Graph Theory
Lecture #9
Graph Automorphisms
and
Automorphism Groups of Graphs

November 21, 20

Strongly Regular Graphs

A k-regular graph Γ of order v is said to be a (v, k, λ, μ) -strongly regular graph if

- 1. the number of common neighbors for any pair of adjacent vertices u,v of Γ is equal to λ
- 2. the number of common neighbors for any pair of non-adjacent vertices u,v of Γ is equal to μ

Examples:

- ★ complete graphs K_n , $n \ge 2$
- * the complement of a (v, k, λ, μ) -strongly regular graph (parameters?)
- * the Petersen graph

Graph Theory

Strongly Regular Graphs

- * Johnson graphs, J(n,k); $V=\binom{n}{k}$, $S \sim T$ iff $|S \cap T| = k - 1$ (parameters?)
- * Kneser graphs, K(n,k); $V=\binom{n}{k}$, $\mathcal{S} \sim \mathcal{T}$ iff $\mathcal{S} \cap \mathcal{T} = \emptyset$ (parameters?)
- $\star J(n,2) \cong K(n,2)$
- $\star J(n,2)$ is the line graph for K_n ;
- * Petersen $\cong K(5,2)$
- * Latin square graphs; V consists of the windows of a Latin square, and two windows are connected if they share the column, the row, or the contents: graphs $\Gamma(G)$ defined for groups G belong to this class, but not all Latin square graphs are $\Gamma(G)$ graphs for some G

Back to the automorphism groups of graphs

But first, we start talking about a general concept that concerns all groups of permutations

(not just the automorphism groups of graphs)

The Stabilizer of a Vertex in a Group of Permutations

Definition

Let $G \leq \mathbb{S}_X$ (i.e., let G be a group of permutations of a set X), and let $x \in X$. The **stabilizer of** X in G is the set of all permutations in G that fix (stabilize) X; i.e.,

$$Stab_G(x) = \{ \varphi \in G \mid \varphi(x) = x \}$$

- ⋆ $Stab_G(x)$ is a subgroup of G for every x ∈ X
- * if there exists a permutation $\varphi \in G$ such that $\varphi(x) = y$, for some $x, y \in X$, then $|Stab_G(x)| = |Stab_G(y)|$, and $Stab_G(x) = \varphi Stab_G(y) \varphi^{-1}$
- * The proof follows from the easy observations $Stab_G(x) \le \varphi Stab_G(y)\varphi^{-1}$ and $\varphi Stab_G(y)\varphi^{-1} \le Stab_G(x)$

Robert Jajcay Graph Theory

The Stabilizer of a Vertex in a Graph

Definition

Let $\Gamma = (V, E)$ be a graph, $G = Aut(\Gamma)$, and $u \in V$. The **stabilizer of** u in G is the set of all automorphisms of Γ that fix (stabilize) u; i.e.,

$$Stab_G(u) = \{ \varphi \in G \mid \varphi(u) = u \}$$

- * all of these concepts are 'specifications' of the general results on groups of permutations to groups of permutations that are also graph automorphisms
- ⋆ $Stab_G(u)$ is a subgroup of G for every u ∈ V
- * if there exists an automorphism $\varphi \in G$ such that $\varphi(u) = v$, for some $u, v \in V$, then $|Stab_G(u)| = |Stab_G(v)|$, and $Stab_G(u) = \varphi Stab_G(v) \varphi^{-1}$

The Stabilizer of a Set of Vertices in a Graph

Definition

1. Let $\Gamma = (V, E)$ be a graph, $G = Aut(\Gamma)$, and $S \subseteq V$. The **pointwise stabilizer of** S in G is the set of all automorphisms of Γ that fix (stabilize) every $u \in S$; i.e.,

$$Stab_G(S) = \{ \varphi \in G \mid \varphi(u) = u, \text{ for all } u \in S \}$$

2. The **setwise stabilizer of** S in G is the set of all automorphisms of Γ that fix (stabilize) the set S (but may mix the elements in S); i.e.,

$$Stab_G(\{S\}) = \{ \varphi \in G \mid \varphi(u) \in S, \text{ for all } u \in S \}$$

- * $Stab_G(S) \leq Stab_G(\{S\}) \leq G$, for every $S \subseteq V$
- $\star Stab_G(S) = \bigcap_{u \in S} Stab_G(u)$

Robert Jajcay C

The Stabilizer of a Set

All the above definitions and observations extend to general groups of permutations $G \leq S_X$:

Definition

1. Let $G < S_X$, and let $S \subseteq X$. The pointwise stabilizer of S in G is the set of all permutations in G that fix (stabilize) every $u \in S$; i.e.,

$$Stab_G(S) = \{ \varphi \in G \mid \varphi(u) = u, \text{ for all } u \in S \}$$

2. The **setwise stabilizer of** *S* in *G* is the set of all permutations in G that fix (stabilize) the set S (but may mix the elements in S); i.e.,

$$Stab_G(\{S\}) = \{ \varphi \in G \mid \varphi(u) \in S, \text{ for all } u \in S \}$$

And now for another but related topic ...

