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We dedicate this work to our parents Janice, Harold, Hilda, Leon, who—in
unique and wonderful ways—taught their children how to think.



Preface

In this volume we have endeavored to provide a middle ground—hopefully
even a bridge—between “theory” and “experiment” in the matter of prime
numbers. Of course, we speak of number theory and computer experiment.
There are great books on the abstract properties of prime numbers. Each
of us working in the field enjoys his or her favorite classics. But the
experimental side is relatively new. Even though it can be forcefully put
that computer science is by no means young, as there have arguably been
four or five computer “revolutions” by now, it is the case that the theoretical
underpinnings of prime numbers go back centuries, even millennia. So, we
believe that there is room for treatises based on the celebrated classical ideas,
yet authored from a modern computational perspective.

Design and scope of this book

The book combines the essentially complementary areas of expertise of the
two authors. (One author (RC) is more the computationalist, the other (CP)
more the theorist.) The opening chapters are in a theoretical vein, even
though some explicit algorithms are laid out therein, while heavier algorithmic
concentration is evident as the reader moves well into the book. Whether in
theoretical or computational writing mode, we have tried to provide the most
up-to-date aspects of prime-number study. What we do not do is sound the
very bottom of every aspect. Not only would that take orders of magnitude
more writing, but, as we point out in the opening of the first chapter,
it can be said that no mind harbors anything like a complete picture of
prime numbers. We could perhaps also say that neither does any team of
two investigators enjoy such omniscience. And this is definitely the case for
the present team! What we have done is attempt to provide references to
many further details about primes, which details we cannot hope to cover
exhaustively. Then, too, it will undoubtedly be evident, by the time the book
is available to the public, that various prime-number records we cite herein
have been broken already. In fact, such are being broken as we write this very
preface. During the final stages of this book we were in some respects living in
what electronics engineers call a “race condition,” in that results on primes—
via the Internet and personal word of mouth—were coming in as fast or faster
than editing passes were carried out. So we had to decide on a cutoff point.
(In compensation, we often give pointers to websites that do indeed provide
up-to-the-minute results.) The race condition has become a natural part of
the game, especially now that computers are on the team.
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Exercises and research problems

The exercises occur in roughly thematic order at the end of every chapter, and
range from very easy to extremely difficult. Because it is one way of conveying
the nature of the cutting edge in prime-number studies, we have endeavored
to supply many exercises having a research flavor. These are set off after each
chapter’s “Exercises” section under the heading “Research problems.” (But
we still call both normal exercises and research problems “exercises” during
in-text reference.) We are not saying that all the normal exercises are easy,
rather we flag a problem as a research problem if it can be imagined as part
of a long-term, hopefully relevant investigation.

Algorithms and pseudocode

We put considerable effort—working at times on the threshold of frustration—
into the manner of algorithm coding one sees presented herein. From
one point of view, the modern art of proper “pseudocode” (meaning not
machine-executable, but let us say human-readable code) is in a profound
state of disrepair. In almost any book of today containing pseudocode, an
incompatibility reigns between readability and symbolic economy. It is as if
one cannot have both.

In seeking a balance we chose the C language style as a basis for our book
pseudocode. The appendix describes explicit examples of how to interpret
various kinds of statements in our book algorithms. We feel that we shall
have succeeded in our pseudocode design if two things occur:

(1) The programmer can readily create programs from our algorithms;
(2) All readers find the algorithm expositions clear.

We went as far as to ask some talented programmers to put our book
algorithms into actual code, in this way verifying to some extent our goal
(1). (Implementation code is available, in Mathematica form, at website
http://www.perfsci.com.) Yet, as can be inferred from our remarks above,
a completely satisfactory symbiosis of mathematics and pseudocode probably
has to wait until an era when machines are more “human.”

Notes for this 2nd edition

Material and motive for this 2nd edition stem from several sources, as
follows. First, our astute readers—to whom we are deeply indebted—caught
various errors or asked for clarification, even at times suggesting new lines of
thought. Second, the omnipresent edge of advance in computational number
theory moves us to include new results. Third, both authors do teach and have
had to enhance 1st edition material during course and lecture development.
Beyond repairs of errors, reader-friendly clarifications, and the updating
(through early 2005) of computational records, this 2nd edition has additional
algorithms, each expressed in our established pseudocode style. Some of the
added algorithms are new and exciting discoveries.
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Examples of computationally motivated additions to this 2nd edition are as
follows:

® The largest known explicit prime (as of Apr 2005) is presented (see Table
1.2), along with Mersenne search-status data.

= Other prime-number records such as twin-prime records, long arithmetic
progressions of primes, primality-proving successes, and so on are reported
(see for example Chapter 1 and its exercises).

® Recent factoring successes (most—but not all—involving subexponential
methods) are given (see Section 1.1.2).

= Recent discrete- and elliptic-discrete-logarithm (DL and EDL, respectively)
records are given (see Section 5.2.3 for the DL and Section 8.1.3 for the EDL
cases).

= New verification limits for the Riemann hypothesis (RH) are given (Section
1.4.2).

Examples of algorithmic additions to this 2nd edition are as follows:

= We provide theory and algorithms for the new “AKS” method and its even
newer variants for polynomial-time primality proving (see Section 4.5).

= We present a new fast method of Bernstein for detecting those numbers in
a large set that have only small prime factors, even when the large set has
no regular structure that might allow for sieving (see Section 3.3).

= We present the very new and efficient Stehlé—Zimmermann fast-gcd method
(see Algorithm 9.4.7).

= We give references to new results on “industrial algorithms,” such as elliptic-
curve point-counting (see Section 7.5.2), elliptic algebra relevant to smart-
cards (see for example Exercise 8.6), and “gigaelement” FFTs—mnamely
FFTs accepting a billion complex input elements (end of Section 9.5.2).

® Because of its growing importance in computational number theory, a
nonuniform FFT is laid out as Algorithm 9.5.8 (and see Exercise 1.62).

Examples of new theoretical developments surveyed in this 2nd edition are as
follows:

= We discuss the sensational new theorem of Green and Tao that there are
arbitrarily long arithmetic progressions consisting entirely of primes (see end
of Section 1.1.5).

= We discuss the latest updates on the Fermat—Catalan conjecture that there
are at most finitely many coprime positive integer powers zP,y9, z" with
2P + y? = 2" and with 1/p+ 1/q+ 1/r < 1. The special case that one of
these powers is the number 1 is also discussed: There is just the one solution
8 +1 = 9, a wonderful recent result of Mihdilescu (see Section 8.4), thus
settling the original Catalan conjecture.
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Exercises have changed in various ways. Additional exercises are presented,
often because of new book algorithms. Some exercises have been improved.
For example, where our 1st book edition said essentially, in some exercise,
“Find a method for doing X,” this 2nd edition might now say “Develop this
outline on how to do X. Extend this method to do the (harder problem) Y.”
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Chapter 1
PRIMES!

Prime numbers belong to an exclusive world of intellectual conceptions. We
speak of those marvelous notions that enjoy simple, elegant description, yet
lead to extreme—one might say unthinkable—complexity in the details. The
basic notion of primality can be accessible to a child, yet no human mind
harbors anything like a complete picture. In modern times, while theoreticians
continue to grapple with the profundity of the prime numbers, vast toil and
resources have been directed toward the computational aspect, the task of
finding, characterizing, and applying the primes in other domains. It is this
computational aspect on which we concentrate in the ensuing chapters. But we
shall often digress into the theoretical domain in order to illuminate, justify,
and underscore the practical import of the computational algorithms.

Simply put: A prime is a positive integer p having exactly two positive
divisors, namely 1 and p. An integer n is composite if n > 1 and n is not
prime. (The number 1 is considered neither prime nor composite.) Thus,
an integer n is composite if and only if it admits a nontrivial factorization
n = ab, where a,b are integers, each strictly between 1 and n. Though the
definition of primality is exquisitely simple, the resulting sequence 2,3,5,7, ...
of primes will be the highly nontrivial collective object of our attention. The
wonderful properties, known results, and open conjectures pertaining to the
primes are manifold. We shall cover some of what we believe to be theoretically
interesting, aesthetic, and practical aspects of the primes. Along the way,
we also address the essential problem of factorization of composites, a field
inextricably entwined with the study of the primes themselves.

In the remainder of this chapter we shall introduce our cast of characters,
the primes themselves, and some of the lore that surrounds them.

1.1 Problems and progress
1.1.1 Fundamental theorem and fundamental problem

The primes are the multiplicative building blocks of the natural numbers, as
is seen in the following theorem.

Theorem 1.1.1 (Fundamental theorem of arithmetic). For each natural
number n there is a unique factorization

a a a
n= p11p22 e 'pkka
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where exponents a; are positive integers and p1 < pa < --- < P are Primes.

(If n is itself prime, the representation of n in the theorem collapses to the
special case k = 1 and a7 = 1. If n = 1, sense is made of the statement by
taking an empty product of primes, that is, & = 0.) The proof of Theorem
1.1.1 naturally falls into two parts, the existence of a prime factorization of n,
and its uniqueness. Existence is very easy to prove (consider the first number
that does not have a prime factorization, factor it into smaller numbers, and
derive a contradiction). Uniqueness is a bit more subtle. It can be deduced
from a simpler result, namely Euclid’s “first theorem” (see Exercise 1.2).

The fundamental theorem of arithmetic gives rise to what might be called
the “fundamental problem of arithmetic.” Namely, given an integer n > 1, find
its prime factorization. We turn now to the current state of computational
affairs.

1.1.2 Technological and algorithmic progress

In a very real sense, there are no large numbers: Any explicit integer can be
said to be “small.” Indeed, no matter how many digits or towers of exponents
you write down, there are only finitely many natural numbers smaller than
your candidate, and infinitely many that are larger. Though condemned
always to deal with small numbers, we can at least strive to handle numbers
that are larger than those that could be handled before. And there has been
remarkable progress. The number of digits of the numbers we can factor is
about eight times as large as just 30 years ago, and the number of digits of
the numbers we can routinely prove prime is about 500 times larger.

It is important to observe that computational progress is two-pronged:
There is progress in technology, but also progress in algorithm development.
Surely, credit must be given to the progress in the quality and proliferation of
computer hardware, but—just as surely—not all the credit. If we were forced
to use the algorithms that existed prior to 1975, even with the wonderful
computing power available today, we might think that, say, 40 digits was
about the limit of what can routinely be factored or proved prime.

So, what can we do these days? About 170 decimal digits is the current
limit for arbitrary numbers to be successfully factored, while about 15000
decimal digits is the limit for proving primality of arbitrary primes. A very
famous factorization was of the 129-digit challenge number enunciated in M.
Gardner’s “Mathematical Games” column in Scientific American [Gardner
1977]. The number

RSA129 =11438162575788886766923577997614661201021829672124236\

25625618429357069352457338978305971235639587050589890\
75147599290026879543541
had been laid as a test case for the then new RSA cryptosystem (see

Chapter 8). Some projected that 40 quadrillion years would be required to
factor RSA129. Nevertheless, in 1994 it was factored with the quadratic sieve
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(QS) algorithm (see Chapter 6) by D. Atkins, M. Graff, A. Lenstra, and
P. Leyland. RSA129 was factored as

3490529510847650949147849619903898133417764638493387843990820577
X
32769132993266709549961988190834461413177642967992942539798288533,

and the secret message was decrypted to reveal: “THE MAGIC WORDS ARE
SQUEAMISH OSSIFRAGE.”

Over the last decade, many other factoring and related milestones have
been achieved. For one thing, the number field sieve (NFS) is by now
dominant: As of this 2nd book edition, NFS has factored RSA-576 (174
decimal digits), and the “special” variant SNFS has reached 248 decimal digits.
The elliptic curve method (ECM) has now reached 59 decimal digits (for a
prime factor that is not the largest in the number). Such records can be found
in [Zimmermann 2000], a website that is continually updated. We provide a
more extensive list of records below.

Another interesting achievement has been the discovery of factors of
various Fermat numbers F,, = 22" + 1 discussed in Section 1.3.2. Some of
the lower-lying Fermat numbers such as Fy, Fg, F11 have been completely
factored, while impressive factors of some of the more gargantuan F,, have
been uncovered. Depending on the size of a Fermat number, either the number
field sieve (NFS) (for smaller Fermat numbers, such as Fy) or the elliptic curve
method (ECM) (for larger Fermat numbers) has been brought to bear on the
problem (see Chapters 6 and 7). Factors having 30 or 40 or more decimal
digits have been uncovered in this way. Using methods covered in various
sections of the present book, it has been possible to perform a primality test
on Fermat numbers as large as Fy4, a number with more than five million
decimal digits. Again, such achievements are due in part to advances in
machinery and software, and in part to algorithmic advances. One possible
future technology—quantum computation—may lead to such a tremendous
machinery advance that factoring could conceivably end up being, in a few
decades, say, unthinkably faster than it is today. Quantum computation is
discussed in Section 8.5.

We have indicated that prime numbers figure into modern cryptography—
the science of encrypting and decrypting secret messages. Because many
cryptographic systems depend on prime-number studies, factoring, and related
number-theoretical problems, technological and algorithmic advancement
have become paramount. Our ability to uncover large primes and prove
them prime has outstripped our ability to factor, a situation that gives some
comfort to cryptographers. As of this writing, the largest number ever to
have been proved prime is the gargantuan Mersenne prime 225964951 _ 1
which can be thought of, roughly speaking, as a “thick book” full of decimal
digits. The kinds of algorithms that make it possible to do speedy arithmetic
with such giant numbers is discussed in Chapter 8.8. But again, alongside
such algorithmic enhancements come machine improvements. To convey an
idea of scale, the current hardware and algorithm marriage that found each
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of the most recent “largest known primes” performed thus: The primality
proof/disproof for a single candidate 2¢ — 1 required in 2004 about one CPU-
week, on a typical modern PC (see continually updating website [Woltman
2000]). By contrast, a number of order 220000000 woyld have required, just
a decade earlier, perhaps a decade of a typical PC’s CPU time! Of course,
both machine and algorithm advances are responsible for this performance
offset. To convey again an idea of scale: At the start of the 21st century, a
typical workstation equipped with the right software can multiply together
two numbers, each with a million decimal digits, in a fraction of a second. As
explained at the end of Section 9.5.2, appropriate cluster hardware can now
multiply two numbers each of a billion digits in roughly one minute.

The special Mersenne form 29 — 1 of such numbers renders primality
proofs feasible. For Mersenne numbers we have the very speedy Lucas—
Lehmer test, discussed in Chapter 4. What about primes of no special form—
shall we say “random” primes? Primality proofs can be effected these days
for such primes having a few thousand digits. Much of the implementation
work has been pioneered by F. Morain, who applied ideas of A. Atkin
and others to develop an efficient elliptic curve primality proving (ECPP)
method, along with a newer “fastECPP” method, discussed in Chapter 7. A
typically impressive ECPP result at the turn of the century was the proof
that (27331 — 1) /458072843161, possessed of 2196 decimal digits, is prime (by
Mayer and Morain; see [Morain 1998]). A sensational announcement in July
2004 by Franke, Kleinjung, Morain, and Wirth is that, thanks to fastECPP,
the Leyland number

44052638 4 26384405,

having 15071 decimal digits, is now proven prime.

Alongside these modern factoring achievements and prime-number anal-
yses there stand a great many record-breaking attempts geared to yet more
specialized cases. From time to time we see new largest twin primes (pairs of
primes p, p+2), an especially long arithmetic progression {p,p+d,...,p+kd}
of primes, or spectacular cases of primes falling in other particular patterns.
There are searches for primes we expect some day to find but have not yet
found (such as new instances of the so-called Wieferich, Wilson, or Wall-Sun—
Sun primes). In various sections of this book we refer to a few of these many
endeavors, especially when the computational issues at hand lie within the
scope of the book.

Details and special cases aside, the reader should be aware that there
is a widespread “culture” of computational research. For a readable and
entertaining account of prime number and factoring “records,” see, for
example, [Ribenboim 1996] as well as the popular and thorough newsletter
of S. Wagstaff, Jr., on state-of-the-art factorizations of Cunningham numbers
(numbers of the form ™ £ 1 for b < 12). A summary of this newsletter is
kept at the website [Wagstaff 2004]. Some new factorization records as of this
(early 2005) writing are the following:
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= The Pollard-(p — 1) method (see our Section 5.4) was used in 2003 by
P. Zimmermann to find 57-digit factors of two separate numbers, namely
63% + 1 and 11269 + 1.

® There are recent successes for the elliptic-curve method (ECM) (see our
Section 7.4.1), namely, a 57-digit factor of 2997 — 1 (see [Wagstaff 2004]), a
58-digit factor of 8 - 104! — 1 found in 2003 by R. Backstrom, and a 59-
digit factor of 10233 — 1 found in 2005 by B. Dodson. (It is surprising, and
historically rare over the last decade, that the (p — 1) method be anywhere
near the ECM in the size of record factors.)

= In late 2001, the quadratic sieve (QS) (see our Section 6.1), actually a three-
large-prime variant, factored a 135-digit composite piece of 2303 — 2402 4 1,
This seems to have been in some sense a “last gasp” for QS, being as the
more modern NFS and SNFS have dominated for numbers of this size.

= The general-purpose number field sieve (GNFS) has, as we mentioned earlier,
factored the 174-digit number RSA-576. For numbers of special form, the
special number field sieve (SNFS) (see our Section 6.2.7) has factored
numbers beyond 200 digits, the record currently being the 248-digit number
2821 o4 41,

Details in regard to some such record factorizations can be found in the
aforementioned Wagstaff newsletter. Elsewhere in the present book, for
example after Algorithm 7.4.4 and at other similar junctures, one finds older
records from our 1st edition; we have left these intact because of their historical
importance. After all, one wants not only to see progress, but also track it.
Here at the dawn of the 21st century, vast distributed computations are
not uncommon. A good lay reference is [Peterson 2000]. Another lay treatment
about large-number achievements is [Crandall 1997a]. In the latter exposition
appears an estimate that answers roughly the question, “How many computing
operations have been performed by all machines across all of world history?”
One is speaking of fundamental operations such as logical “and” as well as
“add,” “multiply,” and so on. The answer is relevant for various issues raised
in the present book, and could be called the “mole rule.” To put it roughly,
right around the turn of the century (2000 AD), about one mole—that is, the
Avogadro number 6 - 10?2 of chemistry, call it 1024—is the total operation
count for all machines for all of history. In spite of the usual mystery and
awe that surrounds the notion of industrial and government supercomputing,
it is the huge collection of personal computers that allows this 1024, this
mole. The relevance is that a task such as trial dividing an integer N =~ 10°°
directly for prime factors is hopeless in the sense that one would essentially
have to replicate the machine effort of all time. To convey an idea of scale,
a typical instance of the deepest factoring or primality-proving runs of the
modern era involves perhaps 10'6 to 10'® machine operations. Similarly, a full-
length graphically rendered synthetic movie of today—for example, the 2003
Pixar/Disney movie Finding Nemo—involves operation counts in the 10'®
range. It is amusing that for this kind of Herculean machine effort one may
either obtain a single answer (a factor, maybe even a single “prime/composite”
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decision bit) or create a full-length animated feature whose character is as
culturally separate from a one-bit answer as can be. It is interesting that a
computational task of say 10'® operations is about one ten-millionth of the
overall historical computing effort by all Earth-bound machinery.

1.1.3 The infinitude of primes

While modern technology and algorithms can uncover impressively large
primes, it is an age-old observation that no single prime discovery can be the
end of the story. Indeed, there exist infinitely many primes, as was proved by
Euclid in 300 BC, while he was professor at the great university of Alexandria
[Archibald 1949]. This achievement can be said to be the beginning of the
abstract theory of prime numbers. The famous proof of the following theorem
is essentially Euclid’s.

Theorem 1.1.2 (Euclid). There exist infinitely many primes.

Proof. Assume that the primes are finite in number, and denote by p the
largest. Consider one more than the product of all primes, namely,

n:2.3.5...p+1.

Now, n cannot be divisible by any of the primes 2 through p, because any
such division leaves remainder 1. But we have assumed that the primes up
through p comprise all of the primes. Therefore, n cannot be divisible by
any prime, contradicting Theorem 1.1.1, so the assumed finitude of primes is
contradicted. O

It might be pointed out that Theorem 1.1.1 was never explicitly stated
by Euclid. However, the part of this theorem that asserts that every integer
greater than 1 is divisible by some prime number was known to Euclid, and
this is what is used in Theorem 1.1.2.

There are many variants of this classical theorem, both in the matter of its
statement and its proofs (see Sections 1.3.2 and 1.4.1). Let us single out one
particular variant, to underscore the notion that the fundamental Theorem
1.1.1 itself conveys information about the distribution of primes. Denote by
P the set of all primes. We define the prime-counting function at real values
of = by

m(z) =#{p <x:pe P}

that is, m(x) is the number of primes not exceeding x. The fundamental
Theorem 1.1.1 tells us that for positive integer z, the number of solutions

to
[Ipi <=,

where now p; denotes the i-th prime and the a; are nonnegative, is precisely x
itself. Each factor p;* must not exceed z, so the number of possible choices of
exponent a;, including the choice zero, is bounded above by |14+ (Inz)/(Inp;)|.
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It follows that

Inx Inx (@)
< 1 <14 —
x_pl_;[wL JrhrlpiJ - < Jrln2> ’

which leads immediately to the fact that for all =z > 8§,

m(x) >

Though this bound is relatively poor, it does prove the infinitude of primes
directly from the fundamental theorem of arithmetic.

The idea of Euclid in the proof of Theorem 1.1.2 is to generate new primes
from old primes. Can we generate all of the primes this way? Here are a few
possible interpretations of the question:

Inx
2lnlnz’

(1) Inductively define a sequence of primes qi, o, . . ., where ¢ = 2, and gg4+1
is the least prime factor of ¢; ---gqr + 1. Does the sequence (¢;) contain
every prime?

(2) Inductively define a sequence of primes r1, 79, ..., where 1, = 2, and 741
is the least prime not already chosen that divides some d+ 1, where d runs
over the divisors of the product r; - - - 7. Does the sequence (r;) contain
every prime?

(3) Inductively define a sequence of primes s, S, ..., where 81 = 2, s5 = 3,
and sy1 is the least prime not already chosen that divides some s;s; + 1,
where 1 < i < j < k. Does the sequence (s;) contain every prime? Is the
sequence (s;) infinite?

The sequence (g;) of problem (1) was considered by Guy and Nowakowski and
later by Shanks. In [Wagstaff 1993] the sequence was computed through the
43rd term. The computational problem inherent in continuing the sequence
further is the enormous size of the numbers that must be factored. Already,
the number ¢ - - - q43 + 1 has 180 digits.

The sequence (r;) of problem (2) was recently shown in unpublished work
of Pomerance to contain every prime. In fact, for ¢ > 5, r; is the i-th prime.
The proof involved a direct computer search over the first (approximately)
one million terms, followed by some explicit estimates from analytic number
theory, about more of which theory we shall hear later in this chapter.
This proof is just one of many examples that manifest the utility of the
computational perspective.

The sequence (s;) of problem (3) is not even known to be infinite, though
it almost surely is, and almost surely contains every prime. We do not know
whether anyone has attacked the problem computationally; perhaps you, the
reader, would like to give it a try. The problem is due to M. Newman at the
Australian National University.

Thus, even starting with the most fundamental and ancient ideas
concerning prime numbers, one can quickly reach the fringe of modern
research.
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1.1.4 Asymptotic relations and order nomenclature

At this juncture, in anticipation of many more asymptotic density results
and computational complexity estimates, we establish asymptotic relation
nomenclature for the rest of the book. When we intend

f(N) ~g(N)

to be read “f is asymptotic to g as IV goes to infinity,” we mean that a certain
limit exists and has value unity:

Jim J(N)/g(N) =1.

When we say
f(N) = O(g(N)),

to be read “f is big-O of g,” we mean that f is bounded in this sense: There
exists a positive number C such that for all N, or for all N in a specified set,

(V)] < Clg(N)].

The “little-0” notation can be used when one function seriously dominates
another; i.e., we say

f(N) = o(g(N))
to mean that
Jim_f(N)/g(N) = 0.

Some examples of the notation are in order. Since m(x), the number of
primes not exceeding z, is clearly less than x for any positive x, we can say

On the other hand, it is not so clear, and in fact takes some work to prove
(see Exercises 1.11 and 1.13 for two approaches), that

m(x) = o(x). (1.1)

Equation (1.1) can be interpreted as the assertion that at very high levels the
primes are sparsely distributed, and get more sparsely distributed the higher
one goes. If A is a subset of the natural numbers and A(x) denotes the number
of members of A that do not exceed x, then if lim,_, . A(x)/z = d, we call d
the asymptotic density of the set .A. Thus equation (1.1) asserts that the set
of primes has asymptotic density 0. Note that not all subsets of the natural
numbers possess an asymptotic density; that is, the limit in the definition may
not exist. As just one example, take the set of numbers with an even number
of decimal digits.

Throughout the book, when we speak of computational complexity of
algorithms we shall stay almost exclusively with “O” notation, even though
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some authors denote bit and operation complexity by such as Oy, Oop
respectively. So when an algorithm’s complexity is cast in “O” form, we
shall endeavor to specify in every case whether we mean bit or operation
complexity. One should take care that these are not necessarily proportional,
for it matters whether the “operations” are in a field, are adds or multiplies,
or are comparisons (as occur within “if” statements). For example, we shall
see in Chapter 8.8 that whereas a basic FFT multiplication method requires
O(DIn D) floating-point operations when the operands possess D digits
each (in some appropriate base), there exist methods having bit complexity
O(nlnnlnlnn), where now n is the total number of operand bits. So in such a
case there is no clear proportionality at work, the relationships between digit
size, base, and bit size n are nontrivial (especially when floating-point errors
figure into the computation), and so on. Another kind of nontrivial comparison
might involve the Riemann zeta function, which for certain arguments can be
evaluated to D good digits in O(D) operations, but we mean full-precision,
i.e., D-digit operations. In contrast, the bit complexity to obtain D good
digits (or a proportional number of bits) grows faster than this. And of
course, we have a trivial comparison of the two complexities: The product
of two large integers takes one (high-precision) operation, while a flurry of bit
manipulations are generally required to effect this multiply! On the face of it,
we are saying that there is no obvious relation between these two complexity
bounds. One might ask,“if these two types of bounds (bit- and operation-
based bounds) are so different, isn’t one superior, maybe more profound than
the other?” The answer is that one is not necessarily better than the other. It
might happen that the available machinery—hardware and software—is best
suited for all operations to be full-precision; that is, every add and multiply
is of the D-digit variety, in which case you are interested in the operation-
complexity bound. If, on the other hand, you want to start from scratch
and create special, optimal bit-complexity operations whose precision varies
dynamically during the whole project, then you would be more interested in
the bit-complexity bound. In general, the safe assumption to remember is that
bit- versus operation-complexity comparisons can often be of the “apples and
oranges” variety.

Because the phrase “running time” has achieved a certain vogue, we
shall sometimes use this term as interchangeable with “bit complexity.”
This equivalence depends, of course, on the notion that the real, physical
time a machine requires is proportional to the total number of relevant bit
operations. Though this equivalence may well decay in the future—what
with quantum computing, massive parallelism, advances in word-oriented
arithmetic architecture, and so on—we shall throughout this book just assume
that running time and bit complexity are the same. Along the same lines, by
“polynomial-time” complexity we mean that bit operations are bounded above
by a fixed power of the number of bits in the input operands. So, for example,
none of the dominant factoring algorithms of today (ECM, QS, NFS) is
polynomial-time, but simple addition, multiplication, powering, and so on are
polynomial-time. For example, powering, that is computing ¥ mod z, using
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naive subroutines, has bit complexity O(ln3 z) for positive integer operands
x,1y,z of comparable size, and so is polynomial-time. Similarly, taking a
greatest common divisor (ged) is polynomial-time, and so on.

1.1.5 How primes are distributed

In 1737, L. Euler achieved a new proof that there are infinitely many primes:
He showed that the sum of the reciprocals of the primes is a divergent sum,
and so must contain infinitely many terms (see Exercise 1.20).

In the mid-19th century, P. Chebyshev proved the following theorem, thus
establishing the true order of magnitude for the prime-counting function.

Theorem 1.1.3 (Chebyshev). There are positive numbers A, B such that
for all x > 3,

For example, Theorem 1.1.3 is true with A = 1/2 and B = 2. This was
a spectacular result, because Gauss had conjectured in 1791 (at the age of
fourteen!) the asymptotic behavior of m(x), about which conjecture little had
been done for half a century prior to Chebyshev. This conjecture of Gauss is
now known as the celebrated “prime number theorem” (PNT):

Theorem 1.1.4 (Hadamard and de la Vallée Poussin). As x — oo,

x
(@) ~ Inz’
It would thus appear that Chebyshev was close to a resolution of the PNT. In
fact, it was even known to Chebyshev that if 7(x) were asymptotic to some
Cz/Inz, then C would of necessity be 1. But the real difficulty in the PNT is
showing that lim, . 7(2z)/(z/Inx) exists at all; this final step was achieved a
half-century later, by J. Hadamard and C. de la Vallée Poussin, independently,
in 1896. What was actually established was that for some positive number C,

m(x) =1li(x)+ O (xe_cm) , (1.2)

where li(z), the logarithmic-integral function, is defined as follows (for a
variant of this integral definition see Exercise 1.36):

i (z) = /: ﬁdt. (1.3)

Since li (z) ~ z/Inz, as can easily be shown via integration by parts (or even
more easily by L’Hopital’s rule), this stronger form of the PNT implies the
form in Theorem 1.1.4. The size of the “error” m(x)—li (z) has been a subject
of intense study—and refined only a little—in the century following the proof
of the PNT. In Section 1.4 we return to the subject of the PNT. But for the
moment, we note that one useful, albeit heuristic, interpretation of the PNT
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is that for random large integers = the “probability” that x is prime is about
1/Inzx.

It is interesting to ponder how Gauss arrived at his remarkable conjecture.
The story goes that he came across the conjecture numerically, by studying a
table of primes. Though it is clearly evident from tables that the primes thin
out as one gets to larger numbers, locally the distribution appears to be quite
erratic. So what Gauss did was to count the number of primes in blocks of
length 1000. This smoothes out enough of the irregularities (at low levels) for
a “law” to appear, and the law is that near x, the “probability” of a random
integer being prime is about 1/lnz. This then suggested to Gauss that a
reasonable estimate for 7(x) might be the logarithmic-integral function.

Though Gauss’s thoughts on 7(x) date from the late 1700s, he did not
publish them until decades later. Meanwhile, Legendre had independently
conjectured the PNT, but in the form

mw(x) ~

T

R — 1.4
Inx — B (1.4)

with B = 1.08366. No matter what choice is made for the number B, we have
z/Inx ~ x/(Inz — B), so the only way it makes sense to include a number
B in the result, or to use Gauss’s approximation li (), is to consider which
option gives a better estimation. In fact, the Gauss estimate is by far the better
one. Equation (1.2) implies that |7(z) — li (z)| = O(z/In" z) for every k > 0
(where the big-O constant depends on the choice of k). Since

. xr xr X
li(@) =+ %ﬁO( )

In In®

it follows that the best numerical choice for B in (1.4) is not Legendre’s choice,
but B = 1. The estimate .
w(x) =~
(@) Inzx—1

is attractive for estimations with a pocket calculator.

One can gain insight into the sharpness of the li approximation by
inspecting a table of prime counts as in Table 1.1.

For example, consider z = 102!, We know from a computation
of X. Gourdon (based on earlier work of M. Deléglise, J. Rivat, and
P. Zimmermann) that

7 (10°") = 21127269486018731928,
while on the other hand

li (10*') ~ 21127269486616126181.3
and

107!

A 21117412262 2.2 .
0P~ 741226290998555
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x m(x)
102 25

10® 168

10% 1229
108 78498
108 5761455

102 37607912018

10'6 279238341033925

107 2623557157654233

10'8 24739954287740860
10%° 234057667276344607
1020 2220819602560918840
10%! 21127269486018731928
1022 201467286689315906290
4-10%2  783964159847056303858

Table 1.1 Values of the prime-counting function 7 (). In recent times, distributed
computation on networks has been brought to bear on the 7(z) counting problem.

It is astounding how good the li () approximation really is!

We will revisit this issue of the accuracy of the li approximation later in
the present chapter, in connection with the Riemann hypothesis (RH) (see
Conjecture 1.4.1 and the remarks thereafter).

The most recent values in Table 1.1, namely w(1022), 7(4 - 102??), are due
to X. Gourdon and P. Sebah [Gourdon and Sebah 2004]. These researchers,
while attempting to establish the value of m(1023), recently discovered an
inconsistency in their program, a numerical discrepancy in regard to local
sieving. Until this problem has been rectified or there has been a confirming
independent calculation, their values for 7(1022) and 7(4-1022) should perhaps
be considered tentative.

Another question of historical import is this: What residue classes a mod d
contain primes, and for those that do, how dense are the occurrences of primes
in such a residue class? If ¢ and d have a common prime factor, then such a
prime divides every term of the residue class, and so the residue class cannot
contain more than this one prime. The central classical result is that this is
essentially the only obstruction for the residue class to contain infinitely many
primes.

Theorem 1.1.5 (Dirichlet). If a,d are coprime integers (that is, they have
no common prime factor) and d > 0, then the arithmetic progression
{a,a + d,a + 2d,...} contains infinitely many primes. In fact, the sum of
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the reciprocals of the primes contained within this arithmetic progression is
infinite.

This marvelous (and nontrivial) theorem has been given modern refinement.
It is now known that if 7(x;d, a) denotes the number of primes in the residue
class @ mod d that do not exceed z, then for fixed coprime integers a, d with
d >0,

1 1 = 1

mw(x) ~ @m ~ mli (z).

Here ¢ is the Euler totient function, so that ¢(d) is the number of integers
in [1,d] that are coprime to d. Consider that residue classes modulo d that
are not coprime to d can contain at most one prime each, so all but finitely
many primes are forced into the remaining ¢(d) residue classes modulo d, and
so (1.5) says that each such residue class modulo d receives, asymptotically
speaking, its fair parcel of primes. Thus (1.5) is intuitively reasonable. We
shall later discuss some key refinements in the matter of the asymptotic error
term. The result (1.5) is known as the “prime number theorem for residue
classes.”

Incidentally, the question of a set of primes themselves forming an
arithmetic progression is also interesting. For example,

w(x;d,a) ~ (1.5)

{1466999, 1467209, 1467419, 1467629, 1467839}

is an arithmetic progression of five primes, with common difference d = 210. A
longer progression with smaller primes is {7,37,67,97,127,157}. It is amusing
that if negatives of primes are allowed, this last example may be extended to
the left to include {—113, —83, —53, —23}. See Exercises 1.41, 1.42, 1.45, 1.87
for more on primes lying in arithmetic progression.

A very recent and quite sensational development is a proof that there
are in fact arbitrarily long arithmetic progressions each of whose terms is
prime. The proof does not follow the “conventional wisdom” on how to attack
such problems, but rather breaks new ground, bringing into play the tools of
harmonic analysis. It is an exciting new day when methods from another area
are added to our prime tool-kit! For details, see [Green and Tao 2004]. It has
long been conjectured by Erdds and Turan that if S is a subset of the natural
numbers with a divergent sum of reciprocals, then there are arbitrarily long
arithmetic progressions all of whose terms come from S. Since it is a theorem
of Euler that the reciprocal sum of the primes is divergent (see the discussion
surrounding (1.19) and Exercise 1.20), if the Erdds—Turan conjecture is true,
then the primes must contain arbitrarily long arithmetic progressions. The
thought was that maybe, just maybe, the only salient property of the primes
needed to gain this property is that their reciprocal sum is divergent. Alas,
Green and Tao use other properties of the primes in their proof, leaving the
Erdés—Turan conjecture still open.

Green and Tao use in their proof a result that at first glance appears
to be useless, namely Szemerédi’s theorem, which is a weaker version of the
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Erd6s—-Turan conjecture: A subset S of the natural numbers that contains
a positive proportion of the natural numbers (that is, the limsup of the
proportion of S N[1,z] in {1,2,...,|z]} is positive) must contain arbitrarily
long arithmetic progressions. This result appears not to apply, since the primes
do not form a positive proportion of the natural numbers. However, Green
and Tao actually prove a version of Szemerédi’s theorem where the universe
of natural numbers is allowed to be somewhat generalized. They then proceed
to give an appropriate superset of the primes for which the Szemerédi analogue
is valid and for which the primes form a positive proportion. Altogether, the
Green—Tao development is quite amazing.

1.2 Celebrated conjectures and curiosities

We have indicated that the definition of the primes is so very simple, yet
questions concerning primes can be so very hard. In this section we exhibit
various celebrated problems of history. The more one studies these questions,
the more one appreciates the profundity of the games that primes play.

1.2.1 Twin primes

Consider the case of twin primes, meaning two primes that differ by 2. It is
easy to find such pairs, take 11,13 or 197,199, for example. It is not so easy,
but still possible, to find relatively large pairs, modern largest findings being
the pair

835335 - 239014 4 1,

found in 1998 by R. Ballinger and Y. Gallot, the pair
361700055 - 239020 4 1

found in 1999 by H. Lifchitz, and (see [Caldwell 1999]) the twin-prime pairs
discovered in 2000:
2409110779845 - 260000 4 1

by H. Wassing, A. Jarai, and K.-H. Indlekofer, and
665551035 - 280025 4 1

by P. Carmody. The current record is the pair
154798125 - 2169690 4 1,

reported in 2004 by D. Papp.

Are there infinitely many pairs of twin primes? Can we predict,
asymptotically, how many such pairs there are up to a given bound? Let
us try to think heuristically, like the young Gauss might have. He had guessed
that the probability that a random number near x is prime is about 1/Inz,
and thus came up with the conjecture that m(z) ~ [, dt/Int (see Section
1.1.5). What if we choose two numbers near z. If they are “independent prime
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events,” then the probability they are both prime should be about 1/ In? z.
Thus, if we denote the twin-prime-pair counting function by

m(z) =#{p<z : p,p+2€P},

where P is the set of all primes, then we might guess that

1
) ~ ——dt.
m2(2) /2 In?+¢

However, it is somewhat dishonest to consider p and p + 2 as independent
prime events. In fact, the chance of one being prime influences the chance
that the other is prime. For example, since all primes p > 2 are odd, the
number p + 2 is also odd, and so has a “leg up” on being prime. Random
odd numbers have twice the chance of being prime as a random number not
stipulated beforehand as odd. But being odd is only the first in a series of
“tests” a purported prime must pass. For a fixed prime ¢, a large prime must
pass the “g-test” meaning “not divisible by ¢.” If p is a random prime and
q > 2, then the probability that p+2 passes the g-test is (¢—2)/(¢—1). Indeed,
from (1.5), there are ¢(q) = ¢ — 1 equally likely residue classes modulo ¢ for p
to fall in, and for exactly ¢—2 of these residue classes we have p+2 not divisible
by q. But the probability that a completely random number passes the g-test
is (¢ —1)/q. So, let us revise the above heuristic with the “fudge factor” 2C5,
where Co = 0.6601618158. .. is the so-called “twin-prime constant”:

_ (¢—2)/(g—1) _ 1
e= 11 e 11 (1 (q—1)2>' (16)

2<q€eP 2<qeP

We might then conjecture that

@(z)mzczé %dt, (1.7)

The two asymptotic relations are equivalent, which can be seen by integrating
by parts. But the reason we have written the more ungainly expression in
(1.7) is that, like the estimate w(x) = li(x), it may be an extremely good
approximation.

Let us try out the approximation (1.7) at x = 5.4-10'°. It is reported, see
[Nicely 2004], that

T (5.4 10'%) = 5761178723343,

while

5.4-101°
2C, / — dt =~ 5761176717388.
2 In“¢
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Let’s hear it for heuristic reasoning! Very recently P. Sebah found
2 (10'°) = 10304195697298,

as enunciated in [Gourdon and Sebah 2004].

As strong as the numerical evidence may be, we still do not even know
whether there are infinitely many pairs of twin primes; that is, whether 7o (z) is
unbounded. This remains one of the great unsolved problems in mathematics.
The closest we have come to proving this is the theorem of Chen Jing-run
in 1966, see [Halberstam and Richert 1974], that there are infinitely many
primes p such that either p + 2 is prime or the product of two primes.

A striking upper bound result on twin primes was achieved in 1915 by
V. Brun, who proved that

ma(z) = O (m (11111;””)2) , (1.8)

and a year later he was able to replace the expression Inlnx with 1
(see [Halberstam and Richert 1974]). Thus, in some sense, the twin prime
conjecture (1.7) is partially established. From (1.8) one can deduce (see
Exercise 1.50) the following:

Theorem 1.2.1 (Brun). The sum of the reciprocals of all primes belonging
to some pair of twin primes is finite, that is, if P2 denotes the set of all primes
p such that p + 2 is also prime, then

1 1
Z -+ —F ) <o
(p p+2)

pEP:

(Note that the prime 5 is unique in that it appears in two pairs of twins,
and in its honor, it gets counted twice in the displayed sum; of course, this
has nothing whatsoever to do with convergence or divergence.) The Brun
theorem is remarkable, since we know that the sum of the reciprocals of all
primes diverges, albeit slowly (see Section 1.1.5). The sum in the theorem,
namely

B =1/3+1/5)+(1/5+1/7)+ (1/11 +1/13) + - -,

is known as the Brun constant. Thus, though the set of twin primes may well
be infinite, we do know that they must be significantly less dense than the
primes themselves.

An interesting sidelight on the issue of twin primes is the numerical
calculation of the Brun constant B’. There is a long history on the subject,
with the current computational champion being Nicely. According to the
paper [Nicely 2004], the Brun constant is likely to be about

B’ ~1.902160583,
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to the implied precision. The estimate was made by computing the reciprocal
sum very accurately for twin primes up to 10'® and then extrapolating to the
infinite sum using (1.7) to estimate the tail of the sum. (All that is actually
proved rigorously about B’ (by year 2004) is that it is between a number
slightly larger than 1.83 and a number slightly smaller than 2.347.) In his
earlier (1995) computations concerning the Brun constant, Nicely discovered
the now-famous floating-point flaw in the Pentium computer chip, a discovery
that cost the Pentium manufacturer Intel millions of dollars. It seems safe to
assume that Brun had no idea in 1909 that his remarkable theorem would
have such a technological consequence!

1.2.2 Prime k-tuples and hypothesis H

The twin prime conjecture is actually a special case of the “prime k-tuples”
conjecture, which in turn is a special case of “hypothesis H.” What are these
mysterious-sounding conjectures?

The prime k-tuples conjecture begins with the question, what conditions
on integers ai,bi,...,ax,br ensure that the k linear expressions ain +
bi,...,apn + by are simultaneously prime for infinitely many positive integers
n? One can see embedded in this question the first part of the Dirichlet
Theorem 1.1.5, which is the case £k = 1. And we can also see embedded the
twin prime conjecture, which is the case of two linear expressions n,n + 2.

Let us begin to try to answer the question by giving necessary conditions
on the numbers a;, b;. We rule out the cases when some a; = 0, since such a
case collapses to a smaller problem. Then, clearly, we must have each a; > 0
and each ged(a;,b;) = 1. This is not enough, though, as the case n,n + 1
quickly reveals: There are surely not infinitely many integers n for which n
and n + 1 are both prime! What is going on here is that the prime 2 destroys
the chances for n and n+1, since one of them is always even, and even numbers
are not often prime. Generalizing, we see that another necessary condition is
that for each prime p there is some value of n such that none of a;n + b;
is divisible by p. This condition automatically holds for all primes p > k;
it follows from the condition that each ged(a;,b;) = 1. The prime k-tuples
conjecture [Dickson 1904] asserts that these conditions are sufficient:

Conjecture 1.2.1 (Prime k-tuples conjecture). If a1,b1,...,ax, by are in-
tegers with each a; > 0, each ged(a;,b;) = 1, and for each prime p < k, there
s some integer n with no a;n+b; divisible by p, then there are infinitely many
positive integers n with each a;n + b; prime.

Whereas the prime k-tuples conjecture deals with linear polynomials,
Schinzel’s hypothesis H [Schinzel and Sierpiniski 1958] deals with arbitrary
irreducible polynomials with integer coefficients. It is a generalization of
an older conjecture of Bouniakowski, who dealt with a single irreducible
polynomial.
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Conjecture 1.2.2 (Hypothesis H). Let fi,..., fi be irreducible polynomi-
als with integer coefficients such that the leading coefficient of each f; is pos-
itive, and such that for each prime p there is some integer n with none of
fi(n),..., fx(n) divisible by p. Then there are infinitely many positive inte-
gers n such that each f;(n) is prime.

A famous special case of hypothesis H is the single polynomial n? + 1.
As with twin primes, we still do not know whether there are infinitely many
primes of the form n? + 1. In fact, the only special case of hypothesis H that
has been proved is Theorem 1.1.5 of Dirichlet.

The Brun method for proving (1.8) can be generalized to get upper bounds
of the roughly conjectured order of magnitude for the distribution of the
integers n in hypothesis H that make the f;(n) simultaneously prime. See
[Halberstam and Richert 1974] for much more on this subject.

For polynomials in two variables we can sometimes say more. For example,
Gauss proved that there are infinitely many primes of the form a? +b%. It was
shown only recently in [Friedlander and Iwaniec 1998] that there are infinitely
many primes of the form a? + b*.

1.2.3 The Goldbach conjecture

In 1742, C. Goldbach stated, in a letter to Euler, a belief that every integer
exceeding 5 is a sum of three primes. (For example, 6 = 2 + 2 + 2 and 21 =
13 + 5 + 3.) Euler responded that this follows from what has become known
as the Goldbach conjecture, that every even integer greater than two is a sum
of two primes. This problem belongs properly to the field of additive number
theory, the study of how integers can be partitioned into various sums. What
is maddening about this conjecture, and many “additive” ones like it, is that
the empirical evidence and heuristic arguments in favor become overwhelming.
In fact, large even integers tend to have a great many representations as a sum
of two primes.
Denote the number of Goldbach representations of an even n by

Ry(n) = #{(p,q) : n=p+q; p,q € P}

Thinking heuristically as before, one might guess that for even n,

RZ(n) ~ Z Il( !

T/ N\
p<n—3 In(n _p)

since the “probability” that a random number near x is prime is about 1/ In x.
But such a sum can be shown, via the Chebyshev Theorem 1.1.3 (see Exercise
1.40) to be ~ n/In*n. The frustrating aspect is that to settle the Goldbach
conjecture, all one needs is that Ra(n) be positive for even n > 2. One can
tighten the heuristic argument above, along the lines of the argument for (1.7),
to suggest that for even integers n,

n p—1
2

b
In“n -2
pln,p>2 p

Ra(n) ~ 2C (1.9)
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where Cj is the twin-prime constant of (1.6). The Brun method can be used
to establish that Ra(n) is big-O of the right side of (1.9) (see [Halberstam and
Richert 1974).

Checking (1.9) numerically, we have Ry(10%) = 582800, while the right
side of (1.9) is approximately 518809. One gets better agreement using the
asymptotically equivalent expression Rs(n) defined as

B n—2 dt p—l
Ral) =20, [ ey 11 5

which at n = 10® evaluates to about 583157.

As with twin primes, [Chen 1966] also established a profound theorem on
the Goldbach conjecture: Any sufficiently large even number is the sum of a
prime and a number that is either a prime or the product of two primes.

It has been known since the late 1930s, see [Ribenboim 1996], that “almost
all” even integers have a Goldbach representation p + ¢, the “almost all”
meaning that the set of even natural numbers that cannot be represented
as a sum of two primes has asymptotic density 0 (see Section 1.1.4 for the
definition of asymptotic density). In fact, it is now known that the number of
exceptional even numbers up to x that do not have a Goldbach representation
is O (z'7¢) for some ¢ > 0 (see Exercise 1.41).

The Goldbach conjecture has been checked numerically up through 104
in [Deshouillers et al. 1998], through 4 - 10'4 in [Richstein 2001], and through
107 in [Silva 2005]. And yes, every even number from 4 up through 10'7 is
indeed a sum of two primes.

As Euler noted, a corollary of the assertion that every even number after
2 is a sum of two primes is the additional assertion that every odd number
after 5 is a sum of three primes. This second assertion is known as the
“ternary Goldbach conjecture.” In spite of the difficulty of such problems of
additive number theory, Vinogradov did in 1937 resolve the ternary Goldbach
conjecture, in the asymptotic sense that all sufficiently large odd integers n
admit a representation in three primes: n = p+q+r. It was shown in 1989 by
Chen and Y. Wang, see [Ribenboim 1996], that “sufficiently large” here can
be taken to be n > 10*3°%°, Vinogradov gave the asymptotic representation
count of

, 1.10
p\n,p>2p_ 2 ( )

R3(n) = #{(p,q,7) : n=p+q+r;pqrecP} (1.11)

Rs(n) = @(n)i (1 +0 (ﬂ?)) , (1.12)

2Inn

as

where © is the so-called singular series for the ternary Goldbach problem,
namely

@(n)=H(1+(p_11)3> 11 (1_p2—31p+3)'

pln,peP
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It is not hard to see that ©(n) for odd n is bounded below by a positive
constant. This singular series can be given interesting alternative forms (see
Exercise 1.68). Vinogradov’s effort is an example of analytic number theory
par excellence (see Section 1.4.4 for a very brief overview of the core ideas).

[Zinoviev 1997] shows that if one assumes the extended Riemann
hypothesis (ERH) (Conjecture 1.4.2), then the ternary Goldbach conjecture
holds for all odd n > 10%°. Further, [Saouter 1998] “bootstrapped” the then
current bound of 4 - 10!! for the binary Goldbach problem to show that the
ternary Goldbach conjecture holds unconditionally for all odd numbers up
to 1020, Thus, with the Zinoviev theorem, the ternary Goldbach problem is
completely solved under the assumption of the ERH.

It follows from the Vinogradov theorem that there is a number k such
that every integer starting with 2 is a sum of k or fewer primes. This corollary
was actually proved earlier by G. Shnirel’'man in a completely different
way. Shnirel’'man used the Brun sieve method to show that the set of even
numbers representable as a sum of two primes contains a subset with positive
asymptotic density (this predated the results that almost all even numbers
were so representable), and using just this fact was able to prove there is such
a number k. (See Exercise 1.44 for a tour of one proof method.) The least
number kg such that every number starting with 2 is a sum of kg or fewer
primes is now known as the Shnirel’man constant. If Goldbach’s conjecture is
true, then ky = 3. Since we now know that the ternary Goldbach conjecture
is true, conditionally on the ERH, it follows that on this condition, ky < 4.
The best unconditional estimate is due to O. Ramaré who showed that kg < 7
[Ramaré 1995). Ramaré’s proof used a great deal of computational analytic
number theory, some of it joint with R. Rumely.

1.2.4 The convexity question

One spawning ground for curiosities about the primes is the theoretical issue
of their density, either in special regions or under special constraints. Are there
regions of integers in which primes are especially dense? Or especially sparse?
Amusing dilemmas sometimes surface, such as the following one. There is an
old conjecture of Hardy and Littlewood on the “convexity” of the distribution
of primes:

Conjecture 1.2.3. Ifz >y >2, then m(z +y) < 7(z) +7(y).

On the face of it, this conjecture seems reasonable: After all, since the primes
tend to thin out, there ought to be fewer primes in the interval [z, x + y| than
in [0,y]. But amazingly, Conjecture 1.2.3 is known to be incompatible with
the prime k-tuples Conjecture 1.2.1 [Hensley and Richards 1973].

So, which conjecture is true? Maybe neither is, but the current thinking is
that the Hardy—Littlewood convexity Conjecture 1.2.3 is false, while the prime
k-tuples conjecture is true. It would seem fairly easy to actually prove that the
convexity conjecture is false; you just need to come up with numerical values of
x and y where m(x+y), 7(z), 7(y) can be computed and 7(z+y) > w(x)+7(y).
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It sounds straightforward enough, and perhaps it is, but it also may be that
any value of x required to demolish the convexity conjecture is enormous. (See
Exercise 1.92 for more on such issues.)

1.2.5 Prime-producing formulae

Prime-producing formulae have been a popular recreation, ever since the
observation of Euler that the polynomial

2+ 441

attains prime values for each integer x from 0 to 39 inclusive. Armed with
modern machinery, one can empirically analyze other polynomials that give,
over certain ranges, primes with high probability (see Exercise 1.17). Here
are some other curiosities, of the type that have dubious value for the
computationalist (nevertheless, see Exercises 1.5, 1.77):

Theorem 1.2.2 (Examples of prime-producing formulae). There exists a
real number 8 > 1 such that for every positive integer n, the number

)
18 prime. There also exists a real number o such that the n-th prime is given
by:
Pp = {102"“04 —10%" {102"4 .

This first result depends on a nontrivial theorem on the distribution of primes
in “short” intervals [Mills 1947], while the second result is just a realization of
the fact that there exists a well-defined decimal expansion oo = ) pm10*2m+1.

Such formulae, even when trivial or almost trivial, can be picturesque.
By appeal to the Wilson theorem and its converse (Theorem 1.3.6), one may

show that
r(n) = Z Q(j - 1.)!+1J B {(jf 1>!J> 7

i=2 J J

but this has no evident value in the theory of the prime-counting function
m(n). Yet more prime-producing and prime-counting formulae are exhibited
in the exercises.

Prime-producing formulae are often amusing but, relatively speaking,
useless. There is a famous counterexample though. In connection with the
ultimate resolution of Hilbert’s tenth problem, which problem asks for a
deterministic algorithm that can decide whether a polynomial in several
variables with integer coefficients has an all integral root, an attractive
side result was the construction of a polynomial in several variables with
integral coefficients, such that the set of its positive values at positive integral
arguments is exactly the set of primes (see Section 8.4).
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1.3 Primes of special form

By prime numbers of special form we mean primes p enjoying some interesting,
often elegant, algebraic classification. For example, the Mersenne numbers M,
and the Fermat numbers F;, defined by

M,=2-1, F,=2% 41

are sometimes prime. These numbers are interesting for themselves and for
their history, and their study has been a great impetus for the development
of computational number theory.

1.3.1 Mersenne primes

Searching for Mersenne primes can be said to be a centuries-old research
problem (or recreation, perhaps). There are various easily stated constraints
on exponents ¢ that aid one in searches for Mersenne primes M, = 29 —1. An
initial result is the following:

Theorem 1.3.1. If M, =29 —1 is prime, then q is prime.

Proof. A number 2¢ — 1 with ¢ composite has a proper factor 2¢ — 1, where
d is any proper divisor of c. O

This means that in the search for Mersenne primes one may restrict oneself to
prime exponents ¢. Note the important fact that the converse of the theorem
is false. For example, 2! — 1 is not prime even though 11 is. The practical
import of the theorem is that one may rule out a great many exponents,
considering only prime exponents during searches for Mersenne primes.

Yet more weeding out of Mersenne candidates can be achieved via the
following knowledge concerning possible prime factors of Mg:

Theorem 1.3.2 (Euler). For prime g > 2, any prime factor of My, =29—1
must be congruent to 1 (mod q) and furthermore must be congruent to +1
(mod B).

Proof. Let r be a prime factor of 29 — 1, with ¢ a prime, ¢ > 2. Then 29 =1
(mod ), and since ¢ is prime, the least positive exponent h with 2" = 1
(mod r) must be ¢ itself. Thus, in the multiplicative group of nonzero residues
modulo 7 (a group of order r — 1), the residue 2 has order g. This immediately
implies that » = 1 (mod q), since the order of an element in a group divides

the order of the group. Since ¢ is an odd prime, we in fact have q|r§1, SO

r—1

272 =1 (mod r). By Euler’s criterion (2.6), 2 is a square modulo r, which
in turn implies via (2.10) that »r = +1 (mod 8). O

A typical Mersenne prime search runs, then, as follows. For some set of
prime exponents (), remove candidates ¢ € () by checking whether

29 =1 (mod r)
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for various small primes r = 1 (mod ¢) and r = £1 (mod 8). For the survivors,
one then invokes the celebrated Lucas-Lehmer test, which is a rigorous
primality test (see Section 4.2.1).

As of this writing, the known Mersenne primes are those displayed in
Table 1.2.

22 -1 2> -1 2°—1 2" -1

21 1 217 1 219 2%t 1

261 _ q 289 _ q 2107 _ 4 2127 _ 4
9521 _ q 9607 _ 91279 _ q 92203 _ 4
92281 _ 4 93217 _ 4 94253 _ 4 94423 _ 4
99869 _ 1 99941 _ 4 911213 _ 4 219937 _ 4
921701 _ q 923209 _ 944497 _ 986243 _ |
9110503 _ 9132049 _ 9216091 _ 9756839 _ |
2859433 —1 21257787 —1 21398269 —1 22976221 —1

23021377 —1 26972593 -1 213466917 -1 220996011 -1

224036583 -1 225964951 -1

Table 1.2 Known Mersenne primes (as of Apr 2005), ranging in size from 1 decimal
digit to over 7 million decimal digits.

Over the years 1979-96, D. Slowinski found seven Mersenne primes, all
of the Mersenne primes from 244497 — 1 to 2!257787 _ 1. inclusive, except
for 2110503 _ 1 (the first of the seven was found jointly with H. Nelson and
the last three with P. Gage). The “missing” prime 2110593 — 1 was found by
W. Colquitt and L. Welsh, Jr., in 1988. The record for consecutive Mersenne
primes is still held by R. Robinson, who found the five starting with 252! — 1
in 1952. The prime 2398269 _ 1 was found in 1996 by J. Armengaud and
G. Woltman, while 22976221 _ 1 was found in 1997 by G. Spence and Woltman.
The prime 23°21377 _ 1 was discovered in 1998 by R. Clarkson, Woltman,
S. Kurowski, et al. (further verified by D. Slowinski as prime in a separate
machine/program run). Then in 1999 the prime 26972593 — 1 was found by
N. Hajratwala, Woltman, and Kurowski, then verified by E. Mayer and
D. Willmore. The case 23466917 _ 1 was discovered in November 2001 by
M. Cameron, Woltman, and Kurowski, then verified by Mayer, P. Novarese,
and G. Valor. In November 2003, M. Shafer, Woltman, and Kurowski found
220996011 _ 1 The Mersenne prime 224036583 _ 1 was found in May 2004 by
J. Findley, Woltman, and Kurowski. Then in Feb 2005, M. Nowak, Woltman
and Kurowski found 225964951 _ 1 Each of these last two Mersenne primes has
more than 7 million decimal digits.

The eight largest known Mersenne primes were found using a fast
multiplication method—the IBDWT—discussed in Chapter 8.8 (Theorem
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9.5.18 and Algorithm 9.5.19). This method has at least doubled the search
efficiency over previous methods.

It should be mentioned that modern Mersenne searching is sometimes of
the “hit or miss” variety; that is, random prime exponents ¢ are used to check
accordingly random candidates 27 — 1. (In fact, some Mersenne primes were
indeed found out of order, as indicated above). But much systematic testing
has also occurred. As of this writing, exponents ¢ have been checked for all
q < 12830000. Many of these exponents are recognized as giving composite
Mersennes because a prime factor is detected. For example, if ¢ is a prime
that is 3 (mod 4), and p = 2¢ + 1 is prime, then p|M,. (See also Exercises
1.47, 1.81.) For the remaining values of ¢, the Lucas—Lehmer test (see Section
4.2.1) was used. In fact, for all ¢ < 9040000 for which a factor of M, was
not found, the Lucas-Lehmer test was carried out twice (see [Woltman 2000],
which website is frequently updated).

As mentioned in Section 1.1.2, the prime Mssg64951 is the current record
holder as not only the largest known Mersenne prime, but also the largest
explicit number that has ever been proved prime. With few exceptions, the
record for largest proved prime in the modern era has always been a Mersenne
prime. One of the exceptions occurred in 1989, when the “Amdahl Six” found
the prime [Caldwell 1999]

391581 - 2216193 _ 1

which is larger than 22!6091 _ 1 the record Mersenne prime of that time.
However, this is not the largest known explicit non-Mersenne prime, for Young
found, in 1997, the prime 5-2249937 11, and in 2001, Cosgrave found the prime

3. 9916773 4 1
Actually, the 5th largest known explicit prime is the non-Mersenne
5359 - 20094902 4 1,

found by R. Sundquist in 2003.

Mersenne primes figure uniquely in the ancient subject of perfect numbers.
A perfect number is a positive integer equal to the sum of its divisors other
than itself. For example, 6 = 1 +2+ 3 and 28 = 1+ 2+ 4 + 7 + 14 are
perfect numbers. An equivalent way to define “perfection” is to denote by
o(n) the sum of the positive divisors of n, whence n is perfect if and only if
o(n) = 2n. The following famous theorem completely characterizes the even
perfect numbers.

Theorem 1.3.3 (Euclid-Euler). An even number n is perfect if and only if
it is of the form
n= 2‘171Mq7

where My = 29 —1 is prime.
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Proof. Suppose n = 2%m is an even number, where m is the largest odd
divisor of n. The divisors of n are of the form 2/d, where 0 < j < a
and dlm. Let D be the sum of the divisors of m excluding m, and let
M =20t —1 =20 421 ... 4 2% Thus, the sum of all such divisors of
nis M(D + m). If M is prime and M = m, then D = 1, and the sum of all
the divisors of n is M (1 + m) = 2n, so that n is perfect. This proves the first
half of the assertion. For the second, assume that n = 2%m is perfect. Then
M(D+m) = 2n = 2°"m = (M + 1)m. Subtracting Mm from this equation,
we see that
m= MD.

If D > 1, then D and 1 are distinct divisors of m less than m, contradicting
the definition of D. So D = 1, m is therefore prime, and m = M = 20+ — 1.
O

The first half of this theorem was proved by Euclid, while the second half
was proved some two millennia later by Euler. It is evident that every
newly discovered Mersenne prime immediately generates a new (even) perfect
number. On the other hand, it is still not known whether there are any odd
perfect numbers, the conventional belief being that none exist. Much of the
research in this area is manifestly computational: It is known that if an odd
perfect number n exists, then n > 103°°, a result in [Brent et al. 1993], and that
n has at least eight distinct prime factors, an independent result of E. Chein
and P. Hagis; see [Ribenboim 1996]. For more on perfect numbers, see Exercise
1.30.

