estimates N, (n, m) via recurrences.
The results of [37] imply that if ¢ is fixed, and we let ro = ro(n, m) be the
unique solution in (0, 1) to the equation

!

(3.5) 70 f—:(ro) =n,
and let
(3.6) bro) = (]f“—':m) ,

then for (logn)(loglogn)=! < m < 3n(loglogm)(logn)~1,

(3.7) Ny(n,m)=(1+ 0(1))% as n — oo .

If 1 <m < (logn)(loglogn)~™!, then
> Ik

(3.8) Ny(n,m)=(1+ 0(1))& H E1) asn — oo .
> I(k))! s

Finally, if 3n(loglogn)(logn)~! < m < n, then

(3.9) Ny(n,m) = (14 0(1))¢" p(n/m) as n — oo ,
where p(x) is the de Bruijn-Dickman function. n
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problems about smooth ideals can be transformed into problems about smooth
integers.

The distribution of smooth polynomials (over finite fields) is much easier to
study than that of smooth integers. However, for a long time there was not
much interest in this topic. If ¢ is a prime power, let Ny(n, m) be the number of
monic polynomials of degree n over GF(q), the finite field with ¢ elements, all of
whose irreducible factors have degrees < m. The author [29] obtained estimates
of Ny(n,m) for n — oo, n'/1%% < m < n®/1%0 by applying the saddle point
method. This estimate was sharpened and extended to Ny(n,m) for ¢ > 2 by
R. Lovorn [23]. More recently, K. Soundararajan [37] has obtained estimates of
Ny(n, m) that cover the full range of values of ¢, n, and m.

Let I(k) = I (k) denote the number of monic polynomials of degree k over
GF(q) that are irreducible over GF'(q). Then it is known that

(31) 1) = £ 30yt
dlk

where p(d) is the Mobius p-function. Because of the uniqueness of factorization
of a polynomial into irreducible polynomials, we have

(3:2) Ny(n,m) = [2"]fm(2) ,
where
(3.3) Fn2) = Fam(z) = [ = #5710

The reason that the enumeration of smooth polynomials is much easier than that
of smooth integers is that f,,(z) is much simpler and easier to analyze than the
corresponding function for integers.

The function fy,(z) is rational, but has to be treated in different ways for dif-
ferent ranges of values of m. It has poles at k-th roots of unity for all & < m, but
by far the highest order pole is at z = 1, which is the dominant singularity. For m
small we can expect the singularity at 1 to be small, and the partial fraction ex-
pansion to give good estimates. That is indeed the case, and it can be shown that
for m < (logn)(loglogn)~!, say, this method works. (However, Soundararajan
[37] does not utilize this technique, and instead estimates N, (n, m) by working
with recurrences for this function.) For higher values of m, the singularity at
z =1 becomes large, and the saddle point method is used to estimate N,(n, m).
An interesting feature of this analysis is that the ranges of values of m where
the partial fraction and saddle point methods apply overlap, so there is no gap
in the estimates.

The saddle point method stops working when m gets large. The problem is
that for n fixed and m increasing, the saddle point decreases away from 1 towards
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equations of the form (2.4) [19]. (For recent work on linear algebra approaches,
see also [8, 14, 16, 21].) The computations of [20] also proved the feasibility
of the algorithms in [9] and provide a base from which to extrapolate to obtain
an estimate of what size primes can be handled with more computing time. The
conclusions of [20] still appear valid, so that the 800 mips-years that was devoted
to factoring a 400 bit integer should suffice (using the same distributed network
of workstations, and with only slightly modified programs) to compute discrete
logarithms modulo a prime of over 350 bits. The NIST decision in the revised
draft of the proposed digital signature standard to allow for primes between 512
and 1024 bits appears prudent, as the 512 bit primes of the initial draft offer too
little protection to guard against advances in either technology or algorithms.

The number field sieve discrete logarithm algorithm does not appear to be
practical yet, but this may be due more to lack of research in this area than
any inherent difficulties. Integer factorization algorithms have attracted much
more attention, and the number field sieve factoring algorithms appear to be
competitive with the best older algorithms around 400 bits. Therefore it seems
prudent, in assessing security of discrete logarithm cryptographic schemes, to
assume that the number field sieve will be effective in the computation of discrete
logs as well. Some concern has been expressed about the possible use of trapdoor
primes. These are primes that are constructed so that the special number field
sieve can be applied to them, but only if one knows the secret details (which
consist of a representation of the prime as the value of a polynomial with small
coefficients at some integer). However, the advantages that a trapdoor prime
designer can obtain over somebody who does not know the secret construction
(and therefore presumably has to use the general number field sieve algorithm)
is too small to worry about.

