Ako vlastné čísla utláčajú Mooreovské grafy

Martin Mačaj

13. novembra 2008

Eigenvalues and eigenvectors

F-field, $A \in M_{n \times n}(F)$, $\lambda \in \overline{F}$, $\alpha \in F^n \setminus \{0\}$.

Characteristic polynomial of A is the polynomial |A - xI|.

If $A\alpha = \lambda \alpha$, then λ is an eigenvalue of A and α is an eigenvector of A corresponding to λ .

Lemma. λ is an eigenvalue of A iff $|A - \lambda I| = 0$.

Lemma. Let $A^T = A \in M_{n \times n}(\mathbb{R})$. Then every eigenvalue of A is real and \mathbb{R}^n has an orthogonal basis consisting of eigenvectors of A.

Moore bound

Let Γ be a graph with maximum degree k and diameter d. Then

$$|\Gamma| \le 1 + k + k(k-1) + k(k-1)^2 + \dots + k(k-1)^{d-1}.$$

If the Moore bound is attained, then Γ is a *Moore graph*.

Moore graph is always regular.

Trivial Moore graphs

- d = 1: $\Gamma = K_{k+1}$
- k = 2: $\Gamma = C_{2d+1}$

Nontrivial Moore graphs

- A. J. Hoffman and R.R. Singleton (1960)
- E. Bannai and T. Ito (1973)
- R.M. Damerell (1973)

Theorem. Moore graph with d = 2 exists only if k is equal to 2, 3, 7 or (maybe) 57.

Theorem. Nontrivial Moore graphs exist only for d = 2.

Alternative characterizations of Moore graphs

Lemma. A k-regular graph with diameter 2 is Moore iff

$$a \sim b \Rightarrow |N(a) \cap N(b)| = 0,$$
 (1)

$$a \not\sim b \Rightarrow |N(a) \cap N(b)| = 1.$$
 (2)

Lemma. Let A be the adjacency matrix of k-regular graph Γ with diameter 2. Then Γ is Moore iff

$$A^{2} + A - (k-1)I = J, (3)$$

where J is the all 1 matrix.

Eigenvalues of Moore graphs

Lemma. Let λ be an eigenvalue of a k-regular Moore graph Γ . Then $\lambda \in \{k, \frac{-1 \pm \sqrt{4k-3}}{2}\}$.

Proof . $(1,1,\ldots,1)^T$ is an eigenvector of Γ corresponding to k.

Let α be an eigenvector of of Γ corresponding to λ , orthogonal to $(1,1,\ldots,1)^T$. Then by (3) we have $(\lambda^2 + \lambda - (k-1))\alpha = 0\alpha\Box$

The eigenvalues $\frac{-1+\sqrt{4k-3}}{2}$ and $\frac{-1-\sqrt{4k-3}}{2}$ of Γ are usually denoted by r and s, respectively.

Multiplicities of eigenvalues

Lemma. Let Γ be a Moore graph. Then the multiplicities of eigenvalues k, r and s are 1, f and g, where

$$f, g = \frac{1}{2} \left(k^2 \pm \frac{k^2 - 2k}{\sqrt{4k - 3}} \right).$$

Proof. Multiplicity of k is one. We know that $1+f+g=|\Gamma|=k^2+1$ and 1k+fr+gs=Tr(A)=0. By solving these equations we obtain $g=(rk^2+k)/(r-s)$ and $f=k^2-g$. Substituting $r=\frac{-1+\sqrt{4k-3}}{2}$ and $r-s=\sqrt{4k-3}$ gives the desired result \square

Integral condition

Lemma. Let Γ be a Moore graph. Then $\frac{k^2-2k}{\sqrt{4k-3}}$ is an integer congruent to $k \mod 2$.

Case I: k = 2 and $\Gamma = C_5$.

Case II: $k^2 - 2k \neq 0$. Then $\sqrt{4k-3}$ is an odd integer and both r and s are integers. We have r+s=-1, k-1=r(1+r) and $\sqrt{4k-3}=r-s=2r+1$. Therefore

$$2r + 1|(r^2 + r + 1)(r^2 + r - 1).$$
 (4)

Case II (cont.)