There are many interesting open problems concerning Mersenne primes.
We do not know whether there are infinitely many such primes. We do not
even know whether infinitely many Mersenne numbers M, with ¢ prime
are composite. However, the latter assertion follows from the prime k-tuples
Conjecture 1.2.1. Indeed, it is easy to see that if ¢ = 3 (mod 4) is prime and
2q + 1 is also prime, then 2¢ 4 1 divides M,. For example, 23 divides M.
Conjecture 1.2.1 implies that there are infinitely many such primes gq.

Various interesting conjectures have been made in regard to Mersenne
numbers, for example the “new Mersenne conjecture” of P. Bateman,
J. Selfridge, and S. Wagstaff, Jr. This stems from Mersenne’s original assertion
in 1644 that the exponents ¢ for which 27 —1 is prime and 29 < g < 257 are 31,
67, 127, and 257. (The smaller exponents were known at that time, and it was
also known that 237 —1 is composite.) Considering that the numerical evidence
below 29 was that every prime except 11 and 23 works, it is rather amazing
that Mersenne would assert such a sparse sequence for the exponents. He was
right on the sparsity, and on the exponents 31 and 127, but he missed 61, 89,
and 107. With just five mistakes, no one really knows how Mersenne effected
such a claim. However, it was noticed that the odd Mersenne exponents below
29 are all either 1 away from a power of 2, or 3 away from a power of 4 (while
the two missing primes, 11 and 23, do not have this property), and Mersenne’s
list just continues this pattern (perhaps with 61 being an “experimental error,”
since Mersenne left it out). In [Bateman et al. 1989] the authors suggest a new
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Mersenne conjecture, that any two of the following implies the third: (a) the
prime g is either 1 away from a power of 2, or 3 away from a power of 4, (b)
27 — 1 is prime, (c) (274 1)/3 is prime. Once one gets beyond small numbers,
it is very difficult to find any primes ¢ that satisfy two of the statements, and
probably there are none beyond 127. That is, probably the conjecture is true,
but so far it is only an assertion based on a very small set of primes.

It has also been conjectured that every Mersenne number M,, with ¢
prime, is squarefree (which means not divisible by a square greater than 1),
but we cannot even show that this holds infinitely often. Let M denote the
set of primes that divide some M, with ¢ prime. We know that the number
of members of M up to z is o(w(x)), and it is known on the assumption of
the generalized Riemann hypothesis that the sum of the reciprocals of the
members of M converges [Pomerance 1986].

It is possible to give a heuristic argument that supports the assertion that
there are ~ clnz primes ¢ < x with M, prime, where ¢ = ¢7/In2 and 7 is
Euler’s constant. For example, this formula suggests that there should be, on
average, about 23.7 values of ¢ in an interval [z,10000z]. Assuming that the
machine checks of the Mersenne exponents up to 12000000 are exhaustive,
the actual number of values of ¢ with M, prime in [z, 10000z] is 23, 24, or
25 for z = 100, 200, ...,1200, with the count usually being 24. Despite the
good agreement with practice, some still think that the “correct” value of ¢
is 2/1n2 or something else. Until a theorem is actually proved, we shall not
know for sure.

We begin the heuristic with the fact that the probability that a random
number near M, = 29 — 1 is prime is about 1/In M,, as seen by the prime
number Theorem 1.1.4. However, we should also compare the chance of M,
being prime with a random number of the same size. It is likely not the same,
as Theorem 1.3.2 already indicates. Let us ignore for a moment the intricacies
of this theorem and use only that M, has no prime factors in the interval
[1,q]. Here ¢ is about 1g M, (here and throughout the book, lg means log,).
What is the chance that a random number near x whose least prime factor
exceeds lg z is prime? We know how to answer this question rigorously. First
consider the chance that a random number near x has its least prime factor
exceeding lg . Intuitively, this probability should be

6D

p<lgz

since each prime p has probability 1/p of dividing a random number, and
these should be at least roughly independent events. They cannot be totally
independent, for example, no number in [1, z] is divisible by two primes in the
interval (xl/ 2 x], yet a purely probabilistic argument suggests that a positive
proportion of the numbers in [1, 2] actually have this property! However, when
dealing with very small primes, and in this case only those up to lgz, the
heuristic guess is provable. Now, each prime near x survives this sieve; that is,
it is not divisible by any prime p < lgx. So, if a number n near z has already
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passed this lg z sieve, then its probability of being prime should climb from
1/Inx to

1
Pz’

We know P asymptotically. It follows from the Mertens theorem (see Theorem
1.4.2) that 1/P ~ e"Inlgz as # — oo. Thus, one might conclude that M, is
prime with “probability” e Inlg M,/ In M,. But this expression is very close to
€"1Ing/(¢In2). Summing this expression for primes ¢ < x, we get the heuristic
asymptotic expression for the number of Mersenne prime exponents up to x,
namely clnz with ¢ = €7/In2.

If one goes back and tries to argue in a more refined way using Theorem
1.3.2, then one needs to use not only the fact that the possible prime factors of
M, are quite restricted, but also that a prime that meets the condition of this
theorem has an enhanced chance of dividing M,. For example, if p = kg+1 is
prime and p = £1 (mod 8), then one might argue that the chance that p|M,
is not 1/p, but rather the much larger 2/k. It seems that these two criteria
balance out, that is, the restricted set of possible prime factors balances with
the enhanced chance of divisibility by them, and we arrive at the same estimate
as above. This more difficult argument was presented in the first edition of
this book.

1.3.2 Fermat numbers

The celebrated Fermat numbers F,, = 22" +1, like the Mersenne numbers, have
been the subject of much scrutiny for centuries. In 1637 Fermat claimed that
the numbers F,, are always prime, and indeed the first five, up to Fy = 65537
inclusive, are prime. However, this is one of the few cases where Fermat was
wrong, perhaps very wrong. Every other single F,, for which we have been
able to decide the question is composite! The first of these composites, F5,
was factored by Euler.

A very remarkable theorem on prime Fermat numbers was proved by
Gauss, again from his teen years. He showed that a regular polygon with n
sides is constructible with straightedge and compass if and only if the largest
odd divisor of n is a product of distinct Fermat primes. If Fy, ..., Fy turn out
to be the only Fermat primes, then the only n-gons that are constructible are
those with n = 2%m with m|232 — 1 (since the product of these five Fermat
primes is 232 — 1).

If one is looking for primes that are 1 more than a power of 2, then one
need look no further than the Fermat numbers:

Theorem 1.3.4. If p=2""+41 is an odd prime, then m is a power of two.

Proof. Assume that m = ab, where a is the largest odd divisor of m. Then p
has the factor 2° + 1. Therefore, a necessary condition that p be prime is that
p=2"4+1: that is, a = 1 and m = b is a power of 2. O
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Again, as with the Mersenne numbers, there is a useful result that restricts
possible prime factors of a Fermat number.

Theorem 1.3.5 (Euler, Lucas). For n > 2, any prime factor p of F,, =
22" + 1 must have p =1 (mod 2"1?).

Proof. Let r be a prime factor of F,, and let h be the least positive integer
with 2" = 1 (mod 7). Then, since 22" = —1 (mod 7), we have h = 2"*!. As in
the proof of Theorem 1.3.1, 2"+! divides r — 1. Since n > 2, we thus have that
r = 1 (mod 8). This condition implies via (2.10) that 2 is a square modulo
r, so that h = 2"*! divides Tgl, from which the assertion of the theorem is
evident. a

It was this result that enabled Euler to find a factor of F5, and thus be the
first to “dent” the ill-fated conjecture of Fermat. (Euler’s version of Theorem
1.3.5 had the weaker conclusion that p = 1 (mod 2"*!), but this was good
enough to find that 641 divides F5.) To this day, Theorem 1.3.5 is useful in
factor searches on gargantuan Fermat numbers.

As with Mersenne numbers, Fermat numbers allow a very efficient test
that rigorously determines prime or composite character. This is the Pepin
test, or the related Suyama test (for Fermat cofactors); see Theorem 4.1.2 and
Exercises 4.5, 4.7, 4.8.

By combinations of various methods, including the Pepin/Suyama tests
or in many cases the newest factoring algorithms available, various Fermat
numbers have been factored, either partially or completely, or, barring that,
have been assigned known character (i.e., determined composite). The current
situation for all F},,n < 24, is displayed in Table 1.3.

We give a summary of the theoretically interesting points concerning Table
1.3 (note that many of the factoring algorithms that have been successful on
Fermat numbers are discussed in Chapters 5, 6, and 7).

(1) F; was factored via the continued fraction method [Morrison and Brillhart
1975], while Fg was found by a variant of the Pollard-rho method [Brent
and Pollard 1981].

(2) The spectacular 49-digit factor of Fy was achieved via the number field
sieve (NFS) [Lenstra et al. 1993a].

(3) Thanks to the recent demolition, via the elliptic curve method, of Fi
[Brent 1999], and an earlier resolution of Fi; also by Brent, the smallest
Fermat number not yet completely factored is Fis.

(4) The two largest known prime factors of Fi3, and the largest prime factors
of both Fi5 and Fjg were found in recent years, via modern, enhanced
variants of the elliptic curve method (ECM) [Crandall 1996a], [Brent et
al. 2000], as we discuss in Section 7.4.1. The most recent factor found in
this way is the 23-digit factor of F}g found by R. McIntosh and C. Tardif
in 1999.

(5) The numbers Fi4, Fo, Fao, Fos4 (and the other C’s of the table) are, as of
this writing, “genuine” composites, meaning that we know the numbers
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Fo =3=P
F =5=P
B =17=P
F3 =257T=P

Fy =65537=P

Fs =641-6700417

Fe = 274177 - 67280421310721

F7 = 59649589127497217 - 5704689200685129054721

Fs =1238926361552897 - P

Fy = 2424833 - 7455602825647884208337395736200454918783366342657 - P

F1o = 45592577 - 6487031809 - 4659775785220018543264560743076778192897 - P

Fyp = 319489 - 974849 - 167988556341760475137 - 3560841906445833920513 - P

F12 = 114689 - 26017793 - 63766529 - 190274191361 - 1256132134125569 - C

Fi3 = 2710954639361 - 2663848877152141313 - 3603109844542291969-
319546020820551643220672513 - C

Fiu=C

F15 = 1214251009 - 2327042503868417 - 168768817029516972383024127016961 - C

F16 = 825753601 - 188981757975021318420037633 - C

Fi7 = 31065037602817 - C

F13 = 13631489 - 81274690703860512587777 - C

F19 = 70525124609 - 646730219521 - C

Fy=C

Fy1 = 4485296422913 - C
Fa =0C

Fo3 = 167772161 - C
Fou=C

Table 1.3 What is known about the first 25 Fermat numbers (as of Apr 2005);
P = a proven prime, C' = a proven composite, and all explicitly written factors are
primes. The smallest Fermat number of unknown character is F3s.

not to be prime, but do not know a single prime factor of any of the
numbers. However, see Exercise 1.82 for conceptual difficulties attendant
on the notion of “genuine” in this context.

(6) The Pepin test proved that Fi4 is composite [Selfridge and Hurwitz 1964],
while Fyy was shown composite in the same way [Buell and Young 1988].

(7) The character of Fhy was resolved [Crandall et al. 1995], but in this case
an interesting verification occurred: A completely independent (in terms
of hardware, software, and location) research team in South America
[Trevisan and Carvalho 1993] performed the Pepin test, and obtained the
same result for Fho. Actually, what they found were the same Selfridge—
Hurwitz residues, taken to be the least nonnegative residue modulo Fj,



30 Chapter 1 PRIMES!

then taken again modulo the three coprime moduli 236, 236 — 1,235 —1 to
forge a kind of “parity check” with probability of error being roughly
27107 Despite the threat of machine error in a single such extensive
calculation, the agreement between the independent parties leaves little
doubt as to the composite character of Fo.

(8) The character of Fyy—and the compositeness of the Fb3 cofactor—were
resolved in 1999-2000 by Crandall, Mayer, and Papadopoulos [Crandall et
al. 2003]. In this case, rigor was achieved by having (a) two independent
floating-point Pepin “wavefront” tests (by Mayer and Papadopoulos,
finishing in that order in August 1999), but also (b) a pure-integer
convolution method for deterministic checking of the Pepin squaring chain.
Again the remaining doubt as to composite character must be regarded
as minuscule. More details are discussed in Exercise 4.6.

(9) Beyond Fyy, every F,, through n = 32 inclusive has yielded at least one
proper factor, and all of those factors were found by trial division with
the aid of Theorem 1.3.5. (Most recently, A. Kruppa and T. Forbes found
in 2001 that 46931635677864055013377 divides F31.) The first Fermat
number of unresolved character is thus F33. By conventional machinery
and Pepin test, the resolution of F33 would take us well beyond the next
ice age! So the need for new algorithms is as strong as can be for future
work on giant Fermat numbers.

There are many other interesting facets of Fermat numbers. There is the
challenge of finding very large composite F;,. For example, W. Keller showed
that Fy3471 is divisible by 5-223473 41, while more recently J. Young (see [Keller
1999]) found that Fyi3319 is divisible by 3-2213321 41 and even more recent is
the discovery by J. Cosgrave (who used remarkable software by Y. Gallot) that
F3g0447 is divisible by 3-2382449 11 (see Exercise 4.9). To show how hard these
investigators must have searched, the prime divisor Cosgrave found is itself
currently one of the dozen or so largest known primes. Similar efforts reported
recently in [Dubner and Gallot 2002] include K. Herranen’s generalized Fermat
prime

1018302 +1

and S. Scott’s gargantuan prime
485942 4 1.

A compendium of numerical results on Fermat numbers is available at [Keller
1999].

It is amusing that Fermat numbers allow still another proof of Theorem
1.1.2 that there are infinitely many primes: Since the Fermat numbers are odd
and the product of Fy, Fy,..., F,_1 is F,, — 2, we immediately see that each
prime factor of F}, does not divide any earlier F};, and so there are infinitely
many primes.

What about heuristic arguments: Can we give a suggested asymptotic
formula for the number of n < x with F,, prime? If the same kind of
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argument is made as with Mersenne primes, we get that the number of
Fermat primes is finite. This comes from the convergence of the sum of n/2",
which expression one finds is proportional to the supposed probability that
F,, is prime. If this kind of heuristic is to be taken seriously, it suggests that
there are no more Fermat primes after Fj, the point where Fermat stopped,
confidently predicting that all larger Fermat numbers are prime! A heuristic
suggested by H. Lenstra, similar in spirit to the previous estimate on the
density of Mersenne primes, says that the “probability” that F;, is prime is
approximately
e’lgb
2n 7
where b is the current limit on the possible prime factors of F,,. If nothing is
known about possible factors, one might use the smallest possible lower bound
b = 3-2"T2 11 for the numerator calculation, giving a rough a priori probability
of n/2™ that F,, is prime. (Incidentally, a similar probability argument for
generalized Fermat numbers b>" + 1 appears in [Dubner and Gallot 2002].) Tt
is from such a probabilistic perspective that Fermat’s guess looms as ill-fated
as can be.

(1.13)

1.3.3 Certain presumably rare primes

There are interesting classes of presumably rare primes. We say “presumably”
because little is known in the way of rigorous density bounds, yet empirical
evidence and heuristic arguments suggest relative rarity. For any odd prime p,
Fermat’s “little theorem” tells us that 2°~! = 1 (mod p). One might wonder
whether there are primes such that

2~1 =1 (mod p?), (1.14)

such primes being called Wieferich primes. These special primes figure strongly
in the so-called first case of Fermat’s “last theorem,” as follows. In [Wieferich
1909 it is proved that if

2P 4 yP = 2P,

where p is a prime that does not divide xzyz, then p satisfies relation (1.14).
Equivalently, we say that p is a Wieferich prime if the Fermat quotient

P |

ap(2) = "

vanishes (mod p). One might guess that the “probability” that g,(2) so
vanishes is about 1/p. Since the sum of the reciprocals of the primes is
divergent (see Exercise 1.20), one might guess that there are infinitely many
Wieferich primes. Since the prime reciprocal sum diverges very slowly, one
might also guess that they are very few and far between.

The Wieferich primes 1093 and 3511 have long been known. Crandall,
Dilcher, and Pomerance, with the computational aid of Bailey, established
that there are no other Wieferich primes below 4 - 102 [Crandall et al. 1997].
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McIntosh has pushed the limit further—to 16 - 10'2. It is not known whether
there are any more Wieferich primes beyond 3511. It is also not known whether
there are infinitely many primes that are not Wieferich primes! (But see
Exercise 8.19.)

A second, presumably sparse class is conceived as follows. We first state a
classical result and its converse:

Theorem 1.3.6 (Wilson-Lagrange). Let p be an integer greater than one.
Then p is prime if and only if

(p—1)!'= -1 (mod p).
This motivates us to ask whether there are any instances of
(p—1)!' = —1 (mod p?), (1.15)

such primes being called Wilson primes. For any prime p we may assign a

Wilson quotient
—DI+1
w, = (p-H+1
p

whose vanishing (mod p) signifies a Wilson prime. Again the “probability”
that p is a Wilson prime should be about 1/p, and again the rarity is
empirically manifest, in the sense that except for 5, 13, and 563, there are
no Wilson primes less than 5 - 108.

A third presumably sparse class is that of Wall-Sun—Sun primes, namely

those primes p satisfying

Uy, (2) = 0 (mod p?), (1.16)
where u,, denotes the n-th Fibonacci number (see Exercise 2.5 for definition)
and where (2) is 1 if p = +1 (mod 5), is —1 if p = £2 (mod 5), and is 0 if
p = 5. As with the Wieferich and Wilson primes, the congruence (1.16) is
always satisfied (mod p). R. McIntosh has shown that there are no Wall-Sun—
Sun primes whatsoever below 3.2 -10'2. The Wall-Sun—Sun primes also figure
into the first case of Fermat’s last theorem, in the sense that a prime exponent
p for xP 4+ yP = 2P, where p does not divide zyz, must also satisfy congruence
(1.16) [Sun and Sun 1992].

Interesting computational issues arise in the search for Wieferich, Wilson,
or Wall-Sun—Sun primes. Various such issues are covered in the exercises; for
the moment we list a few salient points. First, computations (mod p?) can be
effected nicely by considering each congruence class to be a pair (a,b) = a+bp.
Thus, for multiplication one may consider an operator * defined by

(a,b) * (c,d) = (ac, (bc + ad) (mod p)) (mod p?),

and with this relation all the arithmetic necessary to search for the rare
primes of this section can proceed with size-p arithmetic. Second, factorials in



1.4 Analytic number theory 33

particular can be calculated using various enhancements, such as arithmetic
progression-based products and polynomial evaluation, as discussed in
Chapter 8.8. For example, it is known that for p = 240 + 5,

(p— 1) = —1 — 533091778023p (mod p?),

as obtained by polynomial evaluation of the relevant factorial [Crandall et al.
1997]. This p is therefore not a Wilson prime, yet it is of interest that in this
day and age, machines can validate at least 12-digit primes via application of
Lagrange’s converse of the classical Wilson theorem.

In searches for these rare primes, some “close calls” have been encountered.
Perhaps the only importance of a close call is to verify heuristic beliefs about
the statistics of such as the Fermat and Wilson quotients. Examples of the
near misses with their very small (but alas nonzero) quotients are

p = 76843523891, ¢p(2) = —2 (mod p),
p = 12456646902457, ¢,(2) = 4 (mod p),
p = 56151923, w, = —1 (mod p),

p = 93559087, w, = —3 (mod p),

and we remind ourselves that the vanishing of any Fermat or Wilson quotient
modulo p would have signaled a successful “strike.”

1.4 Analytic number theory

Analytic number theory refers to the marriage of continuum analysis with the
theory of the (patently discrete) integers. In this field, one can use integrals,
complex domains, and other tools of analysis to glean truths about the natural
numbers. We speak of a beautiful and powerful subject that is both useful in
the study of algorithms, and itself a source of many interesting algorithmic
problems. In what follows we tour a few highlights of the analytic theory.

1.4.1 The Riemann zeta function

It was the brilliant leap of Riemann in the mid-19th century to ponder an
entity so artfully employed by Euler,

1
(=3 -, (1.17)
n=1
but to ponder with powerful generality, namely, to allow s to attain complex
values. The sum converges absolutely for Re(s) > 1, and has an analytic
continuation over the entire complex plane, regular except at the single point
s = 1, where it has a simple pole with residue 1. (That is, (s—1)((s) is analytic
in the entire complex plane, and its value at s = 1 is 1.) It is fairly easy to
see how ((s) can be continued to the half-plane Re(s) > 0: For Re(s) > 1 we
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have identities such as

S

¢(s) = po —s/loo(x— lz])z™" da.

But this formula continues to apply in the region Re(s) > 0, s # 1, so we
may take this integral representation as the definition of ((s) for the extended
region. The equation also shows the claimed nature of the singularity at s = 1,
and other phenomena, such as the fact that ¢ has no zeros on the positive
real axis. There are yet other analytic representations that give continuation
to all complex values of s.

The connection with prime numbers was noticed earlier by Euler (with
the variable s real), in the form of a beautiful relation that can be thought of
as an analytic version of the fundamental Theorem 1.1.1:

Theorem 1.4.1 (Euler). For Re(s) > 1 and P the set of primes,

)= J[a-po (118)

peP

Proof. The “Euler factor” (1 — p~*)~! may be rewritten as the sum of a
geometric progression: 1 + p~° + p~2° 4 -... We consider the operation of
multiplying together all of these separate progressions. The general term in the
multiplied-out result will be HpeP p~“°, where each a, is a positive integer
or 0, and all but finitely many of these a, are 0. Thus the general term is n™=°
for some natural number n, and by Theorem 1.1.1, each such n occurs once
and only once. Thus the right side of the equation is equal to the left side of
the equation, which completes the proof. O

As was known to Euler, the zeta function admits various closed-form
evaluations, such as

¢(2) =7°/6,
¢(4) = 7*/90,

and in general, ¢(n) for even n is known; although not a single {(n) for odd
n > 2 is known in closed form. But the real power of the Riemann zeta
function, in regard to prime number studies, lies in the function’s properties
for Re(s) < 1. Closed-form evaluations such as

¢(0) =—-1/2

are sometimes possible in this region. Here are some salient facts about
theoretical applications of (:

(1) The fact that {(s) — co as s — 1 implies the infinitude of primes.

(2) The fact that ((s) has no zeros on the line Re(s) = 1 leads to the prime
number Theorem 1.1.4.
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(3) The properties of ¢ in the “critical strip” 0 < Re(s) < 1 lead to deep
aspects of the distribution of primes, such as the essential error term in
the PNT.

On the point (1), we can prove Theorem 1.1.2 as follows:

Another proof of the infinitude of primes. We consider ((s) for s real, s > 1.
Clearly, from relation (1.17), ((s) diverges as s — 17 because the harmonic
sum »_ 1/n is divergent. Indeed, for s > 1,

¢(s) > Z n_°= Z n~ =G

n<1l/(s—1) n<1l/(s—1)
> e Ye Z n~! > e Ve In(s — 1))
n<1l/(s—1)

But if there were only finitely many primes, the product in (1.18) would tend
to a finite limit as s — 17, a contradiction. ]

The above proof actually can be used to show that the sum of the
reciprocals of the primes diverges. Indeed,

| J[a=-p™ ) ==-> WmA-p )= p=+0(1), (119

pEP pEP pEP

uniformly for s > 1. Since the left side of (1.19) goes to co as s — 17 and
since p~* < p~! when s > 1, the sum Zpepp’l is divergent. (Compare
with Exercise 1.20.) It is by a similar device that Dirichlet was able to prove
Theorem 1.1.5; see Section 1.4.3.

Incidentally, one can derive much more concerning the partial sums of 1/p
(henceforth we suppress the notation p € P, understanding that the index p
is to be a prime variable unless otherwise specified):

Theorem 1.4.2 (Mertens). Asx — oo,

1T (1 - ;) ~ % (1.20)

p<z

where v is the Euler constant. Taking the logarithm of this relation, we have

1
Zf =Inlnz + B+ o(1), (1.21)

p<z

for the Mertens constant B defined as

B:v+zp:<1n(1—;)+;).
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This theorem is proved in [Hardy and Wright 1979]. The theorem is also a
corollary of the prime number Theorem 1.1.4, but it is simpler than the PNT
and predates it. The PNT still has something to offer, though; it gives smaller
error terms in (1.20) and (1.21). Incidentally, the computation of the Mertens
constant B is an interesting challenge (Exercise 1.90).

We have seen that certain facts about the primes can be thought of as
facts about the Riemann zeta function. As one penetrates more deeply into
the “critical strip,” that is, into the region 0 < Re(s) < 1, one essentially gains
more and more information about the detailed fluctuations in the distribution
of primes. In fact it is possible to write down an explicit expression for 7(x)
that depends on the zeros of {(s) in the critical strip. We illustrate this for
a function that is related to m(z), but is more natural in the analytic theory.
Consider the function g (x). This is the function 1 (z) defined as

d(x)= Y p=>) Inp UEZJ , (1.22)

m<w p<z

except if z = p™, in which case 1o(z) = ¥(z) — 2 Inp. Then (see [Edwards
1974], [Davenport 1980], [Ivi¢ 1985]) for = > 1,
p

Yo(r) =2 — Z % —In(27) — %m (1—27?), (1.23)
P
where the sum is over the zeros p of ((s) with Re(p) > 0. This sum is not
absolutely convergent, and since the zeros p extend infinitely in both (vertical)
directions in the critical strip, we understand the sum to be the limit as T" — oo
of the finite sum over those zeros p with |p| < T. It is further understood that
if a zero p is a multiple zero of {(s), it is counted with proper multiplicity in
the sum. (It is widely conjectured that all of the zeros of ((s) are simple.)
Riemann posed what has become a central conjecture for all of number
theory, if not for all of mathematics:

Conjecture 1.4.1 (Riemann hypothesis (RH)). All the zeros of ((s) in the
critical strip 0 < Re(s) < 1 lie on the line Re(s) = 1/2.

There are various equivalent formulations of the Riemann hypothesis. We
have already mentioned one in Section 1.1.5. For another, consider the Mertens

function
M(z) = p(n),

n<x
where p(n) is the Mobius function defined to be 1 if n is squarefree with an
even number of prime factors, —1 if n is squarefree with an odd number of
prime factors, and 0 if n is not squarefree. (For example, p(1) = p(6) = 1,
p(2) = p(105) = —1, and p(9) = p(50) = 0.) The function M(x) is related to
the Riemann zeta function by

S [T M@)
CORP Yl M (24
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valid certainly for Re(s) > 1. It is interesting that the behavior of the Mertens
function runs sufficiently deep that the following equivalences are known (in
this and subsequent such uses of big-O notation, we mean that the implied
constant depends on € only):

Theorem 1.4.3. The PNT is equivalent to the statement
M(z) = o(x),
while the Riemann hypothesis is equivalent to the statement
M(z)=0 (:c%+€>
for any fixed € > 0.

What a compelling notion, that the Mertens function, which one might
envision as something like a random walk, with the Mobius p contributing to
the summation for M in something like the style of a random coin flip, should
be so closely related to the great theorem (PNT) and the great conjecture
(RH) in this way. The equivalences in Theorem 1.4.3 can be augmented with
various alternative statements. One such is the elegant result that the PNT
is equivalent to the statement

as shown by von Mangoldt. Incidentally, it is not hard to show that the sum
in relation (1.24) converges absolutely for Re(s) > 1; it is the rigorous sum
evaluation at s = 1 that is difficult (see Exercise 1.19). In 1859, Riemann
conjectured that for each fixed € > 0,

m(z)=1l(z)+ 0 (m1/2+6) , (1.25)

which conjecture is equivalent to the Riemann hypothesis, and perforce to the
second statement of Theorem 1.4.3. In fact, the relation (1.25) is equivalent
to the assertion that ((s) has no zeros in the region Re(s) > 1/2 4+ e. The
estimate (1.25) has not been proved for any € < 1/2.

In 1901, H. von Koch strengthened (1.25) slightly by showing that the
Riemann hypothesis is true if and only if |7 (x) —1i (z)] = O(v/zInz). In fact,
for x > 2.01 we can take the big-O constant to be 1 in this assertion; see
Exercise 1.37.

Let p,, denote the n-th prime. It follows from (1.25) that if the Riemann
hypothesis is true, then

Pyl —Pn =0 (pqlL/2+6)
holds for each fixed € > 0. Remarkably, we know rigorously that p,+1 —p, =
O (p%52%), a result of R. Baker, G. Harman, and J. Pintz. But much more is
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conjectured. The famous conjecture of H. Cramér asserts that

hmsup(pn+1 - pn)/ln2 n=1
n—oo

A. Granville has raised some doubt on the value of this limsup, suggesting
that it may be as least as large as 2e™7 ~ 1.123. For primes above 100, the
largest known value of (pn41 — pn)/In®n is ~ 1.210 when p, = 113. The
next highest known values of this quotient are ~ 1.175 when p,, = 1327, and
~ 1.138 when p,, = 1693182318746371, this last being a recent discovery of
B. Nyman.

The prime gaps pp4+1 — pn, which dramatically showcase the apparent
local randomness of the primes, are on average ~ Inn; this follows from the
PNT (Theorem 1.1.4). The Cramér—Granville conjecture, mentioned in the
last paragraph, implies that these gaps are infinitely often of magnitude In®n,
and no larger. However, the best that we can currently prove is that p,+1 —pn
is infinitely often at least of magnitude

Innlnlnnlnlnlnlnn/(Inlnlnn)?

an old result of P. Erdds and R. Rankin. We can also ask about the minimal
order of p,+1—py. The twin-prime conjecture implies that (p,+1—pn)/ Inn has
liminf 0, but until very recently the best we knew was the result of H. Maier
that the liminf is at most a constant that is slightly less than 1/4. As we go to
press for this 2nd book edition, a spectacular new result has been announced
by D. Goldston, J. Pintz, and C. Yildirim: Yes, the liminf of (p,+1 —pn)/Inn
is indeed 0.

1.4.2 Computational successes

The Riemann hypothesis (RH) remains open to this day. However, it became
known after decades of technical development and a great deal of computer
time that the first 1.5 billion zeros in the critical strip (ordered by increasing
positive imaginary part) all lie precisely on the critical line Re(s) = 1/2 [van
de Lune et al. 1986]. It is highly intriguing—and such is possible due to a
certain symmetry inherent in the zeta function—that one can numerically
derive rigorous placement of the zeros with arithmetic of finite (yet perhaps
high) precision. This is accomplished via rigorous counts of the number of
zeros to various heights T (that is, the number of zeros o + it with imaginary
part t € (0,7]), and then an investigation of sign changes of a certain real
function that is zero if and only if zeta is zero on the critical line. If the sign
changes match the count, all of the zeros to that height T" are accounted for
in rigorous fashion [Brent 1979].

The current height to which Riemann-critical-zero computations have
been pressed is that in [Gourdon and Sebah 2004], namely the RH is intact up
to the 10'3-th zero. Gourdon has also calculated 2 billion zeros near ¢ = 1024,
This advanced work uses a variant of the parallel-zeta method of [Odlyzko
and Schonhage 1988] discussed in Section 3.7.2. Another important pioneer
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in the ongoing RH verification is S. Wedeniwski, who maintains a “zetagrid”
distributed project [Wedeniwski 2004].

Another result along similar lines is the recent settling of the “Mertens
conjecture,” that

M (z)| < Vz. (1.26)

Alas, the conjecture turns out to be ill-fated. An earlier conjecture that the
right-hand side could be replaced by %\/5 was first disproved in 1963 by
Neubauer; later, H. Cohen found a minimal (least ) violation in the form

M (7725038629) = 43947.

But the Mertens conjecture (1.26) was finally demolished when it was shown
in [Odlyzko and te Riele 1985] that

limsupz~2M(z) > 1.06,
liminf 2~ Y2M(z) < —1.009.

It has been shown by Pintz that for some 2 less than 101" the ratio M(z)/x
is greater than 1 [Ribenboim 1996]. Incidentally, it is known from statistical
theory that the summatory function m(x) =", __ t, of a random walk (with
t, = £1, randomly and independently) enjoys (with probability 1) the relation

m(z)

Vi(z/2)Inlnx !
so that on any notion of sufficient “randomness” of the Md&bius p function
M (z)/+/z would be expected to be unbounded.

Yet another numerical application of the Riemann zeta function is in the
assessment of the prime-counting function 7 (z) for particular, hopefully large
. We address this computational problem later, in Section 3.7.2.

Analytic number theory is rife with big-O estimates. To the computation-
alist, every such estimate raises a question: What constant can stand in place
of the big-O and in what range is the resulting inequality true? For example,
it follows from a sharp form of the prime number theorem that for sufficiently
large n, the n-th prime exceeds nlnn. It is not hard to see that this is true
for small n as well. Is it always true? To answer the question, one has to
go through the analytic proof and put flesh on the various O-constants that
appear, so as to get a grip on the “sufficiently large” aspect of the claim. In a
wonderful manifestation of this type of analysis, [Rosser 1939] indeed showed
that the n-th prime is always larger than nlnn. Later, in joint work with
Schoenfeld, many more explicit estimates involving primes were established.
These collective investigations continue to be an interesting and extremely
useful branch of computational analytic number theory.

lim sup

1.4.3 Dirichlet L-functions

One can “twist” the Riemann zeta function by a Dirichlet character. To
explain what this cryptic statement means, we begin at the end and explain
what is a Dirichlet character.
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Definition 1.4.4. Suppose D is a positive integer and x is a function from
the integers to the complex numbers such that

(1) For all integers m,n, x(mn) = x(m)x(n).
(2) x is periodic modulo D.
(3) x(n) =0 if and only if ged(n, D) > 1.

Then Y is said to be a Dirichlet character to the modulus D.

For example, if D > 1 is an odd integer, then the Jacobi symbol (%) is a
Dirichlet character to the modulus D (see Definition 2.3.3).

It is a simple consequence of the definition that if y is a Dirichlet character
(mod D) and if ged(n, D) = 1, then x(n)?P) = 1; that is, x(n) is a root of
unity. Indeed, x(n)?P) = x (nV’(D)) = x(1), where the last equality follows
from the Euler theorem (see (2.2)) that for ged(n, D) = 1 we have n¥(P) = 1
(mod D). But x(1) = 1, since x(1) = x(1)? and x(1) # 0.

If x1 is a Dirichlet character to the modulus D; and y2 is one
to the modulus Ds, then yjx2 is a Dirichlet character to the modulus
lem [Dy, D], where by (x1x2)(n) we simply mean xi(n)xz2(n). Thus, the
Dirichlet characters to the modulus D are closed under multiplication. In
fact, they form a multiplicative group, where the identity is yo, the “principal
character” to the modulus D. We have xo(n) = 1 when ged(n, D) = 1, and 0
otherwise. The multiplicative inverse of a character x to the modulus D is its
complex conjugate, X.

As with integers, characters can be uniquely factored. If D has the prime
factorization pi* - - - pi*, then a character x (mod D) can be uniquely factored
as X1--- Xk, where x; is a character (mod p?j).

In addition, characters modulo prime powers are easy to construct and
understand. Let ¢ = p® be an odd prime power or 2 or 4. There are primitive
roots (mod q), say one of them is ¢g. (A primitive root for a modulus D is a
cyclic generator of the multiplicative group Z7, of residues modulo D that are
coprime to D. This group is cyclic if and only if D is not properly divisible
by 4 and not divisible by two different odd primes.) Then the powers of g
(mod ¢) run over all the residue classes (mod ¢) coprime to ¢. So, if we pick
a ¢(q)-th root of 1, call it 7, then we have picked the unique character x
(mod ¢) with x(g) = n. We see there are ¢(q) different characters x (mod q).

It is a touch more difficult in the case that ¢ = 2% with a > 2, since
then there is no primitive root. However, the order of 3 (mod 2%) for a > 2 is
always 2472, and 2%~ ! 4 1, which has order 2, is not in the cyclic subgroup
generated by 3. Thus these two residues, 3 and 2¢~! + 1, freely generate the
multiplicative group of odd residues (mod 2%). We can then construct the
characters (mod 2%) by choosing a 2¢~2-th root of 1, say 7, and choosing
e € {1,—-1}, and then we have picked the unique character x (mod 2%) with
X(3) = 1, x(2%7 + 1) = . Again there are ¢(q) characters y (mod q).

Thus, there are exactly ¢(D) characters (mod D), and the above proof
not only lets us construct them, but it shows that the group of characters



1.4 Analytic number theory 41

(mod D) is isomorphic to the multiplicative group Z%, of residues (mod D)
coprime to D. To conclude our brief tour of Dirichlet characters we record the
following two (dual) identities, which express a kind of orthogonality:

D), ifn=1 (mod D),
Z x(n) = {g,( ) if n # 1 Emod Dg, (1.27)

i (n) = o(D), if x is the principal character (mod D) (1.28)
‘ X\ = 0, if y is a nonprincipal character (mod D). *
n=

Now we can turn to the main topic of this section, Dirichlet L-functions.
If x is a Dirichlet character modulo D, let

L(s,x) = Z X:;l)

The sum converges in the region Re(s) > 1, and if x is nonprincipal, then
(1.28) implies that the domain of convergence is Re(s) > 0. In analogy to
(1.18) we have

-1
L(s,x) =[] <1 — X(p)> : (1.29)
p
P

It is easy to see from this formula that if ¥ = x¢ is the principal character
(mod D), then L(s, xo) = ¢(s) [[,p(1 —p~*), that is, L(s, xo) is almost the
same as ((s).

Dirichlet used his L-functions to prove Theorem 1.1.5 on primes in a

residue class. The idea is to take the logarithm of (1.29) just as in (1.19),
getting

In(L(s,x)) = X;f) +0(1), (1.30)

uniformly for Re(s) > 1 and all Dirichlet characters x. Then, if a is an integer
coprime to D, we have

> womeo - Y YA o)

x (mod D) X (mod D) p
1
=¢(D) Y —+O0(p(D), (131
p=a (mod D)

where the second equality follows from (1.27) and from the fact that
x(a)x(p) = x(bp), where b is such that ba = 1 (mod D). Equation (1.31) thus
contains the magic that is necessary to isolate the primes p in the residue class
a (mod D). If we can show the left side of (1.31) tends to infinity as s — 17,
then it will follow that there are infinitely many primes p = a (mod D), and
in fact, they have an infinite reciprocal sum. We already know that the term
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on the left corresponding to the principal character y( tends to infinity, but
the other terms could cancel this. Thus, and this is the heart of the proof
of Theorem 1.1.5, it remains to show that if x is not a principal character
(mod D), then L(1,x) # 0. See [Davenport 1980] for a proof.

Just as the zeros of ((s) say much about the distribution of all of the
primes, the zeros of the Dirichlet L-functions L(s,x) say much about the
distribution of primes in a residue class. In fact, the Riemann hypothesis has
the following extension:

Conjecture 1.4.2 (The extended Riemann hypothesis (ERH)). Let x be
an arbitrary Dirichlet character. Then the zeros of L(s,x) in the region

Re(s) > 0 lie on the vertical line Re(s) = 3.

We note that an even more general hypothesis, the generalized Riemann
hypothesis (GRH) is relevant for more general algebraic domains, but we limit
the scope of our discussion to the ERH above. (Note that one qualitative way
to think of the ERH/GRH dichotomy is: The GRH says essentially that every
general zeta-like function that should reasonably be expected not to have zeros
in an interesting specifiable region indeed does not have any [Bach and Shallit
1996].) Conjecture 1.4.2 is of fundamental importance also in computational
number theory. For example, one has the following conditional theorem.

Theorem 1.4.5. Assume the ERH holds. For each positive integer D and
each nonprincipal character x (mod D), there is a positive integer n < 21n? D
with x(n) # 1 and a positive integer m < 3In*D with x(m) # 1 and

x(m) # 0.

This result is in [Bach 1990]. That both estimates are O (ln2 D), assuming
the ERH, was originally due to N. Ankeny in 1952. Theorem 1.4.5 is what
is behind ERH-conditional “polynomial time” primality tests, and it is also
useful in other contexts.

The ERH has been checked computationally, but not as far as the Riemann
hypothesis has. We know that it is true up to height 10000 for all characters y
with moduli up to 13, and up to height 2500 for all characters xy with moduli
up to 72, and for various other moduli [Rumely 1993]. Using these calculations,
[Ramaré and Rumely 1996] obtain explicit estimates for the distribution of
primes in certain residue classes. (In recent unpublished calculations, Rumely
has verified the ERH up to height 100000 for all characters with moduli up
through 9.) Incidentally, the ERH implies an explicit estimate of the error in
(1.5), the prime number theorem for residue classes; namely, for © > 2, d > 2,
and ged(a,d =1,

m(z;d,a) — li (z)| < 2Y?(Inz +2Ind) (on the ERH). (1.32)

1
(d)
We note the important fact that there is here not only a tight error bound,

but an ezplicit bounding constant (as opposed to the appearance of just an
implied, nonspecific constant on the right-hand side). It is this sort of hard
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bounding that enables one to combine computations and theory, and settle
conjectures in this way. Also on the ERH, if d > 2 and ged(d, a) = 1 there is a
prime p = a (mod d) with p < 2d?In” d (see [Bach and Shallit 1996] for these
and related ERH-contingent results). As with the PNT itself, unconditional
estimates (i.e., those not depending on the ERH) on m(x; d, a) are less precise.
For example, there is the following historically important (and unconditional)
theorem:

Theorem 1.4.6 (Siegel-Walfisz). For any number nn > 0 there is a positive
number C(n) such that for all coprime positive integers a,d with d < In" x,

m(x;d,a) =

ﬁ li(x)+O (x exp (—C(n) lnx)) ,

where the implied big-O constant is absolute.

Discussions of this and related theorems are found in [Davenport 1980]. It is
interesting that the number C(n) in Theorem 1.4.6 has not been computed for
any 1 > 1. Furthermore it is not computable from the method of proof of the
theorem. (It should be pointed out that numerically explicit error estimates for
m(x;d,a)— ﬁd) li (z) are possible in the range 1 < n < 2, though with an error
bound not as sharp as in Theorem 1.4.6. For > 2, no numerically explicit
error estimate is known at all that is little-o of the main term.) Though error
bounds of the Siegel-Walfisz type fall short of what is achievable on the ERH,
such estimates nevertheless attain profound significance when combined with
other analytic methods, as we discuss in Section 1.4.4.

We close this subsection with a different kind of theorem about m(x;d, a).
Often the more subtle and deeper problem is a nontrivial lower bound. But
what if we ask only for an upper bound? This kind of question is well-suited for
a family of techniques from analytic number theory known as “sieve methods.”
As with sieving in computational number theory, for example see Section 3.2,
the starting point for these methods is the sieve of Eratosthenes, but the
viewpoint is quite different. For example, it is through these methods that
Brun was able to prove (1.8). Sometimes, via sieve methods, very beautiful,
numerically explicit inequalities may be proved. One of the nicest is the
following version of the Brun—Titchmarsh inequality from [Montgomery and
Vaughan 1973]:

Theorem 1.4.7 (Brun—Titchmarsh inequality). Ifd,a are positive integers
with ged(a,d) = 1, then for all x > d,

2z
m(x;d,a) < A m(wd)

1.4.4 Exponential sums

Beyond the Riemann zeta function and special arithmetic functions that arise
in analytic number theory, there are other important entities, the exponential
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sums. These sums generally contain information—one might say “spectral”
information—about special functions and sets of numbers. Thus, exponential
sums provide a powerful bridge between complex Fourier analysis and number
theory. For a real-valued function f, real ¢, and integers a < b, denote

E(fia,bt)= Y ), (1.33)

a<n<b

Each term in such an exponential sum has absolute value 1, but the terms can
point in different directions in the complex plane. If the various directions are
“random” or “decorrelated” in an appropriate sense, one would expect some
cancellation of terms, reducing |F| well below the trivial bound b — a. Thus,
E(f;a,b,t) measures in a certain sense the distribution of fractional parts for
the sequence (tf(n)), a < n < b. In fact, H. Weyl’s celebrated theorem (see
[Weyl 1916]) asserts that the sequence (f(n)), n = 1,2,... is equidistributed
modulo 1 if and only if for every integer h # 0 we have E(f;0, N, h) = o(N).
Though distribution of fractional parts is a constant undercurrent, the theory
of exponential sums has wide application across many subfields of number
theory. We give here a brief summary of the relevance of such sums to
prime-number studies, ending with a brief, somewhat qualitative tour of
Vinogradov’s resolution of the ternary-Goldbach problem.

The theory of exponential sums began with Gauss and underwent a certain
acceleration on the pivotal work of Weyl, who showed how to achieve rigorous
upper bounds for specific classes of sums. In particular, Weyl discovered a
simple but powerful estimation technique: Establish bounds on the absolute
powers of a sum F. A fundamental observation is that

|B(fiab )= Y Yo =S (134

n€(a,b] ke(a—n,b—n]

Now, something like a “derivative” of f appears in the exponent, allowing one
to establish certain bounds on |E| for polynomial f, by recursively applying
a degree reduction. The manner in which one reduces the exponent degree
can be instructive and gratifying; see, for example, Exercise 1.66 and other
exercises referenced therein.

An important analytic problem one can address via exponential sums is
that of the growth of the Riemann zeta function. The problem of bounding
¢(o +it), for fixed real o and varying real ¢, comes down to the bounding of

sums
1
Z notit’
N<n<2N

which in turn can be bounded on the basis of estimates for the exponential
sum
E(fiN,2N,t)= > e ihn,
N<n<2N
where now the specific function is f(n) = —(Inn)/(27). Expanding on Weyl’s
work, [van der Corput 1922] showed how to estimate such cases so that the
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bound on (o +it) could be given as a nontrivial power of ¢. For example, the
Riemann zeta function can be bounded on the critical line o = 1/2, as

¢(1/2 +it) = O(t"/),

when ¢ > 1; see [Graham and Kolesnik 1991]. The exponent has been
successively reduced over the years; for example, [Bombieri and Iwaniec 1986]
established the estimate O (t%/°6+¢) and [Watt 1989] obtained O (¢89/560+¢).
The Lindel6f hypothesis is the conjecture that ((1/2 + it) = O(t¢) for any
€ > 0. This conjecture also has consequences for the distribution of primes,
such as the following result in [Yu 1996]: If p,, denotes the n-th prime, then
on the Lindel6f hypothesis,

Z (Pnt1 *pn)Q =gt

Pn<T

The best that is known unconditionally is that the sum is O (ac23/ 18“‘6) for any
€ > 0, a result of D. Heath-Brown. A consequence of Yu’s conditional theorem
is that for each € > 0, the number of integers n < x such that the interval
(n,n+nc) contains a prime is ~ z. Incidentally, there is a connection between
the Riemann hypothesis and the Lindelof hypothesis: The former implies the
latter.

Though not easy, it is possible to get numerically explicit estimates via
exponential sums. A recent tour de force is the paper [Ford 2002], where it is
shown that ‘

C(o + it)| < 7626445000 1n2/3 4

for 1/2 <o <1 and t > 2. Such results can lead to numerically explicit zero-
free regions for the zeta function and numerically explicit bounds relevant to
various prime-number phenomena.

As for additive problems with primes, one may consider another important
class of exponential sums, defined by

E,(t) =) ™™, (1.35)

p<n

where p runs through primes. Certain integrals involving E,(t) over finite
domains turn out to be associated with deep properties of the prime numbers.
In fact, Vinogradov’s proof that every sufficiently large odd integer is the
sum of three primes starts essentially with the beautiful observation that the
number of three-prime representations of n is precisely

1
R3(n) = / o emitleratren) gy (1.36)
0 n>p,q,r €P

1
= / E3(t)e~2min gt
0
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Vinogradov’s proof was an extension of the earlier work of Hardy and
Littlewood (see the monumental collection [Hardy 1966]), whose “circle
method” was a tour de force of analytic number theory, essentially connecting
exponential sums with general problems of additive number theory such as,
but not limited to, the Goldbach problem.

Let us take a moment to give an overview of Vinogradov’s method for
estimating the integral (1.36). The guiding observation is that there is a
strong correspondence between the distribution of primes and the spectral
information embodied in E,(¢). Assume that we have a general estimate
on primes not exceeding n and belonging to an arithmetic progression
{a,a+d,a+2d,...} with ged(a,d) = 1, in the form

w(n;d,a) = (n) + e(n; d, a),

1
—7
o(d)
which estimate, we assume, will be “good” in the sense that the error
term € will be suitably small for the problem at hand. (We have given a
possible estimate in the form of the ERH relation (1.32) and the weaker,
but unconditional Theorem 1.4.6.) Then for rational ¢t = a/q we develop an
estimate for the sum (1.35) as

qg—1
Fa/ =Y 3 e
/=0 »p

=f (mod q), p<n

_ Z 7.r(n;q’f)eZﬂ'ifa/q + Z eQﬂ'ipa/q

ged(f,g)=1 plg, p<n
= > almq, eI+ 0(),
ged(f,q)=1

where it is understood that the sums involving gcd run over the elements
f €[1,q — 1] that are coprime with ¢. It turns out that such estimates are of
greatest value when the denominator q is relatively small. In such cases one
may use the chosen estimate on primes in a residue class to arrive at

cq(a)
(q)
where |e| denotes the maximum of |e(n; g, f)| taken over all residues f coprime
to ¢, and ¢, is the well-studied Ramanujan sum

cqla) = Z e?rifala, (1.37)

ged(f,q)=1

En(a/q) = m(n) + O(q + lelp(q)),

We shall encounter this Ramanujan sum later, during our tour of discrete
convolution methods, as in equation (9.26). For the moment, we observe that
[Hardy and Wright 1979]

_ 1wa/9)e(q)

cq(a)
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In particular, when a, g are coprime, we obtain a beautiful estimate of the
form

E,(a/q) = Z e2mira/a — ﬁ 7(n) + €, (1.39)

p<n

where the overall error ¢ depends in complicated ways on a,q,n, and, of
course, whatever is our theorem of choice on the distribution of primes in
a residue class. We uncover thus a fundamental spectral property of primes:
When ¢ is small, the magnitude of the exponential sum is effectively reduced,
by an explicit factor p/¢, below the trivial estimate 7(n). Such reduction
is due, of course, to cancellation among the oscillating summands; relation
(1.39) quantifies this behavior.

Vinogradov was able to exploit the small-q estimate above in the following
way. One chooses a cutoff Q = In®n for appropriately large B, thinking
of ¢ as “small” when 1 < ¢ < @. (It turns out to be enough to consider
only the range Q < ¢ < n/Q for “large” ¢.) Now, the integrand in (1.36)
exhibits “resonances” when the integration variable t lies near to a rational
a/q for the small ¢ € [1,Q]. These regions of t are traditionally called
the “major arcs.” The rest of the integral—over the “minor arcs” having
t =~ a/q with ¢ € (Q,n/Q)—can be thought of as “noise” that needs to
be controlled (bounded). After some delicate manipulations, one achieves an
integral estimate in the form

2

Rs(n Z Hla Cq +e, (1.40)

21n n

where we see a resonance sum from the major arcs, while ¢’ now contains
all previous arithmetic-progression errors plus the minor-arc noise. Already in
the above summation over ¢ € [1,Q)] one can, with some additional algebraic
effort, see how the final ternary-Goldbach estimate (1.12) results, as long as
the error €’ and the finitude of the cutoff @ and are not too troublesome (see
Exercise 1.68).

It was the crowning achievement of Vinogradov to find an upper bound on
the minor-arc component of the overall error €”. The relevant theorem is this:
If ged(a,q) = 1, ¢ < n, and a real ¢ is near a/q in the sense |t —a/q| < 1/¢?,
then

|E,(t)] < C (1/2 + 05 4 nl/? 1/2> In® n, (1.41)
with absolute constant C. This result is profound, the proof difficult—
involving intricate machinations with arithmetic functions—though having
undergone some modern revision, notably by R. Vaughan (see references
below). The bound is powerful because, for ¢ € (Q,n/Q) and a real t of
the theorem, the magnitude of E,,(t) is reduced by a logarithmic-power factor
below the total number 7(n) of summands. In this way the minor-arc noise
has been bounded sufficiently to allow rigor in the ternary-Goldbach estimate.
(Powerful as this approach may be, the binary Goldbach conjecture has so far
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been beyond reach, the analogous error term €, which includes yet noisier
components, being so very difficult to bound.)

In summary: The estimate (1.39) is used for major-arc “resonances,”
yielding the main-term sum of (1.40), while the estimate (1.41) is used to
bound the minor-arc “noise” and control the overall error €’ . The relation
(1.40) leads finally to the ternary-Goldbach estimate (1.12). Though this
language has been qualitative, the reader may find the rigorous and compelling
details—on this and related additive problems—in the references [Hardy
1966], [Davenport 1980], [Vaughan 1977, 1997], [Ellison and Ellison 1985,
Theorem 9.4], [Nathanson 1996, Theorem 8.5], [Vinogradov 1985], [Estermann
1952].

Exponential-sum estimates can be, as we have just seen, incredibly
powerful. The techniques enjoy application beyond just the Goldbach problem,
even beyond the sphere of additive problems. Later, we shall witness the
groundwork of Gauss on quadratic sums; e.g., Definition 2.3.6 involves
variants of the form (1.33) with quadratic f. In Section 9.5.3 we take
up the issue of discrete convolutions (as opposed to continuous integrals)
and indicate through text and exercises how signal processing, especially
discrete spectral analysis, connects with analytic number theory. What is
more, exponential sums give rise to attractive and instructive computational
experiments and research problems. For reader convenience, we list here some
relevant Exercises: 1.35, 1.66, 1.68, 1.70, 2.27, 2.28, 9.41, 9.80.

1.4.5 Smooth numbers

Smooth numbers are extremely important for our computational interests,
notably in factoring tasks. And there are some fascinating theoretical
applications of smooth numbers, just one example being applications to a
celebrated problem upon which we just touched, namely the Waring problem
[Vaughan 1989]. We begin with a fundamental definition:

Definition 1.4.8. A positive integer is said to be y-smooth if it does not
have any prime factor exceeding y.

What is behind the usefulness of smooth numbers? Basically, it is that for y
not too large, the y-smooth numbers have a simple multiplicative structure,
yet they are surprisingly numerous. For example, though only a vanishingly
small fraction of the primes in [1,z] are in the interval [1,/x], nevertheless
more than 30% of the numbers in [1,z] are y/z-smooth (for z sufficiently
large). Another example illustrating this surprisingly high frequency of smooth
numbers: The number of (In? z)-smooth numbers up to z exceeds /z for all
sufficiently large numbers x.

These examples suggest that it is interesting to study the counting function
for smooth numbers. Let

Y(z,y) = #{1 <n < x:nis y-smooth}. (1.42)

Part of the basic landscape is the Dickman theorem from 1930:
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Theorem 1.4.9 (Dickman). For each fized real number u > 0, there is a
real number p(u) > 0 such that

(e, a'/") ~ plu)e.

Moreover, Dickman described the function p(u) as the solution of a certain
differential equation: It is the unique continuous function on [0,0c0) that
satisfies (A) p(u) =1 for 0 <wu <1 and (B) for u > 1, p'(u) = —p(u — 1)/u.
In particular, p(u) = 1 —1Inw for 1 <wu < 2, but there is no known closed form
(using elementary functions) for p(u) for w > 2. The function p(u) can be
approximated numerically (cf. Exercise 3.5), and it becomes quickly evident
that it decays to zero rapidly. In fact, it decays somewhat faster than u™",

though this simple expression can stand in as a reasonable estimate for p(u)
in various complexity studies. Indeed, we have

In p(u) ~ —ulnwu. (1.43)

Theorem 1.4.9 is fine for estimating ¢ (x, y) when z,y tend to infinity with
u = Inz/Iny fixed or bounded. But how can we estimate (sr:,acl/h‘l““)

or (x,e”nw) or (x,1n2 :E)? Estimates for these and similar expressions

became crucial around 1980 when subexponential factoring algorithms were
first being studied theoretically (see Chapter 6). Filling this gap, it was shown
in [Canfield et al. 1983] that

P (m,xl/") = guute®) (1.44)

uniformly as u — oo and u < (1—¢€)Inz/Inln 2. Note that this is the expected
estimate, since by (1.43) we have that p(u) = u=*T°®), Thus we have a
reasonable estimate for 1 (x,y) when y > In**“z and x is large. (We have
reasonable estimates in smaller ranges for y as well, but we shall not need
them in this book.)

It is also possible to prove explicit inequalities for ¥ (x,y). For example,
in [Konyagin and Pomerance 1997] it is shown that for all + > 4 and
2< /v <u,

" (x,xl/“) > lnfx. (1.45)
The implicit estimate here is reasonably good when z'/* = In®z, with ¢ > 1
fixed (see Exercises 1.72, 3.19, and 4.28).

As mentioned above, smooth numbers arise in various factoring algo-
rithms, and in this context they are discussed later in this book. The compu-
tational problem of recognizing the smooth numbers in a given set of integers
is discussed in Chapter 3. For much more on smooth numbers, see the new
survey article [Granville 2004b)].

1.5 Exercises

1.1. What is the largest integer IV having the following property: All integers
in [2,..., N — 1] that have no common prime factor with N are themselves
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prime? What is the largest integer N divisible by every integer smaller than

VN?

1.2. Prove Euclid’s “first theorem”: The product of two integers is divisible
by a prime p if and only if one of them is divisible by p. Then show that
Theorem 1.1.1 follows as a corollary.

1.3. Show that a positive integer n is prime if and only if

= (L) [=5) -

=1

1.4. Prove that for integer x > 2,

m(z) = nZ: {Zg_zurlz/kjk/nJJ '

1.5. Sometimes a prime-producing formula, even though computationally
inefficient, has actual pedagogical value. Prove the Gandhi formula for the
n-th prime:

p(d)
2d 1

1
pn = |1 —logy f§+ Z
d|pn—1!
One instructive way to proceed is to perform (symbolically) a sieve of
Eratosthenes (see Chapter 3) on the binary expansion 1 = (0.11111...)s.

1.6. By refining the method of proof for Theorem 1.1.2, one can achieve
lower bounds (albeit relatively weak ones) on the prime-counting function
7(x). To this end, consider the “primorial of p,” the number defined by

p#=Hq=2-3~-~p7
q<p
where the product is taken over primes q. Deduce, along the lines of Euclid’s
proof, that the n-th prime p,, satisfies

Pn < pn—l#a
for n > 3. Then use induction to show that
pa <28

Conclude that

1
mw(x) > ™ Inlnz,

for x > 2.

Incidentally, the numerical study of primorial primes p# + 1 is interesting
in its own right. A modern example of a large primorial prime, discovered by
C. Caldwell in 1999, is 422094 4+ 1, with more than eighteen thousand decimal
digits.
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1.7. By considering numbers of the form:
n=22.3.5-...-p—1,

prove that there exist infinitely many primes congruent to 3 modulo 4. Find
a similar proof for primes that are congruent to 2 modulo 3. (Compare with
Exercise 5.22.)

1.8. By considering numbers of the form:
(2-3-...-p)2+1,

prove that there are infinitely many primes = 1 (mod 4). Find a similar proof
that there are infinitely many primes that are = 1 (mod 3).

1.9. Suppose a,n are natural numbers with a > 2. Let N = a™ — 1. Show
that the order of a (mod N) in the multiplicative group Z%; is n, and conclude
that n|p(V). Use this to show that if n is prime, there are infinitely many
primes congruent to 1 modulo n

1.10. Let S be a nonempty set of primes with sum of reciprocals S < oo,
and let A be the set of natural numbers that are not divisible by any member
of S. Show that A has asymptotic density less than e~°. In particular, show
that if S has an infinite sum of reciprocals, then the density of A is zero. Using
that the sum of reciprocals of the primes that are congruent to 3 (mod 4) is
infinite, show that the set of numbers that can be written as a sum of two
coprime squares has asymptotic density zero. (See Exercises 1.91 and 5.16.)

1.11. Starting from the fact that the sum of the reciprocals of the primes
is infinite, use Exercise 1.10 to prove that the set of primes has asymptotic
density zero, i.e., that 7(z) = o(x).

1.12. As we state in the text, the “probability” that a random positive
integer x is prime is “about ” 1/Inx. Assuming the PNT, cast this probability
idea in rigorous language.

1.13. Using the definition
o(z,y) = #{1 <n < x: each prime dividing n is greater than y}
(which appears later, Section 3.7.1, in connection with prime counting), argue

that
¢z, V) = () — 7(V) + L.

Then prove the classical Legendre relation
x
w() = 7(Va) =1+ Y uld) | 5], (1.46)
dlQ
where @ is a certain product of primes, namely,

Qzﬂp-

p<Vz
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This kind of combinatorial reasoning can be used, as Legendre once did, to
show that w(z) = o(z). To that end, show that

dx,y) =[] (1—1>—|—E,

p
p<y

where the error term E is O(27®)). Now use this last relation and the fact that
the sum of the reciprocals of the primes diverges to argue that w(x)/x — 0 as
x — 00. (Compare with Exercise 1.11.)

1.14. Starting with the fundamental Theorem 1.1.1, show that for any fixed
€ > 0, the number d(n) of divisors of n (including always 1 and n) satisfies

d(n) = O(n®).

How does the implied O-constant depend on the choice of €7 You might get
started in this problem by first showing that for fixed €, there are only finitely
many prime powers ¢ with d(q) > ¢°.