In fields GF(2"), the GF(2'%7) discrete logarithm problem (which was imple-
mented in some early cryptosystems) was solved by Coppersmith [6] using his
algorithm, and subsequently by Blake et al. [3] using an older and less efficient
method. The latest results in this area are those of Gordon and McCurley [14]
who implemented the Coppersmith algorithm on a massively parallel processor.
They have done most of the computations needed to compute discrete logarithms
in GF(25%3), and project that with the next generation of parallel machines even

GF(2°°3) might be achievable.

3. Smooth polynomials

The analysis of the running times of all known index calculus algorithms
relies on knowledge of the distribution of smooth integers, smooth ideals, or
smooth polynomials. There is a huge literature on smooth integers, since they are
of interest in many other applications besides discrete logarithm and factorization
algorithms. A detailed survey of this area is presented in [18]. Distribution of
smooth ideals is less well understood. For recent results, see [5]. To some extent
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Rivest, Shamir, and Adleman. This integer has 129 decimal digits, and the
quadratic sieve is expected to factor it in about 6000 mips-years. Because most
of this giant computation can be carried out using the idle time on thousands
of workstations around the world, this project is likely to succeed within a few
more months.

The number field sieve was extended to compute discrete logarithms in fields
GF(p) with p prime by Gordon [13]. He obtained a running time of the form
(2.8) with ¢ = 2.0800..., and a lower value of ¢ for some special primes p.
Schirokauer [32, 33] has lowered this to ¢ = 1.9229.... No implementations
of number field sieve discrete logarithm algorithms have been reported yet. It
is not clear whether they will be practical in the near future, as they are more
complicated than the integer factoring version of the number field sieve.

All the algorithms mentioned so far rely on unproved heuristic assumptions
about their running times. Pomerance [31] and previous authors have presented
probabilistic algorithms whose running time can be analyzed rigorously. For
g = p, a prime, and ¢ = 27, they have running times that are bounded by
a function of the form (2.6) with high probability, but their constants C' are
considerably larger than for the heuristic algorithms.

For a long time little was known about the complexity of discrete logarithms
in fields GF(¢), where ¢ = p™, and neither p nor n is small. The only result avail-
able were ElGamal’s algorithms [11, 12] for GF(p™) for a fixed n. Also, Cop-
persmith’s algorithm for GF(2") can be generalized to GF(p™) with p growing
slowly. Recently, Lovorn [23, 2] has obtained rigorous probabilistic algorithms
for GF(p") with logp < n%%. Even more recently, Adleman and DeMarrais [1]
have presented a heuristic algorithm that applies to all fields GF'(¢q) and has a
running time bound of the form (2.6).

There is a very interesting new algorithm of Semaev [36]. It applies to some
fields GF(p™) with p < n® for any constant & > 0, and achieves running time of
the form (2.8). (This algorithm is heuristic, as are all the known fast algorithms.)
It relies on some special algebraic relations, and therefore it requires that either
(i) n is odd, 2n + 1 is prime, and the multiplicative order of p modulo 2n + 1
is n or 2n or else that (ii) p® — 1 has a prime divisor £ such that ¢ { p* — 1,
1 <k < n-—1. This algorithm has not been fully tested nor even analyzed,
but it appears to be practical, and might open up new approaches for future
improvements.

There have been relatively few implementations of discrete logarithm algo-
rithms. For GF(p), p a prime, the largest problem that has been solved fully is
still that for the 192-bit prime used in the Sun NFS [20]. The problem for a 224-
bit prime was almost completed as well [20]. These experiments were modest
ones, and used on the order of 1 mips-year of computing time, as opposed to the
hundreds or thousands of mips-years used in the modern factoring experiments
mentioned earlier. Their main purpose was not so much to break the Sun NFS
security system, but to test the methods of solving the large linear system of
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Hence considerable effort had been expanded by many researchers (see [24, 29]
for references) on trying to lower the value of C'. For prime fields GF(p), the
best algorithms that were known until recently were the three presented in [9],
which had running times

(2.7) exp((1 + o(1))(log p)/*(loglog p)*/?) as p — oo .