As 2r + 1 is odd, we can multiply the right-hand side of (4) by 16 to obtain

$$2r + 1 \mid (4r^2 + 4r + 4)(4r^2 + 4r - 4)$$

 $2r + 1 \mid ((2r + 1)^2 + 3)((2r + 1)^2 - 5)$
 $2r + 1 \mid 3 \cdot 5$

Solution r = 0 gives k = 1 and $\Gamma = K_2$ with diameter 1.

Solutions r = 1, 2 and 7 give k = 3, 7 and 57, respectively.

Moore graphs with diameter 2

• k = 2, v = 5: a pentagon

• k = 3, v = 10: the Petersen graph

• k = 7, v = 50: the Hoffman-Singleton graph

• k = 57, v = 3250: ???

The missing Moore graph

From now on, let Γ denote a Moore graph of degree 57. If it exists, it has 3250 vertices and its eigenvalues are 57, 7 and -8 with multiplicities 1, 1729 and 1520, respectively.

Fixed points of automorphisms

Lemma. M. Aschbacher (1971) Let X be an automorphism group of Γ . Then Fix(X) satisfies (1) and (2). In particular, Fix(X) is one of the following: \emptyset , an isolated vertex, a pentagon, the Petersen graph, the Hoffman-Singleton graph or a star $K_{1,n}$.

Lemma. M. Aschbacher (1971) Let x be an involutory automorphism of Γ . Then $|\operatorname{Fix}(x)| \in \{56, 58\}$.

Lemma. D. Higman (??) Let x be an involutory automorphism of Γ . Then $|\operatorname{Fix}(x)| = 56$.

Fixed points of automorphisms

Proposition. Let X be an automorphism group of Γ of order p^n .

- 1) If $Fix(X) = \emptyset$, then $p \in \{5, 13\}$.
- 2) If $Fix(X) = \{a\}$, then $p \in \{3, 19\}$.
- 3) If Fix(X) is a star, then $p \in \{2,7\}$.
- 4) If Fix(X) is a pentagon, then $p \in \{5, 11\}$.
- 5) If Fix(X) is the Petersen graph, then p = 3.
- 6) If Fix(X) is the Hoffman-Singleton graph, then p = 5.

Corollary. $|\operatorname{Aut}(\Gamma)| < 2 \cdot 3^4 \cdot 5^6 \cdot 7^2 \cdot 11 \cdot 13 \cdot 19 = 33699206250$.

Theorem. A.A. Makhnev and D.V. Paduchikh (2001) If $\operatorname{Aut}(\Gamma)$ is even, then $|\operatorname{Aut}(\Gamma)| \leq 550$.

Adjacency matrix of an automorphism group

Lemma. Let X be an automorphism group of Γ having orbits O_1, O_2, \ldots, O_m of size s_1, s_2, \ldots, s_m , respectively. Let $a \in O_i$. Then the number $b_{i,j} = |N(a) \cap O_j|$ does not depend on a and the matrix $B = \|b_{i,j}\|$ satisfies:

- 1) $s_i b_{i,j} = s_j b_{j,i}$;
- 2) $B^2 + B 56I = (1, 1, ..., 1)^T (s_1, s_2, ..., s_m),$
- 3) eigenvalues of B belong to $\{57, 7, -8\}$.

Corollary.

$$Tr(B) \equiv 80 - 8m \mod 15. \tag{5}$$

Applications

Lemma. Let x be an automorphism of Γ of order 2 or 7. Then $|\operatorname{Fix}(x)| < 58$.

Lemma. Let x be an automorphism of Γ of order 3. Then $|\operatorname{Fix}(x)| = 10$.

Lemma. Let X be an automorphism group of Γ with Fix(X) equal to the Hoffman-Singleton graph. Then |X| = 5.

New bounds

Theorem. M.M. and J. Širáň

Let G be the automorphism group of Γ of odd order. Then $|G| \in \{1, 3, 5, 7, 11, 13, 15, 19, 21, 25, 27, 35, 39, 45, 55, 57, 75, 81, 125, 135, 147, 171, 275, 375\}.$

Theorem. M.M. and J. Širáň

Let G be the automorphism group of Γ of even order. Then $|G| \in \{2, 6, 10, 14, 18, 22, 38, 50, 54, 110\}$.

Thank You