1.15. Consider the sum of the reciprocals of all Mersenne numbers M,
2" — 1 (for positive integers n), namely,

— 1
E= —.
2
Prove the following alternative form involving the divisor function d (defined

in Exercise 1.14):
-~ d(k)
E=) —¢
k=1

Actually, one can give this sum a faster-than-linear convergence. To that end

show that we also have -

1 2™ + 1

E= Z om2 om _ 1°
Incidentally, the number FE has been well studied in some respects. For
example, it is known [Erdés 1948|, [Borwein 1991] that E is irrational, yet
it has never been given a closed form. Possible approaches to establishing
deeper properties of the number E are laid out in [Bailey and Crandall 2002].
If we restrict such a sum to be over Mersenne primes, then on the basis of
Table 1.2, and assuming that said table is exhaustive up through its final entry

(note that this is not currently known), to how many good decimal digits do
we know

1y

M,eP My
1.16. Euler’s polynomial 22 4+x +41 has prime values for each integer = with

—40 < z < 39. Show that if f(x) is a nonconstant polynomial with integer
coefficients, then there are infinitely many integers x with f(x) composite.
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1.17. It can happen that a polynomial, while not always producing primes,
is very likely to do so over certain domains. Show by computation that a
polynomial found in [Dress and Olivier 1999],

f(z) = 2® + = — 1354363,

has the astounding property that for a random integer x € [1, 10%], the number
| ()] is prime with probability exceeding 1/2. An amusing implication is this:
If you can remember the seven-digit “phone number” 1354363, then you have
a mental mnemonic for generating thousands of primes.

1.18. Consider the sequence of primes 2,3,5,11,23,47. Each but the first
is one away from the double of the prior prime. Show that there cannot be
an infinite sequence of primes with this property, regardless of the starting
prime.

1.19. As mentioned in the text, the relation
1 i p(n)
C(s) = n*

is valid (the sum converges absolutely) for Re(s) > 1. Prove this. But the
limit as s — 1, for which we know the remarkable PNT equivalence

n=1

is not so easy. Two good exercises are these: First, via numerical experiments,
furnish an estimate for the order of magnitude of

ZM

n<z

as a function of z; and second, provide an at least heuristic argument as to
why the sum should vanish as z — co. For the first option, it is an interesting
computational challenge to work out an efficient implementation of the u
function itself. As for the second option, you might consider the first few

terms in the form 1 )
1 _ — + —_— .
Z p pq

p<z pPq<x

to see why the sum tends to zero for large x. It is of interest that even without
recourse to the PNT, one can prove, as J. Gram did in 1884 [Ribenboim 1996],
that the sum is bounded as x — oco.

1.20. Show that for all z > 1, we have

Zl >Inlnz —1,

p<z p
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where p runs over primes. Conclude that there are infinitely many primes.
One possible route is to establish the following intermediate steps:

(1) Show that ZrLf:Jl 1>z

(2) Show that > 1 = [l,<.(1 - %)’1, where the sum is over the natural
numbers n not divisible by any prime exceeding .

1.21. Use the multinomial (generalization of the binomial) theorem to show
that for any positive integer u and any real number z > 0,

u
1 1 1
alzy] =2
p<a n<av

where p runs over primes and n runs over natural numbers. Using this
inequality with u = |Inlnz], show that for > 3,
1

Z — <lnlnz+O(nlnlnz).

p<z
1.22. By considering the highest power of a given prime that divides a given
factorial, prove that

NI — H pZZ;LN/p’“J’
p<N

where the product runs over primes p. Then use the inequality

- ()

(which follows from eV = 372 ' N¥/k! > N~ /N1), to prove that

]
3 npl >InN —1.
p<N ¥

Conclude that there are infinitely many primes.

1.23. Use the Stirling asymptotic formula

e

N\ N
N! ~ () V2rN
and the method of Exercise 1.22 to show that

SR N+ o).

p<N

Deduce that the prime-counting function 7 (x) satisfies w(x) = O(z/Inx) and
that if 7(z) ~ cx/Inx for some number ¢, then ¢ = 1.
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1.24. Derive from the Chebyshev Theorem 1.1.3 the following bounds on
the n-th prime number p,, for n > 2:

Cnlnn < p, < Dnlnn,
where C, D are absolute constants.

1.25. As a teenager, P. Erdds proved the following Chebyshev-type
inequality: for each z > 0,
H p < 4%

p<z

Find a proof of this result, perhaps by first noting that it suffices to prove it
for z an odd integer. Then you might proceed by induction, using

n

n+1<p<2n+1

1.26. Using Exercise 1.25, prove that w(z) = O(z/lnz). (Compare with
Exercise 1.23.)

1.27. Prove the following theorem of Chebyshev, known as the Bertrand
postulate: For a positive integer N there is at least one prime in the interval
(N, 2N]. The following famous ditty places the Bertrand postulate as part of
the lore of number theory:

Chebyshev said it,

we’ll say it again:
There is always a prime
between N and 2N.

Here is an outline of a possible strategy for the proof. Let P be the product
of the primes p with N < p < 2N. We are to show that P > 1. Show that
P divides (2]<,v) Let @ be such that (2]@/) = PQ. Show that if ¢“ is the exact
power of the prime ¢ that divides @, then a < In(2N)/Ing. Show that the
largest prime factor of @ does not exceed 2N/3. Use Exercise 1.25 to show
that Q< 4§N4(2N)1/24(2N)1/3 ”.4(2N)1/’“

)

where k = |1g(2N)]. Deduce that

P> <2N) 4—EN—=(2N)'/2—(2N)/31g(N/2)
N

Also show that (%{,V) > 4N /N for N > 4 (by induction) and deduce that P > 1
for N > 250. Handle the remaining cases of N by a direct argument.

1.28. We saw in Exercise 1.25 that [ [, p < 4% for allz > 0. In this exercise
we obtain an explicit lower bound for this product of primes:

Hp>2$ for all x> 31.
p<z
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While the prime number theorem is equivalent to the assertion that the
product of the primes in [1,z] is e(toM)z it s still of interest to have
completely explicit inequalities as in this exercise and Exercise 1.25.

For a positive integer N, let

(6N)IN!
(BN)I(2N)I(2N)!”

C(N) =

(1) Show that C'(N) is an integer.
(2) Show that if p is a prime with p > (6N)'/* then p* does not divide C'(N).
(3) Using Exercise 1.25 and the idea in Exercise 1.27, show that

H D> C(N)/4(6N)1/2+(6N)1/3lg(1.5N).
p<6N

(4) Use Stirling’s formula (or mathematical induction) to show that C'(NV) >
108~ /(4v/N) for all N.

(5) Show that [],.,p > 2 for z > 212,

(6) Close the gap from 2'2 to 31 with a direct calculation.

1.29. Use Exercise 1.28 to show that n(z) > x/lgx, for all z > 5.
Since we have the binary logarithm here rather than the natural logarithm,
this inequality for 7(x) might be humorously referred to as the “computer

scientist’s prime number theorem.” Use Exercise 1.25 to show that w(z) <
2z/Inz for all x > 0. In this regard, it may be helpful to first establish the

identity o(z) -
. ;
m(x) = 2 —l—/2 tln2tdt’

where 6(z) = Zp<rlnp. Note that the two parts of this exercise prove
Theorem 1.1.3. -

1.30. Here is an exercise involving a healthy mix of computation and theory.

With o(n) denoting the sum of the divisors of n, and recalling from the

discussion prior to Theorem 1.3.3 that n is deemed perfect if and only if

o(n) = 2n, do the following, wherein we adopt a unique prime factorization

n:ptll -~-p§€"‘:

(1) Write a condition on the p;,t; alone that is equivalent to the condition
o(n) = 2n of perfection.

(2) Use the relation from (1) to establish (by hand, with perhaps some minor
machine computations) some lower bound on odd perfect numbers; e.g.,

show that any odd perfect number must exceed 10° (or an even larger
bound).
(3) An “abundant number” is one with o(n) > 2n, as in the instance

0(12) = 28. Find (by hand or by small computer search) an odd abundant
number. Does an odd abundant number have to be divisible by 37
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(4) For odd n, investigate the possibility of “close calls” to perfection. For
example, show (by machine perhaps) that every odd n with 10 < n < 10°
has |o(n) — 2n| > 5.

(5) Explain why o(n) is almost always even. In fact, show that the number
of n <z with o(n) odd is [Vz] + |\/z/2].

(6) Show that for any fixed integer k > 1, the set of integers n with k|o(n)
has asymptotic density 1. (Hint: Use the Dirichlet Theorem 1.1.5.) The
case k = 4 is easier than the general case. Use this easier case to show
that the set of odd perfect numbers has asymptotic density 0.

(7) Let s(n) = o(n) — n for natural numbers n, and let s(0) = 0. Thus, n is
abundant if and only if s(n) > n. Let s*)(n) be the function s iterated k
times at n. Use the Dirichlet Theorem 1.1.5 to prove the following theorem
of H. Lenstra: For each natural number k there is a number n with

n<sMn)<s@m) < - <s®n). (1.47)

It is not known whether there is any number n for which this inequality
chain holds true for every k, nor is it known whether there is any number
n for which the sequence (s*)(n)) is unbounded. The smallest n for which
the latter property is in doubt is 276. P. Erdés has shown that for each
fixed k, the set of n for which n < s(n), yet (1.47) fails, has asymptotic
density 0.

1.31. [Vaughan] Prove, with ¢,;(n) being the Ramanujan sum defined in
relation (1.37), that n is a perfect number if and only if

N cg(n) 12
3 ():ﬁ'

2
q=1 9

1.32. It is known [Copeland and Erdés 1946] that the number
0.235711131719.. .,

where all the primes written in decimal are simply concatenated in order, is
“normal to base 10,” meaning that each finite string of k consecutive digits
appears in this expansion with “fair” asymptotic frequency 107%. Argue a
partial result, that each string of £ digits appears infinitely often.

In fact, given two finite strings of decimal digits, show there are infinitely
many primes that in base 10 begin with the first string and—regardless of
what digits may appear in between—end with the second string, provided the
last digit of the second string is 1,3,7, or 9.

The relative density of primes having a given low-order decimal digit 1, 3,7,
or 9 is 1/4, as evident in relation (1.5). Does the set of all primes having a
given high-order decimal digit have a similarly well-defined relative density?

1.33. Here we use the notion of normality of a number to a given base as
enunciated in Exercise 1.32, and the notion of equidistribution enunciated in
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Exercise 1.35. Now think of the ordered, natural logarithms of the Fermat
numbers as a pseudorandom sequence of real numbers. Prove this theorem: If
said sequence is equidistributed modulo 1, then the number In 2 is normal to
base 2. Is the converse of this theorem true?

Note that it remains unknown to this day whether In2 is normal to any
integer base. Unfortunately, the same can be said for any of the fundamental
constants of history, such as 7, e, and so on. That is, except for instances
of artificial digit construction as in Exercise 1.32, normality proofs remain
elusive. A standard reference for rigorous descriptions of normality and
equidistribution is [Kuipers and Niederreiter 1974]. A discussion of normality
properties for specific fundamental constants such as In2 is [Bailey and
Crandall 2001].

1.34. Using the PNT, or just Chebyshev’s Theorem 1.1.3, prove that the
set of rational numbers p/q with p, ¢ prime is dense in the positive reals.

1.35. It is a theorem of Vinogradov that for any irrational number «,
the sequence (ap,), where the p, are the primes in natural order, is
equidistributed modulo 1. Equidistribution here means that if #(a,b, N)
denotes the number of times any interval [a,b) C [0,1) is struck after N
primes are used, then #(a,b, N)/N ~ (b—a) as N — co. On the basis of this
Vinogradov theorem, prove the following: For irrational o > 1, and the set

S(a) ={lka] : k=1,2,3,...},
the prime count defined by
Ta(z) =#{p <z : pePNS(a)}

behaves as

What is the behavior of 7, for « rational?

As an extension to this exercise, the Vinogradov equidistribution theorem
itself can be established via the exponential sum ideas of Section 1.4.4. One
uses the celebrated Weyl theorem on spectral properties of equidistributed
sequences [Kuipers and Niederreiter 1974, Theorem 2.1] to bring the problem
down to showing that for irrational o and any integer h # 0,

EN(hOé) — Z eQTrihap

p<N

is o(N). This, in turn, can be done by finding suitable rational approximants
to o and providing bounds on the exponential sum, using essentially our book
formula (1.39) for well-approximable values of ha, while for other « using
(1.41). The treatment in [Ellison and Ellison 1985] is pleasantly accessible on
this matter.
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As an extension, use exponential sums to study the count
() =#{n € [l,2]: [n°| € P}.

Heuristically, one might expect the asymptotic behavior

Show first, on the basis of the PNT, that for ¢ < 1 this asymptotic relation
indeed holds. Use exponential sum techniques to establish this asymptotic
behavior for some ¢ > 1; for example, there is the Piatetski-Shapiro theorem
[Graham and Kolesnik 1991] that the asymptotic relation holds for any ¢ with
1< e<12/11.

1.36. The study of primes can lead to considerations of truly astoundingly
large numbers, such as the Skewes numbers

7.705
€

€

34
1010
) € ?

the second of these being a proven upper bound for the least = with 7(z) >
lig(z), where lig(x) is defined as [ dt/Int. (The first Skewes number is
an earlier, celebrated bound that Skewes established conditionally on the
Riemann hypothesis.) For > 1 one takes the “principal value” for the
singularity of the integrand at ¢t = 1, namely,

lig(z) = i /161dt+/w LI
ol®) = 1% 0 Int 1ieInt ’

The function lig(z) is li () + ¢, where ¢ = 1.0451637801. Before Skewes came
up with his bounds, J. Littlewood had shown that m(x) — lig(z) (as well as
7(x) — li(z)) not only changes sign, but does so infinitely often.

An amusing first foray into the “Skewes world” is to express the second
Skewes number above in decimal-exponential notation (in other words, replace
the e’s with 10’s appropriately, as has been done already for the first Skewes
number). Incidentally, a newer reference on the problem is [Kaczorowski
1984], while a modern estimate for the least z with w(z) > lig(x) is
r < 1.4-10%6 [Bays and Hudson 2000a, 2000b]. In fact, these latter authors
have recently demonstrated—using at one juncture 10° numerical zeros of
the zeta function supplied by A. Odlyzko—that w(z) > lig(xz) for some
x € (1.398201,1.398244) - 10316,

One interesting speculative exercise is to estimate roughly how many more
years it will take researchers actually to find and prove an explicit case of
m(x) > lig(z). It is intriguing to guess how far calculations of 7(z) itself can
be pushed in, say, 30 years. We discuss prime-counting algorithms in Section
3.7, although the state of the art is today 7 (1021) or somewhat higher than
this (with new results emerging often).

Another speculative direction: Try to imagine numerical or even physical
scenarios in which such huge numbers naturally arise. One reference for
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this recreation is [Crandall 1997a]. In that reference, what might be called
preposterous physical scenarios—such as the annual probability of finding
oneself accidentally quantum-tunneled bodily (and alive, all parts intact!) to
planet Mars—are still not much smaller than A~4, where A is the Avogadro
number (a mole, or about 6-10%3). It is difficult to describe a statistical scenario
relevant to the primes that begs of yet higher exponentiation as manifest in
the Skewes number.

Incidentally, for various technical reasons, the logarithmic-integral func-
tion lig, on many modern numerical/symbolic systems, is best calculated in
terms of Ei(In ), where we refer to the standard exponential-integral function

Ei(z) = / t—tet dt,

— 00

with principal value assumed for the singularity at ¢ = 0. In addition, care
must be taken to observe that some authors use the notation li for what we
are calling lig, rather than the integral from 2 in our defining equation (1.3)
for li. Calling our book’s function li, and the latter lig, we can summarize
this computational advice as follows:

li (z) =lig(z) —lip(2) = Ei(lnz) — Ei(In2) ~ Ei(lnz) — 1.0451637801.

1.37. In [Schoenfeld 1976] it is shown that on the Riemann hypothesis we
have the strict bound (for x > 2657)

1
|m(x) —lig(x)| < —+/ Inz,
8m

where lig(z) is defined in Exercise 1.36. Show via computations that none of
the data in Table 1.1 violates the Riemann hypothesis!

By direct computation and the fact that li (z) < lig(z) < li(z) + 1.05,
prove the assertion in the text that assuming the Riemann hypothesis,

|m(z) —li(z)| < vz Inz for z > 2.01. (1.48)

It follows from the discussion in connection to (1.25) that (1.48) is equivalent
to the Riemann hypothesis. Note too that (1.48) is an elementary assertion,
which to understand one needs to know only what a prime is, the natural
logarithm, and integrals. Thus, (1.48) may be considered as a formulation of
the Riemann hypothesis that could be presented in, say, a calculus course.

1.38. With () defined as in (1.22), it was shown in [Schoenfeld 1976] that
the Riemann hypothesis implies that

1
[Y(x) — x| < 8—\/5 In®z for z > 73.2.
T

By direct computation show that on assumption of the Riemann hypothesis,

[(x) — x| < vz In*z for x> 3.
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Then using Exercise 1.37 give a proof that the Riemann hypothesis is
equivalent to the elementary assertion

|L(n) —n| < v/n In*n for every integer n > 3, (1.49)

where L(n) is the natural logarithm of the least common multiple of 1,2, ..., n.
If (1.48) is to be the “calculus-course” version of the Riemann hypothesis,
perhaps (1.49) might be referred to as the “precalculus-course” version, in
that all that is used in the formulation here is the concept of least common
multiple and the natural logarithm.

1.39. Using the conjectured form of the PNT in (1.25), prove that
there is a prime between every pair of sufficiently large cubes. Use (1.48)
and any relevant computation to establish that (again, on the Riemann
hypothesis) there is a prime between every two positive cubes. It was shown
unconditionally by Ingham in 1937 that there is a prime between every pair
of sufficiently large cubes, and it was shown, agaln uncondltlonally7 by Cheng
in 1999, that this is true for cubes greater than e®

1.40. Show that > . ,1/In(n —p) ~ n/ In? n, where the sum is over
primes. B

1.41. Using the known theorem that there is a positive number ¢ such that
the number of even numbers up to x that cannot be represented as a sum of
two primes is O(x!7¢), show that there are infinitely many triples of primes in
arithmetic progression. (For a different approach to the problem, see Exercise
1.42.)

1.42. It is known via the theory of exponential sums that

.’L‘3
> (Ra(2n) — R2(2n))* = O (m x) , (1.50)

where Ry(2n) is, as in the text, the number of representations p+ ¢ = 2n with
p,q prime, and where Ry(2n) is given by (1.10); see [Prachar 1978]. Further,
we know from the Brun sieve method that

Ry(2n) = O (nlnlnn>

In%n

Show, too, that R2(2n) enjoys the same big-O relation. Use these estimates to
prove that the set of numbers 2p with p prime and with 2p not representable
as a sum of two distinct primes has relative asymptotic density zero in the set
of primes; that is, the number of these exceptional primes p < x is o(n(z)).
In addition, let

=#{(pgr)€P® : 0<q—p=r—q q<uz},
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so that As(z) is the number of 3-term arithmetic progressions p < ¢ < r of
primes with ¢ < z. Prove that for x > 2,

1,2

A= 3 (Ra(2p) 1)~ Or

p<z,pEP In"z

where C; is the twin-prime constant defined in (1.6).

In a computational vein, develop an efficient algorithm to compute Asz(x)
exactly for given values of x, and verify that A3(3000) = 15482 (i.e., there are
15482 triples of distinct primes in arithmetic progression with the middle
prime not exceeding 3000), that A3(10%) = 109700, and that A3(10°) =
297925965. (The last value here was computed by R. Thompson.) There are
at least two ways to proceed with such calculations: Use some variant of an
Eratosthenes sieve, or employ Fourier transform methods (as intimated in
Exercise 1.67). The above asymptotic formula for Az is about 16% too low at
108, If 22 /1n® 2 is replaced with

© p2t—2 .
/2 /2 (Int)(In s)(In(2t — s)) ds dt,

the changed formula is within 0.4% of the exact count at 10°. Explain why
the double integral should give a better estimation.

1.43. In [Saouter 1998], calculations are described to show how the validity
of the binary Goldbach conjecture for even numbers up through 4-10'! can be
used to verify the validity of the ternary Goldbach conjecture for odd numbers
greater than 7 and less then 10%2°. We now know that the binary Goldbach
conjecture is true for even numbers up to 4 - 10'4. Describe a calculation
that could be followed to extend Saouter’s bound for the ternary Goldbach
conjecture to, say, 10%3.

Incidentally, research on the Goldbach conjecture can conceivably bring
special rewards. In connection with the novel Uncle Petros and Goldbach’s
Conjecture by A. Doxiadis, the publisher announced in 2000 a $1,000,000
prize for a proof of the (binary) Goldbach conjecture, but the prize expired
unclaimed in 2002.

1.44. Here we prove (or at least finish the proof for) the result of
Shnirel’'man—as discussed in Section 1.2.3—that the set S={p+¢q : p,q €
P} has “positive lower density” (the terminology to be clarified below). As in
the text, denote by Rg(n) the number of representations n = p + ¢ with p, g
prime. Then:

(1) Argue from the Chebyshev Theorem 1.1.3 that
22

2 bl
In“x

Z RQ(TL) > A1

n<x

for some positive constant A; and all sufficiently large values of x.
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(2) Assume outright (here is where we circumvent a great deal of hard work!)

the fact that

3

ZRQ(TL)Z < Agl Y

n T

n<z

for z > 1, where Aj is a constant. This result can be derived via such
sophisticated techniques as the Selberg and Brun sieves [Nathanson 1996].

(3) Use (1), (2), and the Cauchy—Schwarz inequality

() = (59) (52)

(valid for arbitrary real numbers a,,b,) to prove that for some positive
constant As we have

#{n <z : Ra(n) >0} > Asx,

for all sufficiently large values of z, this kind of estimate being what is
meant by “positive lower density” for the set S. (Hint: Define a,, = Ra(n)
and (b,) to be an appropriate binary sequence.)

As discussed in the text, Shnirel’'man proved that this lower bound on density
implies his celebrated result that for some fixed s, every integer starting with
2 is the sum of at most s primes. It is intriguing that an upper bound on
Goldbach representations—as in task (2)—is the key to this whole line of
reasoning! That is because, of course, such an upper bound reveals that
representation counts are kept “under control,” meaning “spread around”
such that a sufficient fraction of even n have representations. (See Exercise
9.80 for further applications of this basic bounding technique.)

1.45. Assuming the prime k-tuples Conjecture, 1.2.1 show that for each k
there is an arithmetic progression of k& consecutive primes.

1.46. Note that each of the Mersenne primes 22 — 1, 23 —1, 2° — 1 is a
member of a pair of twin primes. Do any other of the known Mersenne primes
from Table 1.2 enjoy this property?

1.47. Let g be a Sophie Germain prime, meaning that s = 2¢ + 1 is likewise
prime. Prove that if also ¢ = 3 (mod 4) and ¢ > 3, then the Mersenne number
M, = 291 is composite, in fact divisible by s. A large Sophie Germain prime
is Kerchner and Gallot’s

q = 18458709 - 232611 _ 1,

with 2¢ + 1 also prime, so that the resulting Mersenne number M, is a truly
gargantuan composite of nearly 101" decimal digits.

1.48. Prove the following relation between Mersenne numbers:

ged(2% — 1,20 — 1) = 28°d(a:b) _ 1
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Conclude that for distinct primes ¢, the Mersenne numbers My, M, are
coprime.

1.49. From W. Keller’s lower bound on a factor p of Fb4, namely,
p>6-10%,

estimate the a priori probability from relation (1.13) that Fy4 is prime (we
now know it is not prime, but let us work in ignorance of that computational
result here). Using what can be said about prime factors of arbitrary Fermat
numbers, estimate the probability that there are no more Fermat primes
beyond F} (that is, use the special form of possible factors and also the known
character of some of the low-lying Fermat numbers).

1.50. Prove Theorem 1.2.1, assuming the Brun bound (1.8).

1.51. For the odd number n = 3-5---101 (consecutive odd-prime product)
what is the approximate number of representations of n as a sum of three
primes, on the basis of Vinogradov’s estimate for R3(n)? (See Exercise 1.68.)

1.52. Show by direct computation that 10® is not the sum of two base-
2 pseudoprimes (see Section 3.4 for definitions). You might show in passing,
however, that if p denotes a prime and P, denotes an odd base-2 pseudoprime,
then

105=p+P, or Py+p

in exactly 120 ways (this is a good check on any such programming effort).
By the way, one fine representation is

10% = 99999439 + 561,

where 561 is well known as the smallest Carmichael number (see Section
3.4.2). Is 10® the sum of two pseudoprimes to some base other than 2? What
is the statistical expectation of how many “pseudoreps” of various kinds p+ P,
should exist for a given n?

1.53. Prove: If the binary expansion of a prime p has all of its 1’s lying in
an arithmetic progression of positions, then p cannot be a Wieferich prime.
Prove the corollary that neither a Mersenne prime nor a Fermat prime can be
a Wieferich prime.

1.54. Show that if u~! denotes a multiplicative inverse modulo p, then for
each odd prime p,

P _
Z T— -2 (mod p).

p/2<u<p p

1.55. Use the Wilson—Lagrange Theorem 1.3.6 to prove that for any prime
p =1 (mod 4) the congruence 2 + 1 = 0 (mod p) is solvable.
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1.56. Prove the following theorem relevant to Wilson primes: if ¢ is a
primitive root of the prime p, then the Wilson quotient is given by

Then, using this result, give an algorithm that determines whether p with
primitive root g = 2 is a Wilson prime, but using no multiplications; merely
addition, subtraction, and comparison.

1.57. There is a way to connect the notion of twin-prime pairs with the
Wilson—-Lagrange theorem as follows. Let p be an integer greater than 1. Prove
the theorem of Clement that p, p + 2 is a twin-prime pair if and only if

4p—1)!'=—-4—p (mod p(p + 2)).

1.58. How does one resolve the following “Mertens paradox”? Say x is a
large integer and consider the “probability” that x is prime. As we know,
primality can be determined by testing x for prime divisors not exceeding
vz. But from Theorem 1.4.2; it would seem that when all the primes less
than /r are probabilistically sieved out, we end up with probability

-
()
P Inx

p<Vz

Arrive again at this same estimate by simply removing the floor functions in
(1.46). However, the PNT says that the correct asymptotic probability that
x is prime is 1/Ilnz. Note that 2e™7 = 1.1229189. . ., so what is a resolution?

It has been said that the sieve of Eratosthenes is “more efficient than
random,” and that is one way to envision the “paradox.” Actually, there has
been some interesting work on ways to think of a resolution; for example, in
[Furry 1942] there is an analysis of the action of the sieve of Eratosthenes on a
prescribed interval [z, z + d], with some surprises uncovered in regard to how
many composites are struck out of said interval; see [Bach and Shallit 1996,
p. 365] for a historical summary.

1.59. By assuming that relation (1.24) is valid whenever the integral
converges, prove that M (z) = O(z!/2*¢) implies the Riemann hypothesis.

1.60. There is a compact way to quantify the relation between the PNT and
the behavior of the Riemann zeta function. Using the relation

) _ [ e
o / z)e da,

show that the assumption

U(z) =z + 0(x")
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implies that ((s) has no zeros in the half-plane Re(s) > «. This shows the
connection between the essential error in the PNT estimate and the zeros of (.

For the other (harder) direction, assume that ¢ has no zeros in the half-
plane Re(s) > a. Looking at relation (1.23), prove that

p
Z i O(z*1n®T),

Im(p) < T !

which proof is nontrivial and interesting in its own right [Davenport 1980].
Finally, conclude that
Y(z) =z + O (z*1°)

for any € > 0. These arguments reveal why the Riemann conjecture
m(z) =li(z) + O(z'/?Inz)
is sometimes thought of as “the PNT form of the Riemann hypothesis.”

1.61. Here we show how to evaluate the Riemann zeta function on the
critical line, the exercise being to implement the formula and test against
some high-precision values given below. We describe here, as compactly as we
can, the celebrated Riemann—Siegel formula. This formula looms unwieldy on
the face of it, but when one realizes the formula’s power, the complications
seem a small price to pay! In fact, the formula is precisely what has been used
to verify that the first 1.5 billion zeros (of positive imaginary part) lie exactly
on the critical line (and parallel variants have been used to push well beyond
this; see the text and Exercise 1.62).
A first step is to define the Hardy function

Z(t) = eV D(1/2 + it),

where the assignment

1t 1
J(t) = Im <lnF <4 + 2)> - §t1n7r

renders Z a real-valued function on the critical line (i.e., for ¢ real). Moreover,
the sign changes in Z correspond to the zeros of ¢. Thus if Z(a), Z(b) have
opposite sign for reals a < b, there must be at least one zero in the interval
(a,b). Tt is also convenient that

1Z()] = 1¢(1/2 +it)].

Note that one can either work entirely with the real Z, as in numerical studies
of the Riemann hypothesis, or backtrack with appropriate evaluations of I and
so on to get ( itself on the critical line.

That having been said, the Riemann—Siegel prescription runs like so [Brent
1979]: Assign 7 = t/(2w), m = [T, 2 = 2(/7T — m) — 1. Then the
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computationally efficient formula is

Z(t)=2 i n~Y2 cos(tInn — 9(t))

M
Y 1)y () + Raa (),
j=0

Here, M is a cutoff integer of choice, the ®; are entire functions defined for
j > 0in terms of a function ® and its derivatives, and Ry (t) is the error. A
practical instance is the choice M = 2, for which we need

cos(372% + 37)

Pol2) = cos(7z)

)

L -6

1 o 1 6
Da(2) = 15585 (2) + 555720 (2):

In spite of the complexity here, it is to be stressed that the formula is
immediately applicable in actual computation. In fact, the error Ry can be
rigorously bounded:

|Ra(t)| < 0.011¢77/*  for all ¢ > 200.

Higher-order (M > 2) bounds, primarily found in [Gabcke 1979], are known,
but just Ry has served computationalists well for two decades.

Implement the Riemann—Siegel formula for M = 2, and test against some
known values such as

¢(1/2 4 300i) ~ 0.4774556718784825545360619
+ 0.6079021332795530726590749 ¢,
Z(1/2 4 300¢) = 0.7729870129923042272624525,

which are accurate to the implied precision. Using your implementation, locate
the nearest zero to the point 1/24-300:, which zero should have t ~ 299.84035.
You should also be able to find, still at the M = 2 approximation level and
with very little machine time, the value

¢(1/2 + 10%) ~ 0.0760890697382 + 2.805102101019 i,

again correct to the implied precision.

When one is armed with a working Riemann—Siegel implementation, a
beautiful world of computation in support of analytic number theory opens.
For details on how actually to apply ( evaluations away from the real axis,
see [Brent 1979], [van de Lune et al. 1986], [Odlyzko 1994], [Borwein et al.
2000]. We should point out that in spite of the power and importance of
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the Riemann—Siegel formula, there are yet alternative means for efficient
evaluation when imaginary parts are large. In fact it is possible to avoid
the inherently asymptotic character of the Riemann—Siegel series, in favor of
manifestly convergent expansions based on incomplete gamma function values,
or on saddle points of certain integrals. Alternative schemes are discussed in
[Galway 2000], [Borwein et al. 2000], and [Crandall 1999c¢].

1.62. For the Riemann—Siegel formula of Exercise 1.61, and for similar
prescriptions when s = ¢ + it is not on the half-line, it is evident that sums
of the form

where m is an appropriate cutoff (typically, m ~ v/t), could be used in actual
computations. Investigate the notion of calculating S,,(s) over an arithmetic
progression of s values, using the nonuniform FFT algorithm we present as
Algorithm 9.5.8. That is, for values

s =0+ ik,

for say k =10,..., K — 1, we have

S ; _ _~ _—ik7Tlnn
'm (0 + ikT) Znae ,

n=1
and sure enough, this suggests a strategy of (m/K) nonuniform FFTs each of
length K. Happily, the sum S,, can thus be calculated, for all k € [0, K — 1],
in a total of

O(mInK)

operations, where desired accuracy enters (only logarithmically) into the
implied big-O constant. This is a remarkable gain over the naive approach
of doing a length-m sum K times, which would require O(mK).

Such speedups can be used not only for RH verification, but analytic
methods for prime-counting. Incidentally, this nonuniform FFT approach
is essentially equivalent in complexity to the parallel method in [Odlyzko
and Schonhage 1988]; however, for computationalists familiar with FFT, or
possessed of efficient FFT software (which the nonuniform FFT could call
internally), the method of the present exercise should be attractive.

1.63. Show that ¢(z), defined in (1.22), is the logarithm of the least
common multiple of all the positive integers not exceeding z. Show
that the prime number theorem is equivalent to the assertion ¥(z) ~
x. Incidentally, in [Deléglise and Rivat 1998], 1/)(1015) is found to be
999999997476930.507683 . . ., an attractive numerical instance of the relation
Y(x) ~ x. We see, in fact, that the error |¢)(z) — x| is very roughly /x for
x = 10'%, such being the sort of error one expects on the basis of the Riemann
hypothesis.
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1.64. Perform computations that connect the distribution of primes with the
Riemann critical zeros by way of the ¢ function defined in (1.22). Starting
with the classical exact relation (1.23), obtain a numerical table of the first 2K
critical zeros (K of them having positive imaginary part), and evaluate the
resulting numerical approximation to ¢ (z) for, say, noninteger = € (2, 1000).
As a check on your computations, you should find, for K = 200 zeros and
denoting by ¥(¥) the approximation obtained via said 2/ zeros, the amazing
fact that

P(x) =P (@) <5

throughout the possible x values. This means—heuristically speaking—
that the first 200 critical zeros and their conjugates determine the prime
occurrences in (2,1000) “up to a handful,” if you will. Furthermore, a plot of
the error vs. x is nicely noisy around zero, so the approximation is quite good
in some sense of average. Try to answer this question: For a given range on z,
about how many critical zeros are required to effect an approximation as good
as |¢ — K )| < 1 across the entire range? And here is another computational
question: How numerically good is the approximation (based on the Riemann
hypothesis)
() = $+2\/52 sm(ttlnsc) L0 (Va),
t

with ¢ running over the imaginary parts of the critical zeros [Ellison and
Ellison 1985]? For an analogous analytic approach to actual prime-counting,
see Section 3.7 and especially Exercise 3.50.

1.65. This, like Exercise 1.64, also requires a database of critical zeros of the
Riemann zeta function. There exist some useful tests of any computational
scheme attendant on the critical line, and here is one such test. It is a
consequence of the Riemann hypothesis that we would have an exact relation
(see [Bach and Shallit 1996, p. 214])

1
P p

where p runs over all the zeros on the critical line. Verify this relation
numerically, to as much accuracy as possible, by:

(1) Performing the sum for all zeros p = 1/2+it for |t| < T, some T of choice.

(2) Performing such a sum for |t < T but appending an estimate of
the remaining, infinite, tail of the sum, using known formulae for the
approximate distribution of zeros [Edwards 1974], [Titchmarsh 1986], [Ivié¢
1085].

Note in this connection Exercises 1.61 (for actual calculation of ¢ values)

and 8.34 (for more computations relating to the Riemann hypothesis).

1.66. There are attractive analyses possible for some of the simpler
exponential sums. Often enough, estimates—particularly upper bounds—on



70 Chapter 1 PRIMES!

such sums can be applied in interesting ways. Define, for odd prime p and
integers a, b, ¢, the sum

p—1
S(a,byc) = Y e2rileatsbatal/p,
=0

Use the Weyl relation (1.34) to prove

|S(aabvc)| =0, p, or \/}3;

and give conditions on a,b, ¢ that determine precisely which of these three
values for |S| is attained. And here is an extension: Obtain results on |S|
when p is replaced by a composite integer N. With some care, you can handle
even the cases when a, N are not coprime. Note that we are describing here a
certain approach to the estimation of Gauss sums (see Exercises 2.27, 2.28).

Now use the same basic approach on the following “cubic-exponential”
sum (here for any prime p and any integer a):

p—1
T(a) — Ze2wiax3/p'
z=0

It is trivial that 0 < |T'(a)| < p. Describe choices of p,a such that equality
(to 0 or p) occurs. Then prove: Whenever a # 0 (mod p) we always have an

upper bound
IT(a)] < /p3/2 +p < 2p%/%.

Note that one can do better, by going somewhat deeper than relation (1.34),
to achieve a best-possible estimate O(pl/z) [Korobov 1992, Theorem 5],
[Vaughan 1997, Lemma 4.3]. Yet, the 3/4 power already leads to some
interesting results. In fact, just showing that T'(a) = o(p) establishes that
as p — oo, the cubes mod p approach equidistribution (see Exercise 1.35).
Note, too, that providing upper bounds on exponential sums can allow certain
other sums to be given lower bounds. See Exercises 9.41 and 9.80 for additional
variations on these themes.

1.67. The relation (1.36) is just one of many possible integral relations for
interesting prime-related representations. With our nomenclature

EN(t) _ Z 627ritp

p<N
adopted, establish each of the following equivalences:

(1) The infinitude of twin primes is equivalent to the divergence as N — oo
of

1
/ A7t B (1) B (—t) d.
0
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(2) The infinitude of prime triples in arithmetic progression (see Exercises
1.41, 1.42) is equivalent to the divergence as N — oo of

/1 E%,(t)En(—2t) dt.
0

(3) The (binary) Goldbach conjecture is equivalent to

1
/ e TN (1) dt # 0
0

for even N > 2, and the ternary Goldbach conjecture is equivalent to

1
/ e N B3 () dt # 0
0

for odd N > 5.

(4) The infinitude of Sophie Germain primes (i.e., primes p such that 2p + 1
is likewise prime) is equivalent to the divergence as N — oo of

1
/ 2™ By (2t)En (—t) dt.
0

1.68. We mentioned in Section 1.4.4 that there is a connection between
exponential sums and the singular series © arising in the Vinogradov
resolution (1.12) for the ternary Goldbach problem. Prove that the Euler
product form for ©(n) converges (what about the case n even?), and is equal
to an absolutely convergent sum, namely,

@(TL) = z_:l gg(g]q)) Cq(n)v

where the Ramanujan sum ¢, is defined in (1.37). It is helpful to observe
that u,p,c are all multiplicative, the latter function in the sense that if
ged(a,b) = 1, then c¢,(n)cp(n) = cqp(n). Show also that for sufficiently large
B in the assignment Q = In” n, the sum (1.40) being only to @ (and not to
00) causes negligible error in the overall ternary Goldbach estimate.

Next, derive the representation count, call it Rs(n), for n the sum of s
primes, in the following way. It is known that for s > 2, n = s (mod 2),

Ry(n) = (SS_(?)!E (1 +0 (hllrllr;n>) 7

where now the general singular series is given from exponential-sum theory as

O.(n) = Z;‘

*(q)
()™

q=1
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Cast this singular series into an Euler product form, which should agree with
our text formula for s = 3. Verify that there are positive constants C7,Cs
such that for all s > 2 and n = s (mod 2),

Cy < ©4(n) < Cs.

Do you obtain the (conjectured, unproven) singular series in (1.9) for the case
s = 27 Of course, it is not that part but the error term in the theory that
has for centuries been problematic. Analysis of such error terms has been a
topic of fascination for much of the 20th century, with new bounds being
established, it seems, every few years. For example, the paper [Languasco
2000] exemplifies a historical chain of results involving sharp error bounds for
any s > 3, obtained conditionally on the generalized Riemann hypothesis.

As a computational option, give a good numerical value for the singular
series in (1.12), say for n = 10® — 1, and compare the actual representation
count Rs(n) with the Vinogradov estimate (1.12). Might the expression
n?/ In® n be replaced by an integral so as to get a closer agreement? Compare
with the text discussion of the exact value of Ry (10%).

1.69. Define a set
S=A{nl|lnn|: n=1,2,3...},

and prove that every sufficiently large integer is in S+ that is, can be written
as a sum of two numbers from S. (A proof can be effected either through
combinatorics and the Chinese remainder theorem—see Section 2.1.3—or via
convolution methods discussed elsewhere in this book.) Is every integer greater
than 221 in S 4 S? For the set

T={|nlnn]: n=1,2,3,...},

is every integer greater than 25 in 7'+ T7

Since the n-th prime is asymptotically nInn, these results indicate that
the Goldbach conjecture has nothing to fear from just the sparseness of primes.
Interesting questions abound in this area. For example, can you find a set of
integers U such that the n-th member of U is asymptotically nlnn, yet the
set of numbers in U + U has asymptotic density 07

1.70. This exercise is a mix of theoretical and computational tasks
pertaining to exponential sums. All of the tasks concern the sum we have
denoted by Ey, for which we discussed the estimate

E (Cl/ ): 6271'1';z7zz/q ~ U(Q/Q)W(N)7
v gv (a/9)

where g = ged(a,q). We remind ourselves that the approximation here is
useful mainly when g = 1 and ¢ is small. Let us start with some theoretical
tasks.
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(1) Take ¢ = 2 and explain why the above estimate on Ex is obvious for
a=0,1.

(2) Let ¢ = 3, and for a = 1,2 explain using a vector diagram in the complex
plane how the above estimate works.

(3) Let ¢ = 4, and note that for some a values the right-hand side of the above
estimate is actually zero. In such cases, use an error estimate (such as the
conditional result (1.32)) to give sharp, nonzero estimates on En(a/4) for
a=1,3.

These theoretical examples reveal the basic behavior of the exponential sum

for small q.

For a computational foray, test numerically the behavior of Ex by way of
the following steps:

(1) Choose N = 10°, q = 31, and by direct summation over primes p < N,
create a table of E values for a € [0, ¢ — 1]. (Thus there will be ¢ complex
elements in the table.)

(2) Create a second table of values of m(IN) ZEZ;Z;, also for each a € [0,¢q — 1].

(3) Compare, say graphically, the two tables. Though the former table is
“noisy” compared to the latter, there should be fairly good average
agreement. Is the discrepancy between the two tables consistent with
theory?

(4) Explain why the latter table is so smooth (except for a glitch at the
(a = 0)-th element). Finally, explain how the former table can be
constructed via fast Fourier transform (FFT) on a binary signal (i.e.,
a certain signal consisting of only 0’s and 1’s).

Another interesting task is to perform direct numerical integration to verify
(for small cases of N, say) some of the conjectural equivalences of Exercise
1.67.

1.71. Verify the following: There exist precisely 35084 numbers less than
10190 that are 4-smooth. Prove that for a certain constant ¢, the number of
4-smooth numbers not exceeding z is

Y(z,4) ~ cln®z,

giving the explicit ¢ and also as sharp an error bound on this estimate as you
can. Generalize by showing that for each y > 2 there is a positive number ¢,
such that

Y(x,y) ~ ¢y ™ 2, where y is fixed and z — co.

1.72. Carry out some numerical experiments to verify the claim after
equation (1.45) that the implicit lower bound is a “good” one.

1.73. Compute by empirical means the approximate probability that a
random integer having 100 decimal digits has all of its prime factors less than
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10'°. The method in [Bernstein 1998] might be used in such an endeavor. Note
that the probability predicted by Theorem 1.4.9 is p(10) ~ 2.77 x 10711

1.74. What is the approximate probability that a random integer (but of
size x, say) has all but one of its prime factors not exceeding B, with a
single outlying prime in the interval (B,C]? This problem has importance
for factoring methods that employ a “second stage,” which, after a first stage
exhausts (in a certain algorithm-dependent sense) the first bound B, attempts
to locate the outlying prime in (B, C]. It is typical in implementations of
various factoring methods that C' is substantially larger than B, for usually
the operations of the second stage are much cheaper. See Exercise 3.5 for
related concepts.

1.75. Here is a question that leads to interesting computational issues.
Consider the number

c=1/3+

1/5+ 17—

where the so-called elements of this continued fraction are the reciprocals of
all the odd primes in natural order. It is not hard to show that c is well-
defined. (In fact, a simple continued fraction—a construct having all 1’s in
the numerators—converges if the sum of the elements, in the present case
1/3+1/5 + -+, diverges.) First, give an approximate numerical value for
the constant c. Second, provide numerical (but rigorous) proof that ¢ is not
equal to 1. Third, investigate this peculiar idea: that using all primes, that is,
starting the fraction as 1/2+ ﬁ, results in nearly the same fraction value!
Prove that if the two fractions in question were, in fact, equal, then we would
have ¢ = (1 + V17 ) /4. By invoking more refined numerical experiments, try
to settle the issue of whether c¢ is actually this exact algebraic value.

1.76. It is a corollary of an attractive theorem in [Bredihin 1963] that if n
is a power of two, the number of solutions

N(n) =#{(z,y,p) : n=p+ay;pEP;z,yc Zt}
enjoys the following asymptotic relation:

N(n) 105
—_—t~ — ~0.648....
2 D 2(3) ~ 0,648

From a computational perspective, consider the following tasks. First, attempt
to verify this asymptotic relation by direct counting of solutions. Second, drop
the restriction that n be a power of two, and try to verify experimentally,
theoretically, or both that the constant 105 should in general be replaced by

—1)?
315 ][ gp_iil_
peEP, p|np p
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1.6 Research problems

1.77. In regard to the Mills theorem (the first part of Theorem 1.2.2), try
to find an explicit number 8 and a large number n such that L93]J is prime

for j =1,2,...,n. For example if one takes the specific rational § = 165/92,
show that each of
[ ] 1) o] o]

is prime, yet the number [935J is, alas, composite. Can you find a simple

rational # that has all cases up through n = 5 prime, or even further? Say a
(finite or infinite) sequence of primes ¢; < g2 < ... is a “Mills sequence” if

there is some number ¢ such that ¢; = {GSjJ for j =1,2,....Is it true that

any finite Mills sequence can be extended to an infinite Mills sequence (not
necessarily with the same 6, but keeping the same initial sequence of primes)?
If so, it would follow that for each prime p there is an infinite Mills sequence
starting with p. It may be possible to settle the more general question for ¢;
sufficiently large using the original method in [Mills 1947] (also see [Ellison
and Ellison 1985, p. 31]). Of course, if the more general question is false, it
may be possible to prove it so with a numerical example. In [Weisstein 2005]
it is reported that a number 0 slightly larger than 1.3 works in the Mills
theorem. This has not yet been rigorously proved, so a research problem is to
prove this conjecture.

1.78. Is there a real number # > 1 such that the sequence (|6™]) consists
entirely of primes? The existence of such a 6 seems unlikely, yet the authors
are unaware of results along these lines. For § = 1287/545, the integer
parts of the first 8 powers are 2,5,13,31,73,173,409, 967, each of which is
prime. Find a longer chain. If an infinite chain were to exist, there would
be infinitely many triples of primes p,q,r for which there is some « with
p=la),q=[a?|,r = |a3|. Probably there are infinitely many such triples
of primes p, ¢, 7, and maybe this is not so hard to prove, but again the authors
are unaware of such a result. It is known that there are infinitely many pairs
of primes p, g of the form p = [a],q = |a?]; this result is in [Balog 1989].

1.79. For a sequence A = (a,), let D(A) be the sequence (|an+1 — ay|). For
P the sequence of primes, consider D(P), D(D(P)), etc. Is it true that each of
these sequences begins with the number 17 This has been verified by Odlyzko
for the first 3 - 10! sequences [Ribenboim 1996], but has never been proved
in general.

1.80. Find large primes of the form (2"+1)/3, invoking possible theorems on
allowed small factors, and so on. Three recent examples, due to R. McIntosh,
are

p= (242737 + 1)/37 q= (283339 4 1)/3’ r= (295369 4 1)/3
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These numbers are “probable primes” (see Chapter 3). True primality proofs
have not been achieved (and these examples may well be out of reach, for the
foreseeable future!).

1.81. Candidates M, = 2P — 1 for Mersenne primes are often ruled out
in practice by finding an actual nontrivial prime factor. Work out software
for finding factors for Mersenne numbers, with a view to the very largest
ones accessible today. You would use the known form of any factor of M,
and sequentially search over candidates. You should be able to ascertain, for
example, that

460401322803353 | 220295923 _ 1,

On the issue of such large Mersenne numbers; see Exercise 1.82.

1.82. In the numerically accessible region of 220000000 there has been at least
one attempt at a compositeness proof, using not a search for factors but the
Lucas-Lehmer primality test. The result (unverified as yet) by G. Spence is
that 229295631 _ 1 is composite. As of this writing, that would be a “genuine”
composite, in that no explicit proper factor is known. One may notice that
this giant Mersenne number is even larger than Fb,4, the latter recently having
been shown composite. However, the Fy4 result was carefully verified with
independent runs and so might be said still to be the largest “genuine”
composite.

These ruminations bring us to a research problem. Note first a curious
dilemma, that this “game of genuine composites” can lead one to trivial claims,
as pointed out by L. Washington to [Lenstra 1991]. Indeed, if C' be proven
composite, then 2¢ —1, 22°~1_1 and so on are automatically composite. So in
absence of new knowledge about factors of numbers in this chain, the idea of
“largest genuine composite” is a dubious one. Second, observe that if C' = 3
(mod 4) and 2C 4 1 happens to be prime, then this prime is a factor of 2¢ —1.
Such a C could conceivably be a genuine composite (i.e., no factors known) yet
the next member of the chain, namely 2¢ — 1, would have an explicit factor.
Now for the research problem at hand: Find and prove composite some number
C = 3 (mod 4) such that nobody knows any factors of C' (nor is it easy to
find them), you also have proof that 2C + 1 is prime, so you also know thus
an explicit factor of 2¢ — 1. The difficult part of this is to be able to prove
primality of 2C + 1 without recourse to the factorization of C'. This might be
accomplished via the methods of Chapter 4 using a factorization of C' + 1.

1.83. Though it is unknown whether there are infinitely many Mersenne
or Fermat primes, some results are known for other special number classes.
Denote the n-th Cullen number by C),, = n2"™ + 1. The Cullen and related
numbers provide fertile ground for various research initiatives.

One research direction is computational: to attempt the discovery of prime
Cullen numbers, perhaps by developing first a rigorous primality test for the
Cullen numbers. Similar tasks pertain to the Sierpinski numbers described
below.
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A good, simple exercise is to prove that there are infinitely many composite
Cullen numbers, by analyzing say C),_ for odd primes p. In a different vein, C;,
is divisible by 3 whenever n = 1,2 (mod 6) and C,, is divisible by 5 whenever
n =3,4,6,17 (mod 20). In general show there are p— 1 residue classes modulo
p(p — 1) for n where C,, is divisible by the prime p. It can be shown via sieve
methods that the set of integers n for which C), is composite has asymptotic
density 1 [Hooley 1976].

For another class where something, at least, is known, consider Sierpinski
numbers, being numbers k such that k2™ + 1 is composite for every positive
integer n. Sierpiniski proved that there are infinitely many such k. Prove
this Sierpinski theorem, and in fact show, as Sierpinski did, that there is
an infinite arithmetic progression of integers k£ such that k2" + 1 is composite
for all positive integers n. Every Sierpinski number known is a member of
such an infinite arithmetic progression. For example, the smallest known
Sierpiniski number, £ = 78557, is in an infinite arithmetic progression of
Sierpiniski numbers; perhaps you would enjoy finding such a progression. It
is an interesting open problem in computational number theory to decide
whether 78557 actually is the smallest. (Erdds and Odlyzko have shown on
the other side that there is a set of odd numbers k of positive asymptotic
density such that for each k in the set, there is at least one number n with
k2™ 4+ 1 prime; see [Guy 1994].)

1.84. Initiate a machine search for a large prime of the form n = k2% 4+ 1,
alternatively a twin-prime pair using both + and —. Assume the exponent ¢
is fixed and that k runs through small values. You wish to eliminate various k
values for which n is clearly composite. First, describe precisely how various
values of k could be eliminated by sieving, using a sieving base consisting of
odd primes p < B, where B is a fixed bound. Second, answer this important
practical question: If k£ survives the sieve, what is now the conditional heuristic
“probability” that n is prime?

Note that in Chapter 3 there is material useful for the practical task
of optimizing such prime searching. One wants to find the best tradeoff
between sieving out k£ values and actually invoking a primality test on the
remaining candidates k29 + 1. Note also that under certain conditions on the
q, k, there are relatively rapid, deterministic means for establishing primality
(see Chapter 4).

1.85. The study of prime n-tuplets can be interesting and challenging. Prove
the easy result that there exists only one prime triplet {p,p + 2,p + 4}.
Then specify a pattern in the form {p,p + a,p + b} for fixed a,b such that
there should be infinitely many such triplets, and describe an algorithm for
efficiently finding triplets. One possibility is the pattern (¢ = 2,b = 6), for
which the starting prime

p=2°"0 4 5661177712051

gives a prime triplet, as found by T. Forbes in 1995 with primalities proved
in 1998 by F. Morain [Forbes 1999].
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Next, as for quadruplets, argue heuristically that {p,p + 2,p + 6,p + 8}
should be an allowed pattern. The current largest known quadruplet with this
pattern has its four member primes of the “titanic” class, i.e., exceeding 1000
decimal digits [Forbes 1999].

Next, prove that there is just one prime sextuplet with pattern: {p,p +
2,p+6,p+ 8,p+12,p + 14}. Then observe that there is a prime septuplet
with pattern {p,p+2,p+6,p+ 8,p+ 12,p + 18,p + 20}; namely for p = 11.
Find a different septuplet having this same pattern.

To our knowledge the largest septuplet known with the above specific
pattern was found in 1997 by Atkin, with first term

p = 4269551436942131978484635747263286365530029980299077\
59380111141003679237691.

1.86. Study the Smarandache—Wellin numbers, being

wy, = (p1)(p2) - -+ (Pn),

by which notation we mean that w, is constructed in decimal by simple
concatenation of the digits of the consecutive primes. For example, the first
few w,, are 2, 23, 235, 2357, 235711, . ...

First, prove the known result that infinitely many of the w,, are composite.
(Hint: Use the fact established by Littlewood, that pi(x;3,1) — pi(x;3,2) is
unbounded in either (+) direction .) Then, find an asymptotic estimate (it
can be heuristic, unproven) for the number of Smarandache-Wellin primes
not exceeding x.

Incidentally the first “nonsmall” example of a Smarandache—Wellin prime
is

wiog = 23571113171923...719.
How many decimal digits does wi28 have? Incidentally, large as this example
is, yet larger such primes (at least, probable primes!) are known [Wellin 1998],
[Weisstein 2005].

1.87. Show the easy result that if k& primes each larger than k lie in
arithmetic progression, then the common difference d is divisible by every
prime not exceeding k. Find a long arithmetic progression of primes. Note
that k = 22 was the 1995 record [Pritchard et al. 1995], but recently in 2004
[Frind et al. 2004] found that

56211383760397 + k - 44546738095860

is prime for each integer k € [0,22], so the new record is 23 primes. Factor
the above difference d = 44546738095860 to verify the divisibility criterion.
Find some number j of consecutive primes in arithmetic progression. The
current record is j = 10, found by M. Toplic [Dubner et al. 1998]. The
progression is {P 4 210m : m = 0,...,9}, with the first member being

P =10099697246971424763778665558796984032950932468919004\
1803603417758904341703348882159067229719.
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An interesting claim has been made with respect to this j = 10 example. Here
is the relevant quotation, from [Dubner et al. 1998]:

Although a number of people have pointed out to us that 10 + 1 = 11, we
believe that a search for an arithmetic progression of eleven consecutive
primes is far too difficult. The minimum gap between the primes is 2310
instead of 210 and the numbers involved in an optimal search would
have hundreds of digits. We need a new idea, or a trillion-fold increase
in computer speeds. So we expect the Ten Primes record to stand for a
long time to come.

1.88. [Honaker 1998] Note that 61 divides 6771+ 1. Are there three larger
consecutive primes p < ¢ < r such that p|lgr + 1?7 D. Gazzoni notes in email
that there are likely at most finitely many such triples. Here is the heuristic.
It is conjectured that if p, p’ are consecutive primes then p’ —p = O(In? p). Say
we assume only the weaker (but still unproved) assertion that p’ — p = O(p°)
for some ¢ < 1/2. Then if p,q,r are consecutive primes with ¢ = p + s and
r=p+t, we have st = O(p*°). But gr + 1 = (p+s)(p+t)+1=st +1
(mod p), so for p sufficiently large, gr + 1 Z 0 (mod p).

1.89. Though the converse of Theorem 1.3.1 is false, it was once wondered
whether ¢ being a Mersenne prime implies 29 — 1 is likewise a Mersenne
prime. Demolish this restricted converse by giving a Mersenne prime ¢ such
that 29 — 1 is composite. (You can inspect Table 1.2 to settle this, on the
assumption that the table is exhaustive for all Mersenne primes up to the
largest entry.) A related possibility, still open, is that the numbers:

61 =22-1=3, =29-1=7, c¢3=22—-1=127,

and so on, are all primes. The extremely rapid growth, evidenced by the
fact that cs has more than 103" decimal digits, would seem to indicate trial
division as the only factoring recourse, yet even that humble technique may
well be impossible on conventional machines. (To underscore this skepticism
you might show that a factor of ¢5 is > ¢4, for example.)

Along such lines of aesthetic conjectures, and in relation to the “new
Mersenne conjecture” discussed in the text, J. Selfridge offers prizes of $1000
each, for resolution of the character (prime/composite) of the numbers

9BB1) _ 1 9B(Ol) _1 9B127) _q
where B(p) = (2P +1)/3. Before going ahead and writing a program to attack
such Mersenne numbers, you might first ponder how huge they really are.

1.90. Here we obtain a numerical value for the Mertens constant B, from
Theorem 1.4.2. First, establish the formula

Btz 3o A NG+ (1))~ )
n=2

n
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(see [Bach 1997b]). Then, noting that a certain part of the infinite sum is
essentially the Euler constant, in the sense that

N +In2-1= Z(—1)”C(nili_l,
n=2

use known methods for rapidly approximating ¢(n) (see [Borwein et al. 2000])
to obtain from this geometrically convergent series a numerical value such as

B ~0.26149721284764278375542683860869585905156664826120 . . ..

Estimate how many actual primes would be required to attain the implied
accuracy for B if you were to use only the defining product formula for B
directly. Incidentally, there are other constants that also admit of rapidly
convergent expansions devoid of explicit reference to prime numbers. One of
these “easy” constants is the twin prime constant Cs, as in estimate (1.6).
Another such is the Artin constant

1
A 1;[ (1 v 1)> 0.3739558136.. . .,
which is the conjectured, relative density of those primes admitting of 2 as
primitive root (with more general conjectures found in [Bach and Shallit
1996]). Try to resolve Co, A, or some other interesting constant such as
the singular series value in relation (1.12) to some interesting precision but
without recourse to explicit values of primes, just as we have done above for the
Mertens constant. One notable exception to all of this, however, is the Brun
constant, for which no polynomial-time evaluation algorithm is yet known. See
[Borwein et al. 2000] for a comprehensive treatment of such applications of
Riemann-zeta evaluations. See also [Lindqvist and Peetre 1997] for interesting
ways to accelerate the Mertens series.

1.91. There is a theorem of Landau (and independently, of Ramanujan)
giving the asymptotic density of numbers n that can be represented a? + b2,

namely,
x

\/lnnc7

#1<n<z: re(n)>0}~1L

where the Landau—Ramanujan constant is

1 1\ 2
L=— 1— — = 0.764223653 . ..
V2 11 ( pz)

p=3 (mod 4)
One question from a computational perspective is: How does one develop
a fast algorithm for high-resolution computation of L, along the lines, say,
of Exercise 1.907 Relevant references are [Shanks and Schmid 1966] and
[Flajolet and Vardi 1996]. An interesting connection between L and the
possible transcendency of the irrational real number z =3 .1/ 2 is found
in [Bailey et al. 2003].

1.92. By performing appropriate computations, prove the claim that the
convexity Conjecture 1.2.3 is incompatible with the prime k-tuples Conjecture
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1.2.1. A reference is [Hensley and Richards 1973]. Remarkably, those authors
showed that on assumption of the prime k-tuples conjecture, there must exist
some y for which

7(y + 20000) — 7(y) > 7(20000).

What will establish incompatibility is a proof that the interval (0,20000]
contains an “admissible” set with more than 7(20000) elements. A set of
integers is admissible if for each prime p there is at least one residue class
modulo p that is not represented in the set. If a finite set S is admissible, the
prime k-tuples conjecture implies that there are infinitely many integers n such
that n+ s is prime for each s € S. So, the Hensley and Richards result follows
by showing that for each prime p < 20000 there is a residue class a, such that
if all of the numbers congruent to a, modulo p are cast out of the interval
(0,20000], the residual set (which is admissible) is large, larger than 7(20000).
A better example is that in [Vehka 1979], who found an admissible set of 1412
elements in the interval (0, 11763], while on the other hand, 7(11763) = 1409.
In his master’s thesis at Brigham Young University in 1996, N. Jarvis was
able to do this with the “20000” of the original Hensley-Richards calculation
cut down to “4930.” We still do not know the least integer y such that (0, y]
contains an admissible set with more than 7(y) elements, but in [Gordon and
Rodemich 1998] it is shown that such a number y must be at least 1731.
For guidance in actual computations, there is some interesting analysis of
particular dense admissible sets in [Bressoud and Wagon 2000]. S. Wagon has
reduced the “4930” of Jarvis yet further, to “4893.” The modern record for
such bounds is that for first y occurrence, 2077 < y < 3159 [Engelsma 2004].

It seems a very tough problem to convert such a large admissible set into
an actual counterexample to the convexity conjecture. If there is any hope
in actually disproving the convexity conjecture, short of proving the prime k-
tuples conjecture itself, it may lie in a direct search for long and dense clumps
of primes. But we should not underestimate computational analytic number
theory in this regard. After all, as discussed elsewhere in this book (Section
3.7.2), estimates on 7(x) can be obtained, at least in principle, for very large
x. Perhaps some day it will be possible to bound below, by machine, an
appropriate difference 7(z + y) — 7(z), say without knowing all the individual
primes involved, to settle this fascinating compatibility issue.

1.93. Naively speaking, one can test whether p is a Wilson prime by direct
multiplication of all integers 1,...,p — 1, with continual reduction (mod p?)
along the way. However, there is a great deal of redundancy in this approach,
to be seen as follows. If N is even, one can invoke the identity

Nt =2N/2(N/2)I NI,

where N!! denotes the product of all odd integers in [1, N — 1]. Argue that
the (about) p multiply-mods to obtain (p — 1)! can be reduced to about 3p/4
multiply-mods using the identity.
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If one invokes a more delicate factorial identity, say by considering more
equivalence classes for numbers less than N, beyond just even/odd classes,
how far can the p multiplies be reduced in this way?