On the other hand, for fields GF'(q) with ¢ = 2", Coppersmith [6] invented an
algorithm with running time bounded by

(2.8) exp((e+ o(1))(log q)l/?’(log log q)z/?’) as ¢q = 2" — oo

for a certain constant ¢ = 1.5874 .... (Actually, the e+0(1) term can be replaced
by ¢(n)+o(1), where ¢(n) is an explicit oscillating function of n that is bounded
above by 1.5874 ... and bounded away from 0.) This was a major breakthrough,
and represented the first practical integer factorization or discrete logarithm
algorithm that did not have a running time of the form (2.6). (Schnorr [34]
had earlier proposed an integer factorization algorithm with a similar running
time, but it applied only to factoring large blocks of consecutive integers, and
was totally impractical for factoring individual integers.)

In the last few years there have been several important developments in dis-
crete logarithm algorithm. The most important and mathematically the deepest
has been the invention of the number field sieve integer factoring algorithm.
Starting with an idea of Pollard (motivated, curiously enough, by a discrete
logarithm method), this technique was developed by Buhler, H. Lenstra, Pomer-
ance, and a large group of other researchers. We do not present any details nor
do we try to give proper credits for all the work that was involved. The basic
source for information about the number field sieve is the book [21] edited by
A. Lenstra and H. Lenstra, which contains complete references and many of the
papers related to the number field sieve. (However, developments in this area
are rapid, and there are new papers circulating, such as [27], and new ones in
preparation.) We only mention the most important facts about this subject.
There are two basic forms of the number field sieve. The special number field
sieve can factor integers ¢ of special forms (such as ¢ = 2” + 1) in time of the
form (2.8) with ¢ = 1.5262.... The general number field sieve factors arbitrary
integers with running time bound of the form (2.8) with ¢ = 1.9229.... (There
is also a variant due to Coppersmith [7] that achieves ¢ = 1.9018 ..., but it is
probably not practical.) The special number field sieve has been used to factor
integers of 523 bits in about 200 mips-years. The general number field sieve
has not yet been used to obtain any factorization records, but it probably will
become the method of choice for integers over 120 decimal digits (approximately
400 bits). The current record for factoring a generally hard integer is held by
the multiple polynomial quadratic sieve with the two large primes variation [22],
which has factored a 120 decimal digit integer in about 800 mips-years. There
is a project going on right now to factor the original 1977 challenge integer of
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1<a<q—1, compute u = ¢g* (mod p), 1 <u<p-—1,and check whether

(2.3) u=[]m,

where the p; are all primes satisfying p; < B for some bound B. (When (2.3)
holds, we say that u is smooth with smoothness bound B.) For most values of
a, u will not satisfy (2.3), and so will be discarded. Since (2.3) is equivalent to

(2.4) a= Zlogg pi (mod p—1),

after collecting slightly more equations like (2.3) than than there are primes < B,
we can expect to be able to solve the system of equations of the form (2.4) for
the log, p;. Individual discrete logarithms are then computed using the database
of the log, p; in a separate phase that is similar to the procedure above.

When the field is GF'(2"), and the elements are represented as polynomials in
GF(2)[z] modulo an irreducible polynomial f(z) of degree n, the same general
procedure as is outlined above can be applied. After choosing a random integer
a,1 <a<q—1=2"—1, we compute the polynomial u(z) such that ¢ = u(z)
(mod f(z)) over GF'(2), and check whether

(2.5) u(e) =[] fi(z) .

where the fi(z) € GF(2)[z] are irreducible over GF'(2) and have low degrees.

The outline above of how index-calculus algorithms operate in fields GF(p)
and GF'(2") gives the basic idea, but does not yield efficient algorithms as pre-
sented. However, it is important to remember that all index-calculus algorithms
consist of three phases, just as outlined above. The first one is the generation of
equations of the form (2.2). It is always the most time-consuming phase. (How-
ever, it can usually be done on a distributed network of workstations, since there
is little need for communication, so huge computing power can be brought to
bear on this problem, just as in integer factorization.) The second phase is the
solution of those equations. This phase takes much less computing time than the
first one, but it has to be done on a single processor (possibly a massively par-
allel one), and so causes some difficulty. Finally, once the equations are solved,
the third phase computes individual logarithms using the data from the first
two phases. We will not say anything about the third phase, since it is always
considerably faster than the first one. (However, in the most recent and fastest
algorithms, the third phase has been getting increasingly complicated.)

