

Robert Jajcay

November 14, 2024

Automorphisms of Graphs

* An isomorphism in $Iso(\Gamma, \Gamma)$ is called a **(graph)** automorphism of Γ ; i.e., a graph automorphism of Γ is a bijection $\varphi: V(\Gamma) \to V(\Gamma)$ satisfying the property

$$u \sim v \iff \varphi(u) \sim \varphi(v)$$

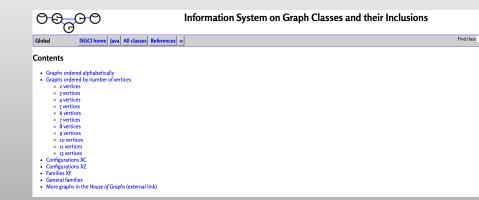
- * The set of all automorphisms of Γ together with the operation of composition is called the **automorphism group of** Γ , denoted $Aut(\Gamma)$.
- * It is indeed a group:
 - ▶ the composition of two automorphisms is an automorphism
 - ▶ the operation of composition is associative
 - ▶ the neutral element of composition is the bijection $id_{V(\Gamma)}: V(\Gamma) \to V(\Gamma)$,

$$id_{V(\Gamma)}(u) = u$$
, for all $u \in V(\Gamma)$

▶ the inverse of an automorphism is an automorphism

Automorphism Groups of Small Graphs

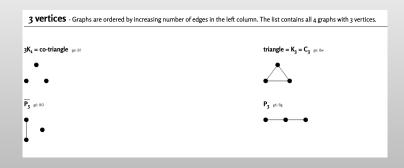
https://www.graphclasses.org/smallgraphs.html



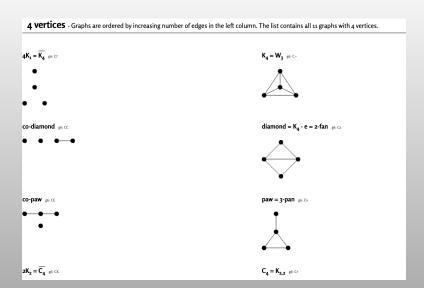
Automorphism Groups of Graphs of Order 2



Automorphism Groups of Graphs of Order 3



Automorphism Groups of Graphs of Order 4



General Results about Automorphism Groups of Graphs

Theorem

1.

$$Aut(\Gamma) = Aut(\overline{\Gamma})$$

2.

$$Aut(K_n) = \mathbb{S}_n$$

3.

$$Aut(C_n) = \mathbb{D}_n$$

- 4. If $\Gamma_1 \ncong \Gamma_2$, then $Aut(\Gamma_1) \times Aut(\Gamma_2) \le Aut(\Gamma_1 \dot{\cup} \Gamma_2)$.
- 5. If $\Gamma_1 \cong \Gamma_2$, then $Aut(\Gamma_1) \times Aut(\Gamma_2) \times \mathbb{Z}_2 \leq Aut(\Gamma_1 \dot{\cup} \Gamma_2)$.

A Connection to Group Theory

* A **group isomorphism** between groups $(G_1,*)$ and (G_2,\cdot) is a bijection $\varphi: G_1 \to G_2$ 'preserving the group structure':

$$\varphi(a*b) = \varphi(a) \cdot \varphi(b)$$
, for all $a, b \in G_1$

- \star A group isomorphism $\varphi:G\to G$ is called a **group** automorphism
- * The set of all automorphisms of G together with the operation of composition is called the **automorphism group** of G, denoted Aut(G).
- * It is indeed a group:
 - ▶ the composition of two automorphisms is an automorphism
 - ▶ the operation of composition is associative
 - ▶ the neutral element of composition is the bijection $id_G: G \rightarrow G$,

$$id_G(g) = g$$
, for all $u \in G$

the inverse of an automorphism is an automorphism

Group Isomorphism Problem

```
Input: Two groups (G_1, *), (G_2, \cdot)
Question: Does there exist an isomorphism between (G_1, *) and (G_2, \cdot)?
```

In case of a positive answer, the algorithm should provide a specific isomorphism.

Group Isomorphism Problem vs. Graph Isomorphism Problem

The Graph Isomorphism and Group Isomorphism Problems appear to be of similar complexity:

- ★ Both can be answered via visiting all bijections between the two objects
- * The verification for a specific bijection involves visiting all pairs

Group Isomorphism Problem vs. Graph Isomorphism Problem

Construction. Let K be a finite group.

Define a graph $\Gamma(K)$ with vertex set $K \times K$ and edges:

$$(a,b) \sim (c,d) \iff a = c \lor b = d \lor ab = cd.$$

Theorem $K_1 \cong K_2 \iff \Gamma(K_1) \cong \Gamma(K_2)$.