1.94. Investigate how the Granville identity, valid for 1 < m < p and p
prime,

m—1 p—1 _ (_1\(p=1)(m—1)/2 mP —m mo ?
IT () = 00700 G

can be used to accelerate the testing of whether p is a Wilson prime. This and
other acceleration identities are discussed in [Crandall et al. 1997].

j=1

1.95. Study the statistically expected value of w(n), the number of distinct
prime factors of n. There are beautiful elementary arguments that reveal
statistical properties of w(n). For example, we know from the celebrated
Erdés—Kac theorem that the expression
w(n) —Inlnn
Vinlnn

is asymptotically Gaussian-normal distributed with zero mean and unit
variance. That is, the set of natural numbers n Withuthe dzisplayed statistic
not exceeding u has asymptotic density equal to \/%7 fioo et /2 dt. See [Ruzsa
1999] for some of the history of this theorem.

These observations, though profound, are based on elementary arguments.
Investigate the possibility of an analytic approach, using the beautiful formal
identity

=20 _ ()
)

Here is one amusing, instructive exercise in the analytic spirit: Prove directly
from this zeta-function identity, by considering the limit as s — 1, that there
exist infinitely many primes. What more can be gleaned about the w function
via such analytic forays?

Beyond this, study (in any way possible!) the fascinating conjecture of
J. Selfridge that the number of distinct prime factors of a Fermat number,
that is, w(F},), is not a monotonic (nondecreasing) function of n. Note from
Table 1.3 that this conjecture is so far nonvacuous. (Selfridge suspects that
F14, if it ever be factored, may settle the conjecture by having a notable
paucity of factors.) This conjecture is, so far, out of reach in one sense: We
cannot factor enough Fermat numbers to thoroughly test it. On the other
hand, one might be able to provide a heuristic argument indicating in some
sense the “probability” of the truth of the Selfridge conjecture. On the face of
it, one might expect said probability to be zero, even given that each Fermat
number is roughly the square of the previous one. Indeed, the Erdos—Kac
theorem asserts that for two random integers a,b with b ~ a2, it is roughly
an even toss-up that w(b) > w(a).

n=1



Chapter 2
NUMBER-THEORETICAL TOOLS

In this chapter we focus specifically on those fundamental tools and associated
computational algorithms that apply to prime number and factorization
studies. Enhanced integer algorithms, including various modern refinements
of the classical ones of the present chapter, are detailed in Chapter 8.8. The
reader may wish to refer to that chapter from time to time, especially when
issues of computational complexity and optimization are paramount.

2.1 Modular arithmetic

Throughout prime-number and factorization studies the notion of modular
arithmetic is a constant reminder that one of the great inventions of mathe-
matics is to consider numbers modulo N, in so doing effectively contracting
the infinitude of integers into a finite set of residues. Many theorems on prime
numbers involve reductions modulo p, and most factorization efforts will use
residues modulo NV, where N is the number to be factored.

A word is in order on nomenclature. Here and elsewhere in the book,
we denote by  mod N the least nonnegative residue = (mod N). The mod
notation without parentheses is convenient when thought of as an algorithm
step or a machine operation (more on this operator notion is said in Section
9.1.3). So, the notation ¥ mod N means the y-th power of z, reduced to the
interval [0, N —1] inclusive; and we allow negative values for exponents y when
x is coprime to IV, so that an operation 7! mod N yields a reduced inverse,
and so on.

2.1.1 Greatest common divisor and inverse

In this section we exhibit algorithms for one of the very oldest operations in
computational number theory, the evaluation of the greatest common divisor
function ged (z,y). Closely related is the problem of inversion, the evaluation
of 27! mod N, which operation yields (when it exists) the unique integer
y € [1,N — 1] with zy = 1 (mod N). The connection between the ged
and inversion operations is especially evident on the basis of the following
fundamental result.

Theorem 2.1.1 (Linear relation for ged). If z,y are integers not both 0,
then there are integers a,b with

ax + by = ged(z, y). (2.1)
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Proof. Let g be the least positive integer in the form ax + yb, where a, b are
integers. (There is at least one positive integer in this form, to wit, 22 + y2.)
We claim that g = ged(x,y). Clearly, any common divisor of x and y divides
g = ax + by. So ged(zx,y) divides g. Suppose g does not divide x. Then
x = tg + r, for some integer r with 0 < r < g. We then observe that
r = (1 — ta)x — tby, contradicting the definition of g. Thus, ¢ divides z,
and similarly, g divides y. We conclude that g = ged(z, y). m|

The connection of (2.1) to inversion is immediate: If z,y are positive integers
and ged(x,y) = 1, then we can solve ax + by = 1, whence

bmod z, a mod y

are the inverses y~! mod z and ™! mod y, respectively.

However, what is clearly lacking from the proof of Theorem 2.1.1 from a
computational perspective is any clue on how one might find a solution a, b to
(2.1). We investigate here the fundamental, classical methods, beginning with
the celebrated centerpiece of the classical approach: the Euclid algorithm. It
is arguably one of the very oldest computational schemes, dating back to 300
B.C., if not the oldest of all. In this algorithm and those following, we indicate
the updating of two variables x,y by

(z,y) = (f(z,9), 9(=,y)),

which means that the pair (z,y) is to be replaced by the pair of evaluations
(f,g) but with the evaluations using the original (z,y) pair. In similar fashion,
longer vector relations (a,b,c,...) = --- update all components on the left,
each using the original values on the right side of the equation. (This rule for
updating of vector components is discussed in the Appendix.)

Algorithm 2.1.2 (Euclid algorithm for greatest common divisor). For in-
tegers x,y with > y > 0 and > 0, this algorithm returns ged(z, y).
1. [Euclid loop]

while(y > 0) (z,y) = (y, 2 mod y);
return x;

It is intriguing that this algorithm, which is as simple and elegant as can be,
is not so easy to analyze in complexity terms. Though there are still some
interesting open questions as to detailed behavior of the algorithm, the basic
complexity is given by the following theorem:

Theorem 2.1.3 (Lamé, Dixon, Heilbronn). Let = > y be integers from the
interval [1, N]. Then the number of steps in the loop of the Euclid Algorithm
2.1.2 does not exceed

[0 (M) /1 ((1+V5) /2) | -2,
and the average number of loop steps (over all choices x,y) is asymptotic to

12In2

- In N.
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The first part of this theorem stems from an interesting connection
between Euclid’s algorithm and the theory of simple continued fractions (see
Exercise 2.4). The second part involves the measure theory of continued
fractions.

If z,y are each of order of magnitude N, and we employ the Euclid
algorithm together with, say, a classical mod operation, it can be shown that
the overall complexity of the gcd operation will then be

O (In® N)

bit operations, essentially the square of the number of digits in an operand
(see Exercise 2.6). This complexity can be genuinely bested via modern
approaches, and not merely by using a faster mod operation, as we discuss in
our final book chapter.

The Euclid algorithm can be extended to the problem of inversion. In fact,
the appropriate extension of the Euclid algorithm will provide a complete
solution to the relation (2.1):

Algorithm 2.1.4 (Euclid’s algorithm extended, for ged and inverse). For
integers x,y with x > y > 0 and x > 0, this algorithm returns an integer
triple (a,b, g) such that ax + by = g = ged(zx,y). (Thus when g =1 and y > 0,
the residues b (mod ), a (mod y) are the inverses of y (mod z),z (mod y),
respectively.)
1. [Initialize]
(a,b,g,u,v,w) = (1,0,2,0,1,y);
2. [Extended Euclid loop]
while(w > 0) {
q=1lg/wl;
(a,b,g,u,v,w) = (u,v,w,a — qu,b — qu,g — qw);
}

return (a,b,g);

Because the algorithm simultaneously returns the relevant ged and both
inverses (when the input integers are coprime and positive), it is widely
used as an integral part of practical computational packages. Interesting
computational details of this and related algorithms are given in [Cohen
2000], [Knuth 1981]. Modern enhancements are covered in Chapter 8.8
including asymptotically faster gcd algorithms, faster inverse, inverses for
special moduli, and so on. Finally, note that in Section 2.1.2 we give an “easy
inverse” method (relation (2.3)) that might be considered as a candidate in
computer implementations.

2.1.2 Powers
It is a celebrated theorem of Euler that

a?™ =1 (mod m) (2.2)
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holds for any positive integer m as long as a, m are coprime. In particular, for
prime p we have
a?~' =1 (mod p),

which is used frequently as a straightforward initial (though not absolute)
primality criterion. The point is that powering is an important operation
in prime number studies, and we are especially interested in powering with
modular reduction. Among the many applications of powering is this one: A
straightforward method for finding inverses is to note that when a=! (mod m)
exists, we always have the equality

a~ ' mod m = a®™ " mod m, (2.3)

and this inversion method might be compared with Algorithm 2.1.4 when
machine implementation is contemplated.

It is a primary computational observation that one usually does not need
to take an n-th power of some z by literally multiplying together n symbols as
x*x*- - -+x. We next give a radically more efficient (for large powers) recursive
powering algorithm that is easily written out and also easy to understand. The
objects that we raise to powers might be integers, members of a finite field,
polynomials, or something else. We specify in the algorithm that the element
x comes only from a semigroup, namely, a setting in which z *x % ---*xz is
defined.

Algorithm 2.1.5 (Recursive powering algorithm). Given an element z in a
semigroup and a positive integer n, the goal is to compute z™.

1. [Recursive function pow]

pow(x,n) {
if(n == 1) return z;
if(n even) return pow(x,n/2)?; // Even branch.
return o * pow(z, (n — 1)/2)?; // Odd branch.

}

This algorithm is recursive and compact, but for actual implementation one
should consider the ladder methods of Section 9.3.1, which are essentially
equivalent to the present one but are more appropriate for large, array-
stored arguments. To exemplify the recursion in Algorithm 2.1.5, consider
313 (mod 15). Since n = 13, we can see that the order of operations will be

3 % pow(3,6)% = 3 x (pow(3, 3)2)2
= 3 x ((3 >g<pou)(37 1)2)2)2 .

If one desires ™ mod m, then the required modular reductions are to occur
for each branch (even, odd) of the algorithm. If the modulus is m = 15,
say, casual inspection of the final power chain above shows that the answer
is 3% mod 15 = 3 - ((—3)2)2 mod 15 = 3 - 6 mod 15 = 3. The important
observation, though, is that there are three squarings and two multiplications,
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and such operation counts depend on the binary expansion of the exponent n,
with typical operation counts being dramatically less than the value of n itself.
In fact, if x, n are integers the size of m, and we are to compute =™ mod m
via naive multiply/add arithmetic and Algorithm 2.1.5, then O(In®m) bit
operations suffice for the powering (see Exercise 2.17 and Section 9.3.1).

2.1.3 Chinese remainder theorem

The Chinese remainder theorem (CRT) is a clever, and very old, idea from
which one may infer an integer value on the basis of its residues modulo
an appropriate system of smaller moduli. The CRT was known to Sun-Zi in
the first century A.D. [Hardy and Wright 1979], [Ding et al. 1996]; in fact a
legendary ancient application is that of counting a troop of soldiers. If there
are n soldiers, and one has them line up in justified rows of 7 soldiers each,
one inspects the last row and infers n mod 7, while lining them up in rows of
11 will give n» mod 11, and so on. If one does “enough” such small-modulus
operations, one can infer the exact value of n. In fact, one does not need the
small moduli to be primes; it is sufficient that the moduli be pairwise coprime.

Theorem 2.1.6 (Chinese remainder theorem (CRT)). Let mg,...,my—1
be positive, pairwise coprime moduli with product M = H::_&mi. Let r re-
spective residues n; also be given. Then the system comprising the r relations
and inequality

n=n; (mod m;), 0<n<M

has a unique solution. Furthermore, this solution is given explicitly by the least
nonnegative residue modulo M of

r—1
E n;v; M,
i=0

where M; = M/m;, and the v; are inverses defined by v;M; =1 (mod m;).

A simple example should serve to help clarify the notation. Let my =
3, mi = 5, mg = 7, for which the overall product is M = 105, and let
ng =2, n1 = 2, ny = 6. We seek a solution n < 105 to

n =2 (mod 3), n =2 (mod 5), n =6 (mod 7).
We first establish the M;, as
My =35, My =21, My =15.
Then we compute the inverses
vo=2=35""mod3, vi=1=21"'mod5, wvy=1=15""mod7.
Then we compute
n = (ngvo Moy + nivy My + nava Ms) mod M
= (140 + 42 + 90) mod 105
= 62.
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Indeed, 62 modulo 3,5, 7, respectively, gives the required residues 2, 2, 6.

Though ancient, the CRT algorithm still finds many applications. Some
of these are discussed in Chapter 8.8 and its exercises. For the moment,
we observe that the CRT affords a certain “parallelism.” A set of separate
machines can perform arithmetic, each machine doing this with respect to
a small modulus m;, whence some final value may be reconstructed. For
example, if each of x,y has fewer than 100 digits, then a set of prime moduli
{m;} whose product is M > 10?° can be used for multiplication: The i-th
machine would find ((z mod m;) * (y mod m;)) mod m;, and the final value
x xy would be found via the CRT. Likewise, on one computer chip, separate
multipliers can perform the small-modulus arithmetic.

All of this means that the reconstruction problem is paramount; indeed,
the reconstruction of n tends to be the difficult phase of CRT computations.
Note, however, that if the small moduli are fixed over many computations, a
certain amount of one-time precomputation is called for. In Theorem 2.1.6,
one may compute the M; and the inverses v; just once, expecting many future
computations with different residue sets {n;}. In fact, one may precompute
the products v;M;. A computer with r parallel nodes can then reconstruct
> nvM; in O(Inr) steps.

There are other ways to organize the CRT data, such as building up one
partial modulus at a time. One such method is the Garner algorithm [Menezes
et al. 1997], which can also be done with preconditioning,.

Algorithm 2.1.7 (CRT reconstruction with preconditioning (Garner)).
Using the nomenclature of Theorem 2.1.6, we assume r > 2 fixed, pairwise
coprime moduli my, ..., m.—_1 whose product is M, and a set of given residues
{n; (mod m;)}. This algorithm returns the unique n € [0, M — 1] with the given
residues. After the precomputation step, the algorithm may be reentered for future
evaluations of such n (with the {m;} remaining fixed).

1. [Precomputation]
for(1<i<r){
i—1
ci = u;l mod my;
}
M = pr_1my_1;
2. [Reentry point for given input residues {n;}]
n = ng;
for(1 <i<r){
u = ((n; — n)¢;) mod my;
n=mn 4+ u;; // Now n =n; (mod m;) for 0 < j <g;
}
n =mn mod M;
return n;

This algorithm can be shown to be more efficient than a naive application
of Theorem 2.1.6 (see Exercise 2.8). Moreover, in case a fixed modulus M
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is used for repeated CRT calculations, one can perform [Precomputation] for
Algorithm 2.1.7 just once, store an appropriate set of  — 1 integers, and allow
efficient reentry.

In Section 9.5.9 we describe a CRT reconstruction algorithm that not only
takes advantage of preconditioning, but of fast methods to multiply integers.

2.2 Polynomial arithmetic

Many of the algorithms for modular arithmetic have almost perfect analogues
in the polynomial arena.

2.2.1 Greatest common divisor for polynomials

We next give algorithms for polynomials analogous to the Euclid forms in
Section 2.1.1 for integer gcd and inverse. When we talk about polynomials,
the first issue is where the coefficients come from. We may be dealing with
Q[z], the polynomials with rational coefficients, or Z,[z], polynomials with
coefficients in the finite field Z,. Or from some other field. We may also be
dealing with polynomials with coefficients drawn from a ring that is not a
field, as we do when we consider Z[z] or Z,[z] with n not a prime.

Because of the ambiguity of the arena in which we are to work, perhaps
it is better to go back to first principles and begin with the more primitive
concept of divide with remainder. If we are dealing with polynomials in F[z],
where F' is a field, there is a division theorem completely analogous to the
situation with ordinary integers. Namely, if f(x), g(z) are in F[z] with f not
the zero polynomial, then there are (unique) polynomials ¢(z),r(z) in Fx]
with

g(x) = q(z)f(x) + r(z) and either r(z) =0 or degr(x) < deg f(z). (2.4)

Moreover, we can use the “grammar-school” method of building up the
quotient ¢(z) term by term to find ¢(x) and r(z). Thinking about this
method, one sees that the only special property of fields that is used that
is not enjoyed by a general commutative ring is that the leading coefficient
of the divisor polynomial f(z) is invertible. So if we are in the more general
case of polynomials in R[z] where R is a commutative ring with identity, we
can perform a divide with remainder if the leading coefficient of the divisor
polynomial is a unit, that is, it has a multiplicative inverse in the ring.

For example, say we wish to divide 3z + 2 into #? in the polynomial ring
Z1o[x]. The inverse of 3 in Zo (which can be found by Algorithm 2.1.4) is 7.
We get the quotient 7z + 2 and remainder 6.

In sum, if f(x),g(x) are in R[z], where R is a commutative ring with
identity and the leading coefficient of f is a unit in R, then there are unique
polynomials ¢(z),r(z) in R[z] such that (2.4) holds. We use the notation
r(z) = g(x) mod f(x). For much more on polynomial remaindering, see
Section 9.6.2.
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Though it is possible sometimes to define the gcd of two polynomials in
the more general case of R[z], in what follows we shall restrict the discussion
to the much easier case of F[z], where F' is a field. In this setting the
algorithms and theory are almost entirely the same as for integers. (For a
discussion of ged in the case where R is not necessarily a field, see Section
4.3.) We define the polynomial ged of two polynomials, not both 0, as a
polynomial of greatest degree that divides both polynomials. Any polynomial
satisfying this definition of ged, when multiplied by a nonzero element of the
field F, again satisfies the definition. To standardize things, we take among
all these polynomials the monic one, that is the polynomial with leading
coefficient 1, and it is this particular polynomial that is indicated when we use
the notation ged(f(x), g(x)). Thus, ged(f(x), g(x)) is the monic polynomial
common divisor of f(x) and g(x) of greatest degree. To render any nonzero
polynomial monic, one simply multiplies through by the inverse of the leading
coefficient.

Algorithm 2.2.1 (ged for polynomials). For given polynomials f(x), g(z) in
F[z], not both zero, this algorithm returns d(x) = ged(f(z), g(z)).
1. [Initialize]
Let u(z),v(z) be f(z),g(x) in some order so that either degu(x) >
degv(z) or v(x) is 0;
2. [Euclid loop]
while(v(z) # 0) (u(z), v(z)) = (v(), u(z) mod v(z));
3. [Make monic]
Set ¢ as the leading coefficient of u(x);
d(z) = ¢ tu(x);
return d(z);

Thus, for example, if we take

flz) =72 + 2% 4 72% + 1,
g(x) = —72" —2° + 72 + 1,

in Q[x], then the sequence in the Euclid loop is

(T2t 2% 4722 +1, =727 —2® + 722 + 1)

= (=T2" — 2%+ 72? + 1, T2 2t 7% 4 1)

= (128 42t + 722+ 1, T3+ T2 x4+ 1)

— (T2® +72? + 2 4 1, 142 4 2)

— (142% + 2, 0),
so the final value of u(x) is 142%+2, and the ged d(x) is 22 4 1. It is, of course,
understood that all calculations in the algorithm are to be performed in the
polynomial ring F[z]. So in the above example, if F' = Z3, then d(z) = 2%+2,
if F' =77, then d(xz) = 1; and if F = Zy, then the loop stops one step earlier
and d(z) = 23 + 22 + x + 1.
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Along with the polynomial gcd we shall need a polynomial inverse. In
keeping with the notion of integer inverse, we shall generate a solution to

s(@)f(x) + t(x)g(z) = d(x),

for given f, g, where d(x) = ged(f(z), g(x)).

Algorithm 2.2.2 (Extended gcd for polynomials). Let F be a field. For
given polynomials f(z),g(x) in F[z], not both zero, with either deg f(x) >
degg(x) or g(x) = 0, this algorithm returns (s(z),t(x),d(x)) in F[z] such that
d = ged(f,g) and sg+th = d. (For ease of notation we shall drop the = argument
in what follows.)
1. [Initialize]
(s, t,d,u,v,w) = (1,0, f,0,1,9);
2. [Extended Euclid loop]
while(w # 0) {
q = (d — (d mod w))/w; // q is the quotient of d + w.
(s,t,d,u,v,w) = (U,U,U),S —qu,t —qu,d — qw);
}
3. [Make monic]
Set ¢ as the leading coefficient of d;
(s,t,d) = (¢ ts, e, c71d);
return (s, t,d);

If d(x) = 1 and neither of f(z),g(z) is 0, then s(z) is the inverse of f(x)
(mod g(z)) and ¢(x) is the inverse of g(x) (mod f(x)). It is clear that if naive
polynomial remaindering is used, as described above, then the complexity of
the algorithm is O(D?) field operations, where D is the larger of the degrees
of the input polynomials; see [Menezes et al. 1997].

2.2.2 Finite fields

Examples of infinite fields are the rational numbers Q, the real numbers
R, and the complex numbers C. In this book, however, we are primarily
concerned with finite fields. A common example: If p is prime, the field

F,=72,

consists of all residues 0,1,...,p — 1 with arithmetic proceeding under the
usual modular rules.

Given a field F and a polynomial f(z) in F[z] of positive degree, we
may consider the quotient ring F[x]/(f(z)). The elements of F[z]/(f(x)) are
subsets of F[z] of the form {g(x) + f(x)h(x) : h(x) € Flz]|}; we denote
this subset by g(z) + (f(x)). It is a coset of the ideal (f(x)) with coset
representative g(x). (Actually, any polynomial in a coset can stand in as a
representative for the coset, so that g(z) + (f(z)) = G(z) + (f(z)) if and
only if G(z) € g(x) + (f(x)) if and only if G(z) — g(z) = f(z)h(z) for some
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h(z) € F[z] if and only if G(x) = g(x) (mod f(x)). Thus, working with cosets
can be thought of as a fancy way of working with congruences.) Each coset
has a canonical representative, that is, a unique and natural choice, which is
either 0 or has degree smaller than deg f(z).

We can add and multiply cosets by doing the same with their representa-
tives:

(@1(@) + (f(2) + (92(2) + (f(2)) = q1(2) +g2(2) + (f(2)),
(91(2) + (f(2))) - (g2(2) + (f(2))) = g1(x)ga(@) + (f(2)).
)

With these rules for addition and multiplication, F[x]/(f(z)) is a ring that
contains an isomorphic copy of the field F: An element a € F is identified
with the coset a + (f(x)).

Theorem 2.2.3. If F is a field and f(x) € Flx] has positive degree, then
Flz]/(f(z)) is a field if and only if f(x) is irreducible in F[x].

Via this theorem we can create new fields out of old fields. For example,
starting with Q, the field of rational numbers, consider the irreducible
polynomial 22 — 2 in Q[z]. Let us denote the coset a + bz + (f(z)), where
a,b € Q, more simply by a + bz. We have the addition and multiplication
rules

(a1 + bllﬂ) + (ag + b2$) = (a1 + (12) + (bl + b2)$,
(a1 + bll‘) . (CLQ + ng) = (a1a2 + 2b1b2) + (albg + a2b1)x.

That is, one performs ordinary addition and multiplication of polynomials,
except that the relation 22 = 2 is used for reduction. We have “created” the

field
Q[\/i} z{a—i—b\/i:a,beQ}.

Let us try this idea starting from the finite field F7. Say we take f(z) =
22+ 1. A degree-2 polynomial is irreducible over a field F if and only if it has
no roots in F. A quick check shows that 22 + 1 has no roots in F7, so it is
irreducible over this field. Thus, by Theorem 2.2.3, F[z]/(2? + 1) is a field.
We can abbreviate elements by a + bi, where a,b € F; and i = —1. Our new
field has 49 elements.

More generally, if p is prime and f(z) € Fplz] is irreducible and has
degree d > 1, then F,[z]/(f(x)) is again a finite field, and it has p? elements.
Interestingly, all finite fields up to isomorphism can be constructed in this
manner.

An important difference between finite fields and fields such as Q and C
is that repeatedly adding 1 to itself in a finite field, you will eventually get 0.
In fact, the number of times must be a prime, for otherwise, one can get the
product of two nonzero elements being 0.

Definition 2.2.4. The characteristic of a field is the additive order of 1,
unless said order is infinite, in which case the characteristic is 0.
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As indicated above, the characteristic of a field, if it is positive, must be
a prime number. Fields of characteristic 2 play a special role in applications,
mainly because of the simplicity of doing arithmetic in such fields.

We collect some relevant classical results on finite fields as follows:

Theorem 2.2.5 (Basic results on finite fields).
(1) A finite field F' has nonzero characteristic, which must be a prime.
(2) Fora,b in a finite field F of characteristic p, (a + b)P = aP 4 bP.

(3)  Ewvery finite field has p* elements for some positive integer k, where p is
the characteristic.

(4) For given prime p and exponent k, there is exactly one field with p*
elements (up to isomorphism), which field we denote by F .

(5) F,r contains as subfields unique copies of Fp; for each jlk, and no other

subfields.
(6) The multiplicative group F;k of nonzero elements in ¥ is cyclic; that
18, there 1s a single element whose powers constitute the whole group.

The multiplicative group F;k is an important concept in studies of powers,
roots, and cryptography.

Definition 2.2.6. A primitive root of a field Fx is an element whose powers
constitute all of F;k. That is, the root is a generator of the cyclic group F;k.

For example, in the example above where we created a field with 49 elements,
namely Fr2, the element 3 + ¢ is a primitive root.

A cyclic group with n elements has ¢(n) generators in total, where ¢ is
the Euler totient function. Thus, a finite field F,x has ¢(p* — 1) primitive
roots.

One way to detect primitive roots is to use the following result.

Theorem 2.2.7 (Test for primitive root). An element g in F;k is a prim-
itive root if and only if

g(pkfl)/q #1
for every prime q dividing p* — 1.

As long as p* — 1 can be factored, this test provides an efficient means of
establishing a primitive root. A simple algorithm, then, for finding a primitive
root is this: Choose random g € F;k, compute powers g(”k’l)/q mod p for
successive prime factors g of p* — 1, and if any one of these powers is 1, choose
another g. If g survives the chain of powers, it is a primitive root by Theorem
2.2.7.

Much of this book is concerned with arithmetic in F,,, but at times we
shall have occasion to consider higher prime-power fields. Though general
F . arithmetic can be complicated, it is intriguing that some algorithms can

P
actually enjoy improved performance when we invoke such higher fields. As
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we saw above, we can “create” the finite field F,x by coming up with an
irreducible polynomial f(z) in Fp[z] of degree k. We thus say a little about
how one might do this.

Every element a in F,» has the property that a?’ = a, that is, a is a root

of 27" — x. In fact this polynomial splits into linear factors over F_» with no

P
repeated factors. We can use this idea to see that 2P" — z is the product of
all monic irreducible polynomials in F,[z] of degrees dividing k. From this we
get a formula for the number Ny (p) of monic irreducible polynomials in F,[z]
of exact degree k: One begins with the identity

Zde(p) =",

dlk

on which we can use Md&bius inversion to get

= 3tk /d). (25)

d|k

Here, p is the Mobius function discussed in Section 1.4.1. It is easy to see that
the last sum is dominated by the term d = k, so that Ng(p) is approximately
p¥/k. That is, about 1 out of every k monic polynomials of degree k in F,[z]
is irreducible. Thus a random search for one of these should be successful in
O(k) trials. But how can we recognize an irreducible polynomial? An answer
is afforded by the following result.

Theorem 2.2.8. Suppose that f(x) is a polynomial in Fylx] of positive
degree k. The following statements are equivalent:

(1) f(x) is irreducible;
(2) ged(f(z),a?’ —a) =1 for each j =1,2,...,|k/2];

(3) 2" =z (mod f(z)) and gcd(f(;v)mpk/q —1z) =1 for each prime q|k.

This theorem, whose proof is left as Exercise 2.15, is then what is behind the
following two irreducibility tests.

Algorithm 2.2.9 (Irreducibility test 1). Given prime p and a polynomial
f(z) € Fplz] of degree k > 2, this algorithm determines whether f(z) is
irreducible over F,.
1. [Initialize]
g(z) = z;
2. [Testing loop]
for(1 <i < [k/2]){
g(z) = g(x)? mod f(z); // Powering by Algorithm 2.1.5.
d(x) = cd(f( ),g9(x) —x); // Polynomial ged by Algorithm 2.2.1.
if(d(z) # 1) return NO;

return YES; // f is irreducible.
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Algorithm 2.2.10 (Irreducibility test 2). Given a prime p, a polynomial
f(z) € Fylz] of degree k > 2, and the distinct primes ¢1 > ¢2 > ... > ¢
which divide &, this algorithm determines whether f(x) is irreducible over F,,.

1. [Initialize]
Q+1 = 1; .
g(x) = aP ' mod f(z); // Powering by Algorithm 2.1.5.

2. [Testing loop]
for(1<i < l) {
d(z) = ged(
if(d(x) # 1)
g(x) = g(z)

f(x),g9(x) —x); // Polynomial gcd by Algorithm 2.2.1.
return NO;
e | f(x); // Powering by Algorithm 2.1.5.
}
3. [Final congruence]
if(g(z) # x) return NO;
return YES; // f is irreducible.

Using the naive arithmetic subroutines of this chapter, Algorithm 2.2.9
is slower than Algorithm 2.2.10 for large values of k, given the much larger
number of ged’s which must be computed in the former algorithm. However,
using a more sophisticated method for polynomial ged’s, (see [von zur Gathen
and Gerhard 1999, Sec. 11.1]), the two methods are roughly comparable in
time.

Let us now recapitulate the manner of field computations. Armed with
a suitable irreducible polynomial f of degree k over F,,, one represents any
element a € Fpr as

a=ag+ax+ a2x2 —+ -+ ak_lxkfl,

with each a; € {0,...,p—1}. That is, we represent a as a vector in F]f. Note
that there are clearly p* such vectors. Addition is ordinary vector addition,
but of course the arithmetic in each coordinate is modulo p. Multiplication
is more complicated: We view it merely as multiplication of polynomials, but
not only is the coordinate arithmetic modulo p, but we also reduce high-
degree polynomials modulo f(z). That is to say, to multiply a * b in F, we
simply form a polynomial product a(x)b(x), doing a mod p reduction when a
coefficient during this process exceeds p— 1, then taking this product mod f(z)
via polynomial mod, again reducing mod p whenever appropriate during that
process. In principle, one could just form the unrestricted product a(z)b(z),
do a mod f reduction, then take a final mod p reduction, in which case the
final result would be the same but the interior integer multiplies might run
out of control, especially if there were many polynomials being multiplied. It
is best to take a reduction modulo p at every meaningful juncture.

Here is an example for explicit construction of a field of characteristic 2,
namely Fi5. According to our formula (2.5), there are exactly 3 irreducible
degree-4 polynomials in Fy[x], and a quick check shows that they are z*+z+1,
z* + 23 + 1, and 2* + 2% + 22 + 2 + 1. Though each of these can be used to
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create F¢, the first has the pleasant property that reduction of high powers
of x to lower powers is particularly simple: The mod f(x) reduction is realized
through the simple rule z* = z + 1 (recall that we are in characteristic 2, so
that 1 = —1). We may abbreviate typical field elements ag+ayx+as2?+azz?,
where each a; € {0, 1} by the binary string (aga;azas). We add componentwise

modulo 2, which amounts to an “exclusive-or” operation, for example
(0111) + (1011) = (1100).

To multiply a * b = (0111) * (1011) we can simulate the polynomial
multiplication by doing a convolution on the coordinates, first getting
(0110001), a string of length 7. (Calling this (cocicacscacscg) we have ¢; =
Ei1+i2:j a;, bi,, where the sum is over pairs i1, i3 of integers in {0, 1, 2, 3} with
sum j.) To get the final answer, we take any 1 in places 6, 5,4, in this order,
and replace them via the modulo f(z) relation. In our case, the 1 in place 6
gets replaced with 1’s in places 2 and 3, and doing the exclusive-or, we get
(0101000). There are no more high-order 1’s to replace, and our product is

(0101); that is, we have
(0111) * (1011) = (0101).

Though this is only a small example, all the basic notions of general field
arithmetic via polynomials are present.

2.3 Squares and roots
2.3.1 Quadratic residues
We start with some definitions.

Definition 2.3.1. For coprime integers m, a with m positive, we say that
a is a quadratic residue (mod m) if and only if the congruence

z? = a (mod m)
is solvable for integer x. If the congruence is not so solvable, a is said to be a
quadratic nonresidue (mod m).

Note that quadratic residues and nonresidues are defined only when
ged(a,m) = 1. So, for example, 0 (mod m) is always a square but is neither
a quadratic residue nor a nonresidue. Another example is 3 (mod 9). This
residue is not a square, but it is not considered a quadratic nonresidue since
3 and 9 are not coprime. When the modulus is prime the only non-coprime
case is the 0 residue, which is one of the choices in the next definition.
Definition 2.3.2. For odd prime p, the Legendre symbol (%) is defined as
if a is a quadratic residue (mod p),

(a) 0, if a=0 (mod p),
L
, if a is a quadratic nonresidue (mod p).

-1
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Thus, the Legendre symbol signifies whether or not a #Z 0 (mod p) is a square
(mod p). Closely related, but differing in some important ways, is the Jacobi
symbol:

Definition 2.3.3. For odd natural number m (whether prime or not), and
for any integer a, the Jacobi symbol (%) is defined in terms of the (unique)
prime factorization

m:Hp?

| () -11(;)"

where (E) are Legendre symbols, with (%) = 1 understood.

as

Note, then, that the function y(a) = (%), defined for all integers a, is a
character modulo m; see Section 1.4.3. It is important to note right off that
for composite, odd m, a Jacobi symbol (%) can sometimes be +1 when 22 = a

(mod m) is unsolvable. An example is

3)-G)0)-cren-

even though 2 is not, in fact, a square modulo 15. However, if (%) = —1, then
a is coprime to m and the congruence 22 = a (mod m) is not solvable. And
(£) = 0 if and only if ged(a, m) > 1.

It is clear that in principle the symbol (%) is computable: One factors
m into primes, and then computes each underlying Legendre symbol by
exhausting all possibilities to see whether the congruence 2% = a (mod p) is
solvable. What makes Legendre and Jacobi symbols so very useful, though, is
that they are indeed very easy to compute, with no factorization or primality
test necessary, and with no exhaustive search. The following theorem gives
some of the beautiful properties of Legendre and Jacobi symbols, properties

that make their evaluation a simple task, about as hard as taking a ged.

Theorem 2.3.4 (Relations for Legendre and Jacobi symbols). Let p de-
note an odd prime, let m,n denote arbitrary positive odd integers (including
possibly primes), and let a,b denote integers. Then we have the Euler test for
quadratic residues modulo primes, namely
(a) = aPY/2 (mod p). (2.6)
p

We have the multiplicative relations

9-E)E)
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and special relations

(1) _ (—1)m-vre, (2.9)

m

<2> _ (c1)m*-0)s, (2.10)

m

Furthermore, we have the law of quadratic reciprocity for coprime m,n:

(7:) (:L) — (—1)mD-1/, (2.11)

Already (2.6) shows that when |a| < p, the Legendre symbol (%) can be
computed in O (ln3 p) bit operations using naive arithmetic and Algorithm
2.1.5; see Exercise 2.17. But we can do better, and we do not even need to

recognize primes.

Algorithm 2.3.5 (Calculation of Legendre/Jacobi symbol). Given positive
odd integer m, and integer a, this algorithm returns the Jacobi symbol (%) which
for m an odd prime is also the Legendre symbol.

1. [Reduction loops]
a = a mod m;

t=1;
while(a # 0) {
while(a even) {
a=a/2;
if(m mod 8 € {3,5}) t = —t;
(a,m) = (m,a); // Swap variables.

if(a=m =3 (mod 4)) t = —¢;
a = a mod m;

}

2. [Termination]
if(m == 1) return ¢;
return O;

It is clear that this algorithm does not take materially longer than using
Algorithm 2.1.2 to find ged(a,m), and so runs in O (1112 m) bit operations
when |a] < m.

In various other sections of this book we make use of a celebrated
connection between the Legendre symbol and exponential sums. The study of
this connection runs deep; for the moment we state one central, useful result,
starting with the following definition:
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Definition 2.3.6. The quadratic Gauss sum G(a;m) is defined for integers
a, N, with N positive, as

N—-1
Gla;N) = Y e?riad®/N,

0

<

This sum is—up to conjugation perhaps—a discrete Fourier transform (DFT)
as used in various guises in Chapter 8.8. A more general form—a character
sum—is used in primality proving (Section 4.4). The central result we wish
to cite makes an important connection with the Legendre symbol:

Theorem 2.3.7 (Gauss). For odd prime p and integer a Z 0 (mod p),

G(a;p) = (Z)G(l;p),

and generally, for positive integer m,

1 . .
G(1;m) = 5%(1 + )1+ (—)™).
The first assertion is really very easy, the reader might consider proving it
without looking up references. The two assertions of the theorem together
allow for Fourier inversion of the sum, so that one can actually express the
Legendre symbol for a Z 0 (mod p) by

p—1 p—1 .
ay _ ¢ 2riaj®/p _ € <J) 2riaj/p
==Y = — Zle , 2.12
(p) \/17].2:; \/T?Z p (212)

J=0

where ¢ = 1,—i as p = 1,3 (mod 4), respectively. This shows that the
Legendre symbol is, essentially, its own discrete Fourier transform (DFT).
For practice in manipulating Gauss sums, see Exercises 1.66, 2.27, 2.28, and
9.41.

2.3.2 Square roots

Armed now with algorithms for ged, inverse (actually the —1 power), and
positive integer powers, we turn to the issue of square roots modulo a prime.
As we shall see, the technique actually calls for raising residues to high integral
powers, and so the task is not at all like taking square roots in the real
numbers.

We have seen that for odd prime p, the solvability of a congruence

2?2 =a# 0 (mod p)

is signified by the value of the Legendre symbol (%) When (%) =1, an
important problem is to find a “square root” x, of which there will be two,
one the other’s negative (mod p). We shall give two algorithms for extracting
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such square roots, both computationally efficient but raising different issues
of implementation.

The first algorithm starts from Euler’s test (2.6). If the prime p is 3 (mod 4)
and (%) =1, then Euler’s test says that a* = 1 (mod p), where t = (p — 1)/2.
Then a'T! = a (mod p), and as t + 1 is even in this case, we may take for
our square root z = a(t+1)/2 (mod p). Surely, this delightfully simple solution
to the square root problem can be generalized! Yes, but it is not so easy. In
general, we may write p — 1 = 2%¢, with ¢ odd. Euler’s test (2.6) guarantees
us that a2 't = 1 (mod p), but it does not appear to say anything about
A =a' (mod p).

Well, it does say something; it says that the multiplicative order of A
modulo p is a divisor of 2°~!. Suppose that d is a quadratic nonresidue modulo
p, and let D = d* mod p. Then Euler’s test (2.6) says that the multiplicative
order of D modulo p is exactly 2%, since D= 1 (mod p). The same
is true about D~! (mod p), namely, its multiplicative order is 2°. Since the
multiplicative group Zjy is cyclic, it follows that A is in the cyclic subgroup
generated by D!, and in fact, A is an even power of D™, that is, A = D~2*
(mod p) for some integer p with 0 < pu < 2°~!. Substituting for A we have
a'D?* =1 (mod p). Then after multiplying this congruence by a, the left side
has all even exponents, and we can extract the square root of ¢ modulo p as
aV/2Dr (mod p).

To make this idea into an algorithm, there are two problems that must be
solved:

(1) Find a quadratic nonresidue d (mod p).

(2) Find an integer u with A = D~2# (mod p).

It might seem that problem (1) is simple and that problem (2) is difficult, since
there are many quadratic nonresidues modulo p and we only need one of them,
any one, while for problem (2) there is a specific integer u that we are searching
for. In some sense, these thoughts are correct. However, we know no rigorous,
deterministic way to find a quadratic nonresidue quickly. We will get around
this impasse by using a random algorithm. And though problem (2) is an
instance of the notoriously difficult discrete logarithm problem (see Chapter
5), the particular instance we have in hand here is simple. The following
algorithm is due to A. Tonelli in 1891, based on earlier work of Gauss.

Algorithm 2.3.8 (Square roots (mod p)). Given an odd prime p and an
integer a with (%) = 1, this algorithm returns a solution z to 2> = a (mod p).
1. [Check simplest cases: p = 3,5,7 (mod 8)]
a = a mod p;
if(p = 3,7 (mod 8)) {
z = a®tD/4 mod p;
return x;

}
if(p =5 (mod 8)) {
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z = aPt3)/8 mod p;
¢ = x? mod p; // Then ¢ = +a (mod p).
if(c # a mod p) x = x2P=1/* mod p;
return x;
}
2. [Case p =1 (mod 8)]
Find a random integer d € [2,p — 1] with (%) =-1;
// Compute Jacobi symbols via Algorithm 2.3.5.
Represent p — 1 = 2°¢, with ¢ odd;

A = a' mod p;
D = d' mod p;
m =0; // m will be 2p of text discussion.
for(0 < i < s){ // One may start at i = 1; see text.

if((AD™)2 " = -1 (mod p)) m = m + 2';
// Now we have AD™ =1 (mod p).
z = att1/2Dm/2 ;mod p;
return x;

Note the following interesting features of this algorithm. First, it turns out
that the p = 1 (mod 8) branch—the hardest case—will actually handle all
the cases. (We have essentially used in the p = 5 (mod 8) case that we may
choose d = 2. And in the p = 3 (mod 4) cases, the exponent m is 0, so we
do not need a value of d.) Second, notice that built into the algorithm is the

check that A2 =1 (mod p), which is what ensures that m is even. If this
fails, then we do not have (9) =1, and so the algorithm may be amended to
leave out this requirement, with a break called for if the case ¢ = 0 in the loop
produces the residue —1. If one is taking many square roots of residues a for
which it is unknown whether a is a quadratic residue or nonresidue, then one
may be tempted to just let Algorithm 2.3.8 decide the issue for us. However,
if nonresidues occur a positive fraction of the time, it will be faster on average
to first run Algorithm 2.3.5 to check the quadratic character of a, and thus
avoid running the more expensive Algorithm 2.3.8 on the nonresidues.

As we have mentioned, there is no known deterministic, polynomial time
algorithm for finding a quadratic nonresidue d for the prime p. However, if one
assumes the ERH, it can be shown there is a quadratic nonresidue d < 21In? p;
see Theorem 1.4.5, and so an exhaustive search to this limit succeeds in finding
a quadratic nonresidue in polynomial time. Thus, on the ERH, one can find
square roots for quadratic residues modulo the prime p in deterministic,
polynomial time. It is interesting, from a theoretical standpoint, that for
a fized, R. Schoof has a rigorously proved, deterministic, polynomial time
algorithm for square root extraction; see [Schoof 1985]. (The bit complexity
is polynomial in the length of p, but exponential in the length of a, so that
for a fixed it is correct to say that the algorithm is polynomial time.) Still,
in spite of this fascinating theoretical state of affairs, the fact that half of all
nonzero residues d (mod p) satisfy (%) = —1 leads to the expectation of only
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a few random attempts to find a suitable d. In fact, the expected number of
random attempts is 2.

The complexity of Algorithm 2.3.8 is dominated by the various exponen-
tiations called for, and so is O(s? + Int) modular operations. Assuming naive
arithmetic subroutines, this comes out to, in the worst case (when s is large),
(@) (ln4 p) bit operations. However, if one is applying Algorithm 2.3.8 to many
prime moduli p, it is perhaps better to consider its average case, which is just
O (In® p) bit operations. This is because there are very few primes p with p—1
divisible by a large power of 2.

The following algorithm is asymptotically faster than the worst case of
Algorithm 2.3.8. A beautiful application of arithmetic in the finite field F 2,
the method is a 1907 discovery of M. Cipolla.

Algorithm 2.3.9 (Square roots (mod p) via F,> arithmetic). Given an
odd prime p and a quadratic residue a modulo p, this algorithm returns a so-
lution = to 22 = a (mod p).
1. [Find a certain quadratic nonresidue]
Find a random integer ¢ € [0,p — 1] such that (RT_“) =—1;
// Compute Jacobi symbols via Algorithm 2.3.5.

2. [Find a square root in F 2 = F, (V12 —a) ]
x = (t+ 12 —a)PtD/2 // Use F 2 arithmetic.
return x;

The probability that a random value of ¢ will be successful in Step [Find a
certain quadratic nonresidue] is (p — 1)/2p. It is not hard to show that the
element x € Fj2 is actually an element of the subfield F), of F,2, and that
22 = a (mod p). (In fact, the second assertion forces z to be in F,, since a
has the same square roots in F,, as it has in the larger field F,:.)

A word is in order on the field arithmetic, which for this case of F 2 is
especially simple, as might be expected on the basis of Section 2.2.2. Let

w = Vt? — a. Representing this field by

Fppo={r+wy:az,ycFp}={(z,y)},
all arithmetic may proceed using the rule

(@) * (u,v) = (z + yw)(u + vw)
= zu 4 yow? + (zv + yu)w
= (zu+ yo(t? — a), 2+ yu),

noting that w? = t? — a is in F,. Of course, we view z,y,u,v,t,a as residues
modulo p and the above expressions are always reduced to this modulus. Any
of the binary ladder powering algorithms in this book may be used for the
computation of z in step [Find a square root ...]. An equivalent algorithm for
square roots is given in [Menezes et al. 1997], in which one finds a quadratic
nonresidue b? — 4a, defines the polynomial f(z) = 22 — bz + a in Fplx], and
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simply computes the desired root 7 = 2(®*+1/2 mod f (using polynomial-mod
operations). Note finally that the special cases p = 3,5,7 (mod 8) can also
be ferreted out of any of these algorithms, as was done in Algorithm 2.3.8, to
improve average performance.

The complexity of Algorithm 2.3.9 is O(In® p) bit operations (assuming
naive arithmetic), which is asymptotically better than the worst case of
Algorithm 2.3.8. However, if one is loath to implement the modified powering
ladder for the F > arithmetic, the asymptotically slower algorithm will usually
serve. Incidentally, there is yet another, equivalent, approach for square
rooting by way of Lucas sequences (see Exercise 2.31).

It is very interesting to note at this juncture that there is no known fast
method of computing square roots of quadratic residues for general composite
moduli. In fact, as we shall see later, doing so is essentially equivalent to
factoring the modulus (see Exercise 6.5).

2.3.3 Finding polynomial roots

Having discussed issues of existence and calculation of square roots, we now
consider the calculation of roots of a polynomial of arbitrary degree over
a finite field. We specify the finite field as F,, but much of what we say
generalizes to an arbitrary finite field.

Let g € Fp[z] be a polynomial; that is, it is a polynomial with integer
coefficients reduced (mod p). We are looking for the roots of g in F,, and so
we might begin by replacing g(z) with the ged of g(z) and zP — z, since as
we have seen, the latter polynomial is the product of x — a as a runs over
all elements of F,,. If p > degg, one should first compute z? mod g(z) via
Algorithm 2.1.5. If the ged has degree not exceeding 2, the prior methods we
have learned settle the matter. If it has degree greater than 2, then we take a
further ged with (x4 a)®~1/2 —1 for a random a € F,. Any particular b # 0
in F, is a root of (z + a)®~1/2 — 1 with probability 1/2, so that we have a
positive probability of splitting g(x) into two polynomials of smaller degree.
This suggests a recursive algorithm, which is what we describe below.

Algorithm 2.3.10 (Roots of a polynomial over F)).

Given a nonzero polynomial g € F,[z], with p an odd prime, this algorithm returns
the set r of the roots (without multiplicity) in F,, of g. The set r is assumed global,
augmented as necessary during all recursive calls.

1. [Initial adjustments]

r={% // Root list starts empty.

g(x) = ged(2? — z, g(x)); // Using Algorithm 2.2.1.

if(9(0) ==0) { // Check for 0 root.
r=rU{0}

g(x) = g(x)/x;
}

2. [Call recursive procedure and return]
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r=rUroots(g);
return r;

3. [Recursive function roots()]
roots(g) {
If deg(g) < 2, use quadratic (or lower) formula, via Algorithm 2.3.8, or
2.3.9, to append to r all roots of g, and return;
while(h ==1or h == g) { // Random splitting.
Choose random a € [0,p — 1];
h(z) = ged((x + a)P~H/? — 1, g(x));

r =rUroots(h) Uroots(g/h);
return;

}

The computation of h(x) in the random-splitting loop can be made easier
by using Algorithm 2.1.5 to first compute (z + a)®~1/2 mod g(x) (and of
course, the coefficients are always reduced (mod p)). It can be shown that the
probability that a random a will succeed in splitting g(z) (where deg(g) > 3)
is at least about 3/4 if p is large, and is always bounded above 0. Note that
we can use the random splitting idea on degree-2 polynomials as well, and
thus we have a third square root algorithm! (If g(x) has degree 2, then the
probability that a random choice for a in Step [Recursive ...] will split g is
at least (p — 1)/(2p).) Various implementation details of this algorithm are
discussed in [Cohen 2000]. Note that the algorithm is not actually factoring
the polynomial; for example, a polynomial f might be the product of two
irreducible polynomials, each of which is devoid of roots in F,. For actual
polynomial factoring, there is the Berlekamp algorithm [Menezes et al. 1997,
[Cohen 2000], but many important algorithms require only the root finding
we have exhibited.

We now discuss the problem of finding roots of a polynomial to a composite
modulus. Suppose the modulus is n = ab, where a, b are coprime. If we have an
integer r with f(r) = 0 (mod a) and an integer s with f(s) =0 (mod b), we
can find a root to f(x) =0 (mod ab) that “corresponds” to r and s. Namely,
if the integer ¢ simultaneously satisfies ¢ = r (mod a) and ¢ = s (mod b),
then f(t) =0 (mod ab). And such an integer ¢ may be found by the Chinese
remainder theorem; see Theorem 2.1.6. Thus, if the modulus n can be factored
into primes, and we can solve the case for prime power moduli, then we can
solve the general case.

To this end, we now turn our attention to solving polynomial congruences
modulo prime powers. Note that for any polynomial f(x) € Z[z] and any
integer r, there is a polynomial g,(z) € Z[z] with

fla+r)=f(r) +af'(r) +2*g, (). (2.13)
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This can be seen either through the Taylor expansion for f(z + ) or through
the binomial theorem in the form

d
d o
z+r)¢=rldrite 4 o2 ()rdﬂxj_z.
(z+7) > ;

=2

We can use Algorithm 2.3.10 to find solutions to f(z) = 0 (mod p), if there are
any. The question is how we might be able to “lift” a solution to one modulo
p" for various exponents k. Suppose we have been successful in finding a root
modulo p, say f(r) =0 (mod p'), and we wish to find a solution to f(t) =0
(mod p**!) with ¢t = r (mod p?). We write ¢t as r + p'y, and so we wish to
solve for y. We let z = p'y in (2.13). Thus

ft) = f(r+p'y) = f(r) +p'yf'(r) (mod p*).

If the integer f’(r) is not divisible by p, then we can use the methods of
Section 2.1.1 to solve the congruence

f(r)+p'yf'(r) =0 (mod p*),

namely by dividing through by p’ (recall that f(r) is divisible by p?), finding an
inverse z for f/(r) (mod p?), and letting y = —zf(r)p~* mod p’. Thus, we have
done more than we asked for, having instantly gone from the modulus p’ to the
modulus p?’. But there was a requirement that the integer r satisfy f/(r) # 0
(mod p). In general, if f(r) = f'(r) = 0 (mod p), then there may be no integer
t =r (mod p) with f(t) = 0 (mod p?). For example, take f(z) = 22 + 3 and
consider the prime p = 3. We have the root x = 0; that is, f(0) =0 (mod 3).
But the congruence f(x) =0 (mod 9) has no solution. For more on criteria for
when a polynomial solution lifts to higher powers of the modulus, see Section
3.5.3 in [Cohen 2000).

The method described above is known as Hensel lifting, after the German
mathematician K. Hensel. The argument essentially gives a criterion for there
to be a solution of f(x) = 0 in the “p-adic” numbers: There is a solution if
there is an integer r with f(r) = 0 (mod p) and f/(r) #Z 0 (mod p). What
is more important for us, though, is using this idea as an algorithm to solve
polynomial congruences modulo high powers of a prime. We summarize the
above discussion in the following.

Algorithm 2.3.11 (Hensel lifting). We are given a polynomial f(x) € Z[z],
a prime p, and an integer r that satisfies f(r) = 0 (mod p) (perhaps supplied
by Algorithm 2.3.10) and f’(r) # 0 (mod p). This algorithm describes how one
constructs a sequence of integers rg,71,... such that for each i < j, r; = r;
(mod p*') and f(r;) = 0 (mod p*'). The description is iterative, that is, we give
ro and show how to find ;41 as a function of an already known 7;.

1. [Initial term]

ro =T,
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2. [Function newr() that gives ;41 from ;]

newr(r;) { v
z = flrip™*; v
z=(f'(r))~! mod p*’; // Via Algorithm 2.1.4.
y = —xz mod p* ;

2",
rit1 =T +ypT;
return r;41;

}

Note that for j > ¢ we have r; = r; (mod p2i), so that the sequence (r;)
converges in the p-adic numbers to a root of f(z). In fact, Hensel lifting may
be regarded as a p-adic version of the Newton methods discussed in Section
9.2.2.

2.3.4 Representation by quadratic forms

We next turn to a problem important to such applications as elliptic curves
and primality testing. This is the problem of finding quadratic Diophantine
representations, for positive integer d and odd prime p, in the form

2% +dy® = p,

or, in studies of complex quadratic orders of discriminant D < 0, D = 0,1
(mod 4), the form [Cohen 2000]

2% + |D|y* = 4p.

There is a beautiful approach for these Diophantine problems. The next
two algorithms are not only elegant, they are very efficient. Incidentally, the
following algorithm was attributed usually to Cornacchia until recently, when
it became known that H. Smith had discovered it earlier, in 1885 in fact.

Algorithm 2.3.12 (Represent p as 22 + dy?: Cornacchia—Smith method).
Given an odd prime p and a positive integer d not divisible by p, this algorithm
either reports that p = 22 + dy? has no integral solution, or returns a solution.

1. [Test for solvability]

if((=%) == —1) return { }; // Return empty: no solution.
2. [Initial square root]

ro = v/—d mod p; // Via Algorithm 2.3.8 or 2.3.9.

if(2z0 < p) w0 = p — @o; // Justify the root.
3. [Initialize Euclid chain]

(a,b) = (p,20);

c=|/pl; // Via Algorithm 9.2.11.

4. [Euclid chain]
while(b > ¢) (a,b) = (b,a mod b);

5. [Final report]
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t=p—0b%

if(t £ 0 (mod d)) return { }; // Return empty.
if(t/d not a square) return { }; // Return empty.
return (£b, £/t/d); // Solution(s) found.

This completely solves the computational Diophantine problem at hand. Note
that an integer square-root finding routine (Algorithm 9.2.11) is invoked at
two junctures. The second invocation—the determination as to whether t/d is
a perfect square—can be done along the lines discussed in the text following
the Algorithm 9.2.11 description. Incidentally, the proof that Algorithm 2.3.12
works is, in words from [Cohen 2000], “a little painful.” There is an elegant
argument, due to H. Lenstra, in [Schoof 1995], and a clear explanation from
an algorist’s point of view (for d = 1) in [Bressoud and Wagon 2000, p. 283].

The second case, namely for the Diophantine equation x? + |D|y? = 4p,
for D < 0, can be handled in the following way [Cohen 2000]. First we observe
that if D = 0 (mod 4), then z is even, whence the problem comes down to
solving (2/2)%+(|D|/4)y? = p, which we have already done. If D = 1 (mod 8),
we have 22 — 32 = 4 (mod 8), and so z,y are both even, and again we defer
to the previous method. Given the above argument, one could use the next
algorithm only for D = 5 (mod 8), but in fact, the following will work for
what turn out to be convenient cases D = 0,1 (mod 4):

Algorithm 2.3.13. (Represent 4p as z? + |D|y? (modified Cornacchia—
Smith)) Given a prime pand —4p < D < Owith D = 0,1 (mod 4), this algorithm
either reports that no solution exists, or returns a solution (z,y).

1. [Case p = 2]

if(p ==2) {
if(D + 8 is a square) return (/D + 8,1);

return { }; // Return empty: no solution.

2. [Test for solvability]
if((%) < 1) return { }; // Return empty.

3. [Initial square root]
zo = /D mod p; // Via Algorithm 2.3.8 or 2.3.9.
if(zo Z D (mod 2)) xg = p — xo; // Ensure 23 = D (mod 4p).

4. [Initialize Euclid chain]

(a,b) = (2p, z0);
c=[2\pl; // Via Algorithm 9.2.11.

5. [Euclid chain]
while(b > ¢) (a,b) = (b,a mod b);
6. [Final report]
t=4dp— b
if(t £ 0 (mod |D|)) return { }; // Return empty.
if(t/| D] not a square) return { }; // Return empty.

return (b, =+/t/|D]); // Found solution(s).
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Again, the algorithm either says that there is no solution, or reports the
essentially unique solution to x2 + |D|y? = 4p.

2.4 Exercises
2.1. Prove that 16 is, modulo any odd number, an eighth power.

2.2. Show that the least common multiple lem (a, b) satisfies

ab

1 b) = —————
cm (a’ ) ng.<G/7 b) ?

and generalize this formula for more than two arguments. Then, using the
prime number theorem (PNT), find a reasonable estimate for the lem of all
the integers from 1 through (a large) n.

2.3. Recall that w(n) denotes the number of distinct prime factors of n.
Prove that for any positive squarefree integer n,

#{(z,y) : x,y positive integers, lem (z,y) = n} = 3w,

2.4. Study the relation between the Euclid algorithm and simple continued
fractions, with a view to proving the Lamé theorem (the first part of Theorem
2.1.3).

2.5. Fibonacci numbers are defined ug = 0, w1 = 1, and w11 = Uy + Up—1
for n > 1. Prove the remarkable relation

ged(Ua, Up) = Uged(a,b)s

which shows, among many other things, that w,, u,+1 are coprime for n > 1,
and that if w, is prime, then n is prime. Find a counterexample to the
converse (find a prime p such that u, is composite). By analyzing numerically
several Fibonacci numbers, guess—then prove—a simple, general formula for
the inverse of u, (mod w,y1).

Fibonacci numbers appear elsewhere in this book, e.g., in Sections 1.3.3,
3.6.1 and Exercises 3.25, 3.41, 9.50.

2.6. Show that for z &~ y ~ N, and assuming classical divide with remainder,
the bit-complexity of the classical Euclid algorithm is O (ln2 N ) It is helpful
to observe that to find the quotient—remainder pair ¢, r with x = qy+r requires
O((1 +1Ing)Inz) bit operations, and that the quotients are constrained in a
certain way during the Euclid loop.

2.7. Prove that Algorithm 2.1.4 works; that is, the correct ged and inverse
pair are returned. Answer the following question: When, if ever, do the
returned a,b have to be reduced further, to a mod y and b mod z, to yield
legitimate, unique inverses?

2.8. Argue that for a naive application of Theorem 2.1.6 the mod operations
involved consume at least O (ln2 M ) bit operations if arithmetic be done in
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grammar-school fashion, but only O (7“ In? m) via Algorithm 2.1.7, where m
denotes the maximum of the m;.

2.9. Write a program to effect the asymptotically fast, preconditioned CRT
Algorithm 9.5.26, and use this to multiply two numbers each of, say, 100
decimal digits, using sufficiently many small prime moduli.

2.10. Following Exercise 1.48 one can use, for CRT moduli, Mersenne
numbers having pairwise coprime exponents (the Mersenne numbers need
not themselves be prime). What computational advantages might there be
in choosing such a moduli set (see Section 9.2.3)7 Is there an easy way to find
inverses (2% —1)~! (mod 2° — 1)?

2.11. Give the computational complexity of the “straightforward inverse”
algorithm implied by relation (2.3). Is there ever a situation when one should
use this, or use instead Algorithm 2.1.4 to obtain ¢~ mod m?

2.12. Let Ni(p) be the number of monic irreducible polynomials in F[z]
of degree k. Using formula (2.5), show that p*/k > Ny(p) > p*/k — 2p*/2/k
for every prime p and every positive integer k. Show too that we always have
Ny (p) > 0.

2.13. Does formula (2.5) generalize to give the number of irreducible
polynomials of degree k in Fpn[z]?

2.14. Show how Algorithm 2.2.2 plays a role in finite field arithmetic, namely
in the process of finding a multiplicative inverse of an element in F-.

2.15. Prove Theorem 2.2.8.

2.16. Show how Algorithms 2.3.8 and 2.3.9 may be appropriately generalized
to find square roots of squares in the finite field Fn.

2.17. By considering the binary expansion of the exponent n, show that
the computational complexity of Algorithm 2.1.5 is O(lnn) operations. Argue
that if &, n are each of size m and we are to compute " mod m, and classical
multiply-mod is used, that the overall bit complexity of this powering grows
as the cube of the number of bits in m.

2.18. Say we wish to compute a power ¥ mod N, with N = pq, the product
of two distinct primes. Describe an algorithm that combines a binary ladder
and Chinese remainder theorem (CRT) ideas, and that yields the desired
power more rapidly than does a standard, (mod N)-based ladder.

2.19. The “repunit” number rigz; = (10'%3! — 1)/9, composed of 1031
decimal ones, is known to be prime. Determine, via reciprocity, which of
7,—7 is a quadratic residue of this repunit. Then give an explicit square root
(mod 71931) of the quadratic residue.
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2.20. Using appropriate results of Theorem 2.3.4, prove that for prime p > 3,

73 (p—1) mod 6
) AT
()

Find a similar closed form for (g) when p # 2, 5.

2.21. Show that for prime p = 1 (mod 4), the sum of the quadratic residues
in[1,p—1]is p(p — 1)/4.

2.22. Show that if a is a nonsquare integer, then (%) = —1 for infinitely many
primes p. (Hint: First assume that a is positive and odd. Show that there is
an integer b such that () = —1 and b =1 (mod 4). Then any positive integer

n = b (mod 4a) satisfies (%) = —1, and so is divisible by a prime p with
(%) = —1. Show that infinitely many primes p arise in this way. Then deal

with the cases when a is even or negative.)