The sketch of the index-calculus approach presented above yields algorithms
with running time bounded by

(2.6) exp(C(log q)l/z(log log q)1/2)

for some constant C' > 0, provided that either ¢ = p, a prime, or ¢ = 2" (the
two cases that are still of greatest cryptographic significance). However, the
simplest methods lead to large values of € resulting in impractical algorithms.



2 A. M. ODLYZKO

work on the degree to which individual bits of the discrete logarithm might be
computable. For references for the most recent results, see [15].

All of the fast discrete logarithm algorithms in finite fields rely on finding
elements that are smooth. This means that they can be expressed as products of
other elements that in some sense are “small.” For ordinary integers, smoothness
means that the “small” elements are small primes. When the elements of the
field are represented as polynomials over a small subfield, the “small” elements
are irreducible polynomials of low degrees. In Section 3 we discuss the latest
results on smoothness, especially of polynomials.

2. Discrete logarithms

In this section we consider discrete logarithms in finite fields GF(q), where
q = p" for p a prime. We will assume that g is a primitive element in GF(q).
One can always use the Shanks baby steps — giant steps attack [29], which

1/2 steps, where r is the largest prime factor of ¢ —1.

computes log, y in roughly r
1/2

This algorithm is deterministic, but uses about r*/* space. Space requirements
can be decreased at the cost of increasing the running time. There is also a
randomized algorithm of Pollard [30] which has approximately the same running
time of 71/2, but uses practically no space. The lesson to be drawn from these
algorithms is that to have a secure public key cryptosystem, one needs to choose
the field GF(q) carefully. If ¢ is a prime of 512 or 1024 bits, this is not a major
concern, as ¢ — 1 will have a large prime factor with high probability. However,
if ¢ = 2", then the safe choices for n are restricted [29].

The Shanks and Pollard attacks apply to all discrete logarithm problems in
all groups. However, since the largest prime factor r of ¢ — 1 can be almost as
large as ¢ (say if ¢ = 2r + 1), these attacks are of exponential complexity in the
worst case. However, in all finite fields we now have available subexponential
algorithms. They are all based on the index-calculus idea, which was ascribed
in [29] to Western and Miller, but actually goes back a few decades earlier to
Kraitchik [24]. This idea is that if

a b
(21) Hl‘i = Hyj
i=1 i=1

holds for some elements z;, y; of GF(g)*, then

a b
(2.2) Zlogg T, = Zlogg y; (mod ¢—1).
i=1

ji=1

If we obtain many equations of the form (2.1) (with at least one of them involving
an element z such as g, for which log, z is known), and they do not involve too
many z; and y;, then the system (2.2) can be solved. For fields GF(p), p a
prime, the simplest way to implement this idea is to take random integers a,
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ABSTRACT. This paper is a survey of recent advances in discrete logarithm
algorithms. Improved estimates for smooth integers and smooth polynomi-
als are also discussed.

1. Introduction

If G denotes a group (written multiplicatively), and (g) the cyclic subgroup
generated by g € (G, then the discrete logarithm problem for G is to find, given
g € G and y € (g), the smallest nonnegative integer x such that y = g®. This
integer x is called the discrete logarithm of y to the base g, and is written
z = log, y.

The discrete log problem has been studied by number theorists for a long
time. The main reason for the intense current interest in it, though, is that
many public key cryptosystems depend for their security on the assumption that
it is hard, at least for suitably chosen groups. With the proposed adoption of the
NIST digital signature algorithm [28] (based on the ElGamal [10] and Schnorr
[35] proposals), even more attention is likely to be drawn to this area.

There are already several surveys of discrete logarithm algorithms and discrete
logarithm cryptosystems in the literature [24, 29]. The purpose of this brief note
is to summarize the significant developments in this area since the McCurley
survey [24] was published. The main emphasis will be on discrete logarithm
problems in finite fields. There is also extensive work on discrete logarithms
on elliptic curves. However, this research is presented in detail in the book
of Menezes [25]. We also do not discuss discrete logarithms on class groups
of number fields, for which references can be found in [4]. There has been
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