Exercise. Prove that $\Gamma(K)$ is a Cayley graph over $K \times K$.

Exercise. Prove that $\Gamma(\mathbb{Z}_4) \ncong \Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2)$.

$$\mathbb{Z}_4 \to \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{bmatrix}$$

$$\mathbb{Z}_2 \times \mathbb{Z}_2 \to \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \\ 2 & 3 & 0 & 1 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$

Robert Jajcay

Graph Theory

Automorphism Groups of Groups

Problem 1: Determine the automorphism group of (Z_n, \oplus) , $n \ge 2$

Problem 2: Determine the automorphism group of $(Z_n^{\#}, \odot)$, $n \ge 2$

Strongly Regular Graphs

A k-regular graph Γ of order v is said to be a (v, k, λ, μ) -strongly regular graph if

- 1. the number of common neighbors for any pair of adjacent vertices u, v of Γ is equal to λ
- 2. the number of common neighbors for any pair of non-adjacent vertices u,v of Γ is equal to μ

Examples:

- ★ complete graphs K_n , $n \ge 2$
- * the complement of a (v, k, λ, μ) -strongly regular graph (parameters?)
- * the Petersen graph

Strongly Regular Graphs

- * Johnson graphs, J(n, k); $V = \binom{n}{k}$, $S \sim T$ iff $|S \cap T| = k 1$ (parameters?)
- * Kneser graphs, K(n, k); $V = \binom{n}{k}$, $S \sim T$ iff $S \cap T = \emptyset$ (parameters?)
- $\star J(n,2) \cong \overline{K(n,2)}$
- * J(n,2) is the line graph for K_n ;
- \star Petersen $\cong K(5,2)$
- * Latin square graphs; V consists of the windows of a Latin square, and two windows are connected if they share the column, the row, or the contents; graphs $\Gamma(G)$ defined for groups G belong to this class, but not all Latin square graphs are $\Gamma(G)$ graphs for some G

The Stabilizer of a Vertex in a Group of Permutations

Definition

Let $G \leq \mathbb{S}_X$, and $x \in X$. The **stabilizer of** x in G is the set of all permutations in G that fix (stabilize) x; i.e.,

$$Stab_G(x) = \{ \varphi \in G \mid \varphi(x) = x \}$$

- ⋆ $Stab_G(x)$ is a subgroup of G for every x ∈ X
- * if there exists a permutation $\varphi \in G$ such that $\varphi(x) = y$, for some $x, y \in X$, then $|Stab_G(x)| = |Stab_G(y)|$, and $Stab_G(x) = \varphi Stab_G(y) \varphi^{-1}$
- * The proof follows from the easy observations $Stab_G(x) \leq \varphi Stab_G(y)\varphi^{-1}$ and $\varphi Stab_G(y)\varphi^{-1} \leq Stab_G(x)$

Graph Theory

The Stabilizer of a Vertex in a Graph

Definition

Let $\Gamma = (V, E)$ be a graph, $G = Aut(\Gamma)$, and $u \in V$. The **stabilizer of** u in G is the set of all automorphisms of Γ that fix (stabilize) u; i.e.,

$$Stab_G(u) = \{ \varphi \in G \mid \varphi(u) = u \}$$

- * all of these concepts are 'specifications' of the general results on groups of permutations to groups of permutations that are also graph automorphisms
- ⋆ $Stab_G(u)$ is a subgroup of G for every u ∈ V
- * if there exists an automorphism $\varphi \in G$ such that $\varphi(u) = v$, for some $u, v \in V$, then $|Stab_G(u)| = |Stab_G(v)|$, and $Stab_G(u) = \varphi Stab_G(v) \varphi^{-1}$

The Stabilizer of a Set

Definition

1. Let $\Gamma = (V, E)$ be a graph, $G = Aut(\Gamma)$, and $S \subseteq V$. The **pointwise stabilizer of** S in G is the set of all automorphisms of Γ that fix (stabilize) every $u \in S$; i.e.,

$$Stab_G(S) = \{ \varphi \in G \mid \varphi(u) = u, \text{ for all } u \in S \}$$

2. The **setwise stabilizer of** S in G is the set of all automorphisms of Γ that fix (stabilize) the set S (but may mix the elements in S); i.e.,

$$Stab_G(\{S\}) = \{ \varphi \in G \mid \varphi(u) \in S, \text{ for all } u \in S \}$$

- * $Stab_G(S) \leq Stab_G(\{S\}) \leq G$, for every $S \subseteq V$
- $\star Stab_G(S) = \bigcap_{u \in S} Stab_G(u)$
- \star all the above definitions and observations clearly extend to general groups of permutations $G \leq \mathbb{S}_X$

Rigid (Asymmetric) Graphs

Problem 1:

Find a graph Γ of order ≥ 2 that has a trivial automorphism group; i.e., $Aut(\Gamma) = \{id_{V(\Gamma)}\}.$

Problem 2:

Find a graph Γ of the smallest order that has a trivial automorphism group; i.e., $Aut(\Gamma) = \{id_{V(\Gamma)}\}.$

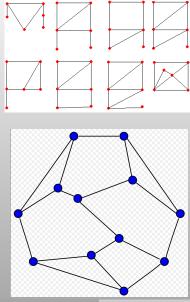
Problem 3:

Find a cubic graph Γ of the smallest order that has a trivial automorphism group; i.e., $Aut(\Gamma) = \{id_{V(\Gamma)}\}.$

Problem 4:

Find a planar graph Γ of the smallest order that has a trivial automorphism group; i.e., $Aut(\Gamma) = \{id_{V(\Gamma)}\}.$

Rigid (Asymmetric) Graphs



Robert Jajcay

Graph Theory

(Rigid) Asymmetric Graphs

A graph Γ is called **asymmetric** if it does not have a non-trivial automorphism.

$$\Leftrightarrow$$

 $Aut(\Gamma)$ is trivial.

Theorem (Erdős, Renyi (1963))

Almost all graphs are asymmetric.

i.e.,

$$\lim_{n \to \infty} \frac{\text{\# of asymmetric graphs of order } \leq n}{\text{\# graphs of order } \leq n} = 1$$

Problem:

Is there a strongly regular graph of order ≥ 2 with a trivial automorphism group?

Asymmetric Graphs

Erdös, Rényi:

- \star Symmetrization: removing (r) and adding (s) edges to make a graph symmetric
- * Degree of asymmetry $A(\Gamma)$: the minimum of r+s taken over all possible symmetrizations
- * The asymmetry of a graph of order n can not exceed $\frac{n-1}{2}$; and this estimate is asymptotically best possible
- \star The relative asymmetry of Γ ,

$$a(\Gamma) = \frac{A(\Gamma)}{\frac{n-1}{2}}$$

$$0 \le a(\Gamma) \le 1$$

Symmetry vs. Asymmetry: Minimal Asymmetric Graphs

An undirected graph G on at least two vertices is **minimal** asymmetric if G is asymmetric and no proper induced subgraph of G on at least two vertices is asymmetric.

Minimal Asymmetric Graphs

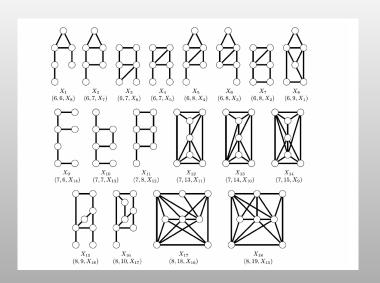
Theorem (Schweitzer, Pascal; Schweitzer, Patrick, 2017)

There are exactly 18 finite minimal asymmetric undirected graphs up to isomorphism.

Nešetřil's conjecture: There are exactly 18 minimal asymmetric graphs (coming in 9 complementary pairs).

Nešetřil and Sabidussi earlier established a close connection between minimal asymmetric graphs and minimal involution-free graphs.

Minimal Asymmetric Graphs



Orbit of a Permutation Group

- * Recall the cycle decomposition of a permutation $\varphi \in \mathbb{S}_n$ into disjoint cycles.
- * Note that the cycles (including the single element cycles which we usually do not list) form a *partition* of the set $\{1, 2, ..., n\}$
- \star also note that any two elements i and j in $\{1,2,\ldots,n\}$ belong to the same cycle if and only if there exists a $0 \leq k \leq |\varphi| 1$ such that $\varphi^k(i) = j$

These observations generalize into the following:

Definition

Let G be a subgroup of the full symmetric group \mathbb{S}_X . The **orbit** of G containing the element $x \in X$ is the set of all elements $y \in X$ such that there exists and element $\varphi \in G$ such that $\varphi(x) = y$.

Orbits of a Permutation Group

Theorem

- 1. If $x, y \in X$ belong to the same orbit of $G \leq \mathbb{S}_X$ on X, their stabilizers are conjugates in G^1 .
- 2. If $G \leq S_X$, the orbits of G on X form a partition of X.
- 3. The relation on X defined for any pair of elements $x, y \in X$ via the rule

$$x \sim y$$
 iff $\exists \varphi \in G$ such that $\varphi(x) = y$

is an equivalence relation on X

4. The cycles of φ are the orbits of $\langle \varphi \rangle$.

¹Is this an if and only if statement?

Orbit of a Permutation Group

Note that a graph Γ has a trivial automorphism group if and only each vertex of Γ is its own orbit, i.e., if Γ has a non-trivial automorphism group, it has at least one orbit of size > 1.