2.23. Use Exercise 2.22 to show that if f(x) is an irreducible quadratic
polynomial in Z[z], then there are infinitely many primes p such that
f(z) mod p is irreducible in Z,[z]. Show that z* + 1 is irreducible in Z[z],
but is reducible in each Zy[z]. What about cubic polynomials?

2.24. Develop an algorithm for computing the Jacobi symbol (%) along the
lines of the binary ged method of Algorithm 9.4.2.

2.25. Prove: For prime p with p = 3 (mod 4), given any pair of square roots
of a given  # 0 (mod p), one root is itself a quadratic residue and the other
is not. (The root that is the quadratic residue is known as the principal square
root.) See Exercises 2.26 and 2.42 for applications of the principal root.

2.26. We denote by Z; the multiplicative group of the elements in Z,, that
are coprime to n.

(1) Suppose n is odd and has exactly k distinct prime factors. Let J denote
the set of elements z € Z7, with the Jacobi symbol (£) = 1 and let S
denote the set of squares in Z;. Show that J is a subgroup of Z} of
©(n)/2 elements, and that S is a subgroup of J.

(2) Show that squares in Z7 have exactly 2* square roots in Z¥ and conclude
that #S5 = ¢(n)/2".

(3) Now suppose n is a Blum integer; that is, n = pq is a product of two
different primes p,q = 3 (mod 4). (Blum integers have importance in
cryptography (see [Menezes et al. 1997] and our Section 8.2).) From parts
(1) and (2), #S = %#J, so that half of J’s elements are squares, and half
are not. From part (2), an element of S has exactly 4 square roots. Show
that exactly one of these square roots is itself in S.

(4) For a Blum integer n = pq, show that the squaring function s(z) =
22 mod n is a permutation on the set S, and that its inverse function is

s_l(y) — y((p—l)(q—1)+4)/8 mod n.
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2.27. Using Theorem 2.3.7 prove the two equalities in relations (2.12).

2.28. Here we prove the celebrated quadratic reciprocity relation (2.11) for
two distinct odd primes p, gq. Starting with Definition 2.3.6, show that G is
multiplicative; that is, if ged(m,n) = 1, then

G(m;n)G(n;m) = G(1;mn).

(Hint: mj?/n + nk?/m is similar—in a specific sense—to (mj + nk)?/(mn).)
Infer from this and Theorem 2.3.7 the relation (now for primes p, q)

(-

These are examples par excellence of the potential power of exponential
sums; in fact, this approach is one of the more efficient ways to arrive at
reciprocity. Extend the result to obtain the formula of Theorem 2.3.4 for (%)
Can this approach be extended to the more general reciprocity statement (i.e.,
for coprime m,n) in Theorem 2.3.47 Incidentally, Gauss sums for nonprime
arguments m,n can be evaluated in closed form, using the techniques of
Exercise 1.66 or the methods summarized in references such as [Graham and
Kolesnik 1991].

2.29. This exercise is designed for honing one’s skills in manipulating Gauss
sums. The task is to count, among quadratic residues modulo a prime p, the
exact number of arithmetic progressions of given length. The formal count of
length-3 progressions is taken to be

AW = # {050 - ()= ()= () = tir#ss—r=t—s (uodp).

Note we are taking 0 < r,s,t < p — 1, we are ignoring trivial progressions
(r,r,7), and that 0 is not a quadratic residue. So the prime p = 11, for which
the quadratic residues are {1, 3,4, 5,9}, enjoys a total of A(11) = 10 arithmetic
progressions of length three. (One of these is 4,9, 3; i.e., we allow wraparound
(mod 11); and also, descenders such as 5,4, 3 are allowed )

First, prove that

A(p) S + Z Z 6271'7,’6 r— 2s+t)/p

k 0r,s,t

where each of r, s, t runs through the quadratic residues. Then, use relations
(2.12) to prove that

252 o) ()

Finally, derive for the exact progression count the attractive expression

A = -1 |25
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An interesting extension to this exercise is to analyze progressions of longer
length. Another direction: How many progressions of a given length would be
expected to exist amongst a random half of all residues {1, 2, 3, ..., p—1}
(see Exercise 2.41)7

2.30. Prove that square-root Algorithms 2.3.8 and 2.3.9 work.

2.31. Prove that the following algorithm (certainly reminiscent of the text
Algorithm 2.3.9) works for square roots (mod p), for p an odd prime. Let
be the quadratic residue for which we desire a square root. Define a particular
Lucas sequence (Vi) by Vo =2,V4 = h, and for k > 1

Vie=hVi_1—2Vi_a,

where h is such that (@) = —1. Then compute a square root of = as

1
y= §V(p+1)/2 (mod p).

Note that the Lucas numbers can be computed via a binary Lucas chain; see
Algorithm 3.6.7.

2.32. Implement Algorithm 2.3.8 or 2.3.9 or some other variant to solve each
of
2% = 3615 (mod 2'6 + 1),

z? = 552512556430486016984082237 (mod 289 — 1).

2.33. Show how to enhance Algorithm 2.3.8 by avoiding some of the
powerings called for, perhaps by a precomputation.

2.34. Prove that a primitive root of an odd prime p is a quadratic
nonresidue.

2.35. Prove that Algorithm 2.3.12 (alternatively 2.3.13) works. As intimated
in the text, the proof is not entirely easy. It may help to first prove a special-
case algorithm, namely for finding representations p = a? + b? when p = 1

(mod 4). Such a representation always exists and is unique.

2.36. Since we have algorithms that extract square roots modulo primes,
give an algorithm for extracting square roots (mod n), where n = pq is
the product of two explicitly given primes. (The Chinese remainder theorem
(CRT) will be useful here.) How can one extract square roots of a prime power
n = pF? How can one extract square roots modulo n if the complete prime
factorization of n is known?

Note that in ignorance of the factorization of n, square root extraction is
extremely hard—essentially equivalent to factoring itself; see Exercise 6.5.

2.37. Prove that for odd prime p, the number of roots of az? + bz +c =0
(mod p), where a # 0 (mod p), is given by 1+ (%), where D = b% — 4ac is the
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discriminant. For the case 1 + (%) > 0, give an algorithm for calculation of
all the roots.

2.38. Find a prime p such that the least primitive root of p exceeds the
number of binary bits in p. Find an example of such a prime p that is also
a Mersenne prime (i.e., some p = M, = 29 — 1 whose least primitive root
exceeds ¢). These findings show that the least primitive root can exceed lgp.
For more exploration along these lines see Exercise 2.39.

2.5 Research problems

2.39. Implement a primitive root-finding algorithm, and study the statistical
occurrence of least primitive roots.

The study of least primitive roots is highly interesting. It is known on
the GRH that 2 is a primitive root of infinitely many primes, in fact for a
positive proportion a = [[(1 — 1/p(p — 1)) = 0.3739558, the product running
over all primes (see Exercise 1.90). Again on the GRH, a positive proportion
whose least primitive root is not 2, has 3 as a primitive root and so on;
see [Hooley 1976]. It is conjectured that the least primitive root for prime
p is O((Inp)(Inlnp)); see [Bach 1997a]. It is known, on the GRH, that the
least primitive root for prime p is O (ln6 p); see [Shoup 1992]. It is known
unconditionally that the least primitive root for prime p is O(p'/**€) for
every € > 0, and for infinitely many primes p it exceeds clnplnlnlnp for
some positive constant ¢, the latter a result of S. Graham and C. Ringrosee.
The study of the least primitive root is not unlike the study of the least
quadratic nonresidue—in this regard see Exercise 2.41.

2.40. Investigate the use of CRT in the seemingly remote domains of integer
convolution, or fast Fourier transforms, or public-key cryptography. A good
reference is [Ding et al. 1996].

2.41. Here we explore what might be called “statistical” features of the
Legendre symbol. For odd prime p, denote by N(a,b) the number of residues
whose successive quadratic characters are (a,b); that is, we wish to count
those integers x € [1,p — 2] such that

() (2 =

with each of a,b attaining possible values +1. Prove that

- (1)) (52
or-t-o=()

and therefore that

N(a,b) =

= =
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Establish the corollary that the number of pairs of consecutive quadratic
residues is (p — 5)/4, (p — 3)/4, respectively, as p = 1,3 (mod 4). Using the
formula for N(a,b), prove that for every prime p the congruence

2 +y* = —1 (mod p)

is solvable.

One satistying aspect of the N(a,b) formula is the statistical notion that
sure enough, if the Legendre symbol is thought of as generated by a “random
coin flip,” there ought to be about p/4 occurrences of a given pair (+1,+1).

All of this makes sense: The Legendre symbol is in some sense random.
But in another sense, it is not quite so random. Let us estimate a sum:

sn= Y (3).

A<z<B

which can be thought of, in some heuristic sense we suppose, as a random
walk with N = B — A steps. On the basis of remarks following Theorem 2.3.7,
show that

LKA [sin(eNb/p) | LRS 1
|sa,B| < \/ﬁz sin(7b/p) ‘ = \/ﬁbz:% | sin(wb/p)|

b=0

Finally, arrive at the Pélya—Vinogradov inequality:

|sa.B| <+/pPlnp.

Actually, the inequality is often expressed more generally, where instead of
the Legendre symbol as character, any nonprincipal character applies. This
attractive inequality says that indeed, the “statistical fluctuation” of the
quadratic residue/nonresidue count, starting from any initial z = A, is always
bounded by a “variance factor” /p (times a log term). One can prove more
than this; for example, using an inequality in [Cochrane 1987] one can obtain

4
54,8 < —5VpInp+041y/p + 061,

and it is known that on the GRH, s4p = O (\/]51n lnp); see [Davenport
1980]. In any case, we deduce that out of any N consecutive integers,
N/2 4 O(p'/?Inp) are quadratic residues (mod p). We also conclude that the
least quadratic nonresidue (mod p) is bounded above by, at worst, \/plnp.
Further results on this interesting inequality are discussed in [Hildebrand
1988a, 1988b).

The Pélya—Vinogradov inequality thus restricted to quadratic characters
tells us that not just any coin-flip sequence can be a Legendre-symbol
sequence. The inequality says that we cannot, for large p say, have a Legendre-
symbol sequence such as (1,1,1,...,—1—1—1) (i.e., first half are 1’s second
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half —1’s). We cannot even build up more than an O (\/f)ln p) excess of one
symbol over the other. But in a truly random coin-flip game, any pattern of
1’s and —1’s is allowed; and even if you constrain such a game to have equal
numbers of 1’s and —1’s as does the Legendre-symbol game, there are still
vast numbers of possible coin-flip sequences that cannot be symbol sequences.
In some sense, however, the Pélya—Vinogradov inequality puts the Legendre
symbol sequence smack in the middle of the distribution of possible sequences:
It is what we might expect for a random sequence of coin flips. Incidentally,
in view of the coin-flip analogy, what would be the expected value of the least
quadratic nonresidue (mod p)? In this regard see Exercise 2.39. For a different
kind of constraint on presumably random quadratic residues, see the remarks
at the end of Exercise 2.29.

2.42. Here is a fascinating line of research: Using the age-old and glorious
theory of the arithmetic-geometric mean (AGM), investigate the notion of
what we might call a “discrete arithmetic-geometric mean (DAGM).” It was
a tour de force of analysis, due to Gauss, Legendre, Jacobi, to conceive of the
analytic AGM, which is the asymptotic fixed point of the elegant iteration

(a,b)H(a;b,\/@),

that is, one replaces the pair (a,b) of real numbers with the new pair of
arithmetic and geometric means, respectively. The classical AGM, then, is the
real number ¢ to which the two numbers converge; sure enough, (¢, ¢) — (¢, ¢)
so the process tends to stabilize for appropriate initial choices of @ and b. This
scheme is connected with the theory of elliptic integrals, the calculation of m
to (literally) billions of decimal places, and so on [Borwein and Borwein 1987].

But consider doing this procedure not on real numbers but on residues
modulo a prime p = 3 (mod 4), in which case an  (mod p) that has a square
root always has a so-called principal root (and so an unambiguous choice
of square root can be taken; see Exercise 2.25). Work out a theory of the
DAGM modulo p. Perhaps you would want to cast v/ab as a principal root if
said root exists, but something like a different principal root, say +/gab, for
some fixed nonresidue g when ab is a nonresidue. Interesting theoretical issues
are these: Does the DAGM have an interesting cycle structure? Is there any
relation between your DAGM and the classical, analytic AGM? If there were
any fortuitous connection between the discrete and analytic means, one might
have a new way to evaluate with high efficiency certain finite hypergeometric
series, as appear in Exercise 7.26.



Chapter 3
RECOGNIZING PRIMES AND COMPOSITES

Given a large number, how might one quickly tell whether it is prime or
composite? In this chapter we begin to answer this fundamental question.

3.1 Trial division
3.1.1 Divisibility tests

A divisibility test is a simple procedure to be applied to the decimal digits
of a number n so as to determine whether n is divisible by a particular
small number. For example, if the last digit of n is even, so is n. (In fact,
nonmathematicians sometimes take this criterion as the definition of being
even, rather than being divisible by two.) Similarly, if the last digit is 0 or 5,
then n is a multiple of 5.

The simple nature of the divisibility tests for 2 and 5 are, of course, due
to 2 and 5 being factors of the base 10 of our numeration system. Digital
divisibility tests for other divisors get more complicated. Probably the next
most well-known test is divisibility by 3 or 9: The sum of the digits of n is
congruent to n (mod 9), so by adding up digits themselves and dividing by 3
or 9 respectively reveals divisibility by 3 or 9 for the original n. This follows
from the fact that 10 is one more than 9; if we happened to write numbers
in base 12, for example, then a number would be congruent (mod 11) to the
sum of its base-12 “digits.”

In general, divisibility tests based on digits get more and more complicated
as the multiplicative order of the base modulo the test divisor grows. For
example, the order of 10 (mod 11) is 2, so there is a simple divisibility test
for 11: The alternating sum of the digits of n is congruent to n (mod 11). For
7, the order of 10 is 6, and there is no such neat and tidy divisibility test,
though there are messy ones.

From a computational point of view, there is little difference between a
special divisibility test for the prime p and dividing by p to get the quotient
and the remainder. And with dividing there are no special formulae or rules
peculiar to the trial divisor p. So when working on a computer, or even for
extensive hand calculations, trial division by various primes p is simpler and
just as efficient as using various divisibility tests.



118 Chapter 3 RECOGNIZING PRIMES AND COMPOSITES

3.1.2 Trial division

Trial division is the method of sequentially trying test divisors into a number
n so as to partially or completely factor n. We start with the first prime, the
number 2, and keep dividing n by 2 until it does not go, and then we try the
next prime, 3, on the remaining unfactored portion, and so on. If we reach a
trial divisor that is greater than the square root of the unfactored portion, we
may stop, since the unfactored portion is prime.

Here is an example. We are given the number n = 7399. We trial divide
by 2, 3, and 5 and find that they are not factors. The next choice is 7. It
is a factor; the quotient is 1057. We next try 7 again, and find that again it
goes, the quotient being 151. We try 7 one more time, but it is not a factor
of 151. The next trial is 11, and it is not a factor. The next trial is 13, but
this exceeds the square root of 151, so we find that 151 is prime. The prime
factorization of 7399 is 72 - 151.

It is not necessary that the trial divisors all be primes, for if a composite
trial divisor d is attempted, where all the prime factors of d have previously
been factored out of n, then it will simply be the case that d is not a factor
when it is tried. So though we waste a little time, we are not led astray in
finding the prime factorization.

Let us consider the example n = 492. We trial divide by 2 and find that
it is a divisor, the quotient being 246. We divide by 2 again and find that
the quotient is 123. We divide by 2 and find that it does not go. We divide
by 3, getting the quotient 41. We divide by 3, 4, 5 and 6 and find they do
not go. The next trial is 7, which is greater than /41, so we have the prime
factorization 492 = 22 -3 - 41.

Now let us consider the neighboring number n = 491. We trial divide by
2, 3, and so on up through 22 and find that none are divisors. The next trial
is 23, and 232 > 491, so we have shown that 491 is prime.

To speed things up somewhat, one may exploit the fact that after 2, the
primes are odd. So 2 and the odd numbers may be used as trial divisors. With
n = 491, such a procedure would have stopped us from trial dividing by the
even numbers from 4 to 22. Here is a short description of trial division by 2
and the odd integers greater than 2.

Algorithm 3.1.1 (Trial division). We are given an integer n > 1. This
algorithm produces the multiset F of the primes that divide n. (A “multiset”
is a set where elements may be repeated; that is, a set with multiplicities.)
1. [Divide by 2]
F={H% // The empty multiset.
N =n;
while(2|N) {
N = N/2;
F=FU{2}
}

2. [Main division loop]
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d=3;
while(d? < N) {
while(d|N) {
N = N/d;
F=FuU{d};

d=d+2;
}
if(N ==1) return F;
return FU{N};

After 3, primes are either 1 or 5 (mod 6), and one may step through the
sequence of numbers that are 1 or 5 (mod 6) by alternately adding 2 and 4 to
the latest number. This is a special case of a “wheel,” which is a finite sequence
of addition instructions that may be repeated indefinitely. For example, after
5, all primes may be found in one of 8 residue classes (mod 30), and a wheel
that traverses these classes (beginning from 7) is

4,2,4,2,4,6,2,6.

Wheels grow more complicated at a rapid rate. For example, to have a wheel
that traverses the numbers that are coprime to all the primes below 30, one
needs to have a sequence of 1021870080 numbers. And in comparison with
the simple 2,4 wheel based on just the two primes 2 and 3, we save only little
more than 50% of the trial divisions. (Specifically, about 52.6% of all numbers
coprime to 2 and 3 have a prime factor less than 30.) It is a bit ridiculous
to use such an ungainly wheel. If one is concerned with wasting time because
of trial division by composites, it is much easier and more efficient to first
prepare a list of the primes that one will be using for the trial division. In the
next section we shall see efficient ways to prepare this list.

3.1.3 Practical considerations

It is perfectly reasonable to use trial division as a primality test when n is
not too large. Of course, “too large” is a subjective quality; such judgment
depends on the speed of the computing equipment and how much time you are
willing to allow a computer to run. It also makes a difference whether there is
just the occasional number you are interested in, as opposed to the possibility
of calling trial division repeatedly as a subroutine in another algorithm. On a
modern workstation, and very roughly speaking, numbers that can be proved
prime via trial division in one minute do not exceed 13 decimal digits. In one
day of current workstation time, perhaps a 19-digit number can be resolved.
(Although these sorts of rules of thumb scale, naturally, according to machine
performance in any given era.)

Trial division may also be used as an efficient means of obtaining a partial
factorization n = F'R as discussed above. In fact, for every fixed trial division
bound B > 2, at least one quarter of all numbers have a divisor F' that is
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greater than B and composed solely of primes not exceeding B; see Exercise
3.4.

Trial division is a simple and effective way to recognize smooth numbers,
or numbers without large prime factors, see Definition 1.4.8.

It is sometimes useful to have a “smoothness test,” where for some
parameter B, one wishes to know whether a given number n is B-smooth,
that is, n has no prime factor exceeding B. Trial division up to B not only
tells us whether n is B-smooth, it also provides us with the prime factorization
of the largest B-smooth divisor of n.

The emphasis in this chapter is on recognizing primes and composites,
and not on factoring. So we leave a further discussion of smoothness tests to
a later time.

3.1.4 Theoretical considerations

Suppose we wish to use trial division to completely factor a number n into
primes. What is the worst case running time? This is easy, for the worst case is
when n is prime and we must try as potential divisors the numbers up to y/n.
If we are using just primes as trial divisors, the number of divisions is about
2y/n/Inn. If we use 2 and the odd numbers as trial divisors, the number of
divisions is about %,/n. If we use a wheel as discussed above, the constant 3
is replaced by a smaller constant.

So this is the running time for trial division as a primality test. What is its
complexity as an algorithm to obtain the complete factorization of n when n is
composite? The worst case is still about /n, for just consider the numbers that
are the double of a prime. We can also ask for the average case complexity for
factoring composites. Again, it is almost y/n, since the average is dominated
by those composites that have a very large prime factor. But such numbers are
rare. It may be interesting to throw out the 50% worst numbers and compute
the average running time for trial division to completely factor the remaining
numbers. This turns out to be n¢, where ¢ = 1/(21/e) ~ 0.30327; see Exercise
3.5.

As we shall see later in this chapter and in the next chapter, the problem
of recognizing primes is much easier than the general case of factorization. In
particular, we have much better ways than trial division to recognize primes.
Thus, if one uses trial division as a factorization method, one should augment
it with a faster primality test whenever a new unfactored portion of n is
discovered, so that the last bit of trial division may be skipped when the
last part turns out to be prime. So augmenting trial division, the time to
completely factor a composite n essentially is the square root of the second
largest prime factor of n.

Again the average is dominated by a sparse set of numbers, in this case
those numbers that are the product of two primes of the same order of
magnitude; the average being about v/n. But now throwing out the 50% worst
numbers gives a smaller estimate for the average of the remaining numbers.
It is n¢, where ¢ ~ 0.23044.
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3.2 Sieving

Sieving can be a highly efficient means of determining primality and factoring
when one is interested in the results for every number in a large, regularly
spaced set of integers. On average, the number of arithmetic operations spent
per number in the set can be very small, essentially bounded.

3.2.1 Sieving to recognize primes

Most readers are likely to be familiar with the sieve of Eratosthenes. In its
most common form it is a device for finding the primes up to some number
N. Start with an array of N — 1 “ones,” corresponding to the numbers from
2 to N. The first one corresponds to “2,” so the ones in locations 4, 6, 8,
and so on, are all changed to zeros. The next one is in the position “3,” and
we read this as an instruction to change any ones in locations 6, 9, 12, and
so on, into zeros. (Entries that are already zeros in these locations are left
unchanged.) We continue in this fashion. If the next entry one corresponds
to “p,” we change to zero any entry one at locations 2p, 3p, 4p, and so on.
However, if p is so large that p?> > N, we may stop this process. This exit
point can be readily detected by noticing that when we attempt to sieve by p
there are no changes of ones to zeros to be made. At this point the one entries
in the list correspond to the primes not exceeding N, while the zero entries
correspond to the composites.

In passing through the list 2p, 3p, 4p, and so on, one starts from the initial
number p and sequentially adds p until we arrive at a number exceeding N.
Thus the arithmetic operations in the sieve are all additions. The number of
steps in the sieve of Eratosthenes is proportional to Zp< ~ IN/p, where p runs
over primes. But

> N = Nlnln N + O(N); (3.1)
p<N
see Theorem 427 in [Hardy and Wright 1979]. Thus, the number of steps
needed per number up to N is proportional to Inln N. It should be noted
that Inln N, though it does go to infinity, does so very slowly. For example,
Inln N < 10 for all N < 109565,

The biggest computer limitation on sieves is the enormous space they
can consume. Sometimes it is necessary to segment the array from 2 to N.
However, if the length of a segment drops below v/N, the efficiency of the sieve
of Eratosthenes begins to deteriorate. The time it takes to sieve a segment of
length M with the primes up to VN is proportional to

Ml N +7 (VN) +0(M),

where m(z) denotes the number of primes up to z. Since 7r(VN) ~

2V N/In N, by the prime number theorem, we see that this term can be
much larger than the “main term” M Inln N when M is small. In fact, it is an
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unsolved problem to come up with a method of finding all the primes in the
interval [N ,N + NV 4} that is appreciably faster than individually examining
each number. This problem is specified in Exercise 3.46.

3.2.2 Eratosthenes pseudocode

We now give practical pseudocode for implementing the ordinary Eratosthenes
sieve to find primes in an interval.

Algorithm 3.2.1 (Practical Eratosthenes sieve). This algorithm finds all
primes in an interval (L, R) by establishing Boolean primality bits for successive
runs of B odd numbers. We assume L, R even, with R > L, B|R — L and
L > P = [V/R]. We also assume the availability of a table of the 7(P) primes
pr < P.

1. [Initialize the offsets]
for(k € [2,7(P)]) qx = (—%(L +1 —|—pk)) mod pg;
2. [Process blocks]
T=1L;
while(T < R) {
for(j € [0,B—1]) b; =1,
for(k € [2,7(P)]) {
for(j = qn; < B; j=j+pk) bj=0;
} qx = (g — B) mod py;
for(j €10,B—1]) {
if(b; == 1) report T'+ 25+ 1; // Output the prime p =T +2j +1.

T =T +2B;
}

Note that this algorithm can be used either to find the primes in (L, R), or
just to count said primes precisely, though more sophisticated prime counting
methods are covered in Section 3.7. By use of a wheel, see Section 3.1, the
basic sieve Algorithm 3.2.1 may be somewhat enhanced (see Exercise 3.6).

3.2.3 Sieving to construct a factor table

By a very small change, the sieve of Eratosthenes can be enhanced so that it
not only identifies the primes up to IV, but also gives the least prime factor
of each composite up to N. This is done as follows. Instead of changing “one”
to “zero” when the prime p hits a location, you change any ones to p, where
entries that have already been changed into smaller primes are left unchanged.

The time for this sieve is the same as for the basic sieve of Eratosthenes,
though more space is required.

A factor table can be used to get the complete prime factorization of
numbers in it. For example, by the entry 12033 one would see 3, meaning that
3 is the least prime factor of 12033. Dividing 3 into 12033, we get 4011, and
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this number’s entry is also 3. Dividing by 3 again, we get 1337, whose entry
is 7. Dividing by 7, we get 191, whose entry is 1. Thus 191 is prime and we
have the prime factorization

12033 = 3%2-7-191.

Factor tables predate, by far, the computer era. Extensive hand-computed
factor tables were indispensable to researchers doing numerical work in
number theory for many decades prior to the advent of electronic calculating
engines.

3.2.4 Sieving to construct complete factorizations

Again, at the cost of somewhat more space, but very little more time, one
may adapt the sieve of Eratosthenes so that next to entry m is the complete
prime factorization of m. One does this by appending the prime p to lists at
locations p, 2p, 3p, ..., p|N/p]|. One also needs to sieve with the powers p® of
primes p < v/N, where the power p® does not exceed N. At each multiple of
p* another copy of the prime p is appended. To avoid sieving with the primes

in the interval (\/N ,N'|, one can divide to complete the factorization.

For example, say N = 20000; let us follow what happens to the entry
m = 12033. Sieving by 3, we change the 1 at location 12033 to 3. Sieving by
9, we change the 3 at location 12033 to 3, 3. Sieving by 7, we change the entry
to 3,3,7. At the end of sieving (which includes sieving with all primes up to
139 and higher powers of these primes up to 20000), we return to each location
in the sieve and multiply the list there. At the location 12033, we multiply
337, getting 63. Dividing 63 into 12033, the quotient is 191, which is also
put on the list. So the final list for 12033 is 3,3,7,191, giving the complete
prime factorization of 12033.

3.2.5 Sieving to recognize smooth numbers

Using the sieve of Eratosthenes to get complete factorizations may be
simplified and turned into a device to recognize all of the B-smooth numbers
(see Definition 1.4.8) in [2, N]. We suppose that 2 < B < v/N. Perform the
factorization sieve as in the above subsection, but with two simplifications: (1)
Do not sieve with any p* where p exceeds B, and (2) if the product of the list
at a location is not equal to that location number, then do not bother dividing
to get the quotient. The B-smooth numbers are precisely those at locations
that are equal to the product of the primes in the list at that location.

To simplify slightly, we might multiply a running product at each location
by p whenever p® hits there. There is no need to keep the lists around if we
are interested only in picking out the B-smooth numbers. At the end of the
sieve, those locations whose location numbers are equal to the entry in the
location are the B-smooth numbers.

For example, say B = 10 and N = 20000. The entry corresponding to
12033 starts as 1, and gets changed sequentially to 3, to 9, and finally to
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63. Thus 12033 is not 10-smooth. However, the entry at 12000 gets changed
sequentially to 2, 4, 8, 16, 32, 96, 480, 2400, and finally 12000. Thus 12000 is
10-smooth.

One important way of speeding this sieve is to do the arithmetic at each
location in the sieve with logarithms. Doing exact arithmetic with logarithms
involves infinite precision, but there is no need to be exact. For example, say we
use the closest integer to the base-2 logarithm. For 12000 this is 14. We also use
the approximations lg2 ~ 1 (this one being exact), lg3 ~ 2,1g5 ~ 2,1g7 ~ 3.
The entry now at location 12000 gets changed sequentially to 1, 2, 3, 4, 5, 7,
9, 11, 13. This is close enough to the target 14 for us to recognize that 12000 is
smooth. In general, if we are searching for B-smooth numbers, then an error
smaller than lg B is of no consequence.

One should see the great advantage of working with approximate
logarithms, as above. First, the numbers one deals with are very small. Second,
the arithmetic necessary is addition, an operation that is much faster to
perform on most computers than multiplication or division. Also note that
the logarithm function moves very slowly for large arguments, so that all
nearby locations in the sieve have essentially the same target. For example,
above we had 14 the target for 12000. This same number is used as the target
for all locations between 2'3-5 and 2'45, namely, all integers between 11586
and 23170.

We shall find later an important application for this kind of sieve in
factorization algorithms. And, as discussed in Section 6.4, sieving for smooth
numbers is also crucial in some discrete logarithm algorithms. In these settings
we are not so concerned with doing a perfect job sieving, but rather just
recognizing most B-smooth numbers without falsely reporting too many
numbers that are not B-smooth. This is a liberating thought that allows
further speed-ups in sieving. The time spent sieving with a prime p in the
sieve is proportional to the product of the length of the sieve and 1/p. In
particular, small primes are the most time-consuming. But their logarithms
contribute very little to the sum, and so one might agree to forgo sieving
with these small primes, allowing a little more error in the sieve. In the above
example, say we forgo sieving with the moduli 2, 3, 4, 5. We will sieve by
higher powers of 2, 3, and 5, as well as all powers of 7, to recognize our 10-
smooth numbers. Then the running sum in location 12000 is 3, 4, 5, 9, 11.
This total is close enough to 14 to cause a report, and the number 12000 is
not overlooked. But we were able to avoid the most costly part of the sieve to
find it.

3.2.6 Sieving a polynomial

Suppose f(z) is a polynomial with integer coefficients. Consider the numbers
f), f(2),..., f(N). Say we wish to find the prime numbers in this list, or to
prepare a factor table for the list, or to find the B-smooth numbers in this
list. All of these tasks can easily be accomplished with a sieve. In fact, we have
already seen a special case of this for the polynomial f(z) = 2z + 1, when we
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noticed that it was essentially sufficient to sieve just the odd numbers up to
N when searching for primes.

To sieve the sequence f(1), f(2),..., f(IN), we initialize with ones an array
corresponding to the numbers 1,2,..., N. An important observation is that
if p is prime and a satisfies f(a) = 0 (mod p), then f(a + kp) = 0 (mod p)
for every integer k. Of course, there may be as many as degf such solutions
a, and hence just as many distinct arithmetic progressions {a + kp} for each
sieving prime p.

Let us illustrate with the polynomial f(x) = 22 + 1. We wish to find the
primes of the form z2 + 1 for z an integer, 1 < « < N. For each prime p < N,
solve the congruence 2 + 1 = 0 (mod p) (see Section 2.3.2). When p = 1
(mod 4), there are two solutions, when p = 3 (mod 4), there are no solutions,
and when p = 2 there is exactly one solution. For each prime p and solution
a (that is, a®> + 1 = 0 (mod p) and 1 < a < p), we sieve the residue class a
(mod p) up to N, changing any ones to zeros. However, the very first place
a may correspond to the prime p itself, which may easily be detected by the
criterion a < ,/p, or by computing a’?+1 and seeing whether it is p. Of course,
if p = a® + 1, we should leave the entry at this location as a 1.

Again, this sieve works because a* + 1 = 0 (mod p) if and only if
(a+kp)?+1=0 (mod p) for every integer k (and we only need the values of
k such that 1 <a+kp < N).

An important difference with the ordinary sieve of Eratosthenes is how far
one must go to detect the primes. The general principle is that one must sieve
with the primes up to the square root of the largest number in the sequence
f(1), f(2),..., f(IN). (We assume here that these values are all positive.) In
the case of 2% + 1 this means that we must sieve with all the primes up to N,
rather than stopping at v/N as with the ordinary sieve of Eratosthenes.

The time it takes to sieve 22 + 1 for primes for # running up to N is,
after finding the solutions to the congruences z? + 1 = 0 (mod p), about
the same as the ordinary sieve of Eratosthenes. This may seem untrue, since
there are now many primes for which we must sieve two residue classes, and
we must consider all of the primes up to N, not just v/N. The reply to the
first objection is that yes, this is correct, but there are also many primes for
which we sieve no residue classes at all. On the second objection, the key here
is that the sum of the reciprocals of all of the primes between v N and N is
bounded as N grows (it is asymptotically equal to In2), so the extra sieving
time is only O(N). That is, what we are asserting is that not only do we have

1
> —=llnN+0(1),
pS\/ﬁp

we also have

1 1
5 +2 > ~ =InlnN +O(1)

p<N, p=1 (mod 4) p

(see Chapter 7 in [Davenport 1980]).
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It is important to be able to sieve the consecutive values of a polynomial
for B-smooth numbers, as in Section 3.2.5. All of the ideas of that section
port most naturally to the ideas of this section.

3.2.7 Theoretical considerations

The complexity NInln N of the sieve of Eratosthenes may be reduced
somewhat by several clever arguments. The following algorithm is based
on ideas of Mairson and Pritchard (see [Pritchard 1981]). It requires only
O(N/Inln N) steps, where each step is either for bookkeeping or an addition
with integers at most N. (Note that an explicit pseudocode display for a
rudimentary Eratosthenes sieve appears in Section 3.2.2.)

Algorithm 3.2.2 (Fancy Eratosthenes sieve). We are given a number N >
4. This algorithm finds the set of primes in [1, N]. Let p; denote the I-th prime,
let M; = pip2---pi, and let S; denote the set of numbers in [1, N] that are
coprime to M;. Note that if p,,;1 > V/N, then the set of primes in [1,N] is
(S \{1}) U{p1,p2,...,pm}. The algorithm recursively finds Sk, Skt1,...,m
starting from a moderately sized initial value k and ending with m = 7(v/N).

1. [Setup]
Set k as the integer with My < N/In N < My1;
m = 7(vV/N);

Use the ordinary sieve of Eratosthenes (Algorithm 3.2.1) to find the primes
D1,D2, ..., Pk and to find the set of integers in [1, M}] coprime to My;

2. [Roll wheel]
Roll the M}, “wheel” (see Section 3.1) to find the set Sk;
S = Sk;
3. [Find gaps]
for(l € [k +1,m]) {
p = p; = the least member of S that exceeds 1;
// At this point, S = S;_1.
Find the set G of gaps between consecutive members of SN [1, N/p];
// Each number that is a gap is counted only once in G.
Find the set pG = {pg : g € G};
// Use “repeated doubling method” (see Algorithm 2.1.5).
4. [Find special set]
Find the set pS N [1,N] = {ps: ps < N,s € S} as follows: If s and

s’ are consecutive members of S with s’p < N and sp has already

been computed, then ps’ = ps + p(s’ — s);

// Note that s’ — s is a member of G and the number p(s’ — s)
has already been computed in Step [Find gaps]. So ps’ may be
computed via a subtraction (to find s’ — s), a look-up (to find
p(s’—s)) and an addition. (Since the least member of S is 1, the
first value of ps is p itself and does not need any computation.)

5. [Find next set S]
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S =5\ (@SnN[1,N]); // Now S = 5.
l=01+1
}
6. [Return the set of primes in [1, N]]
return (S\ {1}) U{p1,p2,-..,pm};

Each set S; consists of the numbers in [1, N] that are coprime to p1,ps, ..., pi-
Thus the first member after 1 is the (I + 1)-th prime, p;y1. Let us count
the number of operations in Algorithm 3.2.2. The number of operations for
Step [Setup] is O(N/InN)> .., 1/p;) = O(NInlnN/InN). (In fact, the
expression Inln N may be replaced with Inlnln N, but it is not necessary for
the argument.) For Step [Roll wheel], the number of operations is #S5; <
[N/My]o(My) = O(Ne(My,)/My), where ¢ is Euler’s function. The fraction
©(My)/My, is exactly equal to the product of the numbers 1 — 1/p; for
1 =1 up to k. By the Mertens Theorem 1.4.2, this product is asymptotically
e~ 7/Inpy. Further, from the prime number theorem, we have that py is
asymptotically equal to In N. Thus the number of operations for Step [Roll
wheel] is O(N/Inln N).

It remains to count the number of operations for steps [Find gaps| and
[Find special set]. Suppose S = S;_1, and let G; = G. The number of members
of SN[1,N/py] is O(N/(p;Inp;—1)), by Mertens. Thus, the total number of
steps to find all sets G is bounded by a constant times

m

> N/(pilnpi_1) = O(N/Inp) = O(N/Inln N).
l=k+1

The number of additions required to compute gp; for g in G; by the repeated
doubling method is O(In g) = O(In N). The sum of all of the values of g in G,

is at most N/p;, so that the number of members of G; is O (x/N/pl>. Thus

the total number of additions in Step [Find gaps| is bounded by a constant
times

m | VN] VN
N [N [N
§ —InN < § —,lnNg/ “InNdt=2N3**InN.
1=kr1 VP i—= ! 1 t

We cannot be so crude in our estimation of the number of operations in Step
[Find special set]. Each of these operations is the simple bookkeeping step
of deleting a member of a set. Since no entry is deleted more than once, it
suffices to count the total number of deletions in all iterations of Step [Find
special set]. But this total number of deletions is just the size of the set Sy

less the number of primes in [\/]V7 N] This is bounded by #.Sj, which we
have already estimated to be O(N/Inln N).
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3.3 Recognizing smooth numbers

A very important subroutine in many number-theoretic algorithms involves
identifying the smooth numbers in a given list of numbers. We have many
methods for recognizing these smooth numbers, since any factorization
algorithm will do. However, some factorization algorithms, such as trial
division, find the smaller prime factors of the number being factored before
finding the larger prime factors. Such a method could presumably reject a
number for not being y-smooth before completely factoring it. Factorization
methods with this property include trial division, the Pollard rho method, and
the Lenstra elliptic curve method, the latter two methods being discussed later
in the book. Used as smoothness tests, these three factorization methods have
the following rough complexities: Trial division takes y'T°() operations per
number examined, the rho method takes y'/2T°(1) operations, and the elliptic
curve method takes about exp((2InyInlny)'/?) = y°() operations. Here an
“operation” is an arithmetic step with numbers the size of the specific number
being examined. (It should be pointed out that the complexity estimates for
both the rho method and the elliptic curve method are heuristic.)

Sometimes we can use a sieve to recognize smooth numbers, and when we
can, it is very fast. For example, if we have a string of consecutive integers
or more generally a string of consecutive values of a polynomial with integer
coefficients (and with low degree), and if this string has length L > y, with
maximal member M, then the time to examine every single one of the L
numbers for y-smoothness is about LInln M Inlny, or about Inln M Inlny
bit operations per number. (The factor Inln M arises from using approximate
logarithms, as discussed in Section 3.2.5.) In fact, sieving is so fast that the
run time is dominated more by retrieving numbers from memory than by
doing actual computations.

In this section we shall discuss an important new method of D. Bernstein
(see [Bernstein 2004d]), which can recognize the smooth numbers in any set
of at least y numbers, and whose amortized time per number examined is
almost as fast as sieving: It is (In®yIn M)'+°() bit operations per number,
if the numbers are at most M. To achieve this complexity, though, one must
use sophisticated subroutines for large-integer arithmetic, such as the fast
Fourier transform or equivalent convolution techniqes (see our Chapter 8.8
and [Bernstein 2004¢]).

We shall illustrate the Bernstein method with the smoothness bound y set
at 20, and with the set of numbers being examined being 1001, 1002, . .., 1008.
(It is not important that the numbers be consecutive, it is just easier to
keep track of them for the illustration.) A moment’s inspection shows the 20-
smooth numbers in the list to be the first and last, namely 1001 and 1008.
The algorithm not only tells us this, it gives the largest 20-smooth divisor for
each number in the list.

The plan of the Bernstein algorithm, as applied to this example, is first
to find the product of all of the primes up to 20, namely 9699690, and then
reduce this product modulo each of the eight numbers on our list. Say z is on
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our list and 9699690 mod = = r. Then r = ab, where a = gcd (9699690, ) and
ged(b, ) = 1. If the highest exponent on any prime in the prime factorization
of x is bounded above by 2¢, then ged(r?” mod z, x) is the 20-smooth part
of x. So in our case, we can take e = 4, since 22" > 1008. Let us see what
happens for the number z = 1008. First, we have » = 714. Next we take
7142 mod 1008 for i = 1,2, 3,4, getting 756, 0, 0, 0. Of course, we ought to
be smart enough to stop when we get the first 0, since this already implies
that 1008 is 20-smooth. If we apply this idea to x = 1004, we get r» = 46, and
the requisite powers are 108, 620, 872, 356. We take gcd(356,1004) and find
it to be 4. Surely this must be the long way around! But as we shall see, the
method scales beautifully. Further, we shall see that it is not interesting to
focus on any one number, but on all numbers together.

We form the product 9699690 of the primes up to 20 via a “product tree;”
see [Bernstein 2004e]. This is just the binary tree as so:

Product tree for P = {2,3,5,7,11,13,17,19}

We start at the leaves, multiplying ourselves through the binary tree to the
root, whose label is the product P = 9699690 of all of the leaves.

We wish to find each residue P mod x as x varies over the numbers we are
examining for smoothness. If we do this separately for each x, since P is so
large, the process will take too long. Instead, we first multiply all the numbers
x together! We do this as with the primes, with a product tree. However, we
never need to form a product that is larger than P; say we simply indicate such
large products with an asterisk. Let us consider the product tree T' formed
from the numbers 1001, 1002, ..., 1008:

Product tree T for X = {1001, 1002, ...,1008}
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Next we reduce the number P modulo every label in T' by creating
a “remainder tree” (see [Bernstein 2004e]). In general, a remainder tree
P mod T for a given integer P and a given product tree T is the corresponding
tree in which each label in T being replaced by its remainder when it is divided
into P. This relabeling is achieved by replacing the label R at the root of T
with P mod R, and then working toward the leaves, each entry is replaced with
the remainder after dividing this entry into the new label of its parent. We
illustrate with the product tree T formed from 1001, ...,1008 and the number
P = 9699690 found in our first product tree. We may evidently convert each
asterisk in 7" to P.

Remainder tree P mod T’

For each = that we are examining for smoothness, the corresponding leaf
value in the remainder tree is P mod z. Take this residue, sequentially square
modulo x the requisite number of times, and at last take the gcd of the final
result with z. A value of 0 signifies that x is smooth over the primes in P,
and a nonzero value is itself the largest divisor of = that is smooth over the
primes in P. Here is pseudocode for this beautiful algorithm.

Algorithm 3.3.1 (Batch smoothness test (Bernstein)). We are given a fi-
nite set X’ of positive integers and a finite set P of primes. For each x € X, this
algorithm returns the largest divisor of x composed of primes from P.

1. [Compute product trees]
Compute the product tree for P;
Set P as the product of the members of P;
// We find P at the root of the product tree for P.
Compute the product tree T for X', but only for products at most P;

2. [Compute remainder tree]
Compute the remainder tree P mod T} // Notation described in text.

3. [Find smooth parts]
Set e as the least positive integer with max X' < 22°;
for(z € X'){
Find P mod z in the remainder tree P mod T
// No additional mod calculation is necessary.
r = P mod z;

s=712"modz; // Compute s by sequential squaring and reducing.
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g = ged(s, z);
return “the largest divisor of © composed of primes from P is g";

}

The Bernstein Algorithm 3.3.1 is an important addition to the repertoire
of computational number theory. It can profitably be used to speed up various
other algorithms where smoothness is desired. One example arises in the
step [Factor orders] of the Atkin—Morain primality test (Algorithm 7.6.3).
Algorithm 3.3.1 can even be useful in situations in which sieving is completely
appropriate, such as in the quadratic sieve and number field sieve factoring
algorithms (see Chapter 6). Indeed, in these algorithms, the yield rate of
smooth numbers can be so small, it is advantageous to sieve only partially
(forget about small primes in the factor base, which involve the most memory
retrievals), tune the sieve to report candidates with a large smooth divisor,
and then run Algorithm 3.3.1 on the much smaller, but still large, reported
set. This idea of removing small primes from a sieve can be found already in
[Pomerance 1985], but with Algorithm 3.3.1 it can be used more aggressively.

3.4 Pseudoprimes

Suppose we have a theorem, “Ifn is prime, then S is true about n,” where “S”
is some easily checkable arithmetic statement. If we are presented with a large
number n, and we wish to decide whether n is prime or composite, we may
very well try out the arithmetic statement S and see whether it actually holds
for n. If the statement fails, we have proved the theorem that n is composite.
If the statement holds, however, it may be that n is prime, and it also may
be that n is composite. So we have the notion of S-pseudoprime, which is a
composite integer for which S holds.

One example might be the theorem, If n is prime, then n is 2 or n is
odd. Certainly this arithmetic property is easily checked for any given input
n. However, as one can readily see, this test is not very strong evidence of
primality, since there are many more pseudoprimes around for this test than
there are genuine primes. Thus, for the concept of “pseudoprime” to be useful,
it will have to be the case that there are, in some appropriate sense, few of
them.

3.4.1 Fermat pseudoprimes

The fact that the residue a® (mod n) may be rapidly computed (see Algorithm
2.1.5) is fundamental to many algorithms in number theory. Not least of these
is the exploitation of Fermat’s little theorem as a means to distinguish between
primes and composites.

Theorem 3.4.1 (Fermat’s little theorem). If n is prime, then for any
integer a, we have

a™ = a (mod n). (3.2)
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Proofs of Fermat’s little theorem may be found in any elementary number
theory text. One particularly easy proof uses induction on a and the binomial
theorem to expand (a + 1)".

When a is coprime to n we may divide both sides of (3.2) by a to obtain

a" ' =1 (mod n). (3.3)

Thus, (3.3) holds whenever n is prime and n does not divide a.

We say that a composite number n is a (Fermat) pseudoprime if (3.2)
holds. For example, n = 91 is a pseudoprime base 3, since 91 is composite
and 3°! = 3 (mod 91). Similarly, 341 is a pseudoprime base 2. The base a = 1
is uninteresting, since every composite number is a pseudoprime base 1. We
suppose now that a > 2.

Theorem 3.4.2. For each fized integer a > 2, the number of Fermat
pseudoprimes base a that are less than or equal to x is o(m(x)) as x — oo.
That is, Fermat pseudoprimes are rare compared with primes.

For pseudoprimes defined via the congruence (3.3), this theorem was first
proved in [Erdds 1950]. For the possibly larger class of pseudoprimes defined
via (3.2), the theorem was first proved in [Li 1997].

Theorem 3.4.2 tells us that using the Fermat congruence to distinguish
between primes and composites is potentially very useful. However, this was
known as a practical matter long before the Erddés proof.

Note that odd numbers n satisfy (3.3) for a = n—1, so that the congruence
does not say very much about n in this case. If (3.3) holds for a pair n, a, where
1 < a <n—1, we say that n is a probable prime base a. Thus, if n is a prime,
then it is a probable prime base a for every integer a with 1 < a < n — 1.
Theorem 3.4.2 asserts that for a fixed choice of a, most probable primes base
a are actually primes. We thus have a simple test to distinguish between
members of a set that contains a sparse set of composite numbers and all of
the primes exceeding a+ 1, and members of the set of the remaining composite
numbers exceeding a + 1.

Algorithm 3.4.3 (Probable prime test). We are given an integer n > 3 and
an integer a with 2 < a < n — 2. This algorithm returns either “n is a probable
prime base a" or “n is composite.”

1. [Compute power residue]
b=a""! mod n; // Use Algorithm 2.1.5.

2. [Return decision]
if(b == 1) return “n is a probable prime base a”;
return “n is composite”;

We have seen that with respect to a fixed base a, pseudoprimes (that
is, probable primes that are composite) are sparsely distributed. However,
paucity notwithstanding, there are infinitely many.
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Theorem 3.4.4. For each integer a > 2 there are infinitely many Fermat
pseudoprimes base a.

Proof. We shall show that if p is any odd prime not dividing a? — 1, then
n = (an — 1) / (a2 — 1) is a pseudoprime base a. For example, if a = 2 and
p =5, then this formula gives n = 341. First note that

alP —1 a? +1

"= a—1 a+1’

so that n is composite. Using (3.2) for the prime p we get upon squaring both
sides that a? = @ (mod p). So p divides a?? — a%. Since p does not divide
a’? — 1, by hypothesis, and since n — 1 = (aZP — a2) / (a2 — 1), we conclude
that p divides n —1. We can conclude a second fact about n —1 as well: Using
the identity

n—1=a? 2 +a?*+... +4d°

we see that n — 1 is the sum of an even number of terms of the same parity,
so n — 1 must be even. So far, we have learned that both 2 and p are divisors
of n — 1, so that 2p must likewise be a divisor. Then a?? — 1 is a divisor of
a™~1 —1. But a?” — 1 is a multiple of n, so that (3.3) holds, as does (3.2). O

3.4.2 Carmichael numbers

In search of a simple and quick method of distinguishing prime numbers from
composite numbers, we might consider combining Fermat tests for various
bases a. For example, though 341 is a pseudoprime base 2, it is not a
pseudoprime base 3. And 91 is a base-3, but not a base-2 pseudoprime. Perhaps
there are no composites that are simultaneously pseudoprimes base 2 and 3,
or if such composites exist, perhaps there is some finite set of bases such that
there are no pseudoprimes to all the bases in the set. It would be nice if this
were true, since then it would be a simple computational matter to test for
primes.

However, the number 561 = 3 - 11 - 17 is not only a Fermat pseudoprime
to both bases 2 and 3, it is a pseudoprime to every base a. It may be a shock
that such numbers exist, but indeed they do. They were first discovered by
R. Carmichael in 1910, and it is after him that we name them.

Definition 3.4.5. A composite integer n for which a™ = a (mod n) for
every integer a is a Carmichael number.

It is easy to recognize a Carmichael number from its prime factorization.

Theorem 3.4.6 (Korselt criterion). An integer n is a Carmichael number
if and only if n is positive, composite, squarefree, and for each prime p dividing
n we have p — 1 dividing n — 1.

Remark. A. Korselt stated this criterion for Carmichael numbers in 1899,
eleven years before Carmichael came up with the first example. Perhaps
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Korselt felt sure that no examples could possibly exist, and developed the
criterion as a first step toward proving this.

Proof. First, suppose n is a Carmichael number. Then n is composite. Let p
be a prime factor of n. From p" = p (mod n), we see that p?> does not divide
n. Thus, n is squarefree. Let a be a primitive root modulo p. Since a"™ = a
(mod n), we have a™ = a (mod p), from which we see that "~ = 1 (mod p).
But a (mod p) has order p — 1, so that p — 1 divides n — 1.

Now, conversely, assume that n is composite, squarefree, and for each
prime p dividing n, we have p — 1 dividing n — 1. We are to show that a” = a
(mod n) for every integer a. Since n is squarefree, it suffices to show that
a™ = a (mod p) for every integer a and for each prime p dividing n. So suppose
that p|n and a is an integer. If a is not divisible by p, we have a?~! =1 (mod p)
(by (3.3)), and since p — 1 divides n — 1, we have ¢! = 1 (mod p). Thus,
a"™ = a (mod p). But this congruence clearly holds when « is divisible by p,
so it holds for all a. This completes the proof of the theorem. O

Are there infinitely many Carmichael numbers? Again, unfortunately for
primality testing, the answer is yes. This was shown in [Alford et al. 1994a].
P. Erd6s had given a heuristic argument in 1956 that not only are there
infinitely many Carmichael numbers, but they are not as rare as one might
expect. That is, if C(x) denotes the number of Carmichael numbers up to the
bound z, then Erdés conjectured that for each € > 0, there is a number z(¢)
such that C(z) > !¢ for all > x¢(¢). The proof of Alford, Granville, and
Pomerance starts from the Erdds heuristic and adds some new ingredients.

Theorem 3.4.7. (Alford, Granville, Pomerance). There are infinitely many
Carmichael numbers. In particular, for x sufficiently large, the number C(x)
of Carmichael numbers not exceeding x satisfies C(x) > 227,

The proof is beyond the scope of this book; it may be found in [Alford et al.
1994a).

The “sufficiently large” in Theorem 3.4.7 has not been calculated, but
probably it is the 96th Carmichael number, 8719309. From calculations in
[Pinch 1993] it seems likely that C(z) > 2'/? for all > 10'. Already at
1015, there are 105212 Carmichael numbers. Though Erdés has conjectured
that C(z) > a'7¢ for z > zo(g), we know no numerical value of z with
C(x) > z'/2.

Is there a “Carmichael number theorem,” which like the prime number
theorem would give an asymptotic formula for C'(x)? So far there is not even
a conjecture for what this formula may be. However, there is a somewhat
weaker conjecture.

Conjecture 3.4.1 (Erdés, Pomerance). The number C(z) of Carmichael
numbers not exceeding x satisfies

C(JJ) _ xl—(l+o(1)) Inlnlnz/Inlnx

as r — Q.
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An identical formula is conjectured for Py(z), the number of base-2
pseudoprimes up to x. It has been proved, see [Pomerance 1981], that both

C(l’) <x171nlnlnw/lnlnw’
PQ(CC) < xlflnlnlnz/(21n1n1)7

for all sufficiently large values of x.

3.5 Probable primes and witnesses

The concept of Fermat pseudoprime, developed in the previous section, is
a good one, since it is easy to check and for each base a > 1 there are
few pseudoprimes compared with primes (Theorem 3.4.2). However, there are
composites, the Carmichael numbers, for which (3.2) is useless as a means of
recognizing them as composite. As we have seen, there are infinitely many
Carmichael numbers. There are also infinitely many Carmichael numbers
that have no small prime factor (see [Alford et al. 1994b]), so that for these
numbers, even the slightly stronger test (3.3) is computationally poor.

We would ideally like an easy test for which there are no pseudoprimes.
Failing this, we would like a family of tests, such that each composite is
not a pseudoprime for a fixed, positive fraction of the tests in the family.
The Fermat family does not meet this goal, since there are infinitely many
Carmichael numbers. However, a slightly different version of Fermat’s little
theorem (Theorem 3.4.1) does meet this goal.

Theorem 3.5.1. Suppose that n is an odd prime and n — 1 = 2°t, where t
18 odd. If a is not divisible by n then

. t—
{ either a* =1 (mod n) (3.4)

or a?'t=— (mod n) for some i with 0 <i <s—1.
The proof of Theorem 3.5.1 uses only Fermat’s little theorem in the form (3.3)
and the fact that for n an odd prime, the only solutions to z? = 1 (mod n) in
Z, are x = £1 (mod n). We leave the details to the reader.

In analogy to probable primes, we can now define a strong probable prime
base a. This is an odd integer n > 3 for which (3.4) holds for a, where
1 < a < n — 1. Since every strong probable prime base a is automatically a
probable prime base a, and since every prime greater than a + 1 is a strong
probable prime base a, the only difference between the two concepts is that
possibly fewer composites pass the strong probable prime test.

Algorithm 3.5.2 (Strong probable prime test). We are given an odd num-
ber n > 3, represented as n = 14 2°t, with ¢ odd. We are also given an integer a
with 1 < a < n — 1. This algorithm returns either “n is a strong probable prime
base a" or “n is composite.”
1. [Odd part of n — 1]
b= a’ mod n; // Use Algorithm 2.1.5.
if(b==1o0r b==mn— 1) return “n is a strong probable prime base a";
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2. [Power of 2 in n — 1]

for(j € [1,5 —1]) { // jis a dummy counter.
b = b% mod n;
if(b ==mn — 1) return “n is a strong probable prime base a”;

}

return “n is composite”;

This test was first suggested in [Artjuhov 1966/67], and a decade later,
J. Selfridge rediscovered the test and popularized it.

We now consider the possibility of showing that an odd number n is
composite by showing that (3.4) fails for a particular number a. For example,
we saw in the previous section that 341 is pseudoprime base 2. But (3.4) does
not hold for n = 341 and a = 2. Indeed, we have 340 = 22 - 85, 28° = 32
(mod 341), and 27 = 1 (mod 341). In fact, we see that 32 is a nontrivial
square root of 1 (mod 341).

Now consider the pair n = 91 and a = 10. We have 90 = 2! - 45 and
10% = —1 (mod 91). So (3.4) holds.

Definition 3.5.3. We say that n is a strong pseudoprime base a if n is an
odd composite, n — 1 = 2%¢t, with ¢t odd, and (3.4) holds.

Thus, 341 is not a strong pseudoprime base 2, while 91 is a strong pseudoprime
base 10. J. Selfridge proposed using Theorem 3.5.1 as a pseudoprime test in
the early 1970s, and it was he who coined the term “strong pseudoprime.” It
is clear that if n is a strong pseudoprime base a, then n is a pseudoprime base
a. The example with n = 341 and a = 2 shows that the converse is false.

For an odd composite integer n we shall let

S(n) = {a (mod n) : n is a strong pseudoprime base a}, (3.5)

and let S(n) = #S(n). The following theorem was proved independently in
[Monier 1980] and [Rabin 1980].

Theorem 3.5.4. For each odd composite integer n > 9 we have S(n) <
1
1%(n).

Recall that ¢(n) is Euler’s function evaluated at n. It is the number of
integers in [1,n] coprime to n; that is, the order of the group Z7. If we
know the prime factorization of n, it is easy to compute ¢(n): We have
¢(n) =n]l,, (1 —1/p), where p runs over the prime factors of n.

Before we prove Theorem 3.5.4, we first indicate why it is a significant
result. If we have an odd number n and we wish to determine whether it
is prime or composite, we might try verifying (3.4) for some number a with
1 <a<n—1.1If (3.4) fails, then we have proved that n is composite. Such
a number a might be said to be a witness for the compositeness of n. In fact,
we make a formal definition.

Definition 3.5.5. If n is an odd composite number and a is an integer in
[1,n — 1] for which (3.4) fails, we say that a is a witness for n. Thus, for
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an odd composite number n, a witness is a base for which n is not a strong
pseudoprime.

A witness for n is thus the key to a short proof that n is composite.
Theorem 3.5.4 implies that at least 3/4 of all integers in [1,n — 1] are
witnesses for n, when n is an odd composite number. Since one can perform a
strong pseudoprime test very rapidly, it is easy to decide whether a particular
number a is a witness for n. All said, it would seem that it is quite an easy task
to produce witnesses for odd composite numbers. Indeed, it is, if one uses a
probabilistic algorithm. The following is often referred to as “the Miller-Rabin
test,”, though as one can readily see, it is Algorithm 3.5.2 done with a random
choice of the base a. (The original test in [Miller 1976] was somewhat more
complicated and was a deterministic, ERH-based test. It was M. Rabin, see
[Rabin 1976, 1980], who suggested a probabilistic algorithm as below.)

Algorithm 3.5.6 (Random compositeness test). We are given an odd num-
ber n > 3. This probabilistic algorithm attempts to find a witness for n and thus
prove that n is composite. If a is a witness, (a, YES) is returned; otherwise, (a,
NO) is returned.

1. [Choose possible witness]
Choose random integer a € [2,n — 2;
Via Algorithm 3.5.2 decide whether n is a strong probable prime base a;

2. [Declaration]

if(n is a strong probable prime base a) return (a, NO);
return (a, YES);

One can see from Theorem 3.5.4 that if n > 9 is an odd composite, then the
probability that Algorithm 3.5.6 fails to produce a witness for n is < 1/4. No
one is stopping us from using Algorithm 3.5.6 repeatedly. The probability that
we fail to find a witness for an odd composite number n with k£ (independent)
iterations of Algorithm 3.5.6 is < 1/4%. So clearly we can make this probability
vanishingly small by choosing k large.

Algorithm 3.5.6 is a very effective method for recognizing composite
numbers. But what does it do if we try it on an odd prime? Of course it
will fail to produce a witness, since Theorem 3.5.1 asserts that primes have
no witnesses.

Suppose n is a large odd number and we don’t know whether n is prime
or composite. Say we try 20 iterations of Algorithm 3.5.6 and fail each time
to produce a witness. What should be concluded? Actually, nothing at all
can be concluded concerning whether n is prime or composite. Of course,
it is reasonable to strongly conjecture that n is prime. The probability that
20 iterations of Algorithm 3.5.6 fail to produce a witness for a given odd
composite is less than 4729, which is less than one chance in a trillion. So yes,
n is most likely prime. But it has not been proved prime and in fact might
not be.
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The reader should consult Chapter 4 for strategies on proving prime those
numbers we strongly suspect to be prime. However, for practical applications,
one may be perfectly happy to use a number that is almost certainly prime, but
has not actually been proved to be prime. It is with this mindset that people
refer to Algorithm 3.5.6 as a “primality test.” It is perhaps more accurate to
refer to a number produced by such a test as an “industrial-grade prime,” to
use a phrase of H. Cohen.

The following algorithm may be used for the generation of random
numbers that are likely to be prime.

Algorithm 3.5.7 (“Industrial-grade prime” generation). We are given an
integer £ > 3 and an integer 7" > 1. This probabilistic algorithm produces a
random k-bit number (that is, a number in the interval [2"=! 2%)) that has not
been recognized as composite by T iterations of Algorithm 3.5.6.

1. [Choose candidate]
Choose a random odd integer n in the interval (2871, 2F);

2. [Perform strong probable prime tests]
for(1<i<T){ // i is a dummy counter.
Via Algorithm 3.5.6 attempt to find a witness for n;
if(a witness is found for n) goto [Choose candidate];

}

return n; // nis an “industrial-grade prime.”