Rigid (Asymmetric) Graphs

Problem 1:

Find a graph Γ of order ≥ 2 that has a trivial automorphism group; i.e., $Aut(\Gamma) = \{id_{V(\Gamma)}\}\$, i.e., the only permutation of the vertices in $V(\Gamma)$ that is actually a graph automorphism (preserves edges and non-edges) is the trivial permutation $id_{V(\Gamma)}: u \mapsto u$, for all $u \in V(\Gamma)$ (which is always an automorphism)

Problem 2:

Find a graph Γ of the smallest order that has a trivial automorphism group.

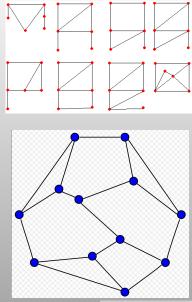
Problem 3:

Find a cubic graph Γ of the smallest order that has a trivial automorphism group.

Problem 4:

Find a planar graph Γ of the smallest order that has a trivial automorphism group.

Rigid (Asymmetric) Graphs



Robert Jajcay

Graph Theory

(Rigid) Asymmetric Graphs

A graph Γ is called **asymmetric** if it does not have a non-trivial automorphism.

$$\Leftrightarrow$$

 $Aut(\Gamma)$ is trivial.

Theorem (Erdős, Renyi (1963))

Almost all graphs are asymmetric.

i.e.,

$$\lim_{n \to \infty} \frac{\text{\# of asymmetric graphs of order } \leq n}{\text{\# graphs of order } \leq n} = 1$$

Problem:

Is there a strongly regular graph of order ≥ 2 with a trivial automorphism group?

(We are asking about the existence, not even about a smallest such graph.)

Asymmetric Graphs

Erdös, Rényi:

- \star Symmetrization: removing (r) and adding (s) edges to make a graph symmetric
- * Degree of asymmetry $A(\Gamma)$: the minimum of r+s taken over all possible symmetrizations
- * The asymmetry of a graph of order n can not exceed $\frac{n-1}{2}$; and this estimate is asymptotically best possible
- \star The relative asymmetry of Γ ,

$$a(\Gamma) = \frac{A(\Gamma)}{\frac{n-1}{2}}$$

$$0 \le a(\Gamma) \le 1$$

Robert Jajcay

Graph Theory

Symmetry vs. Asymmetry: Minimal Asymmetric Graphs

An undirected graph G on at least two vertices is **minimal** asymmetric if G is asymmetric and no proper induced subgraph of G on at least two vertices is asymmetric.

Minimal Asymmetric Graphs

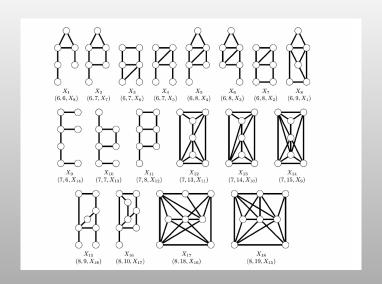
Theorem (Schweitzer, Pascal; Schweitzer, Patrick, 2017)

There are exactly 18 finite minimal asymmetric undirected graphs up to isomorphism.

Nešetřil's conjecture (preceding the theorem): There are exactly 18 minimal asymmetric graphs (coming in 9 complementary pairs).

Nešetřil and Sabidussi earlier established a close connection between minimal asymmetric graphs and minimal involution-free graphs.

Minimal Asymmetric Graphs



Robert Jajcay

Graph Theory

And now another fundamental concept concerning groups of permutations and groups of graph automorphisms ...

Orbit of a Permutation Group

- * Recall the cycle decomposition of a permutation $\varphi \in \mathbb{S}_n$ into disjoint cycles.
- * Note that the cycles (including the single element cycles which we usually do not list) form a partition of the set $\{1, 2, ..., n\}$
- \star also note that any two elements i and j in $\{1, 2, ..., n\}$ belong to the same cycle if and only if there exists a $0 \le k \le |\varphi| - 1$ such that $\varphi^k(i) = i$

These observations generalize into the following:

Definition

Let G be a subgroup of the full symmetric group S_X . The **orbit** of G containing the element $x \in X$ is the set of all elements $y \in X$ such that there exists and element $\varphi \in G$ such that $\varphi(x) = y$.

Orbits of a Permutation Group

Theorem

- 1. If $x, y \in X$ belong to the same orbit of $G \leq \mathbb{S}_X$ on X, their stabilizers are conjugates in G^1 .
- 2. If $G \leq S_X$, the orbits of G on X form a partition of X.
- 3. The relation on X defined for any pair of elements $x, y \in X$ via the rule

$$x \sim y$$
 iff $\exists \varphi \in G$ such that $\varphi(x) = y$

is an equivalence relation on X

4. The cycles of φ are the orbits of $\langle \varphi \rangle$.

¹Is this an if and only if statement?

