Wedderburn’s Theorem on Division Rings: A finite division ring is a field.

Necessary facts:

(1)

If V is a vector space of dimension n over a finite field F' with |F| = ¢ (note ¢ > 2, because
any field contains both a 0 and a 1), then because V' 2 F™ as vector spaces, we have |V| = ¢".
In particular, if R is a finite ring containing a field F' with ¢ elements, then it is a vector
space over F' (ignoring the multiplication on R and just allowing addition of elements of R
and multiplication by elements of F'), so |R| = ¢" where n = dimp(R).

If ¢ is an integer > 1, then for positive integers n,d, we have ¢ — 1 divides ¢" — 1 if and
only if d divides n. [One direction is high school algebra: If n = dk, then (¢" —1)/(¢? — 1) =
(@)1 4+ (¢1)*2 + ... 4 ¢% + 1, which is an integer. The other direction is group theory: If
q% — 1 divides ¢" — 1, i.e., if ¢" = 1 mod (¢% — 1), then the order of ¢ in the group U(Z i)
of units in Zga_; divides n; but that order, i.e., the smallest power of ¢ that is congruent to
to 1 mod ¢¢ — 1, is clearly d.]

Let n be a positive integer, and set (, = cos(27/n)+isin(27w/n). Then for j =0,1,...,n—1,
we get ‘
¢} = cos(2mj/n) +isin(2mwj/n) .

The ¢J’s are the n complex numbers whose n-th power is 1, so they are called the “n-th roots
of unity.” In other words, they are all the n roots of the n-th degree polynomial =™ — 1. If j is
not relatively prime to n, then a smaller power of ¢/ is equal to 1; the j’s that are relatively
prime to n give the ¢/’s whose order in the group € — {0} is exactly n; we call these ¢/’s the
“primitive n-th roots of unity.” The polynomial whose roots are the primitive n-th roots of
unity,

0, (2) = [[{(z — &) : ged(n, j) = 1}

is called the “n-th cyclotomic polynomial.” We get

" —1

Pn(w) = [H{®a(z) : dln,d < n}

It follows from this quotient that each @, (x) has integer coefficients. (Think about how to
long-divide polynomials: As long as you are dividing by a polynomial in which the coefficient
of the highest power of z is 1, which is true of all the ®,(x)’s, you never need to introduce
fractions. So the result follows by induction on the number of primes in the factorization of
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Pf of Wedderburn’s Thm: Let D be a finite division ring. Then the center F' of D, i.e., the set of
elements of D that commute with every element of D, is a finite field; say it has ¢ elements. Then,



because D is a vector space over F', of dimension n, say, we have |D| = ¢" by (1) above. Also, if d
is an element of D, then the set Z(d) of elements that commute with d is a division ring containing
F, and |Z(d)| = ¢™ for some m < n (again, by (1)) — strictly less than, if d ¢ F. Thus, the class
equation for the multiplicative group D — {0} is

"= 1= 1D~ {0} = |F = {0}l + 30D — {0} : Z(d) — 0} =g — 1+ 3" L=L

where dy,do, .. ., d, is a set of representatives of the conjugacy classes in D—{0} that have more than
one element, and |Z(d;)| = ¢"™ for each i. Because each (¢" —1)/(¢™ —1) = [D—{0} : Z(d;) —{0}]
is an integer, we see that each m; is a factor of n, by (2) above. For each i = 1,2,...,r, consider
the quotient of polynomials
" —1 )
O, (z)(xzmi — 1)’

the numerator is the product of all ®4(z) where d|n, and the denominator is the product of all
®,(x) where either d|m; or d = n; so the quotient is a product of the ®4(x)’s where d is a proper
divisor of n that does not divide m;; hence the quotient is a polynomial with integer coefficients.
Substituting the integer ¢ for the variable x, we see that the integer ®,(q) divides the integer
(¢" —1)/(¢g™ —1). It follows from the class equation above that ®,(¢q) divides ¢ — 1, because it
divides all the other terms. Thus, |®,(q)] < ¢ — 1. On the other hand, because 1 is the closest
point, on the unit circle in €, to the positive integer ¢, we have that for every primitive n-th root
of unity ¢7,

and the first inequality is strict unless ¢/ = 1, i.e., unless 1 is a primitive n-th root of unity, i.e.,
unless n = 1. So the product |®,,(q)| of the |¢ — ¢/ |’s is greater than or equal to ¢ — 1, with equality
only if n = 1. Because |®,(q)| is both at most ¢ — 1 and at least ¢ — 1, we have |®,(q)| = ¢ — 1,
and hence n = 1. But n was the dimension of D as a vector space over its center F', so D = F,
and D is a field.//