An interesting question is this: What is the probability that a number
produced by Algorithm 3.5.7 is composite? Let this probability be denoted
by P(k,T). One might think that Theorem 3.5.4 immediately speaks to
this question, and that we have P(k,T) < 4~T. However, the reasoning is
fallacious. Suppose k = 500,7 = 1. We know from the prime number theorem
(Theorem 1.1.4) that the probability that a random odd 500-bit number is
prime is about 1 chance in 173. Since it is evidently more likely that one
will witness an event with probability 1/4 occurring before an event with
probability 1/173, it may seem that there are much better than even odds
that Algorithm 3.5.7 will produce composites. In fact, though, Theorem 3.5.4
is a worst-case estimate, and for most odd composite numbers the fraction of
witnesses is much larger than 3/4. It is shown in [Burthe 1996] that indeed
we do have P(k,T) < 4T,

If k is large, one gets good results even with 7' =1 in Algorithm 3.5.7. It
is shown in [Damgard et al. 1993] that P(k,1) < k42~V*_ For specific large
values of k the paper has even better results, for example, P(500,1) < 4728,
Thus, if a randomly chosen odd 500-bit number passes just one iteration of a
random strong probable prime test, the number is composite with vanishingly
small probability, and may be safely accepted as a “prime” in all but the most
sensitive practical applications.

Before proving Theorem 3.5.4 we first establish some lemmas.
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Lemma 3.5.8. Sayn is an odd composite with n —1 = 2°t, t odd. Let v(n)
denote the largest integer such that 2™ divides p—1 for each prime p dividing
n. If n is a strong pseudoprime base a, then a2’ = 4 (mod n).

Proof. If a' =1 (mod n), it is clear that the conclusion of the lemma holds.
Suppose we have a®t = —1 (mod n) and let p be a prime factor of n. Then
a®t = —1 (mod p). If k is the order of a (mod p) (that is, k is the least

positive integer with a®* = 1 (mod p)), then k divides 2/*'¢, but & does not
divide 2't. Thus the exact power of 2 in the prime factorization of £ must be

2i+1 But also k divides p — 1, so that 2¢+1|p — 1. Since this holds for each

prime p dividing n, we have i + 1 < v(n). Thus, a2t =1 (mod n) or —1

(mod n) depending on whether i + 1 < v(n) or i + 1 = v(n). O
For the next lemma, let
S(n) = {a (mod n) : a7 = 41 (mod n)} , S(n)=#S8(n). (3.6

Lemma 3.5.9. Recall the notation in Lemma 3.5.8 and (3.6). Let w(n) be
the number of different prime factors of n. We have

S(n) = 2. 2@m =D chd(t,p —1).

pln
Proof. Let m = 2v(M =1t Suppose that the prime factorization of n is
p1'py -+ pif, where k = w(n). We have that «™ = 1 (mod n) if and only if

a™ =1 (mod pi'i) for i =1,2,...,k. For an odd prime p and positive integer
j, the group Z*; of reduced residues modulo p’ is cyclic of order p/~1(p — 1);

that is, there is a primitive root modulo p’. (This theorem is mentioned in
Section 1.4.3 and can be found in most books on elementary number theory.
Compare, too, to Theorem 2.2.5.) Thus, the number of solutions a (mod p}*)
to a™ =1 (mod p') is

ged(m, p]' ™ (p; — 1)) = ged(m, p; — 1) = 2" ged(t, pi — 1).

(Note that the first equality follows from the fact that m divides n — 1, so is
not divisible by p;.) We conclude, via the Chinese remainder theorem, that
the number of solutions a (mod n) to a™ =1 (mod n) is

k
H(T’(")*l - ged(t, pi — 1)) = g(v(m)—Huw(m) chd(t,p —1).

i=1 pln

To complete the proof we must show that there are exactly as many

solutions to the congruence a™ = —1 (mod n). Note that a™ = —1 (mod p]*)
if and only if a®™ = 1 (mod p}*) and a™ # 1 (mod pJ). Since 2™ divides
p; — 1 it follows as above that the number of solutions to ™ = —1 (mod p?*)

is

2/ ged(t,pi — 1) = 270071 - ged(t, pi — 1) = 27071 - ged(t,py — 1).
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Thus there are just as many solutions to ¢™ = 1 (mod n) as there are to

m —

a™ = —1 (mod n), and the lemma is proved. |

Proof of Theorem 3.5.4. From Lemma 3.5.8 and (3.6), it will suffice to show
that S(n)/p(n) < 1/4 whenever n is an odd composite that is greater than 9.
From Lemma 3.5.9, we have

(n) 2

<p(n) 1 H a—1 p—1
9 p v(n)—1 _ 1)’
2 ged(t,p —1)

p*|ln

where the notation p®||n means that p® is the exact power of the prime p
in the prime factorization of n. Each factor (p — 1)/(2"(™ 1 ged(t,p — 1)) is
an even integer, so that ¢(n)/S(n) is an integer. In addition, if w(n) > 3, it
follows that (n)/S(n) > 4. If w(n) = 2 and n is not squarefree, the product
of the various p®~! is at least 3, so that p(n)/S(n) > 6.

Now suppose n = pq, where p < ¢ are primes. If 2”(”)“\(1 — 1, then
2=l gcd(t,q — 1) < (¢ — 1)/4 and p(n)/S(n) > 4. We may suppose then
that 2¥(")||q — 1. Note that n — 1 =p — 1 (mod ¢ — 1), so that ¢ — 1 does not
divide n — 1. This implies there is an odd prime dividing ¢ — 1 to a higher
power than it divides n — 1; that is, 2¥(" =1 ged(t,q — 1) < (¢ — 1)/6. We
conclude in this case that (n)/S(n) > 6.

Finally, suppose that n = p®, where a > 2. Then ¢(n)/S(n) = p®~ !, so
that p(n)/S(n) > 5, except when p® = 9. m

3.5.1 The least witness for n

We have seen in Theorem 3.5.4 that an odd composite number n has at least
3n/4 witnesses in the interval [1,n — 1]. Let W(n) denote the least of the
witnesses for n. Then W(n) > 2. In fact, for almost all odd composites, we
have W (n) = 2. This is an immediate consequence of Theorem 3.4.2. The
following theorem shows that W(n) > 3 for infinitely many odd composite
numbers n.

Theorem 3.5.10. If p is a prime larger than 5, then n = (4? +1)/5 is a
strong pseudoprime base 2, so that W (n) > 3.

Proof. 'We first show that n is a composite integer. Since 47 = (—1)P = —1
(mod 5), we see that n is an integer. That n is composite follows from the
identity

4P 41 = (27 — o(p+1)/2 (2P + o(p+1)/2 4 1).

Note that 22?7 = —1 (mod n), so that if m is odd, we have 22?™ = —1 (mod n).
But n — 1 = 22¢t, where t is odd and a multiple of p, the latter following from
Fermat’s little theorem (Theorem 3.4.1). Thus, 22! = —1 (mod n), so that n
is a strong pseudoprime base 2. O

It is natural to ask whether W (n) can be arbitrarily large. In fact, this
question is crucial. If there is a number B that is not too large such that every
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odd composite number n has W(n) < B, then the whole subject of testing
primality becomes trivial. One would just try each number a < B and if (3.4)
holds for each such a, then n is prime. Unfortunately, there is no such number
B. The following result is shown in [Alford et al. 1994b].

Theorem 3.5.11. There are infinitely many odd composite numbers n with
W(’I’L) > (hl n)l/(3 Inlnlnn) ]

In fact, the number of such composite numbers n up to x is at least

.’L’l/(35 Inlnlnx)

when x s sufficiently large.

Failing a universal bound B, perhaps there is a slowly growing function of
n which is always greater than W(n). Based on [Miller 1976], the following
result is proved in [Bach 1985].

Theorem 3.5.12. On the ERH, W(n) < 2In*n for all odd composite
numbers n.

Proof. Let n be an odd composite. Exercise 3.19 says that W (n) < In®n if
n is divisible by the square of a prime, and this result is not conditional
on any unproved hypotheses. We thus may assume that n is squarefree.
Suppose p is a prime divisor of n with p — 1 = 2‘9/t’, t’ odd. Then the same
considerations that were used in the proof of Lemma 3.5.8 imply that if (3.4)
holds, then (a/p) = —1 if and only if a2 't = (mod n). Since n is odd,
composite, and squarefree, it must be that n is divisible by two different odd
primes, say pi,p2. Let p; — 1 = 2%¢,;, t; odd, for ¢ = 1,2, with 57 < so.
Let x1(m) = (m/p1p2), x2(m) = (m/p3), so that x; is a character to the
modulus p1ps and x2 is a character to the modulus ps. First, consider the
case s = sg. Under the assumption of the extended Riemann hypothesis,
Theorem 1.4.5 says that there is a positive number m < 21n? (p1p2) < 21nn
with x1(m) # 1. Then x1(m) =0 or —1. If x1(m) = 0, then m is divisible by
p1 or pa, which implies that m is a witness. Suppose x1(m) = —1, so that either
(m/p1) =1, (m/p2) = —1 or vice versa. Without loss of generality, assume the
first holds. Then, as noted above, if (3.4) holds then m2? 't = —1 (mod n),
which in turn implies that (m/p1) = —1, since s; = so. This contradiction
shows that m is a witness for n. Now assume that s; < s5. Again, Theorem
1.4.5 implies that there is a natural number m < 2In?p, < 2In*n with
(m/p2) = x2(m) # 1. If (m/p2) = 0, then m is divisible by ps and is a witness.

If (m/p2) = —1, then as above, m is not a witness implies m2? M = 1
(mod n). Then Lemma 3.5.8 implies that 2°2|p; — 1, so that s, < s1, a
contradiction. Thus, m is a witness for n, and the proof is complete. o

We might ask what can be proved unconditionally. It is obvious that
W(n) < n'/?, since the least prime factor of an odd composite number n
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is a witness for n. In [Burthe 1997] it is shown that W(n) < ncte() as
n — oo through the odd composites, where ¢ = 1/(6+/e). Heath-Brown
(see [Balasubramanian and Nagaraj 1997]) has recently shown this with
c=1/10.82.

We close this section with the Miller primality test. It is based on
Theorem 3.5.12 and shows that if the extended Riemann hypothesis holds,
then primality can be decided in deterministic polynomial time.

Algorithm 3.5.13 (Miller primality test). We are given an odd number n >
1. This algorithm attempts to decide whether n is prime (YES) or composite (NO).
If NO is returned, then n is definitely composite. If YES is returned, n is either
prime or the extended Riemann hypothesis is false.
1. [Witness bound]
W = min{|2In*n] ,n — 1};
2. [Strong probable prime tests]
for(2<a<W){
Decide via Algorithm 3.5.2 whether n is a strong probable prime base a;
if(n is not a strong probable prime base a) return NO;

return YES;

3.6 Lucas pseudoprimes

We may generalize many of the ideas of the past two sections to incorporate
finite fields. Traditionally the concept of Lucas pseudoprimes has been cast
in the language of binary recurrent sequences. It is profitable to view this
pseudoprime construct using the language of finite fields, not just to be
fashionable, but because the ideas then seem less ad hoc, and one can
generalize easily to higher order fields.

3.6.1 Fibonacci and Lucas pseudoprimes

The sequence 0,1,1,2,3,5,... of Fibonacci numbers, say u; is the j-th one
starting with j = 0, has an interesting rule for the appearance of prime factors.

Theorem 3.6.1. If n is prime, then
Un—e, =0 (mod n), (3.7)

where €, = 1 when n = +1 (mod 5), &, = —1 when n = +2 (mod 5), and
en =0 when n =0 (mod 5).

Remark. The reader should recognize the function e,. It is the Legendre
symbol (%), see Definition 2.3.2.

Definition 3.6.2. We say that a composite number n is a Fibonacci
pseudoprime if (3.7) holds.

For example, the smallest Fibonacci pseudoprime coprime to 10 is 323.
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The Fibonacci pseudoprime test is not just a curiosity. As we shall see
below, it can be implemented on very large numbers. In fact, it takes only
about twice as long to run a Fibonacci pseudoprime test as a conventional
pseudoprime test. And for those composites that are +2 (mod 5) it is, when
combined with the ordinary base-2 pseudoprime test, very effective. In fact, we
know no number n = £2 (mod 5) that is simultaneously a base-2 pseudoprime
and a Fibonacci pseudoprime; see Exercise 3.41.

In proving Theorem 3.6.1 it turns out that with no extra work we
can establish a more general result. The Fibonacci sequence satisfies the
recurrence u; = u;j_i + u;_2, with recurrence polynomial 2?2 — 2 —1. We shall
consider the more general case of binary recurrent sequences with polynomial
f(x) = 2% —ax +b, where a, b are integers with A = a? — 4b not a square. Let
2 — (a—z)!

Vj =Vj(a,b) = 27 + (a — 2)’ (mod f(x)), (3.8)

where the notation means that we take the remainder in Z[z] upon division by
f(x). The sequences (U;), (V;) both satisfy the recurrence for the polynomial

z2 — ax + b, namely,

Uj = CLUj_l — ij_g, ‘/J = an_l — b‘/j_g,
and from (3.8) we may read off the initial values
UQZO,Ulzl, V0=2,V1:a.

If it was not already evident from (3.8), it is now clear that (U;), (V;) are
integer sequences.

In analogy to Theorem 3.6.1 we have the following result. In fact, we can
read off Theorem 3.6.1 as the special case corresponding to a =1, b = —1.

Theorem 3.6.3. Let a,b, A be as above and define the sequences (Uj;), (V;)
via (3.8). If p is a prime with ged(p, 2bA) = 1, then
U NE 0 (mod p). (3.9)

p p
Note that for A = 5 and p odd, (%) = (g), so the remark following Theorem
3.6.1 is justified. Since the Jacobi symbol (%) (see Definition 2.3.3) is equal
to the Legendre symbol when n is an odd prime, we may turn Theorem 3.6.3
into a pseudoprime test.

Definition 3.6.4. We say that a composite number n with ged(n, 2bA) =1
is a Lucas pseudoprime with respect to 2% — ax + b if Un_(é) =0 (mod n).

n

Since the sequence (Uj) is constructed by reducing polynomials modulo
22 — ax + b, and since Theorem 3.6.3 and Definition 3.6.4 refer to this
sequence reduced modulo n, we are really dealing with objects in the ring
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R = Z,[z]/(2? — ax + b). To somewhat demystify this concept, we explicitly
list a complete set of coset representatives:

{i+ jx : 4,7 are integers with 0 <i4,j <n —1}.

We add coset representatives as vectors (mod n), and we multiply them via
2

x* = ax — b. Thus, we have
(i1 + j1z) + (i2 + jox) = i3 + jax
(i1 + j1)(i2 + jox) = ig + juz,

where

i3 =141 + iz (mod n), J3 = Jj1+ j2 (mod n),
1y = 1119 — bj1j2 (HlOd n), Ja = 11j2 + 1251 + ajije (mod n)

We now prove Theorem 3.6.3. Suppose p is an odd prime with (%) =-1.
Then A is not a square in Z,, so that the polynomial z? — ax + b, which
has discriminant A, is irreducible over Z,. Thus, R = Z,[z]/(z* — ax + b) is
isomorphic to the finite field F» with p® elements. The subfield Z,, (= F,) is
recognized as those coset representatives ¢ 4+ jx with j = 0.

In F,: the function o that takes an element to its p-th power (known
as the Frobenius automorphism) has the following pleasant properties, which
are easily derived from the binomial theorem and Fermat’s little theorem (see
(3.2)): o(u+v) =o(u) +o(v), o(uw) = o(u)o(v), and o(u) = u if and only if
u is in the subfield Z,,.

We have created the field F2 so as to provide roots for 22 — ax +b, which
were lacking in Z,. Which coset representatives ¢ + jx are the roots? They
are z itself, and a —z (= a+ (p — 1)z). Since = and a — z are not in Z, and
o must permute the roots of f(x) = 22 — ax + b, we have

a? = a - (mod (f(2),p)),
(@ —2)P =z (mod (f(x),p))-
Then 2P — (a — 2)P*! = z(a — ) — (a — 2)x = 0 (mod (f(x),p)), so that
(3.8) implies Upt1 =0 (mod p).

The proof of (3.9) in the case where p is a prime with (%) = 1 is easier.

in the case (%) =-1: { (3.10)

In this case we have that z? — ax + b has two roots in Z,, so that the ring
R = Z,[z]/(2*—az+b) is not a finite field. Rather, it is isomorphic to Z, x Z,,
and every element to the p-th power is itself. Thus,

P =z (mod (f(x),p)),
in the case (5) =1 : {(a B a:)P( an —(fa:( ()ng (F(2).p)). (3.11)

Note, too, that our assumption that ged(p, b) = 1 implies that  and a — z are
invertible in R, since z(a — x) = b (mod f(x)). Hence 2P~ ! = (a — z)P~1 =1
in R. Thus, (3.8) implies U,—1 = 0 (mod p). This concludes the proof of
Theorem 3.6.3.
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Because of Exercise 3.26, it is convenient to rule out the polynomial
22 — x + 1 when dealing with Lucas pseudoprimes. A similar problem occurs
with 22 + z 4 1, and we rule out this polynomial, too. No other polynomials
with nonsquare discriminants are ruled out, though. (Only 22 £  + 1 are
monic, irreducible over the rationals, and have their roots also being roots

of 1.)

3.6.2 Grantham’s Frobenius test

The key role of the Frobenius automorphism (raising to the p-th power) in
the Lucas test has been put in center stage in a new test of J. Grantham.
It allows for an arbitrary polynomial in the place of x? — azx + b, but even
in the case of quadratic polynomials, it is stronger than the Lucas test. One
of the advantages of Grantham’s approach is that it cuts the tie to recurrent
sequences. We describe below his test for quadratic polynomials. A little is said
about the general test in Section 3.6.5. For more on Frobenius pseudoprimes
see [Grantham 2001].

The argument that establishes Theorem 3.6.3 also establishes on the way
(3.10) and (3.11). But Theorem 3.6.3 only extracts part of the information
from these congruences. The Frobenius test maintains their full strength.

Definition 3.6.5. Let a,b be integers with A = a? —4b not a square. We say
that a composite number n with ged(n, 2bA) = 1 is a Frobenius pseudoprime
with respect to f(z) = 2% — ax + b if

e (A
D (mod (f(x),n)), Tf (2) = -1, (3.12)
z (mod (f(x),n)), if (%) =1
At first glance it may seem that we are still throwing away half of (3.10) and
(3.11), but we are not; see Exercise 3.27.
It is easy to give a criterion for a Frobenius pseudoprime with respect to
a quadratic polynomial, in terms of the Lucas sequences (Up,), (Vi,).

Theorem 3.6.6. Let a,b be integers with A = a? — 4b not a square and
let n be a composite number with ged(n,2bA) = 1. Then n is a Frobenius
pseudoprime with respect to x? — ax + b if and only if

2b,  when (%) =-1

U (2) = 0 (mod n) and Vni(é) = {2, when (%) L

n—\n n

Proof. Let f(x) = 2% — ax + b. We use the identity
22™ = (22 — a)Up, + Vi, (mod (f(z),n)),

which is self-evident from (3.8). Then the congruences in the theorem lead to
2"+t = b (mod (f(x),n)) in the case (&) = —1 and 2"~! =1 (mod (f(z),n))

in the case (%) = 1. The latter case immediately gives " = x (mod (f(z),n)),
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and the former, via z(a — z) = b (mod (f(z),n)), leads to 2" = a — x

(mod (f(x),n)). Thus, n is a Frobenius pseudoprime with respect to f(z).
Now suppose n is a Frobenius pseudoprime with respect to f(x). Exercise

3.27 shows that n is a Lucas pseudoprime with respect to f(z), namely

that Un_(é) = 0 (mod n). Thus, from the identity above, 27— (%) =

an(é) (mod (f(z),n)). Suppose (%) = —1. Then 2" = (a —2)xz = b
(mod (f(z),n)), so that V;,+1 = 2b (mod n). Finally, suppose (§) = 1. Then
since z is invertible modulo (f(x),n), we have x"~1 = 1 (mod (f(x), ))

which gives V,,_1 =2 (mod n).

The first Frobenius pseudoprime n with respect to 22 —x — 1 is 4181 (the
nineteenth Fibonacci number), and the first with (%) = —11is 5777. We thus
see that not every Lucas pseudoprime is a Frobenius pseudoprime, that is, the
Frobenius test is more stringent. In fact, the Frobenius pseudoprime test can
be very effective. For example, for 22 + 5z + 5 we don’t know any examples
at all of a Frobenius pseudoprime n with (2) = —1, though such numbers are
conjectured to exist; see Exercise 3.42.

3.6.3 Implementing the Lucas and quadratic Frobenius tests

It turns out that we can implement the Lucas test in about twice the time
of an ordinary pseudoprime test, and we can implement the Frobenius test in
about three times the time of an ordinary pseudoprime test. However, if we
approach these tests naively, the running time is somewhat more than just
claimed. To achieve the factors two and three mentioned, a little cleverness is
required.

As before, we let a, b be integers with A = a? — 4b not a square, and
we define the sequences (U;), (V;) as in (3.8). We first remark that it is
easy to deal solely with the sequence (V;). If we have V,,, and V41, we may
immediately recover U, via the identity

Un = A7 2Vi1 — aViy). (3.13)

We next remark that it is easy to compute V,,, for large m from earlier values
using the following simple rule: If 0 < j < k, then

Vit = ViVe =0 Vi ;. (3.14)

Suppose now that b = 1. We record the formula (3.14) in the special cases
k=jand k=j+1:

Vaj = Vj2 -2, Vajp1=V;Vji1 —a (in the case b=1). (3.15)

Thus, if we have the residues Vj (mod n), Vji1 (mod n), then we may
compute, via (3.15), either the pair V5; (mod n), Vaj41 (mod n) or the pair
Vajt+1 (mod n), Va;4o (mod n), with each choice taking 2 multiplications
modulo n and an addition modulo n. Starting from Vy, V1 we can recursively
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use (3.15) to arrive at any pair Vj,,, Vi, 41. For example, say m is 97. We travel
from 0,1 to 97,98 as follows:

0,1 —>1,2-3,4—6,7— 12,13 — 24,25 — 48,49 — 97,98.

There are two types of moves, one that sends the pair a,a + 1 to 2a,2a + 1
and one that sends it to 2a+ 1,2a+ 2. An easy way to find which sequence of
moves to make is to start from the target pair m,m + 1 and work backwards.
Another easy way is to write m in binary and read the binary digits from
most significant bit to least significant bit. A zero signifies the first type of
move and a one signifies the second. So in binary, 97 is 1100001, and we see
above after the initial 0,1 that we have two moves of the second type, followed
by four moves of the first type, followed by a move of the second type.

Such a chain is called a binary Lucas chain. For more on this subject,
see [Montgomery 1992b] and [Bleichenbacher 1996]. Here is our pseudocode
summarizing the above ideas:

Algorithm 3.6.7 (Lucas chain). For a sequence zg,z1,... with a rule for
computing x2; from z; and a rule for computing x2j41 from z;,z;41, this
algorithm computes the pair (2, z,+1) for a given positive integer n. We have n
in binary as (ng,n1,...,np_1) with ng_1 being the high-order bit. We write the
rules as follows: xo; = x; * x; and x;41 = xj 0 xj41. At each step in the for()
loop in the algorithm we have u = x;,v = x;41 for some nonnegative integer j.

1. [Initialization]
(u7v) = (IOvIl);

2. [Loop]
for(B > j >0) {
if(n; ==1) (u,v) = (uov,v*v);
else (u,v) = (u* u,u o v);
}
return (u,v); // Returning (2., Tn41).

Let us see how we might relax the condition b = 1; that is, we are back in the
general case of ©2 — az + b. If @ = ¢d, b = d? we can use the identity

Vin(ed, d?) = d™V (c, 1)

to quickly return to the case b = 1. More generally, if b is a square, say b = d?
and ged(n,b) =1, we have

Vin(a,d*) = d™V,,(ad™*, 1) (mod n),

where d~! is a multiplicative inverse of d modulo n. So again we have returned
to the case b = 1. In the completely general case that b is not necessarily a
square, we note that if we run through the V,, sequence at double time, it is
as if we were running through a new V; sequence. In fact,

V2m(aa b) = Vm(a2 - 2b7 b2)7
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and the “0” number for the second sequence is a square! Thus, if ged(n,b) = 1
and we let A be an integer with A = b=V5(a,b) = a?b~! — 2 (mod n), then
we have

Vom(a,b) = 0™V, (A, 1) (mod n). (3.16)

Similarly, we have
Usm(a,b) = ab™ U, (A, 1) (mod n),

so that using (3.13) (with A, 1 for a,b, so that “A” in (3.13) is A% — 4), we
have

Usm(a,b) = (aA) 0™ (2V,41(A, 1) — AV, (A, 1)) (mod n).  (3.17)

We may use the above method of binary Lucas chains to efficiently
compute the pair V,,(A,1) (mod n), Vi41(4, 1) (mod n), where n is a number
coprime to b and we view A as an integer modulo n. Thus, via (3.16), (3.17),
we may find Vo, (@, ), Uz, (a,b) (mod n). And from these, with 2m = n—(£),
we may see whether n is a Lucas pseudoprime or Frobenius pseudoprime with
respect to 22 — ax + b.

We summarize these notions in the following theorem.

Theorem 3.6.8. Suppose that a,b,A; A are as above and that n is a
composite number coprime to 2abA. Then n is a Lucas pseudoprime with
respect to x> — ax + b if and only if

AV%( (A))(A, 1) = QV% (ni(%))Jrl(A, 1) (mod n). (3.18)

n—
n

Moreover, n is a Frobenius pseudoprime with respect to x> —ax +b if and only
if the above holds and also
b<"—1>/2vé( (8))(A. 1) = 2 (mod n). (3.19)

n—

As we have seen above, for m = % (n - (%)), the pair V,,,(A, 1), Vint1(A, 1)
may be computed modulo n using fewer than 2 1g n multiplications mod n and
lg n additions mod n. Half of the multiplications mod n are squarings mod n.
A Fermat test also involves lgn squarings mod n, and up to lgn additional
multiplications mod n, if we use Algorithm 2.1.5 for the binary ladder. We
conclude from (3.18) that the time to do a Lucas test is at most twice the
time to do a Fermat test. To apply (3.19) we must also compute p(n=1)/2
(mod n), so we conclude that the time to do a Frobenius test (for a quadratic
polynomial) is at most three times the time to do a Fermat test.

As with the Fermat test and the strong Fermat test, we apply the Lucas
test and the Frobenius test to numbers n that are not known to be prime
or composite. Following is pseudocode for these tests along the lines of this
section.

Algorithm 3.6.9 (Lucas probable prime test).
We are given integers n,a,b, A, with A = a? — 4b, A not a square, n > 1,
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ged(n, 2abA) = 1. This algorithm returns “n is a Lucas probable prime with
parameters a,b” if either n is prime or n is a Lucas pseudoprime with respect to

22 — ax + b. Otherwise, it returns “n is composite.”

1. [Auxiliary parameters]
A=a?"!—2mod n;
m=(n—(3)) /2
2. [Binary Lucas chain]
Using Algorithm 3.6.7 calculate the last two terms of the sequence
(Vo, Vi, ..., Vi, Ving1), with initial values (Vp, V1) = (2, A) and specific
rules Va; = ij —2mod n and Va1 = V;Vj11 — Amod n;
3. [Declaration]
if(AV,, = 2Vin41 (mod n)) return “n is a Lucas probable prime with
parameters a,b";
return “n is composite”;

The algorithm for the Frobenius probable prime test is the same except that
Step [Declaration] is changed to

3. [Lucas test]
if(AV,, Z 2V,41) return “n is composite”;

and a new step is added:

4. [Frobenius test]
B =b™""1/2 mod n;
if(BV;, = 2 (mod n)) return “n is a Frobenius probable prime with
parameters a,b";
return “n is composite”;

3.6.4 Theoretical considerations and stronger tests

If 22 — ax + b is irreducible over Z and is not z? & = + 1, then the Lucas
pseudoprimes with respect to x2 — ax + b are rare compared with the primes
(see Exercise 3.26 for why we exclude #? + x + 1). This result is in [Baillie and
Wagstaff 1980]. The best result in this direction is in [Gordon and Pomerance
1991]. Since the Frobenius pseudoprimes with respect to z? — az + b are a
subset of the Lucas pseudoprimes with respect to this polynomial, they are if
anything rarer still.

It has been proved that for each irreducible polynomial 2> — ax + b there
are infinitely many Lucas pseudoprimes, and in fact, infinitely many Frobenius
pseudoprimes. This was done in the case of Fibonacci pseudoprimes in [Lehmer
1964], in the general case for Lucas pseudoprimes in [Erdés et al. 1988], and
in the case of Frobenius pseudoprimes in [Grantham 2001]. Grantham’s proof
on the infinitude of Frobenius pseudoprimes works only in the case (%) =1.
There are some specific quadratics, for example, the polynomial z? —z — 1 for
the Fibonacci recurrence, for which we know that there are infinitely many
Frobenius pseudoprimes with (%) = —1 (see [Parberry 1970] and [Rotkiewicz
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1973]). Recently, Rotkiewicz proved that for any 2% — az +b with A = a? —4b
not a square, there are infinitely many Lucas pseudoprimes n with (%) =—1.

In analogy to strong pseudoprimes (see Section 3.5), we may have strong
Lucas pseudoprimes and strong Frobenius pseudoprimes. Suppose n is an odd
prime not dividing bA. In the ring R = Z,,[x]/(f(z)) it is possible (in the case
(%) = 1) to have 22 = 1 and z # +1. For example, take f(z) = 2% —x — 1,
n =11, z = 3+ 5x. However, if (x(a —2)71)?™ = 1, then a simple calculation

(see Exercise 3.30) shows that we must have (z(a —x)~!)™ = £1. We have
A

from (3.10) and (3.11) that (z(a — m)_l)”f(?) = 1 in R. Thus, if we write
n— (%) = 2°t, where t is odd, then

either (x(a — x)’.l)t =1 (mod (f(z),n))
or (z(a—z) )%= —1 (mod (f(x),n)) for somei, 0 <i<s—1.

This then implies that

either U; =0 (mod n)

or Vai; =0 (mod n) for some i, 0 <i<s—1.

If this last statement holds for an odd composite number n coprime to bA,
we say that n is a strong Lucas pseudoprime with respect to 22 — axz + b. It is
easy to see that every strong Lucas pseudoprime with respect to 22 — ax + b
is also a Lucas pseudoprime with respect to this polynomial.

In [Grantham 2001] a strong Frobenius pseudoprime test is developed,
not only for quadratic polynomials, but for all polynomials. We describe the

quadratic case for (%) = —1. Say n? — 1 = 2°T, where n is an odd prime not

dividing bA and where (£) = —1. From (3.10) and (3.11), we have =1
(mod n), so that

either 27 =1 (mod n)

or 22T =1 (mod n) for some 4, 0 <7< S —1.

If this holds for a Frobenius pseudoprime n with respect to z? — ax + b,
we say that n is a strong Frobenius pseudoprime with respect to 22 — ax + b.
(That is, the above congruence does not appear to imply that n is a Frobenius
pseudoprime, so this condition is put into the definition of a strong Frobenius
pseudoprime.) It is shown in [Grantham 1998] that a strong Frobenius
pseudoprime n with respect to 22 — ax + b, with (%) = —1, is also a strong
Lucas pseudoprime with respect to this polynomial.

As with the ordinary Lucas test, the strong Lucas test may be
accomplished in time bounded by the cost of two ordinary pseudoprime
tests. It is shown in [Grantham 1998] that the strong Frobenius test may
be accomplished in time bounded by the cost of three ordinary pseudoprime
tests. The interest in strong Frobenius pseudoprimes comes from the following
result from [Grantham 1998]:
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Theorem 3.6.10. Suppose n is a composite number that is not a square
and not divisible by any prime up to 50000. Then n is a strong Frobenius
pseudoprime with respect to at most 1/7710 of all polynomials x? — ax + b,

where a,b run over the integers in [1,n] with ( 4b) —1 and ( ) 1.

This result should be contrasted with the Monier-Rabin theorem
(Theorem 3.5.4). If one does three random strong pseudoprime tests, that
result implies that a composite number will fail to be recognized as such at
most 1/64 of the time. Using Theorem 3.6.10, in about the same time, one has
a test that recognizes composites with failure at most 1/7710 of the time. A
recent test in [Zhang 2002] should be mentioned in this context. It combines
a strong probable prime test and a Lucas test, giving a result that is superior
to the quadratic Frobenius test in all but a thin set of cases.

3.6.5 The general Frobenius test

In the last few sections we have discussed Grantham’s Frobenius test for
quadratic polynomials. Here we briefly describe how the idea generalizes to
arbitrary monic polynomials in Z[z].

Let f(z) be a monic polynomial in Z[z] with degree d > 1. We do not
necessarily assume that f(x) is irreducible. Suppose p is an odd prime that
does not divide the discriminant, disc(f), of f(x). (The discriminant of a
monic polynomial f(z) of degree d may be computed as (—1)%(¢=1/2 times
the resultant of f(x) and its derivative. This resultant is the determinant of
the (2d—1)x (2d—1) matrix whose i, j entry is the coefficient of 27~¢ in f(z) for
i=1,...,d—1 and is the coefficient of 27~ (=41 in f/(z) fori = d,...,2d—1,
where if the power of z does not actually appear, the matrix entry is 0.) Since
disc(f) # 0 if and only if f(z) has no repeated irreducible factors of positive
degree, the hypothesis that p does not divide disc(f) automatically implies
that f has no repeated factors.

By reducing its coefficients modulo p, we may consider f(z) in Fp[z].
To avoid confusion, we shall denote this polynomial by f(x). Consider the
polynomials Fi(x), Fa(x),. .., F4(z) in F,[z] defined by

cd(a? -z, f(z)),
cd(a?’ -z, f(x)/Fi(x)),

Fa(a) = ged(a?” —a, F(a)/(Fi(z) -+ Fy ().
Then the following assertions hold:
(1) 4 divides deg(F;(x)) fori=1,...,d,
(2) F;(z) divides F;(zP) for i =1,...,d,
(3) for
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we have

Assertion (1) follows, since F;(x) is precisely the product of the degree-i
irreducible factors of f(z), so its degree is a multiple of i. Assertion (2) holds
for all polynomials in F,[z]. Assertion (3) is a little trickier to see. The idea is
to consider the Galois group for the polynomial f(z) over F,. The Frobenius
automorphism (which sends elements of the splitting field of f(z) to their
p-th powers) of course permutes the roots of f(x) in the splitting field. It acts
as a cyclic permutation of the roots of each irreducible factor, and hence the
sign of the whole permutation is given by —1 to the number of even-degree
irreducible factors. That is, the sign of the Frobenius automorphism is exactly
(—1)°. However, it follows from basic Galois theory that the Galois group of
a polynomial with distinct roots consists solely of even permutations of the
roots if and only if the discriminant of the polynomial is a square. Hence
the sign of the Frobenius automorphism is identical to the Legendre symbol

(@), which then establishes the third assertion.

The idea of Grantham is that the above assertions can actually be
numerically checked and done so easily, even if we are not sure that p is prime.
If one of the three assertions does not hold, then p is revealed as composite.
This, then, is the core of the Frobenius test. One says that n is a Frobenius
pseudoprime with respect to the polynomial f(z) if n is composite, yet the
test does not reveal this.

For many more details, the reader is referred to [Grantham 1998, 2001].

3.7 Counting primes

The prime number theorem (Theorem 1.1.4) predicts approximately the value
of m(z), the number of primes p with p < z. It is interesting to compare these
predictions with actual values, as we did in Section 1.1.5. The computation of

7 (10°") = 21127269486018731928

was certainly not performed by having a computer actually count each and
every prime up to 102!, There are far too many of them. So how then was the
task actually accomplished? We give in the next sections two different ways to
approach the interesting problem of prime counting, a combinatorial method
and an analytic method.

3.7.1 Combinatorial method

We shall study here an elegant combinatorial method due to Lagarias, Miller,
and Odlyzko, with roots in the work of Meissel and Lehmer; see [Lagarias et
al. 1985], [Deléglise and Rivat 1996]. The method allows the calculation of
() in bit complexity O (2%/3+¢), using O (z1/3+<) bits of space (memory).
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Label the consecutive primes p1, ps, p3, ..., where p; = 2, po = 3, p3 = 5,
etc. Let

¢(z,y) = #{1 <n <z : each prime dividing n is greater than y}.

Thus ¢(z,p,) is the number of integers left unmarked in the sieve of
Eratosthenes, applied to the interval [1,z], after sieving with py,pa,...,pa.
Since sieving up to /x leaves only the number 1 and the primes in (y/z, z],

we have
m(z) -7 (V) + 1= ¢ (z,Vx).

One could easily use this idea to compute m(x), the time taking O(zInlnz)
operations and, if the sieve is segmented, taking O (x1/2 In x) space. (We shall
begin suppressing In z and In In = factors for simplicity, sweeping them under a
rather large rug of O(x°). It will be clear that each x¢ could be replaced, with
a little more work, with a small power of logarithm and/or double logarithm.)

A key thought is that the sieve not only allows us to count the primes, it
also identifies them. If it is only the count we are after, then perhaps we can
be speedier.

We shall partition the numbers counted by ¢(x, y) by the number of prime
factors they have, counted with multiplicity. Let

ox(x,y) = #{n <z : n has exactly k prime factors, each exceeding y}.

Thus, if z > 1, ¢o(z,y) is 1, ¢1(x,y) is the number of primes in (y, x|, ¢2(z,y)
is the number of numbers pg < = where p, ¢ are primes with y < p < ¢, and
so on. We evidently have

¢($,y) = (bo(l‘,y) + ¢1($7y) + ¢2(x,y) +ee

Further, note that ¢ (z,y) = 0 if y* > x. Thus,
o (x,x1/3> =1l+n(z)—7 (wl/S) + ¢ (x,x1/3> : (3.20)

One then can find m(x) if one can compute ¢(m,x1/3), 02 (m,m1/3) and
7 (21/3).

The computation of 7 (acl/ 3) can be accomplished, of course, using the
Eratosthenes sieve and nothing fancy. The next easiest ingredient in (3.20)
is the computation of ¢ (z,z'/3), which we now describe. This quantity is
found via the identity

bo(z, /%) = <W(x;/3)> - (”("”21/2)) + Y /), (321

21/3<p<al/2

where in the sum the letter p runs over primes. To see why (3.21) holds, we
begin by noting that ¢o (337951/3) is the number of pairs of primes p, g with

213 < p < g and pg < z. Then p < x'/2. For each fixed p, the prime ¢ is
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allowed to run over the interval [p, z/p|, and so the number of choices for ¢ is
7(x/p) — 7(p) + 1. Thus,

Go(w, ') = > (x(w/p) —7(p) + 1)

z1/3<p<zl/2
= Y w@=p)- D (xp)-1).
21/3<p<pl/2 21/3<p<zl/2
The last sum is
Tr(wl/z) w(wl/g)
G-D= > G-D- > (G-1
.,T(I1/3)<j§ﬂ($1/2) j=1 7j=1

- (W(i”)) N (ﬂ(x;/?‘))’
which proves (3.21).

To use (3.21) to compute ¢ (;U, x1/3) we shall compute 7 (301/3)7 0 (m1/2),
and the sum of the m(z/p). We have already computed  (z!/3). The
computation of 7 (ml/ 2) can again be done using the simple Eratosthenes
sieve, except that the sieve is segmented into blocks of size about z!/3 to
preserve the space bound for the algorithm. Note that in the sum of w(z/p)
in (3.21), each x/p < x?/3. Thus a simple sieve of Eratosthenes can likewise
compute the sum of 7(z/p) in total time O (z*/3+€). We do this within the
space allotment of O (z/37¢) as follows. Let N ~ z1/3 be a convenient number
for segmenting the sieve, that is, we look at intervals of length IV, beginning
at /2. Assuming that we have already computed 7(z), we use a sieve (with
stored primes less than x'/3) in the interval [z, z + N) to compute the various
7(x/p) for x/p landing in the interval, and we compute 7(z + N) to be used
in computations for the next interval. The various m(x/p)’s computed are
put into a running sum, and not stored individually. To find which p have z/p
landing in the interval, we have to apply a second sieve, namely to the interval
(z/(z + N),z/z], which lies in (z'/3, z/2]. The length of this interval is less
than N so that space is not an issue, and the sieve may be accomplished using
a stored list of primes not exceeding z'/# in time O (m1/3+€). When 2 is large,
the intervals (z/(z + N), z/z] become very short, and some time savings may
be made (without altering the overall complexity), by sieving an interval of
length NV in this range, storing the results, and using these for several different
intervals in the upper range.

To compute w(z) with (3.20) we are left with the computation of
10) (J:, zl/ 3). At first glance, this would appear to take about z steps, since it
counts the number of uncanceled elements in the sieve of Eratosthenes applied
to [1,z] with the primes up to 2'/3. The idea is to reduce the calculation of
0] (x, zt/ 3) to that of many smaller problems. We begin with the recurrence

d)(yapb) = d)(yvpb—l) - ¢(y/pb7pb—1)7 (322)
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for b > 2. We leave the simple proof for Exercise 3.33. Since ¢(y,2) =
[(y+1)/2], we can continue to use (3.22) to eventually come down to
expressions ¢(y, 2) for various choices of y. For example,

$(1000,7) = (1000, 5) — ¢(142, 5)
= $(1000,3) — $(200,3) — ¢(142,3) + (28, 3)
= $(1000,2) — ¢(333,2) — $(200,2) + (66, 2)
— $(142,2) + $(47,2) + $(28,2) — $(9,2)
=500 — 167 — 100+ 33 — 71 +24+14—5
= 228.

Using this scheme, we may express any ¢(z,p,) as a sum of 271 terms. In
fact, this bottom-line expression is merely the inclusion—exclusion principle
applied to the divisors of paops - - - pg, the product of the first a — 1 odd primes.
We have

dap)= X ot/ = X un [T,

n|p2ps---pa n|p2ps---pa

where p is the Mobius function see Section 1.4.1.

For a = m(x'/3), clearly 2*~! terms is too many, and we would have been
better off just sieving to x. However, we do not have to consider any n in the
sum with n > x, since then ¢(z/n,2) = 0. This “truncation rule” reduces
the number of terms to O(x), which is starting to be competitive with merely
sieving. By fiddling with this idea, we can reduce the O-constant to a fairly
small number. Since 2-3-5-7-11 = 2310, by computing a table of values
of ¢(x,11) for z = 0,1,...,2309, one can quickly compute any ¢(x,11): It is
©(2310) [2/2310] + ¢(x mod 2310, 11), where ¢ is the Euler totient function.
By halting the recurrence (3.22) whenever a b value drops to 11 or a y/p
value drops below 1, we get

dap)= S p(n)e(e/n,11).

n|pep7---Pa
n<z

Ifa=mn (wl/?’), the number of terms in this sum is asymptotic to cx with
¢ = p(3)C(2) " TI_, pi/ (pi + 1), where p is the Dickman function (see Section
1.4.5), and ¢ is the Riemann zeta function (so that ((2) = 6/72). This
expression for ¢ captures the facts that n has no prime factors exceeding z'/3,
n is squarefree, and n has no prime factor below 12. Using p(3) ~ 0.0486, we
get that ¢ ~ 0.00987. By reducing a to 7 (x1/4) (and agreeing to compute
b3 ($7x1/4) in addition to ¢9 (x,x1/4)), we reduce the constant ¢ to an
expression where p(4) ~ 0.00491 replaces p(3), so that ¢ ~ 0.000998. These
machinations amount, in essence, to the method of Meissel, as improved by
Lehmer, see [Lagarias et al. 1985].
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However, our present goal is to reduce the bit complexity to O (acg/ 3+6).
We do this by using a different truncation rule. Namely, we stop using the
recurrence (3.22) at any point ¢(y, pp) where either

(1) pp =2 and y > 2?/3, or
(2) y < 2%/3.

Here, y corresponds to some number x/n where n|paps - - -p,. The number
of type-1 terms clearly does not exceed x'/3, since such terms correspond to
values n < z'/3. To count the number of type-2 terms, note that a “parent”
of ¢(x/n,py) in the hierarchy is either the term ¢(x/n,pps1) or the term
d(x/(n/poy1), Po+1)- The latter case occurs only when ppq is the least prime
factor of n and n/ppr1; < 21/3, and the former case never occurs, since it
would already have been subjected to a type-2 truncation. Thus, the number
of type-2 terms is at most the number of pairs m, py, where m < z'/3 and p,
is smaller than the least prime factor of m. This count is at most /37 (z'/3),
so the number of type-2 terms is less than 22/3.
For an integer m > 1, let

Pin(m) = the least prime factor of m.

We thus have using the above truncation rule that

s = X um | (3.23)

m|p2ps---pa
m<al/?

YOS ¢(mpi+l,pb).

m|p2ps---Pa Po+1<Pmin(m)
1<m§x1/3 pb+1m>x1/3

We apply (3.23) with a = 7(x!/3). The first sum in (3.23), corresponding to
type-1 terms, is easy to compute. With a sieve, prepare a table 7 of the odd
squarefree numbers m < /3, together with their least prime factor (which
will be of use in the double sum), and the value p(m). (Each sieve location
corresponds to an odd number not exceeding z'/% and starts with the number
1. The first time a location gets hit by a prime, we record this prime as the
least prime factor of the number corresponding to the sieve location. Every
time a prime hits at a location, we multiply the entry at the location by —1.
We do this for all primes not exceeding /% and then mark remaining entries
with the number they correspond to, and change the entry to —1. Finally, we
sieve with the squares of primes p? for p < z'/6, and any location that gets hit
gets its entry changed to 0. At the end, the numbers with nonzero entries are
the squarefree numbers, the entry is u of the number, and the prime recorded
there is the least prime factor of the number.) The time and space to prepare
table T is O(x'/3%€), and with it we may compute the first sum in (3.23) in
time O(z'/3+¢).
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The heart of the argument is the calculation of the double sum in (3.23).
We first describe how to compute this sum using O (xQ/ 3‘“) space and time,
and later show how segmentation can cut down the space to O(x!'/3%).
Prepare a table 7' of triples p(m),|x/(mpy+1)], b, where m runs over
numbers greater than 1 in the table 7 previously computed, and b runs over
numbers such that pyy1 < Puin(m) and mppyq > 21/3. Note that all of the
numbers [z/(mpy11)] are less than /2. Sieve the interval [1,2%/3] with the
primes not exceeding x'/3. At stage b we have sieved with p1,pa, ..., ps, and
thus we can read off ¢(y,b) for any y < 2%/3. We are interested in the values
y= |2/ (mpui1)).

However, just knowing which numbers are coprime to pips - - - pp is not the
same as knowing how many there are up to y, which requires an additional
computation. Doing this for each b would increase the bit complexity to
O (w“‘e). This problem is solved via a binary data structure. For ¢ =
0,1,...,|lgn], consider the intervals

Lij=((j — 1)2",52]

for j a positive integer and I; ; C [1, z?/ 3]. The total number of these intervals
is O (z%/?). For each of the intervals I; ;, let

A(i, j,b) = #{n € I;j : ged(n,pip2 ... pp) = 1}.

The plan is to compute all of the numbers A(, j,b) for a fixed b. Once these
are computed, we may use the binary representation of |x/(mpp+1)]| and add
up the appropriate choices of A(%, j, b) to compute ¢(|x/(mpy+1)] ).

So, we now show how the numbers A(4, j,b) are to be computed from the
previous values A(i,7,b — 1) (where the initial values A(4, j,0) are set equal
to 2%). Note that in the case i = 0, the interval Iy ; contains only the integer
J, so that A(0,4,b) is 1 if j is coprime to p1ps - - - pp, and is 0 otherwise. For
integers | < x/py, we update the numbers A(4, j,b) corresponding to intervals
I; ; containing lp,. The number of such intervals for a given Ip, is O(Inx). If
A(0,7,b—1) = 0, where j = lpp, then no update is necessary in any interval. If
A(0,7,b— 1) = 1, where again j = Ip,, we set each relevant A(%, j,b) equal to
A(i, j,b—1)—1. The total number of updates is O (z*/3(Inz)/p ), so summing
for pp < x1/3, an estimate O (x2/3+6) accrues.

The space for the above argument is O(z%/3+¢). To reduce it to O(z/3+¢),
we let k be the integer with z'/3 < 28 < 2z'/3, and then we segment the
interval [1, x2/3} in blocks of size 2¥, where perhaps the last block is short, or
we go a little beyond #2/3. The r-th block is ((r —1)2%,72¥], namely, it is the
interval I, ;. When we reach it, we have stored the numbers ¢ ((T —1)2k, pb)
forall b <m (wl/ 3) from the prior block. We next use the table 7 computed
earlier to find the triples p(m), [2/(mpps1)], b where |z/(mppy1)] is in the
r-th block. The intervals I; ; fit neatly in the r-th block for i < k, and we
do not need to consider larger values of i. Everything proceeds as before, and
we compute each relevant ¢(xz/(mpps1),pp) where |2/(mpps1)] is in the r-th
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block, and we also compute ¢(r2k,pb) for each b, so as to use these for the
next block. The computed values of ¢(x/(mpy+1),ps) are not stored, but are
multiplied by p(m) and added into a running sum that represents the second
term on the right of (3.23). The time and space required to do these tasks
for all p, < x'/3 in the r-th block is O(z'/3t€). The values of ¢ (r?k,pb)
are written over the prior values ¢((r — 1)2%,py), so the total space used is
@) (x1/3+5). The total number of blocks does not exceed /3, so the total time
used in this computation is O (x2/3+5), as advertised.

There are various ideas for speeding up this algorithm in practice, see
[Lagarias et al. 1985] and [Deléglise and Rivat 1996].

3.7.2 Analytic method

Here we describe an analytic method, highly efficient in principle, for counting
primes. The idea is that in [Lagarias and Odlyzko 1987], with recent extensions
that we shall investigate. The idea is to exploit the fact that the Riemann zeta
function embodies in some sense the properties of primes. A certain formal
manipulation of the Euler product relation (1.18) goes like so. Start by taking
the logarithm

m¢(s) = [[(A=p™*)" == (1 —p™),

pEP pEP

and then introduce a logarithmic series

NOEDDD Wlsm, (3.24)

pEP m=1

where all manipulations are valid (and the double sum can be interchanged
if need be) for Re(s) > 1, with the caveat that In¢ is to be interpreted as
a continuously changing argument. (By modern convention, one starts with
the positive real In {(2) and tracks the logarithm as the angle argument of ¢,
along a contour that moves vertically to 2 4 ¢ Im(s) then over to s.)

In order to use relation (3.24) to count primes, we define a function
reminiscent of—but not quite the same as—the prime-counting function 7(z).
In particular, we consider a sum over prime powers not exceeding x, namely

(2= Y z=p") (3.25)

m
peEP, m>0

where 0(z) is the Heaviside function, equal to 1, 1/2, 0, respectively, as its
argument z is positive, zero, negative. The introduction of § means that the
sum involves only prime powers p™ not exceeding x, but that whenever the
real = actually equals a power p™, the summand is 1/(2m). The next step is
to invoke the Perron formula, which says that for nonnegative real x, positive
integer n, and a choice of contour C = {s : Re(s) = o}, with fixed o > 0 and
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t = Im(s) ranging, we have

It follows immediately from these observations that for a given contour (but
now with o > 1 so as to avoid any In  singularity) we have:

1 ds
(r) = — 51 —. 3.27
") = 5 [ (o) (3.27)
This last formula provides analytic means for evaluation of 7(z), because if x
is not a prime power, say, we have from relation (3.25) the identity:

7 (2) = 7(z) + %W (1) + %W (a2) 4+

which series terminates as soon as the term 7 (ml/”) /mn has 2" > z.

It is evident that m(x) may be, in principle at least, computed from
a contour integral (3.27), and relatively easy side calculations of 7 (a:l/ ”)
starting with 7 (1/z). One could also simply apply the contour integral relation
recursively, since the leading term of 7*(z) — 7(z) is 7* (z/2) /2, and so on.
There is another alternative for extracting = if we can compute 7*, namely
by way of an inversion formula (again for x not a prime power)

7(z) = i @ﬂ'* (xl/") .
n=1

This analytic approach thus comes down to numerical integration, yet
such integration is the problematic stage. First of all, one has to evaluate ¢
with sufficient accuracy. Second, one needs a rigorous bound on the extent to
which the integral is to be taken along the contour. Let us address the latter
problem first. Say we have in hand a sharp computational scheme for ( itself,
and we take x = 100, 0 = 3/2. Numerical integration reveals that for sample
integration limits T' € {10, 30, 50, 70,90}, respective values are

7*(100) ~ Re

3/2 T it
100 / 007 @/ + i) dt
0

™ 3/2+it
~ 30.14, 29.72, 27.89, 29.13, 28.3,

which values exhibit poor convergence of the contour integral: The true value
of 7*(100) can be computed directly, by hand, to be 428/15 ~ 28.533... .
Furthermore, on inspection the value as a function of integration limit 7 is
rather chaotic in the way it hovers around the true value, and rigorous error
bounds are, as might be expected, nontrivial to achieve (see Exercise 3.37).
The suggestions in [Lagarias and Odlyzko 1987] address, and in principle
repair, the above drawbacks of the analytic approach. As for evaluation of ¢
itself, the Riemann—Siegel formula is often recommended for maximum speed;
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in fact, whenever s has a formidably large imaginary part ¢, said formula
has been the exclusive historical workhorse (although there has been some
modern work on interesting variants to Riemann—Siegel, as we touch upon
at the end of Exercise 1.61). What is more, there is a scheme found in
[Odlyzko and Schonhage 1988] for a kind of “parallel” evaluation of ((s)
values, along, say, a progression of imaginary ordinates of the argument s.
This sort of simultaneous evaluation is just what is needed for numerical
integration. For a modern compendium including variants on the Riemann—
Siegel formula and other computational approaches, see [Borwein et al. 2000]
and references therein. In [Crandall 1998] can be found various fast algorithms
for simultaneous evaluation at various argument sets. The essential idea
for acceleration of ¢ computations is to use FFT, polynomial evaluation,
or Newton-method techniques to achieve simultaneous evaluations of ((s)
for a given set of s values. In the present book we have provided enough
instruction—via Exercise 1.61—for one at least to get started on single
evaluations of (s + it) that require only O (tl/ 2+5) bit operations.

As for the problem of poor convergence of contour integrals, the clever
ploy is to invoke a smooth (one might say “adiabatic”) turn-off function that
renders a (modified) contour integral more convergent. The phenomenon is
akin to that of reduced spectral bandwidth for smoother functions in Fourier
analysis. The Lagarias—Odlyzko identity of interest is (henceforth we shall
assume that x is not a prime power)

1
270

O(xz —p™) —c(p™, z)

F(s,z)In{(s )ds + Z , (3.28)

m
pEP, m>0

7 (2) =

where ¢, F' form a Mellin-transform pair:

1
c(u,z) = 5 /c F(s,x)u™*ds,

F(s,x) = / c(u, z)u* "t du.
0

To understand the import of this scheme, take the turn-off function c¢(u,x)
to be §(z — ). Then F(s,x) = x°/s, the final sum in (3.28) is zero, and we
recover the original analytic representation (3.27) for 7*. Now, however, let
us contemplate the class of continuous turn-off functions c(u, z) that stay at
1 over the interval u € [0,z — y), decay smoothly (to zero) over u € (z —y, z],
and vanish for all © > x. For optimization of computational efficiency, y will
eventually be chosen to be of order y/z. In fact, we can combine various of
the above relations to write

1 ds
m(z) = TMAF(S,x) lnC(s) — (3.29)
_ Z 9(33— )+ Z O(z —p™) — cp ’l‘)_

m
pEP m>1 peP, m>0
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Indeed, the last summation is rather easy, since it has just O (y/z) terms. The
next-to-last summation, which just records the difference between 7 (z) and
7*(x), also has just O (y/x) terms.

Let us posit a specific smooth decay, i.e., for u € (z — y, z] we define

(—u)? _(z—u)?

y? y?
Observe that ¢(x — y,2) = 1 and ¢(z,z) = 0, as required for continuous ¢
functions in the stated class. Mellin transformation of ¢ gives

-2

clu,) =3

v’ _
FF(S7 x) = (3.30)

=223 4+ (s + 3) 25 2y + (v — y)* (223 + (s — 3)2%y — 2s29y% + (s + 1)y?)
s(s+1)(s+2)(s+3) '

This expression, though rather unwieldy, allows us to count primes more
efficiently. For one thing, the denominator of the second fraction is O(t*),
which is encouraging. As an example, performing numerical integration as in
relation (3.29) with the choices z = 100,y = 10, we find for the same trial set
of integration limits T € {10, 30,50, 70,90} the results

7(100) ~ 25.3, 26.1, 25.27, 24.9398, 24.9942,

which are quite satisfactory, since 7(100) = 25. (Note, however, that there is
still some chaotic behavior until 7" be sufficiently large.) It should be pointed
out that Lagarias and Odlyzko suggest a much more general, parameterized
form for the Mellin pair ¢, F', and indicate how to optimize the parameters.
Their complexity result is that one can either compute 7(x) with bit operation
count O (:vl/z“) and storage space of O (xl/‘”e) bits, or on the notion of
limited memory one may replace the powers with 3/5 + €, €, respectively.

As of this writing, there has been no practical result of the analytic method
on a par with the greatest successes of the aforementioned combinatorial
methods. However, this impasse apparently comes down to just a matter of
calendar time. In fact, [Galway 1998] has reported that values of 7w(10™) for
n = 13, and perhaps 14, are attainable for a certain turn-off function ¢ and
(only) standard, double-precision floating-point arithmetic for the numerical
integration. Perhaps 100-bit or higher precision will be necessary to press the
analytic method on toward modern limits, say = ~ 102! or more; the required
precision depends on detailed error estimates for the contour integral. The
Galway functions are a clever choice of Mellin pair, and work out to be more
efficient than the turn-off functions that lead to F' of the type (3.30). Take

1 In 2
c(u,z) = éerfc (2@(3:)) ,

where erfc is the standard error function:

2 R
erfe(z) = 7/ e ¥ dt
i z
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and a is chosen later for efficiency. This ¢ function turns off smoothly at u ~ x,
but at a rate tunable by choice of a. The Mellin companion works out nicely
to be

S

F(s) = Zesta@)”, (3.31)
S

For s = o+it the wonderful (for computational purposes) decay in F is e—t’a”,
Now numerical experiments are even more satisfactory. Sure enough, we can
use relation (3.29) to yield, for x = 1000, decay function a(x) = (2x)~ /2,
o = 3/2, and integration limits T € {20, 40, 60, 80, 100,120}, the successive
values

7(1000) ~ 170.6, 169.5, 170.1, 167.75, 167.97, 167.998,

in excellent agreement with the exact value 7(1000) = 168; and furthermore,
during such a run the chaotic manner of convergence is, qualitatively speaking,
not so manifest.

Incidentally, though we have used properties of ((s) to the right of the
critical strip, there are ways to count primes using properties within the strip;
see Exercise 3.50.

3.8 Exercises

3.1. In the spirit of the opening observations to the present chapter, denote
by Sp(n) the sum of the base-B digits of n. Interesting phenomena accrue for
specific B, such as B = 7. Find the smallest prime p such that S;(p) is itself
composite. (The magnitude of this prime might surprise you!) Then, find all
possible composite values of S7(p) for the primes p < 16000000 (there are very
few such values!). Here are two natural questions, the answers to which are
unknown to the authors: Given a base B, are there infinitely many primes p
with Sp(p) prime? (composite?) Obviously, the answer is “yes” for at least
one of these questions!

3.2. Sometimes other fields of thought can feed back into the theory of prime
numbers. Let us look at a beautiful gem in [Golomb 1956] that uses clever
combinatorics—and even some “visual” highlights—to prove Fermat’s little
Theorem 3.4.1.

For a given prime p you are to build necklaces having p beads. In any one
necklace the beads can be chosen from n possible different colors, but you
have the constraint that no necklace can be all one color.

(1) Prove: For necklaces laid out first as linear strings (i.e., not yet
circularized) there are n? — n possible such strings.

(2) Prove: When the necklace strings are all circularized, the number of
distinguishable necklaces is (n? — n)/p.

(3) Prove Fermat’s little theorem, that n” = n (mod p).
(4) Where have you used that p is prime?



3.8 Exercises 163

3.3. Prove that if n > 1 and ged(a™ — a,n) = 1 for some integer a, then not
only is n composite, it is not a prime power.

3.4. For each number B > 2, let dp be the asymptotic density of the integers
that have a divisor exceeding B with said divisor composed solely of primes
not exceeding B. That is, if N(z, B) denotes the number of positive integers up
to z that have such a divisor, then we are defining dg = lim,_,, N(z, B)/z.

(1) Show that

e

p<B m=1

where the product is over primes.
(2) Find the smallest value of B with dg > d7.

(3) Using the Mertens Theorem 1.4.2 show that limp_oodp = 1 — €77 =
0.43854, where v is the Euler constant.

(4) It is shown in [Rosser and Schoenfeld 1962] that if x > 285, then
e’Inz [, (1 —1/p)is between 1 — 1/(2In®z) and 14 1/(2In*z). Use
this to show that 0.25 < dg < e™7 for all B > 2.

3.5. Let ¢ be a real number and consider the set of those integers n
whose largest prime factor does not exceed m®. Let ¢ be such that the
asymptotic density of this set is 1/2. Show that ¢ = 1/(2/e). A pleasantly
interdisciplinary reference is [Knuth and Trabb Pardo 1976].

Now, consider the set of those integers n whose second-largest prime factor
(if there is one) does not exceed n°. Let ¢ be such that the asymptotic density
of this set is 1/2. Show that ¢ is the solution to the equation

V2 1n(1 —w) -1 1
I(C):/ W"“:a

and solve this numerically for ¢. An interesting modern approach for the
numerics is to show, first, that this integral is given exactly by

I(c) —7% +61n ¢ + 12Lis(c))

12 (
in which the standard polylogarithm Lis(c) = ¢/12 + ¢*/2% + ¢3/3% + ---
appears. Second, using any of the modern packages that know how to
evaluate Lis to high precision, implement a Newton-method solver, in this
way circumventing the need for numerical integration per se. You ought to be
able to obtain, for example,

¢~ 0.2304366013159997457147108570060465575080754 . . . ,

presumed correct to the implied precision.
Another intriguing direction: Work out a fast algorithm—having a value
of ¢ as input—for counting the integers n € [1, z] whose second-largest prime
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factor exceeds n® (when there are less than two prime factors let us simply
not count that n). For the high-precision ¢ value given above, there are 548
such n € [1,1000], whereas the theory predicts 500. Give the count for some
much higher value of x.