Lemma

Let $G \leq S_X$ and let \mathcal{O} be an orbit of G. Then,

$$|G| = |Stab_G(x)| \cdot |\mathcal{O}|,$$

for every $x \in \mathcal{O}$.

Proof: Let $\mathcal{O} = \{x = x_1, x_2, \dots, x_{|\mathcal{O}|}\}$ and $\varphi_1, \varphi_2, \dots, \varphi_{|\mathcal{O}|} \in G$ such that $\varphi_i(x_1) = x_i$. Then

$$G = \bigcup_{1 < i < |\mathcal{O}|} \varphi_i Stab_G(x_1)$$

Orbit of an Automorphism Group of a Graph

- * Orbits with respect to the automorphism group of a graph Γ form a partition of the vertex set $V(\Gamma)$
- * For any two vertices $u, v \in G(\Gamma)$ that belong to the same orbit, there exists an automorphism $\varphi \in Aut(\Gamma)$ mapping u to $v, \varphi(u) = v$
- * If u and w in $V(\Gamma)$ do not belong to the same orbit, there is **no** automorphism $\varphi \in Aut(\Gamma)$ mapping u to v
- \star a graph Γ has a trivial automorphism group if and only each vertex of Γ is its own orbit, i.e., if Γ has a non-trivial automorphism group, it has at least one orbit of size > 1.
- * What are the orbits of K_n , $K_{m,n}$, C_n and a star?

Vertex-Transitive Graphs

Definition

A graph $\Gamma = (V, E)$ is called **vertex-transitive** if for every pair $u, v \in V$ there exists an automorphism $\varphi \in Aut(\Gamma)$ such that $\varphi(u) = v$.

I.e., a graph $\Gamma = (V, E)$ is vertex-transitive if and only if $Aut(\Gamma)$ has exactly one orbit on $V(\Gamma)$.

Examples of vertex-transitive graphs:

- \star a vertex-transitive graph of order n is necessarily k-regular for some $0 \le k \le n-1$
- ★ complete graphs K_n , $n \ge 2$
- * the Petersen graph
- \star Johnson graphs J(n,k)
- \star Kneser graphs K(n, k)

Vertex-Transitive Graphs

Problem: Show that the Johnson and Kneser graphs are vertex-transitive.

- * Is a strongly regular graph necessarily vertex-transitive?
- * Is a Latin square graph necessarily vertex-transitive?
- * Is a Latin square graph whose Latin square is a multiplication table for a group necessarily vertex-transitive?
- \star Is the group of automorphisms of a group G necessarily transitive on the elements of G?

Transitive permutation groups

Definition

A group $G < S_X$ is transitive (acts transitively) on X, if for every pair of vertices $x, y \in X$ there exists a permutation φ , such that $\varphi(x) = y$.

Examples:

- \star the full symmetric group \mathbb{S}_X acts transitively on X; what is the order of $Stab_{S_X}(x)$? how many permutations map x to y?
- \star the alternating group \mathbb{A}_X acts transitively on X; what is the order of $Stab_{A\times}(x)$? how many permutations map x to y?

More examples of transitive permutation groups

- * if G is a group, let $G_L = \{ \sigma_g \mid g \in G \}$, where $\sigma_g(h) = gh$, for all $h \in G$
- * $G_L \leq \mathbb{S}_G$ and G_L acts transitively on G; what is the order of $Stab_{G_l}(h)$? how many permutations σ_g map h to h'?
- ▶ this is called the (left) regular representation of G

More examples of transitive permutation groups

 \star Let G be a group, H be a subgroup of G, and let X be the set of left cosets of H in G

$$X = \{1_G H = g_1 H, g_2 H, g_n H\},\$$

where n = [G : H]

- * for every element $g \in G$ define a permutation $\sigma_{g,H}$ of the set X by the rule $\sigma_{g,H}(g_iH) = gg_iH$; is it a permutation?
- ★ then $\{\sigma_{g,H} \mid g \in G\} \le \mathbb{S}_X$ and $\{\sigma_{g,H} \mid g \in G\}$ acts transitively on X
- * it is important to realize that the order of $\{\sigma_{g,H} \mid g \in G\}$ may be smaller than |G|, since the homomorphism $\Phi_H : g \to \sigma_{g,H}$ may not be injective; is it a homomorphism?
- * Prove that Φ_H is injective if and only if H is **core-free** in G, i.e.,

$$\bigcap_{g \in G} gHg^{-1} = \langle 1_G \rangle$$

Robert Jajcay Graph Theory

This is definitely enough for today!