3.6. Rewrite the basic Eratosthenes sieve Algorithm 3.2.1 with improve-
ments. For example, reduce memory requirements (and increase speed) by
observing that any prime p > 3 satisfies p & 1 (mod 6); or use a modulus
greater than 6 in this fashion.

3.7. Use the Korselt criterion, Theorem 3.4.6, to find by hand or machine
some explicit Carmichael numbers.

3.8. Prove that every composite Fermat number F, = 22" 4+ 1 is a
Fermat pseudoprime base 2. Can a composite Fermat number be a Fermat
pseudoprime base 3? (The authors know of no example, nor do they know a
proof that this cannot occur.)

3.9. This exercise is an exploration of rough mental estimates pertaining
to the statistics attendant on certain pseudoprime calculations. The great
computationalist /theorist team of D. Lehmer and spouse E. Lehmer together
pioneered in the mid-20th century the notion of primality tests (and a great
many other things) via hand-workable calculating machinery. For example,
they proved the primality of such numbers as the repunit (10%% — 1)/9 with
a mechanical calculator at home, they once explained, working a little every
day over many months. They would trade off doing the dishes vs. working on
the primality crunching. Later, of course, the Lehmers were able to handle
much larger numbers via electronic computing machinery.

Now, the exercise is, comment on the statistics inherent in D. Lehmer’s
(1969) answer to a student’s question, “Professor Lehmer, have you in all
your lifetime researches into primes ever been tripped up by a pseudoprime
you had thought was prime (a composite that passed the base-2 Fermat
test)?” to which Lehmer’s response was as terse as can be: “Just once.” So
the question is, does “just once” make statistical sense? How dense are the
base-2 pseudoprimes in the region of 10”7 Presumably, too, one would not
be fooled, say, by those base-2 pseudoprimes that are divisible by 3, so revise
the question to those base-2 pseudoprimes not divisible by any “small” prime
factors. A reference on this kind of question is [Damgard et al. 1993].

3.10. Note that applying the formula in the proof of Theorem 3.4.4 with
a = 2, the first legal choice for p is 5, and as noted, the formula in the proof
gives n = 341, the first pseudoprime base 2. Applying it with a = 3, the first
legal choice for p is 3, and the formula gives n = 91, the first pseudoprime
base 3. Show that this pattern breaks down for larger values of a and, in fact,
never holds again.

3.11. Show that if n is a Carmichael number, then n is odd and has at least
three prime factors.
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3.12. Show that a composite number n is a Carmichael number if and only
if a"~! =1 (mod n) for all integers a coprime to n.

3.13. [Beeger] Show that if p is a prime, then there are at most finitely many
Carmichael numbers with second largest prime factor p.

3.14. For any positive integer n let
F(n) = {a (mod n) : a" ' =1 (mod n)} )

(1) Show that F(n) is a subgroup of Z}, the full group of reduced residues
modulo n, and that it is a proper subgroup if and only if n is a composite
that is not a Carmichael number.

(2) [Monier, Baillie-Wagstaff] Let F(n) = #F(n). Show that

= chd(p— 1,n—1).

pln

(3) Let Fy(n) denote the number of residues a (mod n) such that o™ = a
(mod n). Find a formula, as in (2) above, for Fy(n). Show that if
Fy(n) < n, then Fy(n) < 2n. Show that if n # 6 and Fy(n) < n, then
Fy(n) < 2n. (It is not known whether there are infinitely many numbers
n with Fy(n) = 2n, nor is it known whether there is some £ > 0 such that

5
there are infinitely many n with en < Fy(n) < n.)

We remark that it is known that if h(n) is any function that tends to infinity,
then the set of numbers n with F(n) < In"™ n has asymptotic density 1
[Erd6s and Pomerance 1986].

3.15. [Monier| In the notation of Lemmas 3.5.8 and 3.5.9 and with S(n)
given in (3.5), show that

V(n)w(n -1
S(n) = <1+ ) 1 >chdtp1

3.16. [Haglund] Let n be an odd composite. Show that S(n) is the subgroup
of Z7 generated by S(n).

3.17. [Gerlach] Let n be an odd composite. Show that S(n) = S(n) if and
only if n is a prime power or n is divisible by a prime that is 3 (mod 4).
Conclude that the set of odd composite numbers n for which S(n) is not a
subgroup of Z? is infinite, but has asymptotic density zero. (See Exercises

1.10, 1.91, and 5.16.)

3.18. Say you have an odd number n and an integer a not divisible by n
such that n is a pseudoprime base a, but n is not a strong pseudoprime base
a. Describe an algorithm that with these numbers as inputs gives a nontrivial
factorization of n in polynomial time.
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3.19. [Lenstra, Granville] Show that if an odd number n be divisible by the
square of some prime, then W(n), the least witness for n, is less than In?n.
(Hint: Use (1.45).) This exercise is re-visited in Exercise 4.28.

3.20. Describe a probabilistic algorithm that gives nontrivial factorizations
of Carmichael numbers in expected polynomial time.

3.21. We say that an odd composite number n is an Euler pseudoprime base
a if a is coprime to n and

an=1/2 = (Z) (mod n), (3.32)

where (%) is the Jacobi symbol (see Definition 2.3.3). Euler’s criterion (see

Theorem 2.3.4) asserts that odd primes n satisfy (3.32). Show that if n is a
strong pseudoprime base a, then n is an Euler pseudoprime base a, and that
if n is an Euler pseudoprime base a, then n is a pseudoprime base a.

3.22. [Lehmer, Solovay—Strassen| Let n be an odd composite. Show that
the set of residues a (mod n) for which n is an Euler pseudoprime is a proper
subgroup of Z?. Conclude that the number of such bases a is at most ¢(n)/2.

3.23. Along the lines of Algorithm 3.5.6 develop a probabilistic compos-
iteness test using Exercise 3.22. (This test is often referred to as the Solo-
vay—Strassen primality test.) Using Exercise 3.21 show that this algorithm is
majorized by Algorithm 3.5.6.

3.24. [Lenstra, Robinson] Show that if n is odd and if there exists an integer
bwith b(*=1/2 = —1 (mod n), then any integer a with a(»~1/2 = +1 (mod n)
also satisfies a("~1/2 = (£) (mod n). Using this and Exercise 3.22, show that
if n is an odd composite and a(®~1/2 = +1 (mod n) for all a coprime to n,
then in fact a(»~1/2 = 1 (mod n) for all a coprime to n. Such a number must
be a Carmichael number; see Exercise 3.12. (It follows from the proof of the
infinitude of the set of Carmichael numbers that there are infinitely many odd
composite numbers n such that a(*~1/2 = £1 (mod n) for all a coprime to
n. The first example is Ramanujan’s “taxicab” number, 1729.)

3.25. Show that there are seven Fibonacci pseudoprimes smaller than 323.

3.26. Show that every composite number coprime to 6 is a Lucas
pseudoprime with respect to 22 — x + 1.

3.27. Show that if (3.12) holds, then so does

(a—a)" = {x (mod (f(z),m)), if (§) = -1,
a—x (mod (f(z),n)), if (§)=1.

In particular, conclude that a Frobenius pseudoprime with respect to f(z) =

22 — ax + b is also a Lucas pseudoprime with respect to f(x).
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3.28. Show that the definition of Frobenius pseudoprime in Section 3.6.5 for
a polynomial f(x) = 22 — az + b reduces to the definition in Section 3.6.2.

3.29. Show that if a,n are positive integers with n odd and coprime to
a, then n is a Fermat pseudoprime base a if and only if n is a Frobenius
pseudoprime with respect to the polynomial f(z) =z — a.

3.30. Let a,bbe integers with A = a?—4bnot a square, let f(z) = 2% —ax+b,
let n be an odd prime not dividing bA, and let R = Z,[z]/(f(z)). Show that
if (x(a —2)71)?™ =11in R, then (z(a —2)71)™ = +1 in R.

3.31. Show that a Frobenius pseudoprime with respect to 22 —ax + b is also
an Euler pseudoprime (see Exercise 3.21) with respect to b.
3.32. Prove that the various identities in Section 3.6.3 are correct.

3.33. Prove that the recurrence (3.22) is valid.

3.34. Show that if a = 7 (:101/3)7 then the number of terms in the double
sum in (3.23) is O (2%/3/In*z).

3.35. Show that with M computers where M < z'/3, each with the capacity
for O (xl/“f) space, the prime-counting algorithm of Section 3.7 may be
speeded up by a factor M.

3.36. Show that instead of using analytic relation (3.27) to get the modified
count 7*(x), one could, if desired, use the “prime-zeta” function

ORI

peP

in place of In( within the integral, whence the result on the left-hand side
of (3.27) is, for noninteger z, the 7 function itself. Then show that this
observation is not entirely vacuous, and might even be practical, by deriving
the relation

P(s) =Y ——=In¢(ns),

for Res > 1, and describing quantitatively the relative ease with which one
can calculate ((ns) for large integers n.

3.37. By establishing theoretical bounds on the magnitude of the real part

of the integral
oS} eitoz
Ja—r
T 6 + 1t

where T, a, 3 are positive reals, determine a bound on that portion of the
integral in relation (3.27) that comes from Im(s) > T'. Describe, then, how
large T" must be for 7*(z) to be calculated to within some +e of the true
value. See FExercises 3.38, 3.39 involving the analogous estimates for much
more efficient prime-counting methods.
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3.38. Consider a specific choice for the Lagarias—Odlyzko turn-off function
c¢(u, ), namely, a straight-line connection between the 1,0 values. Specifically,
for y = /x, define ¢ = 1,(x —u)/y,0 as u < z —y,u € (x — y,z],u > =,
respectively. Show that the Mellin companion function is

1 s+1 (33 _ y)s+1
Fls,2) = y s(s+1)

Now derive a bound, as in Exercise 3.37, on proper values of T' such that ()
will be calculated correctly on the basis of

T
7 (x) &~ Re/o F(s,z)In((s)dt.

Calculate numerically some correct values of () using this particular turn-off
function c.

3.39. Inregard to the Galway functions of which F is defined by (3.31), make
rigorous the notion that even though the Riemann zeta function somehow
embodies, if you will, “all the secrets of the primes,” we need to know ¢ only
to an imaginary height of “about” z'/2 to count all primes not exceeding .

3.40. Using integration by parts, show that the F' defined by (3.31) is indeed
the Mellin transform of the given c.

3.9 Research problems

3.41. Find a number n = =+2 (mod 5) that is simultaneously a base-
2 pseudoprime and a Fibonacci pseudoprime. Pomerance, Selfridge, and
Wagstaff offer $620 for the first example. (The prime factorization must also
be supplied.) The prize money comes from the three, but not equally: Selfridge
offers $500, Wagstaff offers $100 and Pomerance offers $20. However, they also
agree to pay $620, with Pomerance and Selfridge reversing their roles, for a
proof that no such number n exists.

3.42. Find a composite number n, together with its prime factorization, that
is a Frobenius pseudoprime for 22 +5z+5 and satisfies (%) = —1. J. Grantham
has offered a prize of $6.20 for the first example.

3.43. Consider the least witness function W (n) defined for odd composite
numbers n. It is relatively easy to see that W (n) is never a power; prove this.
Are there any other forbidden numbers in the range of W (n)? If some n exists
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with W(n) = k, let ny denote the smallest such n. We have

ny = 9 nis > 106

ny = 2047 niz = 2152302898747

ns = 1373653 nig = 1478868544880821

ne = 134670080641 niy = 3474749660383

ny = 25326001 nig = 4498414682539051
nyg = 307768373641 ngs = 341550071728321.
ny; = 3215031751

(These values were computed by D. Bleichenbacher, also see [Jaeschke 1993],
[Zhang and Tang 2003], and Exercise 4.34.) S. Li has shown that W (n) = 12
for

n = 1502401849747176241,

so we know that nis exists. Find nio and extend the above table. Using
Bleichenbacher’s computations, we know that any other value of ny that exists
must exceed 1016,

3.44. Study, as a possible alternative to the simple trial-division Algorithm
3.1.1, the notion of taking (perhaps extravagant) gcd operations with the N
to be factored. For example, you could compute a factorial of some B and
take ged(B!, N), hoping for a factor. Describe how to make such an algorithm
complete, with the full prime factorizations resulting. This completion task is
nontrivial: For example, one must take note that a factor k? of N with k < B
might not be extracted from a single factorial.

Then there are complexity issues. Should one instead multiply together
sets of consecutive primes, i.e., partial “primorials” (see Exercise 1.6), to form
numbers {B;}, and then test various ged(B;, N)?

3.45. Let f(N) be a worst-case bound on the time it takes to decide
primality on any particular number between N and N + N/, By sieving
first with the primes below N'/4 we are left with the numbers in the interval
[N,N + N'/4] that have no prime factor up to N'/4. The number of these
remaining numbers is O(N'/4/1In N). Thus one can find all the primes in the
interval in a time bound of O(NY*f(N)/In N) 4+ O(N'/*InIn N). Is there a
way of doing this either in time o( N/ f(N)/In N) or in time O(N'/*In1n N)?

3.46. The ordinary sieve of Eratosthenes, as discussed above, may be
segmented, so that but for the final list of primes collected, the space required
along the way is O(N'/2). And this can be accomplished without sacrificing
on the time bound of O(N Inln N) bit operations. Can one prepare a table of
primes up to N in o(N) bit operations, and use only O(N'/?) space along the
way? Algorithm 3.2.2 meets the time bound goal, but not the space bound.
(The paper [Atkin and Bernstein 2004] nearly solves this problem.)

3.47. Along the lines of the formalism of Section 3.7.2, derive an integral
condition on z, A and involving the Riemann ¢ function such that there exist
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no primes in the interval [z, z+A]. Describe how such a criterion could be used
for given x, A to show numerically, but rigorously, whether or not primes exist
in such an interval. Of course, any new theoretical inroads into the analysis of
these “gaps” would be spectacular.

3.48. Suppose T is a probabilistic test that takes composite numbers n and,
with probability p(n), provides a proof of compositeness for n. (For prime
inputs, the test T reports only that it has not succeeded in finding a proof of
compositeness.) Is there such a test T that has p(n) — 1 as n runs to infinity
through the composite numbers, and such that the time to run T on n is no
longer than doing k£ pseudoprime tests on n, for some fixed k7

3.49. For a positive integer n coprime to 12 and squarefree, define K(n)
depending on n mod 12 according to one of the following equations:

K(n)=#{(u,v) : u>v>0;n=u®>+0v*}, forn=1,5 (mod 12),

K(n) =#{(u,v) : v>0, v>0;n=3u?+0v*}, forn=7(mod 12),
K(n) = #{(u,v) : u>v>0;n=3u>—v?}, forn=11 (mod 12).

Then it is a theorem in [Atkin and Bernstein 2004] that n is prime if and only
if K(n) is odd. First, prove this theorem using perhaps the fact (or related
facts) that the number of representations of (any) positive n as a sum of two

squares is
ra(n) =4 Y (-)UV2
dn, d odd

where we count all n = u? +v? including negative u or v representations; e.g.
one has as a check the value r2(25) = 12.

A research question is this: Using the Atkin—Bernstein theorem can one
fashion an efficient sieve for primes in an interval, by assessing the parity of
K for many n at once? (See [Galway 2000].)

Another question is, can one fashion an efficient sieve (or even a primality
test) using alternative descriptions of r9(n), for example by invoking various
connections with the Riemann zeta function? See [Titchmarsh 1986] for a
relevant formula connecting ro with (.

Yet another research question runs like so: Just how hard is it to
“count up” all lattice points (in the three implied lattice regions) within a
given “radius” y/n, and look for representation numbers K (n) as numerical
discontinuities at certain radii. This technique may seem on the face of it to
belong in some class of brute-force methods, but there are efficient formulae—
arising in analyses for the celebrated Gauss circle problem (how many lattice
points lie inside a given radius?)—that provide exact counts of points in
surprisingly rapid fashion. In this regard, show an alternative lattice theorem,
that if n = 1 (mod 4) is squarefree, then n is prime if and only if ro(n) = 8. A
simple starting experiment that shows n = 13 to be prime by lattice counting,
via analytic Bessel formulae, can be found in [Crandall 1994b, p. 68].
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3.50. The closing theme of the chapter, analytic prime-counting, involves
the Riemann zeta function in a certain way. Pursuant to Exercise 1.60,
consider the following research path, whereby we use information about the
zeta function within, rather than to the right of, the critical strip.

Start with the Riemann—von Mangoldt formula, closely reminiscent of
(1.23) and involving the 7* function in (3.25):

. gt
™ ( _110 Zho {L‘p 1112—1—/m m,

observing the computational cautions of Exercise 1.36 such as the need to
employ Ei for reliable results. The zeros p here are the Riemann critical zeros,
and one may replace the sum with twice a sum over real parts.

The research problem then is: Find a computationally rapid algorithm
to estimate m(x) extremely accurately using a collection of Riemann critical
zeros. It is known that with a few zeros, say, one may actually compute m(x)
as the integer-valued staircase that it is, at least up to some z depending
on how many zeros are employed. A hard extension to this problem is
then: Given z, how far does one have to go up the critical line with p
values to compute a numerical approximation—call it 7, (z)—in order to have
m(n) = |ma(n + 1/2)] hold exactly for every integer n € [2,x]? We certainly
expect on theoretical grounds that one must need at least O(y/z) values of p,
but the idea here is to have an analytically precise function 7, (x) for a given
range on x.

References on the use of Riemann critical zeros for prime-counting are
[Riesel and Gohl 1970] and [Borwein et al. 2000].



Chapter 4
PRIMALITY PROVING

In Chapter 3 we discussed probabilistic methods for quickly recognizing
composite numbers. If a number is not declared composite by such a test,
it is either prime, or we have been unlucky in our attempt to prove the
number composite. Since we do not expect to witness inordinate strings of
bad luck, after a while we become convinced that the number is prime. We
do not, however, have a proof; rather, we have a conjecture substantiated by
numerical experiments. This chapter is devoted to the topic of how one might
actually prove that a number is prime. Note that primality proving via elliptic
curves is discussed in Section 7.6.

4.1 The n —1 test

Small numbers can be tested for primality by trial division, but for larger
numbers there are better methods (102 is a possible size threshold, but
this depends on the specific computing machinery used). One of these
better methods is based on the same theorem as the simplest of all of
the pseudoprimality tests, namely, Fermat’s little theorem (Theorem 3.4.1).
Known as the n — 1 test, the method somewhat surprisingly suggests that we
try our hand at factoring not n, but n — 1.

4.1.1 The Lucas theorem and Pepin test
We begin with an idea of E. Lucas, from 1876.

Theorem 4.1.1 (Lucas theorem). If a,n are integers with n > 1, and
a" ' =1 (mod n), but a™"V/? £ 1 (mod n) for every prime qln — 1, (4.1)

then n is prime.

Proof. The first condition in (4.1) implies that the order of a in Z¥ is a
divisor of n — 1, while the second condition implies that the order of a is not
a proper divisor of n — 1; that is, it is equal to n — 1. But the order of a is also
a divisor of ¢(n), by the Euler theorem (see (2.2)), so n — 1 < ¢(n). But if
n is composite and has the prime factor p, then both p and n are integers in
{1,2,...,n} that are not coprime to n, so from the definition of Euler’s totient
function ¢(n), we have p(n) < n — 2. This is incompatible with n — 1 < ¢(n),
so it must be the case that n is prime. O
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Remark. The version of Theorem 4.1.1 above is due to Lehmer. Lucas had
such a result where ¢ runs through all of the proper divisors of n — 1.

The hypothesis (4.1) of the Lucas theorem is not vacuous for prime numbers;
such a number a is called a primitive root, and all primes have them. That is,
if n is prime, the multiplicative group Z} is cyclic; see Theorem 2.2.5. In fact,
each prime n > 200560490131 has more than n/(2Inlnn) primitive roots in
{1,2,...,n—1}; see Exercise 4.1. (Note: The prime 200560490131 is 1 greater
than the product of the first 11 primes.)

A consequence is that if n > 200560490131 is prime, it is easy to find
a number satisfying (4.1) via a probabilistic algorithm. Just choose random
integers a in the range 1 < a < n — 1 until a successful one is found. The
expected number of trials is less than 2InInn.

Though we know no deterministic polynomial-time algorithm for finding a
primitive root for a prime, the principal hindrance in implementing the Lucas
theorem as a primality test is not the search for a primitive root a, but rather
finding the complete prime factorization of n —1. As we know, factorization is
hard in practice for many numbers. But it is not hard for every number. For
example, consider a search for primes that are 1 more than a power of 2. As
seen in Theorem 1.3.4, such a prime must be of the form Fj = 22" 1 1. Numbers
in this sequence are called Fermat numbers after Fermat, who thought they
were all prime.

In 1877, Pepin gave a criterion similar to the following for the primality
of a Fermat number.

Theorem 4.1.2 (Pepin test). Fork > 1, the number Fy, = 22" 41 s prime
if and only if 3Fk=1/2 = —1 (mod F}).

Proof.  Suppose the congruence holds. Then (4.1) holds with n = Fj, a = 3,
so F}, is prime by the Lucas Theorem 4.1.1. Conversely, assume F}, is prime.
Since 2* is even, it follows that 22" = 1 (mod 3), so that Fj, = 2 (mod 3). But
also F, = 1 (mod 4), so the Legendre symbol (F%) is —1, that is, 3 is not a
square (mod F%). The congruence in the theorem thus follows from Euler’s
criterion (2.6). o

Actually, Pepin gave his test with the number 5 in place of the number 3 (and
with & > 2). It was noticed by Proth and Lucas that one can use 3. In this
regard, see [Williams 1998] and Exercise 4.5.

As of this writing, the largest F} for which the Pepin test has been used
is Fy4. As discussed in Section 1.3.2, this number is composite, and in fact,
so is every other Fermat number beyond Fy for which the character (prime or
composite) has been resolved.

4.1.2 Partial factorization

Since the hardest step, in general, in implementing the Lucas Theorem 4.1.1
as a primality test is coming up with the complete prime factorization of n—1,
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one might wonder whether any use can be made of a partial factorization of
n — 1. In particular, say

n — 1= FR, and the complete prime factorization of F is known. (4.2)

If F is fairly large as a function of n, we may fashion a primality proof for n
along the lines of (4.1), if indeed n happens to be prime. Our first result on
these lines allows us to deduce information on the prime factorization of n.

Theorem 4.1.3 (Pocklington). Suppose (4.2) holds and a is such that
a” ' =1 (mod n) and ged(a™ V9 —1,n) =1 for each prime q|F. (4.3)

Then every prime factor of n is congruent to 1 (mod F).

Proof. Let p be a prime factor of n. From the first part of (4.3) we have that
the order of a in Z is a divisor of (n —1)/R = F. From the second part
of (4.3) it is not a proper divisor of F', so is equal to F. Hence F' divides the
order of Zy, which is p — 1. o

Corollary 4.1.4. If (4.2) and (4.3) hold and F > +/n, then n is prime.

Proof. Theorem 4.1.3 implies that each prime factor of n is congruent to 1
(mod F), and so each prime factor of n exceeds F. But F > +/n, so each
prime factor of n exceeds /n, so n must be prime. O

The next result allows a still smaller value of F.

Theorem 4.1.5 (Brillhart, Lehmer, and Selfridge). Suppose (4.2) and
(4.3) both hold and suppose that n'/? < F < nl/2. Consider the base F
representation of n, namely n = coF2 + 1 F + 1, where ¢, ¢y are integers in
[0, F —1]. Then n is prime if and only if ¢ — 4cy is not a square.

Proof. Since n = 1 (mod F), it follows that the base-F “units” digit of n
is 1. Thus n has its base-F representation in the form coF? + ¢ F + 1, as
claimed. Suppose n is composite. From Theorem 4.1.3, all the prime factors
of n are congruent to 1 (mod F), so must exceed n'/?. We conclude that n
has exactly two prime factors:

n=pq, p=aF+1, ¢g=0F+1, a<b
We thus have
coF? 4+ F+1=n=(aF +1)(bF + 1) = abF? + (a + b)F + 1.

Our goal is to show that we must have c; = ab and ¢; = a+ b, for then it will
follow that ¢? — 4cy is a square.

First note that F3 > n > abF?, so that ab < F — 1. It follows that either
a+b< F—1lora=1,b= F—1.1Inthe latter case,n = (F+1)((F-1)F+1) =
F3 41, contradicting F' > n'/3. Hence both ab and a + b are positive integers
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smaller than F'. From the uniqueness of the base-F representation of a number
it follows that ¢y = ab and ¢; = a + b as claimed.
Now suppose, conversely, that ¢? — 4cs is a square, say u?. Then

c1+u c1—Uu
= F+1 F+1].

The two fractions are both integers, since ¢; = u (mod 2). It remains to note
that this factorization is nontrivial, since ¢z > 0 implies |u| < ¢;1. Thus, n is
composite. O

To apply Theorem 4.1.5 as a primality test one should have a fast method
of verifying whether the integer ¢ — 4cy in the theorem is a square. This is
afforded by Algorithm 9.2.11.

The next result allows F' to be even smaller.

Theorem 4.1.6 (Konyagin and Pomerance). Suppose that n > 214, both
(4.2) and (4.3) hold, and n®/1° < F < n'/3. Say the base-F expansion of n is
csF3 4+ coF?2+ciF 41, and let ¢y = csF + co. Then n is prime if and only if
the following conditions hold:

(1) (c1 +tF)? + 4t — 4cyq is not a square fort =0,1,2,3,4,5.

(2) Let u/v be the continued fraction convergent to ci/F such that v is
mazimal subject to v < F?/\/n. If d = |cqv/F +1/2], then the
polynomial va3® + (uF — c1v)z? + (cqv — dF + u)z — d € Z[z] has no
integral Toot a such that aF + 1 is a nontrivial factor of n.

Proof. Since every prime factor of n is congruent to 1 (mod F') (by Theorem
4.1.3), we have that n is composite if and only if there are positive integers
a1 < ag with n = (a1 F + 1)(aF' + 1). Suppose n is composite and (1) and
(2) hold. We begin by establishing some identities and inequalities. We have

n=ciF?+cF+1=aja,F>+ (a1 + a2)F + 1,
and there is some integer ¢ > 0 with
ajas =c4 —t, aj+as=cy +tF. (4.4)
Since (1) holds, we have ¢t > 6. Thus

a1 + as S c1+ 6F

> 3F
="y =Ty =
and n n
—_— < —. 4.5
NS G F? = 3 (4:5)
We have from (4.4) that
pc it mmtl o n (4.6)

- F = F F ~F3
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Also, (4.4) implies that
aic; +atF = a% +cq —t. (4.7)

With the notation of condition (2), we have from (4.7) that

cqv u c v gV
au + agtv — % = a1v (; - %) + (a1c1 + altF)f - %
_ v_a 2 _pL_av
—alv(v F)+(a1+04 t)F 2
u v
Note that (4.5), (4.6), and ¢t > 6 imply that
1/n\2 n 1/ n\2

First suppose that u/v = ¢;/F. Then (4.8) and (4.9) imply that

it C4V ‘2 t|’l}<1<n)2v< n2 F? n3/2<1
autatv — —|=la] —tl=<-|=) =<7 —= = <.
! ! F V" F T 6\F3) F C6FT \/n 6F5 — 6

(4.10)

If u/v # ¢1/F, let «' /v’ be the next continued fraction convergent to ¢;/F
after u/v, so that

F? U c 1 n
B A - T P L1}
vn v F vv' T vF?

Thus, from (4.5), (4.8), and the calculation in (4.10),

ato - 42| < Vool _ni2 o1 1
B T A TR Y
Let d = aju + aqtv, so that |d — eqv/F| < 1/2, which implies that d =
lcav/F +1/2|. Multiplying (4.7) by ajv, we have

vai’ — clva% — aftvF — a1tv + cqa1v = 0,

and using —aqtv = ua; — d, we get
va3 + (uF — civ)ad + (cav — dF +u)ay —d = 0.

Hence (2) does not hold after all, which proves that if n is composite, then
either (1) or (2) does not hold.

Now suppose n is prime. If t € {0,1,2,3,4,5} and (c; +tF)? —dcq+4t = u?,
with u integral, then

n=(cs —t)F*+ (c; +tF)F 4+ 1

F F—
:(cl—i—z; +”F+1) (cl+t2 uF+1>.
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Since n is prime, this must be a trivial factorization of n, that is,

1 +tF —|u| =0,

which implies ¢4 =t. But ¢4 > F > n3/10 > 9143/10 5 5 > t, a contradiction.
So if (1) fails, n must be composite. It is obvious that if n is prime, then (2)
holds. |

As with Theorem 4.1.5, if Theorem 4.1.6 is to be used as a primality
test, one should use Algorithm 9.2.11 as a subroutine to recognize squares. In
addition, one should use Newton’s method or a divide and conquer strategy
to search for integral roots of the cubic polynomial in condition (2) of the
theorem. We next embody Theorems 4.1.3-4.1.6 in one algorithm.

Algorithm 4.1.7 (The n — 1 test). Suppose we have an integer n > 214 and
that (4.2) holds with F' > n3/10. This probabilistic algorithm attempts to decide
whether n is prime (YES) or composite (NO).

1. [Pocklington test]
Choose random a € [2,n — 2];
if(a"~* # 1 (mod n)) return NO; // m is composite.
for(prime ¢|F') {
g = ged ((@™=1/9 mod n) — 1,n);
if(1 < g < n) return NO;
if(g == n) goto [Pocklington test]
} // Exhausting the ‘for’ loop means relation (4.3) holds.
2. [First magnitude test]
if(F > n'/?) return YES;

3. [Second magnitude test]
if(n'/3 < F <n'/?){
Cast ninbase F :n=coF? + 1 F +1;
if(¢? — 4cy not a square) return YES;
return NO;
}
4. [Third magnitude test]
if(n3/19 < F < n!/3) {
If conditions (1) and (2) of Theorem 4.1.6 hold, return YES;
return NO;

}

Though Algorithm 4.1.7 is probabilistic, any returned value YES (n is prime)
or NO (n is composite) is a rigorous declaration. We remark that the various
powerings a(”~1/9 mod n and the powering ™' mod n in Step [Pocklington
test] might be better organized so as to reduce the effort spent, as in
Algorithm 2.2.10.
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4.1.3 Succinct certificates

The goal in primality testing is to quickly find a short proof of primality for
prime inputs p. But how do we know that a short proof exists? Any search
will necessarily be in vain if p does not have a short primality proof. We now
show that every prime p has a short proof of primality, or what V. Pratt has
called a “succinct certificate.”

In fact, there is always a short proof that is based on the Lucas Theorem
4.1.1. This might appear obvious, for once you have somehow found the
complete prime factorization of p — 1 and the primitive root a, the conditions
(4.1) may be quickly verified.

However, for the proof to be complete, one needs a demonstration that we
indeed have the complete factorization of p — 1; that is, that the numbers ¢
appearing in (4.1) really are prime. This suggests an iteration of the method,
but then arises the possibility that there may be a proliferation of cases. The
heart of the proof is to show in the worst case, not too much proliferation can
occur.

It is convenient to make a small, and quite practical, modification in the
Lucas Theorem 4.1.1. The idea is to treat the prime ¢ = 2 differently from
the other primes ¢ dividing p — 1. In fact, we know what a®~1/2 should be
congruent to (mod p) if it is not 1, namely —1. And if a?~Y/2 = —1 (mod p),
we do not need to check that a?~! =1 (mod p). Further, if ¢ is an odd prime
factor of p — 1, let m = a®~1/2¢, If m9 = —1 (mod p) and m? =1 (mod p),
then m = —1 (mod p) (regardless of whether p is prime or composite). Thus,
to show that aP~1/7 # 1 (mod p) it suffices to show aP~1/24 £ —1 (mod p).
Thus we have the following result.

Theorem 4.1.8. Suppose p > 1 is an odd integer and

{a@l)/? = —1 (mod p), (4.11)

aP=1/24 £ _1 (mod p) for every odd prime q|p — 1.

Then p is prime. Conversely, if p is an odd prime, then every primitive root
a of p satisfies conditions (4.11).

We now describe what might be called a “Lucas tree.” It is a rooted tree
with odd primes at the vertices, p at the root (level 0), and for each positive
level k, a prime r at level k is connected to a prime q at level k —1 if and only
if r|¢g — 1. For example, here is the Lucas tree for p = 1279:

1279 level 0
3 71 level 1
5 7 level 2

3 level 3
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Let M(p) be the number of modular multiplications (with integers not
exceeding p) needed to prove p prime using Theorem 4.1.8 to traverse the
Lucas tree for p, and using binary addition chains for the exponentiations
(see Algorithm 2.1.5).

For example, consider p = 1279:

31278/2 = _1 (mod 1279), 3'27/¢ =775 (mod 1279),

31278/142 — 498 (mod 1279),

22/2 = —1 (mod 3),

7792 = 1 (mod 71), 77%/1% =14 (mod 71),

770/14 = 51 (mod 71),

24/2 = —1 (mod 5),

35/2 = —1 (mod 7), 36 =3 (mod 7),

22/2 = —1 (mod 3).

If we use the binary addition chain for each exponentiation, we have the

following number of modular multiplications:
1278/2 : 16

1278/6 :

1278/142 :

2/2 :

70/2 :

70/10 :

70/14 :

4/2 :

6/2 :

6/6 :

2/2 :

—_
—_

= O =

Thus, using binary addition chains we have 48 modular multiplications, so
M (1279) = 48.
The following result is essentially due to [Pratt 1975]:

Theorem 4.1.9. For every odd prime p, M(p) < 21g* p.

Proof. Let N(p) be the number of (not necessarily distinct) odd primes in
the Lucas tree for p. We first show that N(p) < lgp. This is true for p = 3.
Suppose it is true for every odd prime less than p. If p — 1 is a power of 2,
then N(p) =1 < lgp. If p — 1 has the odd prime factors g, ..., qx, then, by
the induction hypothesis,

k k
1
N(p)=1+§ N(Qi)<1+§ ngi:1+lg(Q1"'Qk)Sl-l—lg(pQ ><lgp.
=1 =1
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So N(p) < lgp always holds.

If 7 is one of the odd primes appearing in the Lucas tree for p, and r < p,
then there is some other prime ¢ also appearing in the Lucas tree with r|q—1
and ¢ < p. We have to show at one point that for some a, a(9=1/2" #£ —1
(mod q), and, at another point, that for some b, b"~1/2 = —1 (mod 7). Note
that the number of modular multiplications in the binary addition chain for
m does not exceed 21gm. Thus, the number of modular multiplications in the
above two calculations does not exceed

-1 -1
2lg =2 +2lg r—- <2lgg—4<2lgp.
2r 2
We conclude that
p—1
M(p)<21g(2 >+(N(p)1)21gp<21gp+(lgp1)21gp—21g2p.

This completes the proof. O

By using more efficient addition chains we may reduce the coefficient 2. We
do not know whether there is some ¢ > 0 such that for infinitely many primes
p, the Lucas tree proof of primality for p actually requires at least clg2 P
modular multiplications. We also do not know whether there are infinitely
many primes p with M (p) = o(lg? p). It is known, however, that via Theorem
7.6.1 (see [Pomerance 1987a]), there exists in principle some primality proof
for every prime p using only O(lgp) modular multiplications. As with the
Lucas tree proof, existence is comforting to know, but the rub is in finding
such a short proof.

4.2 The n+ 1 test

The principal difficulty in applying the n — 1 test of the previous section to
prove n prime is in finding a sufficiently large completely factored divisor of
n — 1. For some values of n, this is no problem, such as with Fermat numbers,
for which we have the Pepin test. For other classes of numbers, such as the
Mersenne numbers M, = 2P — 1, the prime factorization of 1 more than the
number is readily apparent. Can we use this information in a primality test?
Indeed, we can.

4.2.1 The Lucas—Lehmer test
With a,b € Z, let
f(x)=2% —ax+b, A=a®—4b. (4.12)

We reintroduce the Lucas sequences (Uy), (Vi), already discussed in Section
3.6.1:

T —(a—z) (mod f(z)), Vi=2"+(a—2)F (mod f(z)). (4.13)
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Recall that the polynomials Uy, Vi do not have positive degree; that is, they
are integers.

Definition 4.2.1. With the above notation, if n is a positive integer with
ged(n, 2bA) = 1, the rank of appearance of n, denoted by r(n), is the least
positive integer r with U, = 0 (mod n).

This concept sometimes goes by the name “rank of apparition,” but according
to Ribenboim, this is due to a mistranslation of the French apparition. There
is nothing ghostly about the rank of appearance!

It is apparent from the definition (4.13) that (Uy) is a “divisibility
sequence,” that is, if k|j then Ug|U;. (We allow the possibility that U, =
U; =0.) It follows that if ged(n, 20A) = 1, then U; = 0 (mod n) if and only if
J =0 (mod 7¢(n)). On the basis of Theorem 3.6.3 we thus have the following
result:

Theorem 4.2.2. With f,A as in (4.12) and p a prime not dividing 2bA\,
A
we have r¢(p)|p — <F)'
(Recall the Legendre symbol (5) from Definition 2.3.2.)
In analogy to Theorem 4.1.3, we have the following result:
Theorem 4.2.3 (Morrison). Let f, A be as in (4.12) and let n be a positive
integer with ged(n, 2b) =1, (%) = —1. If F is a divisor of n+ 1 and

Uny1 =0 (mod n), ged(Uins1y/q,n) =1 for every prime q|F,  (4.14)

then every prime p dividing n satisfies p = (%) (mod F). In particular, if
F>\/n+1 and (4.14) holds, then n is prime.

(Recall the Jacobi symbol (%) from Definition 2.3.3.)
Proof. Let p be a prime factor of n. Then (4.14) implies that F' divides r(p).

So, by Theorem 4.2.2, p = (%) (mod F). If, in addition, we have F' > /n+1,

then every prime factor p of n has p > F —1 > /n, so n is prime. O

If Theorem 4.2.3 is to be used in a primality test, we will need to find an
appropriate f in (4.12). As with Algorithm 4.1.7 where a is chosen at random,
we may choose a,b in (4.12) at random. When we start with a prime n, the
expected number of choices until a successful pair is found is not large, as the
following result indicates.

Theorem 4.2.4. Let p be an odd prime and let N be the number of pairs
a,b € {0,1,...,p—1} such that if f, A are given as in (4.12), then (%) =-1
and ry(p) =p+1. Then N = £(p— 1)gp(p+ 1).

We leave the proof as Exercise 4.12. A consequence of Theorem 4.2.4 is that

if n is an odd prime and if a, b are chosen randomly in {0,1,...,n — 1} with
not both 0, then the expected number of choices until one is found where the
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fin (4.12) satisfies r¢(n) = n+1is 2(n+1)/p(n+1). If n > 892271479, then
this expected number of choices is less than 4 1nlnn; see Exercise 4.16.

It is also possible to describe a primality test using the V sequence in
(4.13).

Theorem 4.2.5. Let f, A be as in (4.12) and let n be a positive integer with
ged(n,20) =1 and (%) = —1. If F is an even divisor of n+ 1 and

Ve =0 (mod n), ged(Vrjaq,n) =1 for every odd prime q|F,  (4.15)

then every prime p dividing n satisfies p = (%) (mod F). In particular, if
F > /n+1, then n is prime.

Proof. Suppose p is an odd prime that divides both U,,, V;,. Then (4.13)
implies 2™ = (¢ — )™ (mod (f(z),p)) and 2™ = —(a — z)™ (mod f(x),p),
so that ™ =0 (mod (f(z),p)). Then b™ = (x(a — z))™ =0 (mod (f(x),p));
that is, p divides b. Since n is coprime to 2b, and since Us,,, = U,,V;,, we have

ged(Uapm, n) = ged(Up, n) - ged(Vi, n).

Thus, the first condition in (4.15) implies Ur = 0 (mod n) and ged(Up/2,n) =
1. Now suppose ¢ is an odd prime factor of F. We have Up/q; = Up/2,VF/24
coprime to n. Indeed, Up /o, divides Up/s, so that gcd(Up/oq,n) = 1, and so
with the second condition in (4.15) we have that gcd(Up/q,n) = 1. Thus,
r¢(p) = F, and as in the proof of Theorem 4.2.3, this is sufficient for the
conclusion. ]

Just as the n — 1 is particularly well suited for Fermat numbers, the n+ 1
test is especially speedy for Mersenne numbers.

Theorem 4.2.6 (Lucas-Lehmer test for Mersenne primes). Consider the
sequence (vy) for k =0,1,..., recursively defined by vo = 4 and vg1 = v,% —2.
Let p be an odd prime. Then M, = 2P — 1 is prime if and only if vp_o =0
(mod M,,).

Proof. Let f(z) = x? —4x + 1, so that A = 12. Since M, = 3 (mod 4)
and M, =1 (mod 3), we see that (Ap) = —1. We apply Theorem 4.2.5 with

F =2r=1 = (M, + 1)/2. The conditions (4.15) reduce to the single condition
Vop—2 =0 (mod M,,). But

Vom = 22"+ (4—2)?™ = (2" +(4—2)™)? =22 (4—2)™ = V.2 -2 (mod f(x)),

since (4 — z) = 1 (mod f(z)); see (3.15). Also, Vi = 4. Thus, Vor = vy, and
it follows from Theorem 4.2.5 that if v,_o = 0 (mod M,,), then M,, is prime.

Suppose, conversely, that M = M, is prime. Since (%) = -1,
Z[z]/(f(x), M) is isomorphic to the finite field F 2. Thus, raising to the M
power is an automorphism and # =4 — 2 (mod (f(z), M))7 see the proof of

Theorem 3.6.3. We compute (z — 1)M*! two ways. First, since (z —1)? = 2z
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(mod (f(z), M)) and by the Euler criterion we have 2(M=1/2 = (2/M) = 1
(mod M), so

(.’L‘ _ 1)M+1 = (25[’,’)<M+1)/2 —9. 2(M_1)/2:L'(M+1)/2

= 2:M+V/2 (mod (f(z), M)).
Next,

(-—DMA=—@-De-1DM=@@-1DE"-1)=@x-1)3-2)
= —2 (mod (f(x), M)).

Thus, zM+1/2 = —1 (mod (f(x), M)); that is, 22 = —1 (mod (f(z), M)).
Using our automorphism, we also have (4 — m)2P71 = —1 (mod (f(z), M)), so
that Usp—1 = 0 (mod M). If Usp—2 = 0 (mod M), then 2"~ = (4 — )" "
(mod (f(x),M)), so that

—1=2Y" = x2p_2(4f:r)2p_2 = (x(élf;n))Qp_2 =127 =1 (mod (f(x), M)),

a contradiction. Since Ugp—1 = Ugp—2Vap—2, we have Vop—2 = 0 (mod M). But
we have seen that Vop-2 = v,_2, so the proof is complete. O

Algorithm 4.2.7 (Lucas—Lehmer test for Mersenne primes). We are given
an odd prime p. This algorithm decides whether 2P —1 is prime (YES) or composite
(NO).
1. [Initialize]
v=4;
2. [Compute Lucas—Lehmer sequence]
for(k € [1,p—2]) v = (v — 2) mod (2P — 1); // k is a dummy counter.
3. [Check residue]
if(v == 0) return YES; // 2P — 1 definitely prime.
return NO; // 2P — 1 definitely composite.

The celebrated Lucas-Lehmer test for Mersenne primes has achieved some
notable successes, as mentioned in Chapter 1 and in the discussion surrounding
Algorithm 9.5.19. Not only is the test breathtakingly simple, there are ways
to perform with high efficiency the p — 2 repeated squarings in Step [Compute
Lucas—Lehmer sequence].

4.2.2 An improved n + 1 test, and a combined n? — 1 test

As with the n — 1 test, which is useful only in the case that we have a large,
fully factored divisor of n — 1, the principal hurdle in implementing the n 4 1
test for most numbers is coming up with a large, fully factored divisor of
n + 1. In this section we shall improve Theorem 4.2.3 to get a result similar
to Theorem 4.1.5. That is, we shall only require the fully factored divisor of
n+ 1 to exceed the cube root. (Using the ideas in Theorem 4.1.6, this can be
improved to the 3/10 root.) Then we shall show how fully factored divisors
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of both n — 1 and n + 1, that is, a fully factored divisor of n? — 1, may be
combined into one test.

Theorem 4.2.8. Suppose f,A are as in (4.12) and n is a positive integer
with ged(n, 2b) = 1 and (£) = —1. Suppose n+ 1 = FR with F > n'/? +1
and (4.14) holds. Write R in base F, so that R=r1F + 19, 0 <r; < F —1.
Then n is prime if and only if neither x* +rox —r1 nor x?+ (rg— F)z —r; —1
has a positive integral Toot.

Note that in the case R < F we have vy = 0, and so neither quadratic can
have positive integral roots. Thus, Theorem 4.2.8 contains the final assertion
of Theorem 4.2.3.

Proof. Theorem 4.2.3 implies that all prime factors p of n satisfy p = (%)

(mod F). So, if n is composite, it must be the product pq of just two prime
factors. Indeed, if n has 3 or more prime factors, n exceeds (F — 1), a

contradiction. Since —1 = (%) = (%) (%), we have, say, (%) =1, (%) = —1.
Thus, there are positive integers ¢, d with p = ¢F + 1, ¢ = dF — 1. Since both

(F2+1)(F—1)>n, (F+1)(F?—-1) >n, we have 1 < ¢,d < F — 1. Note
that

1
T’1F+T0:R:n+

=cdF +d—c,

so that d — ¢ = rg (mod F). It follows that d = ¢+ 1o or d = ¢+ 19 — F, that
is,d=c+rg—iF for i = 0 or 1. Thus,

rmF+rg=clc+ro—iF)F +rg—iF,
so that ry = ¢(c+ rg — iF') — i, which implies that
A+ (ro—iF)c—ry —i=0.

But then 22+ (ro —iF )z —r; —i has a positive integral root for one of i = 0, 1.
This proves one direction.

Suppose now that 2% + (ro —iF)x —ry —i has a positive integral root ¢ for
one of 4 = 0, 1. Undoing the above algebra we see that ¢F' + 1 is a divisor of n.
But n = —1 (mod F), so n is composite, since the hypotheses imply F > 2.
O

We can improve the n + 1 test further, requiring only F > n3/10. The
proof is completely analogous to Theorem 4.1.6, and we leave said proof as
Exercise 4.15.

Theorem 4.2.9. Suppose n > 214 and the hypotheses of Theorem 4.2.8
hold, except that n®/'0 < F < n'/3 + 1. Say the base-F expansion of n+ 1 is
c3F3 +coF?2 + 1 F, and let ¢4 = c3F + co. Then n is prime if and only if the
following conditions hold:

(1) (c1 +tF)? — 4t + 4cy is not a square for t integral, [t| <5,

(2) with uw/v the continued fraction convergent to c¢1/F such that v is
mazximal subject to v < F?/\/n and with d = |cqv/F + 1/2|, the
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polynomial va3® — (uF — c1v)x? — (cqv — dF + u)x + d has no integral
root a such that aF + 1 is a nontrivial factor of n, and the polynomial
vr® + (uF — c1v)2? — (cqv + dF + u)x + d has no integral root b such
that bF — 1 is a nontrivial factor of n.

The next result allows one to combine partial factorizations of both n — 1
and n + 1 in attempting to prove n prime.

Theorem 4.2.10 (Brillhart, Lehmer, and Selfridge). Suppose that n is a
positive integer, Fi|n—1, and that (4.3) holds for some integer a; and F' = F}.
Suppose, too, that f, A are as in (4.12), ged(n,2b) = 1, (%) =—1, Fhn+1,
and that (4.14) holds for F = Fy. Let F be the least common multiple of
Fy, Fy. Then each prime factor of n is congruent to either 1 or n (mod F).
In particular, if F > v/n and n mod F is not a nontrivial factor of n, then n
18 prime.

Note that if Fy, F; are both even, then F' = 3 Fy F, otherwise F = F Fj.

Proof. Let p be a prime factor of n. Theorem 4.1.3 implies p =1 (mod F}),
while Theorem 4.2.3 implies that p = (%) (mod Fy). If (%) =1,thenp=1
(mod F), and if (%) = —1, then p = n (mod F). The last assertion of the

theorem is then immediate. O

4.2.3 Divisors in residue classes

What if in Theorem 4.2.10 we have F' < n'/2? The theorem would be useful
if we had a quick way to search for prime factors of n that are either 1 or
n (mod F). The following algorithm in [Lenstra 1984] provides such a quick
method when F/n'/3 is not too small.

Algorithm 4.2.11 (Divisors in residue classes). We are given positive inte-
gers n,r,s with 7 < s < n and ged(r, s) = 1. This algorithm creates a list of all
divisors of n that are congruent to r (mod s).
1. [Initialize]

r* =r~ " mod s;

r = nr* mod s;

(ag,a1) = (s,r'r* mod s);

(bo, bl) = (O, 1);

(co,c1) = (0, (nr* —ray)/s mod s);

1

2. [Euclidean chains]
Develop the Euclidean sequences (a;), (¢;), where a; = a;—_s — ¢;a;,—1 and
0 < a; < a;_q for i even, 0 < a; < a;_q for i odd, terminating at
a; = 0 with t even;
Develop the sequences (b;), (¢;) for @ = 0,1,...,t with the rules b, =
bi—2 — qibi—1, ¢; = ci_2 — qici_1;
3. [Loop]
for(0 <i<t){
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For each integer ¢ = ¢; (mod s) with |c| < s if i is even, 2a;b; < ¢ <
a;b; +n/s? if i is odd, attempt to solve the following system for
Zr,Y:

za;+yb;=c, (zs+r)(ys+1')=mn; (4.16)

If a nonnegative integral solution (x,y) is found, report xs + r as a
divisor of n that is also = (mod s);

The theoretical justification for this algorithm is as follows:

Theorem 4.2.12 (Lenstra). Algorithm 4.2.11 creates the list of all divisors
of n that are congruent to r (mod s). Moreover, if s > n'/3, then the running
time is O(Inn) arithmetic operations on integers of size O(n) and O(lnn)
evaluations of the integer part of square root for arguments of size O(n").

Proof. We first note some simple properties of the sequences (a;), (b;). We
have
a; >0for0<i<t, ap =0. (4.17)

In addition, we have
bi+1ai — ai+1bi = (—l)iS for 0 <i < t. (418)

Indeed, the relation (4.18) holds for ¢ = 0. If 0 < ¢ < ¢ and the relation holds
for ¢ — 1, then

biv1a; — aiy1b; = (bi—1 — qit1bi)ai — (@i—1 — giy104)b;
=bi—1a; — a;—1b;
= (=1)'s.

Thus (4.18) follows from induction.
Finally, note that we have

by =0, b; <0 for i even, and 7 # 0, b; > 0 for ¢ odd. (4.19)

Indeed, (4.19) holds for ¢ = 0,1, and from b; = b;—_2 — ¢;b;—1 and ¢q; > 0, we
see that it holds for the general ¢ if it holds for ¢ — 1,4 — 2. Thus (4.19) holds
via induction.

Suppose now that xs + r is a divisor of n with x > 0. We must show that
the algorithm discovers it. There is an integer y > 0 with n = (zs+7)(ys—+1').
We have

za; + yb; = ¢; (mod s) for 0 < i < ¢. (4.20)

Indeed, (4.20) holds trivially for ¢ = 0, it holds for ¢ = 1 because of
n = (xs+7r)(ys+1') and the definition of ¢1, and it holds for larger values of
i from the inductive definitions of the sequences (a;), (b;), (¢;).

It thus suffices to show that there is some even value of ¢ with |za;+yb;| < s
or there is some odd value of i with 2a;b; < xa; + yb; < a;b; + n/s?. For
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if so, xa; + yb; will be one of the numbers ¢ computed in Step [Loop] of
Algorithm 4.2.11, because of (4.20). Thus, Step [Loop] will successfully retrieve
the numbers z, y.

We have zag + ybg = xrag > 0 and xa; + yby = yby < 0, so there is some
even index 7 with

ra; + ybz >0, za;4+2+ ybi+2 <0.

If one of these quantities is less than s in absolute value, we are done, so
assume that the first quantity is > s and the second is < —s. Then from
(4.17), (4.18), (4.19),

za; > xa; +yb; > s = biy10; — a;11b; > biyiay,
from which we conclude that = > b; 1. We also have
Ybiyo < 242 + ybigo < —5 = bit2ai11 — Gip2bit1 < bitoaita,
so that y > a;y1. Therefore,
Tait1 + ybit1 > 265410541,

and from (z — b;41)(y — a;41) > 0, we have
n
2ait1 + Ybit1 < 2y + air1biv1 < aipabiga + 2

This completes the proof of correctness.

The running-time assertion follows from Theorem 2.1.3 and Algorithm
2.1.4. These results imply that the calculation of r* is within our time bound
and that ¢ = O(Inn). Moreover, if s > n'/3, then for each i there are at most 2
values of ¢ for which the system (4.16) must be solved. Solving such a system
involves O(1) arithmetic operations and a square root extraction, as we shall
see. Thus, there are a total of O(Inn) arithmetic operations and square root
extractions.

It remains to estimate the size of the integers for which we need to compute
the integer part of the square root. Note that x,y are solutions to the system
(4.16) if and only if u = a;(zs +r), v = b;(ys + r’) are roots of the quadratic
polynomial

T? — (s + ar + by )T + a;bin.

For this polynomial to have integral roots it is necessary and sufficient that
A = (cs+ a;r + br')? — dagb;

be a square. We now show that A = O(s”) = O(n"). Let B = max{|b;|}. We
shall show that B < s°/2. Then, since ¢, a;,r, 7’ are all bounded in absolute
value by 2s, it follows that A = O(s7). (To see that |c| < 2s, note that |c| < s
if 7 is even; and if i is odd, for the interval (2a;b;, a;b; + n/s?) to have any
integers in it, then 0 < a;b; < n/s? < s.)
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To see the bound on B note that
‘bll = ‘bi_2| + qi|bi_1\ fori=2,...,t,
so that

t t
B = b < H(1 +qi) < ZtHQi-
i=2 i=2

But a;_o > q;a;_1 for i =2,...,t, so that

t
s=ag > H%w
i=2

We conclude that B < 2's. From Theorem 2.1.3 we have that ¢t < Ins/In((1+
V/5)/2), so that 2! < s3/2. Our estimate and the theorem follow. a

Remark. The integer square roots that are performed in the algorithm may
be done via Algorithm 9.2.11. If s < n!/3, Algorithm 4.2.11 still works, but
the number of square root steps is then O(n'/3s~1Inn).

Note that if F' in Theorem 4.2.10 is such that F//n'/3 is not very small,
we can use that theorem and Algorithm 4.2.11 as a speedy primality test. In
general, we can use Algorithm 4.2.11 in a primality test if we have learned
that each prime factor of n is congruent to r; (mod s) for some i € [1, k],
where each ged(ry,s) = 1, 0 < r; < s, and s > n'/3. Then with & calls to
Algorithm 4.2.11 we will either find a nontrivial factor of n, or failing this,
prove that n is prime. However, if s > /n, there is no need to use Algorithm
4.2.11. Indeed, if none of the integers r; are proper factors of n, then every
prime dividing n exceeds y/n, so n is prime.

One can use a result in [Coppersmith 1997] (also [Coppersmith et al. 2004])
to improve on Algorithm 4.2.11 and find all divisors of n that are congruent to
7 (mod s) when r, s are coprime and s > n!'/4*¢. The Coppersmith paper uses
the fast lattice basis reduction method of A. Lenstra, H. Lenstra and L. Lovasz.
This lattice basis reduction method is often useful in practice, and it may
well be that Coppersmith’s algorithm is practical. In fact, Howgrave-Graham
informs us that it is indeed practical for moduli s > n%2%, say. Theoretically,
the method is deterministic and runs in polynomial time, but this running
time depends on the choice of €; the smaller the €, the higher the running
time. An interesting primality proof was effected in late 2004 with this hybrid
method: J. Renze reports that the 37511th Fibonacci number, which has 7839
digits, is prime. Regarding prime Fibonacci numbers, also see Excercise 4.37.

It remains an open question whether an efficient algorithm can be found
that finds divisors of n that are congruent to r (mod s) when s is about n'/*
or smaller.

Here is another attractive open question. Let D(n, s,7) denote the number
of divisors of n that are congruent to r (mod s). Given a > 0, is D(n, s,r)
bounded as n, s, range over all triples with ged(r,s) = 1 and s > n®? This
is known for every a > 1/4, but it is open for o = 1/4; see [Lenstra 1984].
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4.3 The finite field primality test

This section is primarily theoretical and is not intended to supply a practical
primality test. The algorithm described has a favorable complexity estimate,
but there are other, more complicated algorithms that majorize it in practice.
Some of these algorithms are discussed in the next section.

The preceding sections, and in particular Theorem 4.2.10 and Algorithm
4.2.11, show that if we have a completely factored divisor F of n? — 1 with
F > n'/3 then we can efficiently decide, with a rigorous proof, whether n is
prime or composite. As an aside: If F} = ged(F,n—1) and Fy = ged(F,n+1),
then lem (Fy, F») > 1 F, so that the “F” of Theorem 4.2.10 is at least %nl/‘o’.
In this section we shall discuss a method in [Lenstra 1985] that works if we
have a fully factored divisor F of n! — 1 for some positive integer I and that
is efficient if F' > n'/3 and I is not too large.

Before we describe the algorithm, we discuss a subroutine that will be
used. If n > 1 is an integer, consider the ring Z,[z] of polynomials in the
variable x with coefficients being integer residues modulo n. An ideal of Z,, []
is a nonempty subset closed under addition and closed under multiplication
by all elements of Z,[z]. For example, if f,g € Z,[z], the set of all af with
a € Zy[z] is an ideal, and so is the set of all af +bg with a,b € Z,[z]. The first
example is of a principal ideal (with generator f). The second example may or
may not be principal. For example, say n = 15, f(z) = 3z + 1, g(v) = 2% + 4x.
Then the ideal generated by f and g is all of Z;5[z], and so is principally
generated by 1. (To see that 1 is in the ideal, note that f2 —9g = 1.)

Definition 4.3.1. We shall say that f,g € Z,[z] are coprime if the ideal
they generate is all of Z,[z]; that is, there are a,b € Z,[x] with af + bg = 1.

It is not so hard to prove that every ideal in Z,[x] is principally generated
if and only if n is prime (see Exercise 4.19). The following algorithm, which is
merely a dressed-up version of the Euclid algorithm (Algorithm 2.2.1), either
finds a monic principal generator for the ideal generated by two members
fyg € Zy,[x], or gives a nontrivial factorization of n. If the principal ideal
generated by h € Z,[z] is the same ideal as that generated by f and g and if
h is monic, we write h = ged(f, g). Thus f, g are coprime in Z,[z] if and only

if ged(f, g) = 1.

Algorithm 4.3.2 (Finding principal generator). We are given an integer
n>1and f,g € Z,[x], with g monic. This algorithm produces either a nontrivial
factorization of n, or a monic element h € Z,,[x] such that h = ged(f, g); that is,
the ideal generated by f and g is equal to the ideal generated by h. We assume
that either f =0 or deg f < degg.

1. [Zero polynomial check]
if(f == 0) return g;
2. [Euclid step]
Set ¢ equal the leading coefficient of f;
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Attempt to find ¢* = ¢! (mod n) by Algorithm 2.1.4, but if this attempt

produces a nontrivial factorization of n, then return this factorization;
f=c*f, // Multiplication is modulo n; the polynomial f is now monic.
r = g mod f; // Divide with remainder is possible since f is monic.
(fr9) = (1, f);

goto [Zero polynomial check];
The next theorem is the basis of the finite field primality test.

Theorem 4.3.3 (Lenstra). Suppose that n,I, F are positive integers with
n > 1 and F|n! — 1. Suppose f,g € Z,[z] are such that

(1) g”l’1 — 1 is a multiple of f in Z,[z],
(2) g =1/9 — 1 and f are coprime in Z,[x] for all primes q|F,

(3) each of the I elementary symmetric polynomials in g,g", ... ,9”171 18

congruent (mod f) to an element of Z,,.
Then for each prime factor p of n there is some integer j € [0,I — 1] with
p=n’ (mod F).

We remark that if we show that the hypotheses of Theorem 4.3.3 hold and if
we also show that n has no proper divisors in the residue classes n’ (mod F)
for j =0,1,...,1 — 1, then we have proved that n is prime. This idea will be
developed shortly.

Proof. Let p be a prime factor of n. Thinking of f now in Z,,[z], let f1 € Z,[z]
be an irreducible factor, so that Z,[x]/(f1) = K is a finite field extension of
Z,,. Let g be the image of g in K. The hypotheses (1), (2) imply that g””l =1
and g("lfl)/q # 1 for all primes ¢|F'. So the order of g in K* (the multiplicative
group of the finite field K') is a multiple of F'. Hypothesis (3) implies that the
polynomial h(T) = (T —g)(T—g")--- (T—g"" ') € K[T] is actually in Z,[T].
Now, for any polynomial in Z,[T], if a is a root, so is . Thus h(g?) = 0.
But we have the factorization of h(T"), and we see that the only roots are
g,9", ... ,g”l_l, so that we must have g? = g for some j = 0,1,...,I — 1.
Since the order of g is a multiple of F', we have p = n/ (mod F). a

A number of questions naturally present themselves: If n is prime, will f, g
as described in Theorem 4.3.3 exist? If f, g exist, is it easy to find examples?
Can (1), (2), (3) in Theorem 4.3.3 be verified quickly?

The first question is easy. If n is prime, then any polynomial f € Z,[z]
that is irreducible with deg f = I, and any polynomial g € Z,[z] that is not
a multiple of f will together satisfy (1) and (3). Indeed, if f is irreducible of
degree I, then K = Z,[x]/(f) will be a finite field of order n!, and so (1)
just expresses the Lagrange theorem (a group element raised to the order of
the group is the group identity) for the multiplicative group K*. To see (3)
note that the Galois group of K is generated by the Frobenius automorphism:
raising to the n-th power. That is, the Galois group consists of the I functions
from K to K, where the j-th function takes o € K and sends it to o™ for
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j=0,1,...,I—1. Each of these functions fixes an expression that is symmetric
in g,9",... 7g”lil7 so such an expression must be in the fixed field Z,,. This
is the assertion of (3).

It is not true that every choice for g with g # 0 (mod f) satisfies (2). But
the group K* is cyclic, and any cyclic generator satisfies (2). Moreover, there
are quite a few cyclic generators, so a random search for g should not take long
to find one. In particular, if g is chosen randomly as a nonzero polynomial in
Z,[x] of degree less than I, then the probability that g satisfies (2) is at least
@o(n’ —1)/(n' —1) (given that n is prime and f is irreducible of degree I), so
the expected number of choices before a valid g is found is O(InIn(n')).

But what of f? Are there irreducible polynomials in Z, [z] of degree I, can
we quickly recognize one when we have it, and can we find one quickly? Yes,
ves, yes. In fact (2.5) shows that not only are there irreducible polynomials
of degree I, but that there are plenty of them, so that a random degree I
polynomial has about a 1 in I chance of being irreducible. See Exercise 2.12
in this regard. Further, Algorithm 2.2.9 or 2.2.10 provides an efficient way to
test whether a polynomial is irreducible.

We now embody the above thoughts in the following explicit algorithm:

Algorithm 4.3.4 (Finite field primality test). We are given positive inte-
gers n, I, F with Fln! — 1, F > n'/? and we are given the complete prime
factorization of F'. This probabilistic algorithm decides whether n is prime or
composite, returning “n is prime” in the former case and “n is composite” in the
latter case.

1. [Find irreducible polynomial of degree I]

Via Algorithm 2.2.9 or 2.2.10, and using Algorithm 4.3.2 for the gcd steps,
attempt to find a random monic polynomial f in Z,[z] of degree I that
is irreducible if n is prime. That is, continue testing random polynomials
until the irreducibility test used either returns YES, or its gcd step finds a
nontrivial factorization of n. In the latter case, return “n is composite”;

// The polynomial f is irreducible if n is prime.
2. [Find primitive element]

Choose g € Z,,[x] at random with g monic, degg < I;

if(1 # g™ ~L mod f) return “n is composite’;

for(prime ¢|F') {

Attempt to compute ged(g™ ~1/4 — 1, f) via Algorithm 4.3.2, but if
a nontrivial factorization of n is found in this attempt, return “n is
composite”;

if(gcd(g("lfl)/q — 1, f) # 1) goto [Find primitive element];

3. [Symmetric expressions check]
Form the polynomial (T'— g)(T —g¢™)--- (T — g™
vt e in Zy[x, T1/(f(2));
// The coefficients ¢; are in Z,[x] and are reduced modulo f.
for(0 < j < I) if(degc; > 0) return “n is composite”;

I—1

) =T7! + C[_lTI_l +
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4. [Divisor search]
for(1<j<I){
If n7 mod F is a proper factor of n, return “n is composite”;

}

return “n is prime"”;

If n is prime, the expected number of arithmetic operations, with integers the
size of n, for Algorithm 4.3.4 to declare n prime is O(I¢ + In“n) for some
positive constant ¢. (We make no assertion on the expected running time for
composite inputs.)

Given a prime n, the question remains of how one is supposed to come up
with the numbers I, F'. The criteria are as follows: that F' is supposed to be
large, namely, F' > n'/2, we are supposed to know the prime factorization of
F, and F|n! — 1, with I not very large (since otherwise, the algorithm will
not be very fast). For some numbers n we can choose I =1 or 2; this was the
subject of earlier sections in this chapter. It is clear as well that one might be
content with merely F' > n'/3 if one were prepared to use Algorithm 4.2.11 as
a subroutine in Step [Divisor search] to find all of the proper factors of n that
are =n’ (mod F) for some j with 1 < j < I. So let us assume that Algorithm
4.3.4 is so amended. The question remains for the general case whether we
can find I, F' that fit the above criteria.

An interesting observation is that we can pick up some small primes in
n! — 1 with very little work. For example, suppose I = 12. Then n/ — 1 is a
multiple of 65520 = 24 -32.5.7 .13, provided that n is coprime to 65520. In
general, if ¢ is a prime power that is coprime to n and ¢(q)|I, then g|n! — 1.
This is just an assertion of the Euler theorem; see (2.2). (If ¢ is a power of
2 higher than 4, then we need only 2¢(g)|.) Can such “cheap” divisors of
n! — 1 amount to much? Indeed they can. For example, say I = 7! = 5040.
Then if n is not divisible by any prime up to 2521, then n°%4° — 1 is divisible
by

15321986788854443284662612735663611380010431225771200 =
26.3%3.52.72.11-13-17-19-29-31-37-41-43-61-71-73
113-127-181-211-241 - 281 - 337 - 421 - 631 - 1009 - 2521.

So I = 5040 can be used in Algorithm 4.3.4 for primes n up to 3.5-101°¢ (and
exceeding 2521).

From the above example with I = 5040 one might expect that in general
a choice of I with enough “cheap” factors in n! — 1 is a fairly small function
of n. Indeed, we have the following theorem, which appeared in [Adleman et
al. 1983]. The proof uses some deep tools in analytic number theory.

Theorem 4.3.5. Let I(x) be the least positive squarefree integer I such that
the product of the primes p with p — 1|I exceeds x. Then there is a number ¢
such that I(z) < (Inz)cmIne for il 2 > 16.
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The reason for assuming xz > 16 is to ensure that the triple-logarithm is
positive. It is not necessary in the results so far that I be squarefree, but
because of an algorithm in the next section, this condition is included in the
above result.

Corollary 4.3.6. There is a positive number ¢ such that the ezpected
running time for Algorithm 4.8.4 to declare a prime input n to be prime is
less than (Inn)¢ nninn,

Since the triple log function grows so slowly, this running-time bound is
“almost” In®W n, and so is “almost” polynomial time.

4.4 Gauss and Jacobi sums

In 1983, Adleman, Pomerance, and Rumely [Adleman et al. 1983] published a
primality test with the running-time bound of (Inn)¢™™n " for prime inputs
n and some positive constant c¢. The proof rested on Theorem 4.3.5 and on
arithmetic properties of Jacobi sums. Two versions of the test were presented,
a somewhat simpler and more practical version that was probabilistic, and a
deterministic test. Both versions had the same complexity estimate. As with
some of the other algorithms in this chapter, a declaration of primality in the
probabilistic APR test definitely implies that the number is prime. The only
thing in doubt is a prediction of the running time.

Shortly afterwards, there were two types of developments. In one direction,
more practical versions of the test were found, and in the other, less practical,
but simpler versions of the test were found. In the next section we shall discuss
one of the second variety, the deterministic Gauss sums test of H. Lenstra
[Lenstra 1981].

4.4.1 Gauss sums test

In Section 2.3.1 we introduced Gauss sums for quadratic characters. Here we
consider Gauss sums for arbitrary Dirichlet characters. If ¢ is a prime with
primitive root g and if ¢ is a complex number with (=1 = 1, then we can
“construct” a character x to the modulus ¢ via x(g*) = ¢* for every integer
k (and of course, x(m) = 0 if m is a multiple of ¢). (See Section 1.4.3 for a
discussion of characters.) We may also “construct” the Gauss sum 7(x). With
the notation ¢, = e*™/" (which is a primitive n-th root of 1), we define

1

q—1 q—1
00 =D x(m)cm =" x(g")¢ = ¢k
k=1 k=1

q—
m=1

As a character mod ¢, the order of x is a divisor of ¢ — 1. Suppose p is
a prime factor of ¢ — 1 and we wish the order of x to be exactly p. We may
concretely construct such a character x, 4 as follows. Suppose g = g, is the
least positive primitive root for ¢, and let xp,q(g(’;) = C]’; for every integer k.
As in the above paragraph, we have thus defined a character mod ¢ since
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(7' = 1. And, as xp,q(m)? = 1 for every nonzero residue m mod ¢, and
Xp.q(9q) # 1, it follows that x, , has order p. Let

q—1 & q—1 &
k ~9 k d g, mod g
G, q) = T(Xp.q) Z Xp,q(m = Cp G" = Z Cp P, -
k=1 k=1

(That this definition in the case p = 2 is equivalent to that in Definition 2.3.6
is the subject of Exercise 4.20.)

We are interested in the Gauss sums G(p, q) for their arithmetic properties,
though it may not be clear what a sum of lots of complex numbers has to do
with arithmetic! The Gauss sum G(p,q) is an element of the ring Z[(,, (,].
Elements of the ring can be expressed uniquely as sums Z?;g ZZ;E aj, kggg’;
where each a;, € Z. We thus can say what it means for two elements
of Z[¢,,¢,] to be congruent modulo n; namely, the corresponding integer
coefficients are congruent modulo n. Also note that if « is in Z[(p, (,], then
so is its complex conjugate @.

It is very important in actual ring computations to treat (,,(; symbol-
ically. As with Lucas sequences, where we work symbolically with the roots
of quadratic polynomials, we treat (p, (, as symbols z,y, say, which obey the
rules

xp—1+xp—2+._._~_1207 yq—1+yq—2+“.+120.

In particular, one may avoid complex-floating-point methods.
We begin with a well-known result about Gauss sums.

Lemma 4.4.1. Ifp,q are primes with p | ¢ — 1, then G(p,q)G(p,q) = q.
Proof. Let x = xp,q- We have

G(p,q) Z

Ix(ma)¢g" .

H Mﬁ

Let my " denote a multiplicative inverse of my modulo g, so that x(msg) =
x(m51). Note that if mym;' = a (mod q), then x(m1)x(m2) = x(a) and
my1 —mso = (a — 1)may (mod ¢). Thus,

G(p,9)G(p,q) x(a 4(5“*1”".

The inner sum is ¢ — 1 in the case ¢ = 1 and is —1 in the cases a > 1. Thus,

G )T =a—1-3 x@=q- 3 x(a)

Finally, by (1.28), this last sum is 0, which proves the lemma. |
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The next result begins to show a possible relevance of Gauss sums to
primality testing. It may be viewed as an analogue to Fermat’s little theorem.

Lemma 4.4.2. Suppose p,q,n are primes with p|g — 1 and ged(pg,n) = 1.
Then

G(p,q)™ ' = xpqe(n) (mod n).

Proof. Let x = Xp,q- Since n is prime, the multinomial theorem implies that

q—1 nPTh g1
-1 -1 -1
Gpo" = (Z x(m)C;”> =D x(m)" ¢ (mod n).
m=1 m=1
By Fermat’s little theorem, n?~! = 1 (mod p), so that x(m)” = x(m).
Letting n~! denote a multiplicative inverse of n modulo ¢, we have
q—1 q—1 q—1
p—1 p—1 p—1 (o _ p—1
X(m)™ G =y xm)g =) x(nm P ) (mn?
m=1 m=1 m=1

q—1
(n) 3 X(mn? e = x(n)Glp, q),
m=1

where the next to last equality uses that x(nP) = x(n)? = 1 and the last
equality follows from the fact that mnP~! traverses a reduced residue system
(mod ¢) as m does this. Thus,

G(p.q)" " =x(n)G(p,q) (mod n).

Let ¢~ ! be a multiplicative inverse of ¢ modulo n and multiply this last display
by ¢ *G(p, q). Lemma 4.4.1 then gives the desired result. |

The next lemma allows one to replace a congruence with an equality, in
some cases.

Lemma 4.4.3. If m,n are natural numbers with m not divisible by n and
¢J, = ¢k (mod n), then I, = ¢F.

Proof. By multiplying the congruence by ¢,.*, we may assume the given
congruence is ¢J, = 1 (mod n). Note that [[/";" (z — ¢,) = (™ —1)/(z — 1),
so that Hﬁ;l(l —¢!) = m. Thus no factor in this last product is zero modulo
n, which proves the result. O

Definition 4.4.4. Suppose p,q are distinct primes. If o € Z[(,, ] \ {0},
where o = Zf;g Zz;g aikCiCl, denote by c(a) the greatest common divisor
of the coefficients a;i. Further, let ¢(0) = 0.

We are now ready to describe the deterministic Gauss sums primality test.

Algorithm 4.4.5 (Gauss sums primality test). We are given an integer n >
1. This deterministic algorithm decides whether n is prime or composite, returning
“n is prime" or “n is composite” in the appropriate case.
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1. [Initialize]
I =-2
2. [Preparation]
I1=1+4;
Find the prime factors of I by trial division, but if I is not squarefree, goto
[Preparation];
Set I equal to the product of the primes ¢ with ¢ — 1|I, but if F? < n
goto [Preparation]; // Now I, F are squarefree, and F > \/n.
If n is a prime factor of I F', return "“n is prime”;
If ged(n, IF) > 1, return “n is composite”;
for(prime ¢|F') find the least positive primitive root g, for g;
3. [Probable-prime computation]
for(prime p|I) factor n?~! — 1 = p*ru,, where p does not divide u,;
for(primes p, g with p|I, q|F, plg — 1) {
Find the first positive integer w(p, q) < s, with

G q)pw<p-,unp = C;J; (mod n) for some integer j,

but if no such number w(p, q) is found, return “n is composite”;
} // Compute symbolically in the ring Z[(,, (,] (see text).
4. [Maximal order search]
for(prime p|I) set w(p) equal to the maximum of w(p, q) over all primes
q|F with p|lg — 1, and set qo(p) equal to the least such prime ¢ with
w(p) = w(p, q);
for(primes p, ¢ with p|I, g|F, p|g — 1) find an integer {(p,q) € [0,p — 1]
with G(p, )*" "% = P9 (mod n);
5. [Coprime check]
for(primes p with p|I) {
H = G(p, QO(p))pw(m*l"" mod n;
for(0 <j<p-1){
if(ged (n, c(H — ¢J)) > 1) return “n is composite”;
} // Notation as in Definition 4.4.4.

}

6. [Divisor search]
1(2)=0;
for(odd prime g|F') use the Chinese remainder theorem (see Theorem 2.1.6)
to construct an integer [(g) with
1(q) = U(p, q) (mod p) for each prime p|q — 1;
Use the Chinese remainder theorem to construct an integer [ with
l= gé(‘” (mod q) for each prime ¢|F}

for(1 < j < I)if 19 mod F is a nontrivial factor of n, return “n is
composite”;
return “n is prime"”;
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Remark. We may omit the condition F' > y/n and use Algorithm 4.2.11 for
the divisor search. The algorithm will remain fast if F' > n'/3.

Theorem 4.4.6. Algorithm 4.4.5 correctly identifies prime and composite
inputs. The running time is bounded by (Inn)¢M™In for some positive
constant c.

Proof. We first note that a declaration of prime or composite in Step
[Preparation] is certainly correct. That a declaration of composite in Step
[Probable-prime computation] is correct follows from Lemma 4.4.2. If the ged
calculation in Step [Coprime check] is not 1, it reveals a proper factor of n,
so it is correct to declare m composite. It is obvious that a declaration of
composite is correct in step [Divisor search], so what remains to be shown is
that composite numbers which have survived the prior steps must be factored
in Step [Divisor search] and so declared composite there.

Suppose n is composite with least prime factor r, and suppose n has
survived steps 1-4. We first show that

pP®rP=1 — 1 for each prime p|I. (4.21)

This is clear if w(p) = 1, so assume w(p) > 2. Suppose some l(p, q) # 0. Then
by Lemma 4.4.3

w(

Gp, """ = P9 £ 1 (mod n),

so the same is true (mod r), using Lemma 4.4.3. Let h be the multiplicative
order of G(p,q) modulo r, so that p*®+1|h. But Lemma 4.4.2 implies that
hlp(rP~' — 1), so that p*®|rP~1 — 1, as claimed. So suppose that each
I(p,q) = 0. Then from the calculation in Step [Coprime check] we have

w(p)—1

Gp, )" " =1 (mod r), Gp,qo)""" "™ # ¢ (mod r)

for all j. Again with h the multiplicative order of G(p, go) modulo r, we have
p“®)|h. Also, G(p,qo)™ = Cg (mod r) for some integers m,j implies that
¢} = 1. Lemma 4.4.2 then implies that G(p, qo)TVI_1 = 1 (mod r) so that
h|rP=' — 1 and p®®)|h. This completes the proof of (4.21).
For each prime p|I, (4.21) implies there are integers a,, b, with
T | _ap

— =, by=1 dp). 4.22
pw(i")up bp, p (mo p) ( )

Let a be such that a = a, (mod p) for each prime p|I. We now show that
r =1 (mod F), (4.23)

from which our assertion about Step [Divisor search] follows. Indeed, since
F > /n>rand F # r, we have r equal to the least positive residue of [*
(mod F), so that the proper factor r of n will be discovered in Step [Divisor
search].
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Note that the definition of x, , and of [ imply that

w(P) g
G(p,q)? = C;l;(p’q) = CII)(Q) = Xp,q (gé(Q)) = Xp,q(l) (mod r)

for every pair of primes p, g with ¢|F,p|¢ — 1. Thus, from (4.22) and Lemma

442,

rPl_ w(p)y g
Xpa(r) = Xpa (1) = G(p, @) Do = G(p,q)P" e
= Xp,a ()" = Xp,q(1*) (mod 7),

and so by Lemma 4.4.3 we have

Xp.a(T) = Xp.g(1*)-

The product of the characters x, 4 for p prime, p|I and p|g — 1, is a character
Xq of order Hp|q_1p =q—1, as ¢ — 1| and I is squarefree. But a character
mod q of order g — 1 is one-to-one on Z, (see Exercise 4.24), so as

Xq(r) = H Xp,a(T) = H Xp.a (1) = xq(1%),

plg—1 plg—1

we have r = 1% (mod q). As this holds for each prime ¢|F and F is squarefree, it
follows that (4.23) holds. This completes the proof of correctness of Algorithm
4.4.5.

It is clear that the running time is bounded by a fixed power of I, so the
running time assertion follows immediately from Theorem 4.3.5. O

With some extra work one can extend the Gauss sums primality test to the
case where [ is not assumed squarefree. This extra degree of freedom allows
for a speedier test. In addition, there are speed-ups that use randomness, thus
eschewing the deterministic aspect of the test. For a reasonably fast version
of the Gauss sums primality test, one might consult the new paper [Schoof
2004].

4.4.2 Jacobi sums test

We have just mentioned some ways that the Gauss sums test can be improved
in practice, but the principal way is to not use Gauss sums! Rather, as with
the original test of Adleman, Pomerance and Rumely, Jacobi sums are used.
The Gauss sums G(p, q) are in the ring Z[(,, ¢,]. Doing arithmetic in this ring
modulo n requires dealing with vectors with (p — 1)(¢ — 1) coordinates, with
each coordinate being a residue modulo n. It is likely in practice that we can
take the primes p to be very small, say less than Inn. But the primes ¢ can
be somewhat larger, as large as (Inn)°™™n" The Jacobi sums .J(p,q) that
we shall presently introduce lie in the much smaller ring Z[(,], and so doing
arithmetic with them is much speedier.

Recall the character x, , from Section 4.4.1, where p,q are primes with
plg — 1. We shall suppose that p is an odd prime. Let b = b(p) be the least
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positive integer with (b + 1)? # b” + 1 (mod p?). (As shown in [Crandall et
al. 1997] we may take b = 2 for every prime p up to 10'? except p = 1093 and
p = 3511, for which we may take b = 3. It is probably true that b(p) = 2 or 3
for every prime p. We certainly have b(p) < In? p; see Exercise 3.19.)

We now define a Jacobi sum J(p, q). This is

J(p, Q) = Z Xp,q (mb(m - 1)) .

The connection to the supposed primality of n is made with the following
more general result. Suppose n is an odd prime not divisible by p. Let f be
the multiplicative order of n in Zj. Then the ideal (n) in Z[(p] factors into
(p—1)/f prime ideals N1, Na, ..., N(,—1)/5 each with norm nd . If ais in Z[(,)
but not in Nj, then there is some integer a; with o' =D/p = ¢% (mod Nj;).
The Jacobi sums test tries this congruence with o = J(p,q) for the same
pairs p, ¢ (with p > 2) that appear in the Gauss sums test. To implement this,
one also needs to find the ideals N;. This is accomplished by factoring the
polynomial 2?~! + zP~2 4 ... + 1 modulo n into hy(z)ha(z) - hp—1y,f(2),
where each hj(x) is irreducible of degree f. Then we can take for A the
ideal generated by n and h;((,). These calculations can be attempted even
if we don’t know that n is prime, and if they should fail, then n is declared
composite.

For a complete description of the test, the reader is referred to [Adleman
et al. 1983]. For a practical version and other improvements see [Bosma and
van der Hulst 1990].

4.5 The primality test of Agrawal, Kayal, and Saxena
(AKS test)

In August 2002, M. Agrawal, N. Kayal, and N. Saxena announced a
spectacular new development, a deterministic, polynomial-time primality test.
This is now known as the AKS test. We have seen in Algorithm 3.5.13 that
such a test exists on the assumption of the extended Riemann hypothesis.
Further, in Algorithm 3.5.6 (the “Miller—Rabin test”), we have a random
algorithm that expects to prove that composite inputs are composite in
polynomial time. We had known a random algorithm that expects to prove
that prime inputs are prime in polynomial time; this is the Adleman—Huang
test, which will be briefly described in Section 7.6. Finally, as we just saw in
Theorem 4.4.6, Algorithm 4.4.5 is a fully proved, deterministic primality test
that runs within the “almost polynomial” time bound (Inn)¢"™mInn We say
“almost polynomial” because the exponent Inlnlnn grows so very slowly that
for practical purposes it might be considered bounded. (A humorous way of
putting this: Though we have proved that Inlnlnn tends to infinity with n,
we have never observed it doing so!)

The new test is not just sensational because it finally settles the theoretical
issue of primality testing after researchers were so close in so many ways,
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it is remarkable in that the test itself is quite simple. And further, two of
the authors, Kayal and Saxena, had worked on this problem for their senior
project, having just received their bachelor’s degrees three months before the
announcement. A short time later, after suggestions from various quarters,
Agrawal, Kayal, and Saxena came out with an even simpler version of the
test. These two versions may be found in [Agrawal et al. 2002], [Agrawal et al.
2004].

In this section we shall present the second version of the Agrawal-Kayal-
Saxena algorithm, as well as some more recent developments. As of this
writing, it remains to be seen whether the AKS test will be useful in proving
large numbers prime. The quartic time test at the end of the section stands
the best chance.

4.5.1 Primality testing with roots of unity

If n is prime, then
g(x)" = g(z") (mod n),
for any polynomial g(z) € Z[z]. In particular,

(z+a)" =2" +a (mod n) (4.24)

for any a € Z. Further, if (4.24) holds for just one value of @ with ged(a,n) = 1,
then n must be prime; see Exercise 4.25. That is, (4.24) is an if-and-only-if
primality criterion. The trouble is that we know no speedy way of verifying
(4.24) even for the simple case a = 1; there are just too many terms on the
left side of the congruence.

If f(z) € Z[z] is an arbitrary monic polynomial, then (4.24) implies that

(z+a)"=2" +a (mod f(z),n) (4.25)

for every integer a. So, if n is prime, then (4.25) holds for every integer a
and every integer monic polynomial f(z). Further, it should be possible to
rapidly check (4.25) if deg f(z) is not too large. As an example, take a = 1
and f(x) = — 1. Then (4.25) is equivalent to

2" =2 (mod n),

the Fermat congruence to the base 2. However, as we have seen, while this
congruence is necessary for the primality of n, it is not sufficient. So, by
introducing the modulus f(z) we gain speed, but perhaps lose our primality
criterion.

But (4.25) allows more generality; we are not required to take f(z) of
degree 1. For example, we might take f(z) = 2" — 1 for some smallish
number 7, and so be implicitly dealing with the r-th roots of unity. Essentially,
all that needs to be done is to choose r appropriately (but bounded by a
polylogarithmic expression in n), and to verify (4.25) for every a up to a
certain point (again bounded by a polylogarithmic expression in n).

The new primality test is so simple and straightforward that we cannot
resist stating it first as pseudocode, discussing the details only afterward.
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Algorithm 4.5.1 (Agrawal-Kayal-Saxena (AKS) primality test). We are
given an integer n > 2. This deterministic algorithm decides whether n is prime
or composite.

1. [Power test]
If n is a square or higher power, return “n is composite”;

2. [Setup]
Find the least integer r with the order of n in Z7 exceeding 1g2 n;
If n has a proper factor in [2,1/p(r)lgn], return “n is composite”;
// @ is Euler’s function.

3. [Binomial congruences]
for(1 < a < +/p(r)lgn) {
if((z +a)™ Z 2™ + a (mod =" — 1,n)) return “n is composite”;
}

Return “n is prime”;

Square testing in Step [Power test] may be done by Algorithm 9.2.11,
and higher-power testing may be done by a similar Newton iteration, cf.
Exercise 4.11. Note that one has only to test that n is in the form a® for
b < lgn. (Note too that from Exercise 4.28, Step [Power test] may actually be
skipped entirely!) The integer r in Step [Setup] may be found by sequential
search over the integers exceeding lg® n. In this search, if a value of r is found
for which 1 < ged(r,n) < n, one has of course proved n composite, and the
algorithm might be modified to reflect this. With such a modification, one
need subsequently search for a proper factor of n only in the interval [2, 1g? n),
rather than [2, y/¢(r)lgn], since the search for r would itself recognize those
n with a proper factor in (IgZn,r], and 7 > \/@(r)lgn. Since Step [Setup]
involves a search for small divisors of n, it may occur that all possibilities up
to y/n are accounted for, and so n is proved prime. In this case, of course, one
need not continue to Step [Binomial congruences], but this event can occur
only for fairly small values of n. See the end of Section 4.5.4 for more notes
on AKS implementation.

We shall return to the issue of the size of » when we discuss the complexity
of the algorithm, but first we will discuss why the algorithm is correct.
Algorithm 4.5.1 is based principally on the following beautiful criterion.

Theorem 4.5.2 (Agrawal, Kayal, Saxena). Suppose n is an integer with
n > 2, r is a positive integer coprime to n such that the order of n in Z
is larger than 1g*n, and

(r+a)"=2"+a (mod 2" — 1,n) (4.26)

holds for each integer a with 0 < a < \/o(r)lgn. If n has a prime factor
p > /o(r)lgn, then n = p™ for some positive integer m. In particular, if n
has no prime factors in [1,\/¢(r)lgn] and n is not a proper power, then n is
prime.
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Proof. We may assume that n has a prime factor p > W lgn. Let
G ={g(x) € Zp[z] : g(x)" = g(a™) (mod z" — 1)}.

It follows from (4.26) that, for each integer a with 0 < a < /p(r)lgn,
the polynomial z + a is in G. Since G is closed under multiplication, every

monomial expression
[ @+ao

0<a<y/p(r)lgn

where each €, is a nonnegative integer, is in G. Note too that since p >
\/(r)1gn, these polynomials are all distinct and nonzero in Z,[z], so that G
has many members. We shall make good use of this observation shortly.

We now show that G is a union of residue classes modulo z" — 1. That is,
if g1(z) € G, g2(z) € Zp[x], and g2(x) = g1(z) (mod z” — 1), then go(z) € G.
Indeed, by replacing each z with 2™, we have ¢; (z") = g2(2™) (mod z™" — 1),
and since " — 1 divides ™" — 1, this congruence holds modulo 2" — 1 as well.
Thus,

g2(x)" = g1(2)" = g1(2") = g2(2") (mod 2" — 1),
so that go(z) € G as claimed. Summarizing:

e The set G is closed under multiplication, each monomial x + a is in G for
0 <a < +/¢(r)lgn, and G is a union of residue classes modulo " — 1.

Let
J={j€Z : j>0, g()) = g(2?) (mod z" — 1) for each g(z) € G}.

By the definition of G, we have n € J, and trivially 1 € J. We also have p € J.
Indeed, for every polynomial g(x) € Z,[z] we have g(z)? = g(2P), so certainly
this relation holds modulo " — 1 for every g € G. It is easy to see that J
is closed under multiplication. Indeed, let ji,j2 € J and g(x) € G. We have
g(x)7r € G, since G is closed under multiplication, and since g(x)’t = g(x7*)
(mod 2" — 1), it follows by the preceding paragraph that g(z7t) € G. So, since
j? € Ja

9P = gla P = g((@")") = g(a) (mod a” ~ 1),

and so ji1jo € J. Thus J also has many members. Summarizing;:

e The set J contains 1,n,p and is closed under multiplication.

Let K be the splitting field for ™ — 1 over the finite field F,. Thus, K
is a finite field of characteristic p and is the smallest one that contains all of
the r-th roots of unity. In particular, let ( € K be a primitive r-th root of
1, and let h(z) € F,[z] be the minimum polynomial for ¢, so that h(z) is an
irreducible factor of " — 1. Thus, K = F,({) = F,[z]/(h(x)). The degree k
of h(x) is the multiplicative order of p in Z}, but we will not be needing this
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fact. The key fact that we will need is that K is the homomorphic image of
the ring Z,[z]/(z" — 1) where the coset representing x is sent to ¢. Indeed, all
that is used for this observation is that h(z)|z” — 1. Let G denote the image
of G under this homomorphism. Thus,

G={yeK : v=g(¢) for some g(z) € G}.

Note that if g(x) € G and j € J, then g(¢)? = g(¢’).
Let d denote the order of the subgroup of Z} generated by n and p. Let

Ga={g9(x) €G : g(x)=0or degg(z) < d}.

Since d < ¢(r) < r, the members of G4 are all distinct modulo 2" —1. We show
that our homomorphism to K is one-to-one when restricted to G4. Indeed, say
91(2),92(x) € G4 and ¢1(¢) = g2(¢). We claim that this forces g1 (z) = ga(z).
If j = n%p®, where a,b are nonnegative integers, then j € .J, so that

gl(Cj) = gl(C)j = gz(C)j = gz(Cj)-

This equation holds for d distinct values of j modulo 7. But the powers ¢/
are distinct if the exponents j are distinct modulo r, since { is a primitive
r-th root of 1. Thus, the polynomial g;(x) — g2(x) has at least d distinct roots
in K. But a polynomial cannot have more roots in a field than its degree,
and since g1(x), g2(z) are in Gg4, it must be that gi(x) = go2(x) as claimed.
Summarizing:

e Distinct polynomials in G4 correspond to distinct members of G.

We apply this principle to the polynomials

g@)=0org)= J[ G@+a)

0<a<Vdlgn

where now each €, is 0 or 1. Since d < ¢(r), we have seen that each g(x) is
in G. Further, since d > lg?n it follows that v/dlgn < d, so that as long as
we do not choose all of the exponents ¢, as 1, we will have each g(z) in Gq.
Hence there are at least

1+ (2LVdlsnl+1 _ 1) 5 oVdlen _ pvd

Vd

members of G4, and so there are also more than nv¢ members of G.

Summarizing:
e We have #G > #G4 > nV4,

Recall that K = Fy[z]/(h(x)), where h(z) is an irreducible polynomial in
Fy[z]. Denote the degree of h(x) by k. Thus, K = F, so it follows that if
4, jo are positive integers with j = jo (mod p* —1), and 8 € K, then 57 = 3.
Let

J={j€eZ : j>0,j=jo (mod p* — 1) for some j, € J}.
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If j = jo (mod pF — 1) with jo € J, and g(z) € G, then g(¢)! =
g(¢)° = g(¢) = g(¢?). Also, since J is closed under multiplication, so
is J’. Additionally, since np*~! = n/p (mod p* — 1), we have n/p € J'.

Summarizing:

e The set J' is closed under multiplicati(_)n, it contains 1, p, n/p, and for each
j€J' g(z) € G, we have g(¢)? = g(¢?).

Consider the integers p®(n/p)®, where a,b are integers in [0,/d]. Since
p,n/p are in the order-d subgroup of Z* generated by p and n, and since
there are more than d choices for the ordered pair (a,b), there must be two
different choices (ay,b1), (az,be) with j; := p®(n/p)®* and jp := p*2(n/p)’=
congruent modulo r. Thus, (/' = ¢72, and since j;,j2 € J', we have

9(Q)7" = g(¢") = g(¢??) = g(¢)” for all g(z) € G.

That is, 77! = 172 for all elements v € G. But we have seen that G has more
than nvd elements, and since ji,j2 < p‘/a(n/p)\/g = n\/g, the polynomial
291 — 72 has too many roots in K for it not to be the 0-polynomial. Thus, we
must have j; = jo; that is, p (n/p)®* = p®2(n/p)*2. Hence,

nbr—b2 — pbl—bz—ari-a?,7
and since the pairs (a1,b1), (az,bs) are distinct, we have b; # bs. By unique
factorization in Z we thus have that n is a power of p. O

The preceding proof uses some ideas in the lecture notes [Agrawal 2003].
The correctness of Algorithm 4.5.1 follows immediately from Theorem
4.5.2; see Exercise 4.26.

4.5.2 The complexity of Algorithm 4.5.1

The time to check one of the congruences
(z+a)"=2"+a (modz" —1,n)

in Step [Binomial congruences| of Algorithm 4.5.1 is polynomial in r and lnn.
It is thus crucial to show that r itself is polynomial in Inn. That this is so
follows from the following theorem.

Theorem 4.5.3. Given an integer n > 3, let r be the least integer with the
order of n in Z; exceeding lg?n. Then r <lg’n.

Proof. Let ry be the least prime number that does not divide
N:=nn-1)n*-1)-- (n“g2 nl_ 1) .

Then rg is the least prime number such that order of n in Zj  exceeds 1g2 n,
so that r < rg. It follows from inequality (3.16) in [Rosser and Schoenfeld
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1962] that the product of the primes in [1, 2] exceeds 2* when x > 41. More
simply, and more strongly, the Chebyshev-type estimate of Exercise 1.28 gives
Hp<wp > 2% when x > 31. Now the product of the primes dividing N is at
most N, and

N < n1+1+2+---+ng2 n| _ n%l_lg2 n)?+1|lg? n]+1 < nlg4n _ 21g5n.

Hence there is a prime ro < lg°n with ro not dividing N when 1g°n > 31.
This last inequality holds when n > 4. However, for n = 3 the least r in the
theorem is 5, so the theorem holds in this case as well. O

So, the proof is complete that the deterministic Algorithm 4.5.1 decides
whether n is prime or composite in polynomial time. But as soon as one
problem is solved, new ones naturally arise. Among these: Exactly how fast
is Algorithm 4.5.17 Can we do better? Is it practical?

First, we analyze Algorithm 4.5.1 using only elementary, naive subroutines.
The bit complexity to check just one of the congruences in Step [Binomial
congruences| is O(r?In®n). Thus the time to check all of them is bounded
by O(r?5In* n). Using r = O(In® n) from Theorem 4.5.3, we get a total bit
complexity for the congruences of O(In'%? n). It is easy to see that the other
steps of the algorithm are bounded by smaller expressions, so we have our
first O-estimate for the complexity of the algorithm, namely O(lnm5 n).

Sometimes elementary and naive is the best road to take. But for
large numbers and high-degree polynomials, the methods of Chapter 8.8
are indicated. To obtain (z + a)™ modulo z" — 1 and modulo n, we may
employ a power ladder (of O(lnn) steps) with internal modular polynomial
multiplies of degree less than r, and with coefficients always smaller than
n. Thus the dominant calculation—that for (z + a)"—comes down to
O((Inn)(rInr)M(Inn)) bit operations, where M (b) is the bit complexity
for multiplying two integers of b bits each (see, for example, the discussion
following Algorithm 9.6.1). So, with fast algorithms, the time for one of the
congruences in Step [Binomial congruences] is reduced to O(rIn®n). (The
notation O(f(n)) implies an upper bound of the form ¢; f(n)(In f(n))¢, and
is sometimes called “soft O notation.” Thus, if g(n) = O(f(n)), where f(n)
tends to infinity, then g(n) = O(f(n)**€) for each fixed ¢ > 0.) We conclude
that the total bit complexity for the congruences, and the entire algorithm, is
O(r*®1In*n) = O(In'"? n).

It is clear that with a better upper bound for » than afforded by
Theorem 4.5.3, we will have a better estimate for the bit complexity of
Algorithm 4.5.1. For example, using Exercise 4.29, we have that the bit
complexity of the algorithm is O(In®n) when n = +3 (mod 8). Since it
seems very unlikely that one could ever verify one of the congruences in
Step [Binomial congruences| in significantly fewer than r In® n bit operations,
it would seem that r'®In®n is likely as a lower bound for the order
of magnitude of the bit complexity of the entire algorithm (though not
necessarily a lower bound for perhaps some other primality test). And since
the algorithm forces us to choose 7 > lg®n, it would seem then that we
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cannot do better than O(In® n) for the total running time. Note too that from
Exercise 4.30, this total running time is indeed bounded by O(In® n) for almost
all primes n. (For most composite numbers n, the running time is less.)

But in our never-ending quest for the best possible algorithm, we ask
whether O(ln6 n) can be achieved for all numbers n. It seems as if this should
be the case; that is, it seems as if we should be able to choose r = O(In?n)
always. Such a result follows independently from strong forms of two different
conjectures. One of these is the Artin conjecture asserting that if n is neither
—1 nor a square (which is certainly an allowable hypothesis for us), then there
are infinitely many primes r with n a primitive root for . Any such prime r
with 7 > 14 1gZn may be used in Algorithm 4.5.1, and it seems reasonable
to assume that there is always such a prime smaller than 21g%n (for n > 2).
It is interesting that in [Hooley 1976] there is a proof of the Artin conjecture
assuming the GRH (see the comments in Exercise 2.39), and it may be that
this proof can be strengthened to show that there is good value for r < 21g* n;
see Exercise 4.38. But if we are willing to assume the GRH, we might as well
merely assume the ERH and use Theorem 3.5.13, and so obtain a deterministic
primality test with bit complexity O(In* n).

In addition to the Artin conjecture, we also have a conjecture on Sophie
Germain primes. Recall that these are primes g with » = 2¢ + 1 also prime. If
there are not only infinitely many of them (which is not known), but they are
fairly frequent, then there should be such a prime ¢ > lgZ n with ¢ = O(Inn)
and 7 = 2¢ + 1 not dividing n £ 1; see [Agrawal et al. 2004]. Such a value for
r is valid in Algorithm 4.5.1. Indeed, it would suffice if the order of n modulo
r is either ¢ or 2¢. But otherwise, its order is 1 or 2, and we have stipulated
that r does not divide n 4+ 1. These conjectures strengthen our view that the
complexity of Algorithm 4.5.1 should be O(In° n).

Using a deep theorem in [Fouvry 1985], one can show that » may be chosen
with r = O(In®n); see [Agrawal et al. 2004]. Thus, the total bit complexity
for the algorithm is 0(1117'5 n). This is nice, but there is a drawback to using
Fouvry’s theorem. The proof is not only difficult, it is ineffective. This means
that from the proof there is no way to present a numerically explicit upper
bound for the number of bit operations. This ineffectivity is due to the use of
a theorem of Siegel; we have already seen the consequences of Siegel’s theorem
in Theorem 1.4.6, and we will see it again in our discussion of class numbers
of quadratic forms.

So using Fouvry’s result, we get close to the natural limit of O~(ln6 n), but
not quite there, and the time estimate is ineffective. In the next subsection
we shall discuss how these defects may be removed.

4.5.3 Primality testing with Gaussian periods

In Theorem 4.5.2 we are concerned with the polynomial " —1. In the following
result from [Lenstra and Pomerance 2005] we move toward a more general

polynomial f(z).
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Theorem 4.5.4. Suppose n is an integer with n > 2, f(x) is a monic
polynomial in Z,[x] of degree d, where d > 1g*n,

f(z™) =0 (mod f(x)), =z (mod f(x)), (4.27)

and

nd/a

x —x and f(x) are coprime for all primes q dividing d. (4.28)

Suppose too that
(x4+a)" =2" 4+ a (mod f(x)) (4.29)

for each integer a with 0 < a < \/dlgn. Then if n is divisible by a prime
p > Vdlgn, then n = p™ for some positive integer m.

The notion of two polynomials being coprime in Z,[z] was discussed in
Definition 4.3.1. Note that reduction modulo n for polynomial coefficients is
assumed, since the polynomials in Theorem 4.5.4 are assumed to be in Z, [z].

Proof. We largely follow the proof of Theorem 4.5.2. Let p be a prime factor
of n that exceeds v/dlgn. As before, but with f(z) in place of " — 1, we define

G ={g(x) € Zy[z] : g(2)" = g(2") (mod f(x))}.

And as before, but this time by assumption (4.27), we have f(z)|f(z") in
Z,[z]. Thus, G is closed under multiplication and is a union of residue classes
modulo f(z). Thus, our proof that

J={j€Z : j>0, g(z)) = g(a?) (mod f(z)) for all g(z) € G}

is closed under multiplication is also as before. Let h(z) be an irreducible
factor of f(z) when considered modulo p, and denote by ¢ a root of h(x) in
the splitting field K of h(z) over F,. Then the finite field K = F,(({) is the
homomorphic image of the ring Z,[x]/(f(x)), where the coset representing x
is sent to ¢. By (4.28), x is coprime to f(x) in Z,[z], so that ¢ # 0 in K. Let
r be the multiplicative order of ¢. By (4.28) we must have C"d/q = ( for each
prime ¢|d, so that C”d/q_l # 1 for these ¢’s. Also, by (4.27) and the fact that
¢ is nonzero in K, we have C"dil = 1. Thus, the order of n in Z7 is exactly d.

In the argument for Theorem 4.5.2 we had d equal to the order of the
subgroup generated by m and p in Z}, while now it is just the order of
the subgroup generated by n. However, in our present context, the two
subgroups are the same; that is, p = n’ (mod r) for some nonnegative integer
i. We see this as follows. First note that clearly we have f(z) € G, since
f(z") = 0 = f(x)" (mod f(z)). Thus, f(¢)? = f(¢’) for all j € J. But
f(¢) = 0, so that each (7 is a root of f in K. Now ¢ has order » and f has
degree d, so that the number of residue classes occupied by j mod r for j € J
is at most d; indeed, f cannot have more roots in the finite field K than its
degree. However, the powers of n already occupy d residue classes modulo 7,
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so every other member of J, in particular p, is congruent modulo r to some
power of n. (The reader might note the similarity of this argument to Theorem
4.3.3.)

In the proof of Theorem 4.5.2 we have x 4+ a € G for each integer a with
0 < a < /o(r)lgn, but all that we used is that this condition holds for

0 < a < Vdlgn. We certainly have this latter condition currently. So now
everything matches up, and the proof may be concluded in exactly the same
way as in Theorem 4.5.2. O

The preceding proof used some ideas in the nice survey paper [Granville
2004a).

With Theorem 4.5.2 we were constrained by the fact that while we
conjectured that there are suitable values of r that are fairly close to g n, all
that we could prove was that r < lg® n (Theorem 4.5.3), though by ineffective
methods this upper bound for r could be brought down to O(ln3 n). But with
Theorem 4.5.4 we are liberated from just looking at polynomials of the form
2" — 1. We now have the complete freedom of looking at any and all monic
polynomials f(z), as long as the degree exceeds lg? n and (4.27) and (4.28) are
satisfied. Note that if n is prime, then by Theorem 2.2.8, a polynomial f(x)
satisfies (4.27) and (4.28) if and only if f(x) is irreducible in Z,[z]. And it
is easy to show that there are plenty of monic irreducible polynomials of any
given degree (see (2.5) and Exercise 2.12). So why not just let d = [lg®n| +1,
choose a polynomial of degree d that would be irreducible if n were prime,
and be done with it?

Unfortunately, things are not so easy. Irreducible polynomial construction
over F;,, where p is prime, can be done in expected polynomial time by the
random algorithm of just choosing arbitrary polynomials of the desired degree
and testing them. This is exactly the approach of Algorithm 4.3.4. But what
if one wants a deterministic algorithm? Already in the case of degree 2 we
have a known hard problem, since finding an irreducible quadratic in F,[z] is
equivalent to finding a quadratic nonresidue modulo p. Assuming the ERH,
we know how to do this in deterministic polynomial time (using Theorem
1.4.5), but we know no unconditional polynomial-time method. In [Adleman
and Lenstra 1986] it is shown how to deterministically find an irreducible
polynomial of any given degree in time polynomial in Inp and the degree,
again assuming the ERH. They also consider an unconditional version of
their theorem in which they allow a small “error.” That is, if the target
degree is d, they find unconditionally and in time polynomial in Inp and d an
irreducible polynomial modulo p of degree D, where d < D = O(dInp). In the
paper [Lenstra and Pomerance 2005] this last result is improved to finding an
irreducible polynomial modulo p with degree in [d, 4d], once p is sufficiently
large (the bound is computable in principle), and assuming d > (Inp)!-84.
(If one does not insist on effectivity, the lower bound for d may be relaxed
somewhat.) Further, the number of bit operations to find such a polynomial
is bounded by O(d®/® Inn) (the notation O being introduced in the preceding
subsection).
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Say we take d = |lg?n] +1 and run this last algorithm on a large number
n. If n is prime, then the algorithm will produce an irreducible polynomial
with degree in [d,4d]. If n is composite, either the algorithm will produce a
polynomial with degree in [d, 4d] and for which (4.27) and (4.28) both hold,
or the algorithm will crash. In this latter case, the number n will have been
proved composite. Finally, if the algorithm succeeds in finding a polynomial
for which (4.27) and (4.28) hold, then one can proceed to check (4.29) for the
requisite values of a, taking time O(d*/2In®n) = O(In®n), and so deciding
within this time bound whether n is prime or composite.

So the polynomial construction from [Lenstra and Pomerance 2005] plus
Theorem 4.5.4 gives a deterministic primality test for n with bit operation
count bounded by O(ln6 n). This polynomial construction method is too
complicated to be completely described in this book, but we would like to
present some of the essential elements. As with many ideas in our subject, the
story begins with Gauss.

While still a teenager, Gauss described a set of natural numbers n for
which a regular n-gon is constructible with a Euclidean straight-edge and
compass, and conjectured that his set was exhaustive (and he was right, as
proved by P. Wantzel in 1836). The set of Gauss is precisely the integers n > 3
for which ¢(n) is a power of 2 (also see the discussion in Section 1.3.2). We
are interested here not so much in this beautiful theorem itself, but rather
its proof. Key to the argument are what are now called Gaussian periods.
Suppose 7 is a prime number, and let ¢, = e2™/" so that ¢, is a primitive
r-th root of 1. Let d be a positive divisor of » — 1 and let

S={1<j<r : jr V=1 (modr)}

be the subgroup of d-th powers modulo r. We define the Gaussian period

Nr.d = Z G-

je€S
Thus, 1,4 is a sum of some of the r-th roots of 1. It has the property
that Q(7,q4) is the (unique) subfield of Q((,) of degree d over Q. In fact,
N4 is the trace of (. to this subfield. We are especially interested in the
minimal polynomial f, 4 for n, 4 over Q. This polynomial is monic with integer
coefficients, it has degree d, and it is irreducible over Q. We may explicitly
exhibit the polynomial f, 4 as follows. Let w be a residue modulo r such that
the order of w("~Y/d is d. For example, any primitive root w modulo r has
this property, but there are many other examples as well. Then the cosets
S,wS, ..., w18 are disjoint and cover Z*. The conjugates of 1, 4 over Q are
the various sums } . ¢J, and we have

cwS
d—1 4
Fral) = H(x— ) CZ)-
=0 jeEwiS

As a monic polynomial of degree d in Z[z], when reduced modulo a prime
P, fr,a remains a polynomial of degree d. But is it irreducible in Z,[z]? Not
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necessarily. However, the following result gives a criterion that ensures that
fr,a remains irreducible when reduced modulo p.

Lemma 4.5.5 (Kummer). Ifr is a prime, d is a positive divisor of r — 1,
and p is a prime with the order of p"~Y/% modulo r equal to d, then f.4(z)
remains irreducible when considered in Fy[z].

A proof of this result using that 7, ¢4 and its conjugates form an integral basis
of the ring of integers in Q(7,,4) may be found in [Adleman and Lenstra 1986].
We present a different proof using Gauss sums.

Proof. Consider the splitting field K of (z" — 1)(2¢ — 1) over F,, which
may be viewed as the homomorphic image of Z[(,., (4], where ¢, = e2™/" and
Cq = €2™/4 Let ¢ be the image of ¢, in K and let w be the image of (g.
Further, let n = ZjeS ¢’ be the image of 7, 4. Assuming that the order of
p("=D/d modulo r is d, we are to show that 7 has degree d over F, (since we
have fq4(n) = 0 and f, 4 has degree d, so that if 7 has degree d, then f, 4
must be irreducible over F,). We apply the Frobenius p-th-power map to n;
if this is done i times, we have 77pi. We are to show that the least positive k
with npk =nis k = d. For each k we have

=3 ¢i= 3 ¢

JES jEPFS

so that npd = 1, since p¢ € S. Thus, the least positive k with npk =nisa
divisor of d. Our goal is to show that k = d, so we may assume that d > 1.

Let x be a Dirichlet character modulo r of order d; specifically, let
x(a?) = 1 for any nonzero residue a modulo r and let x(p) = (4. (Since
the order of p("=1/4 modulo r is assumed to be d, we have completely defined
X-) We consider the Gauss sum

Note that the proof of Lemma 4.4.1 gives that |7(x)|? = r, see Exercise 4.21,
so that the image of 7(x) in K is not zero. We reorganize the Gauss sum,
getting that

d—1 d—
X) =Y. > X6l = Z > Y G
i=0 jepiS =0 JjEPS

Thus, 7(x) is a “twisted” sum over the complex roots of f. 4(x). We take this
equation over to K, noting that Zj epis ¢ =y But P = nP"* whenever
i1 = iz (mod k), so the image of 7(x) in K is

k—1 d/k—1 d/k—1

IS SRR SEED SUAD MELLED SAD S
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But if k < d, the last inner sum is 0, so that the image of 7(x) in K is 0, a
contradiction. Thus, k£ = d and the proof is complete. O

In Exercise 4.31, the converse of Lemma 4.5.5 is discussed.

Now suppose that we have various pairs r;, d; where each r; is prime and
dilr; — 1, for i = 1,...,k. Let n be the product of the various Gaussian
periods 7, 4, and let f be its minimal polynomial over Q. If the numbers
d; are pairwise coprime, then the degree of f is the product d; ---di. And
it is not too hard to see that if p is a prime not equal to any r;, then f is
irreducible modulo p if the order of p("«=Y/di in Z7 is d; for i = 1,...,k;
see Exercise 4.32. This then may be considered some sort of a “machine”
for producing irreducible polynomials modulo p. That this “machine” can hit
close to a desired degree follows from the following result from [Lenstra and
Pomerance 2005].

Theorem 4.5.6. There is a number B, computable in principle, such that if
n is an integer with n > B and d is an integer with d > (Inn)'-®*, then there
is a squarefree number D in the interval [d,4d] such that each prime factor q
of D satisfies (1) q < d*/'* and (2) there is a prime r < d'' with r = 1
(mod q) such that r does not divide n and n is not a q-th power modulo r.

Note that since ¢ is prime, saying that n is not a ¢-th power modulo 7 is
equivalent to saying that n("~1/4 has order ¢ modulo 7.

Armed with Theorem 4.5.6, we may confidently search for a number
D with the stated properties, which search is easy to perform. Since the
computable bound B has not yet been computed, one may not be sure that
such a D will exist in [d,4d] for a given number n, but a sequential search
starting at d will eventually turn up a suitable number D that is O(d), with
this O-constant also being computable in principle. Once D is found, one can
use the Gaussian period “machine” to create a polynomial f of degree D that
would be irreducible if n were prime.

Thus, taking the approach of Theorem 4.5.4 and the use of Gaussian
periods to construct suitable polynomials, one can construct a deterministic
primality test with (effective) running time bounded by O(In®n) bit
operations. We have presented some of the key ideas. The proof in particular
of Theorem 4.5.6 is fairly complicated and beyond the scope of this book.
For details see [Lenstra and Pomerance 2005]. Finally, we point out that the
Lenstra—Pomerance version of the Agrawal-Kayal-Saxena primality test as
discussed in this subsection provides no practical advantage over Algorithm
4.5.1, since in practice one should always find a small r so that that algorithm
is not too onerous. (It is in actually proving that this is the case that we delved
into the method of this subsection.) Now that we have opened the door on
the practical considerations of the new primality test, we can leave behind the
issue of determinism and perhaps even rigorous algorithmic analysis, and ask
whether the new ideas can indeed help us in proofs for large primes. We take
up this issue next.
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4.5.4 A quartic time primality test

Since the most time-consuming step of Algorithm 4.5.1 is the checking of the

n —

congruence (x + a)™ = 2™ + a (mod " — 1,n) for so many values of a, this
area would be a good place to look for improvements. In Theorem 4.5.4 we
had the improvement of replacing " — 1 with a polynomial f(z) of possibly
smaller degree. Another idea is to get binomial congruences verified “for free.”
In the following theorem, we replace " — 1 with " — b for a suitable integer
b, and we need only verify one binomial congruence.

Theorem 4.5.7. Let n,r,b be integers with n > 1, rln — 1, r > 1g2 n,
b»~t =1 (mod n), and ged(b»~D/9 —1,n) =1 for each prime q|r. If

(r—1)"=2" -1 (mod z" — b,n), (4.30)
then n is a prime or prime power.

Proof. Let p|n be prime and set A = b(*~1/" mod p. Then A has order r in
Z3, so that in particular, r[p—1 (see Pocklington’s Theorem 4.1.3). Note that

" =x-2" = 2(2") V" = Az (mod z” — b, p). (4.31)

Thus, by our hypothesis,
(z—1)"=2"—-1= Az —1 (mod 2" — b,p).

Also note that if f(z) = g(z) (mod 2" — b,p), then f(A'z) = g(A'x)
(mod z" — b,p) for any integer i, since (A'z)" —b = z" — b (mod p). Thus,
taking f(z) = (z — 1)™ and g(x) = Az — 1, we have

(x — 1)"2 = (Az —1)" = A%z — 1 (mod z" — b, p),
and more generally by induction, we get

(z—1)" = Az —1 (mod z" — b, p) (4.32)

for every nonnegative integer j.

Note that if ¢ is an integer and ¢" = 1 (mod p), then ¢ = A* (mod p) for
some integer k; indeed, all that is used for this observation is that p is prime
and A has order 7 modulo p. So, we have

2P =g 2Pt = g(a") P/ = = D/my = AR (mod 2" — b, p)

for some integer k. Thus, since (A*)? = A* (mod p), we have by induction
that _ ‘
2P = A%z (mod z" — b, p) (4.33)

for every nonnegative integer i. We have f(a:)Pi = f(a") for every f(z) €
Z,[z], so that by (4.32) and (4.33), we have

(x — 1)pi”j = (Alz — l)pi = AlgP — 1= Altikg 1 (mod z" — b, p)
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for all nonnegative integers ¢, j. Thus for such 1, j,
(x — 1)pi(”/p)j = AT+ 9 (mod 2" — b, p), (4.34)

since both sides have the same p’-th power (mod x" — b,p), and raising to
the p’-th power is one-to-one in Z,[z]/(z" — b). This last assertion follows
because raising to the p-th power is one-to-one in any Zy[z]/(f(z)) where
f(z) does not have any repeated irreducible factors modulo p, noting that
since ged(z” — b,rz""1) = 1 in Z,[z], the polynomial 2" — b indeed does not
have any repeated factors.

Note that # — 1 is a unit in Zy[z]/(z” — b). Indeed, in Z,[z], we have
ged(x — 1,27 — b) = ged(x — 1,1 — b) = 1, provided that p does not divide
b—1. But since A = b(»~D/" modulo p has order r > IgZn > 1, we do indeed
have p not dividing b — 1. Let E denote the multiplicative order of z — 1 in
Z,[z]/(z" — b). Note that

E>2"—1,
since the polynomials
H(AJ:E - 1)7
jES
where S runs over the proper subsets of {0,1,...,7— 1}, are not only distinct

in Zy[z]/(z" —b), but each is a power of z — 1, by (4.32).
Consider integers 7, j with 0 < 4,5 < /r. It must be that there are two
distinct pairs (il,jl), (ig,jg) with

J1(1 = k) +i1k = jo(1 — k) + i2k (mod r),
so that if u; = p' (n/p)t, us = p'2(n/p)?2, then
(x—1)" = AnO=RFuky = gr2(=R+icky 1 — (-1)% (mod 2" — b, p).

Hence
u; = ug (mod E).

But uq,us € [1,n‘/F] and E > 2" —1 > nV" — 1, the last inequality holding
by our hypothesis that r > ng n. Thus, u; = ug, and as we saw in the proof
of Theorem 4.5.2, this immediately leads to n being a power of p. O

This theorem may be essentially found in [Bernstein 2003] and (indepen-
dently) [Mihailescu and Avanzi 2003]. It was originally proved in the case of
r a power of 2 by Berrizbeitia and in the case of r a prime or prime power by
Cheng.

Note that using fast polynomial and integer arithmetic, the congruence
(4.30) can be checked in O(r In® 1) bit operations, the notation O having been
introduced in Section 4.5.2. So if 7 can be chosen such that r = O(In? n), we
thus would have the basis for a primality test of complexity O(In*n). There
are two problems with this. First, not every prime n has a divisor r of n — 1
with 1gZn < r = O(In? n); in fact, it can be shown that for most primes n,
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the number n — 1 does not have such a divisor r. Second, even if we do have
such a number r, there is a problem of what to choose for b. Surely, if n is
prime, then there are many numbers b that will work. Indeed, just choose b
as a primitive root for n, and there are other choices as well. So, it would be
easy to find a choice for b by a random search, but we still do not know how
to solve a problem like this in deterministic polynomial time without some
extra assumption such as the ERH.

So let us throw in the towel for now on the issue of determinism. If n — 1
has a divisor 7 with lg?n < r = O(In? n), and if n is prime, we can use a fast
random method to find a suitable choice for b, show that n is not a proper
power, and then use Theorem 4.5.7 as a basis of a primality proof for n that
runs in O(ln4 n) bit operations. In fact, Bernstein has tried exactly this test
and has used it to prove prime a number with 1000 bits. This is not exactly
competitive with our experience with the Jacobi sums test and with elliptic
curve primality proving, but it is beginning to be an option.

Let us look at the more serious problem, namely, what is to be done if
n — 1 does not have a divisor r > lg? n that is not too large. In [Berrizbeitia
2002] it is shown how to quickly prove primality for n if n + 1 is divisible by
a power of 2 of size about lg” n. The reader may note a parallel, for in some
sense, this chapter has come full circle. We have faced the limitations of the
n — 1 test, which led us to the n+1 test, and eventually to the finite field test,
where we look for a suitable divisor of n¢ — 1 for some relatively small integer
d. Note that it follows from Theorem 4.3.5 with = = lg?n that if n > 16 (so

that lg* n > 16), then there is an integer d < (2Inlnn)cn In(ln*n) guch that
n% — 1 has a divisor # > lg*n and such that each prime factor of r is one
more than a divisor of d. Hence by peeling off some of these prime factors of
r if necessary, we may assume that lgn < r < (d + 1)1g? n. In the following
result we need r slightly larger, namely, » > d21g?n, but essentially we have
the same thing; namely there is some d bounded by (Inln n)o(ln Inlnlnn) gch
that n® — 1 has a divisor  with d?1g> n < r < (d+1)d?1g* n. The next result,
which is from [Bernstein 2003] and [Mih&ilescu and Avanzi 2003], allows us
to craft a speedy primality criterion given such auxiliary numbers r, d.

Theorem 4.5.8. Suppose n,r,d are integers with n > 1, rjn® — 1, r >
d?1g* n. Suppose too that f(t) is a monic polynomial in Zy[t] of degree d,
set R as the ring Z,[t]/(f(t)), and suppose that b = b(t) € R is such that

b1 =1 and b~/ — 1 is a unit in R for each prime q|r. If

d

(x—1)" = 2" -1 (mod z" — b)
in R[z], then n is either a prime or prime power.

The proof of Theorem 4.5.8 is very similar to that of Theorem 4.5.7, so
we will give only a sketch. Let p be a prime factor of n and let h(t) be an
irreducible factor of f(¢) modulo p. Set K as the finite field Z,[t]/(h(¢)), so
that K is a homomorphic image of the ring R. Set N = n? and P = pdeeh,

so that P | p¢ | N. We identify b with its image in K and set A = p(N=1/7,
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so that A has order r by our hypothesis. Then, there is some integer k£ such
that for all nonnegative integers j, 1,

(x — 1)Nj =Alx —1 (mod 2" —b), (z— 1)Pi = Az — 2 (mod z" — b),

where we view these as polynomials in K[x]. This follows in exactly the same
way as in the proof of Theorem 4.5.7, and further we get that

(x — 1)Pi(N/P)j = AFHI0=R) 2 1 (mod z" — b).

If E is the order of z — 1 in KJz]/(z" — b), then E > 2" — 1 by the same
argument as before. But again as before, there are different pairs of integers
i1,71 and g, jo with U; := P*(N/P)" € [1, NV7] for | = 1,2 and U; = U,
(mod E). This forces U; = Us, and so n is a power of p (since N is a power
of n and P is a power of p).

The reader is invited to observe the remarkable similarity of Theorem 4.3.3
to Theorem 4.5.8, where I, F, g of the former theorem correspond to d,r,b,
respectively, in the latter.

We may use Theorem 4.5.8 as the basis of a fast random algorithm that
is expected to supply primes with proofs that they are primes:

Algorithm 4.5.9 (Quartic-time variant of AKS test). We are given an in-
teger n > 1. This random algorithm attempts to decide whether n is prime or
composite, and it decides this issue correctly whenever it terminates.

1. [Setup]
If n is a square or higher power, return “n is composite”;
Find a pair r,d of positive integers with rd?> minimal such that r|n? — 1
and d?1gn < r < (d+ 1)d*1g* n;
Choose random monic polynomials f(t) € Z,[t] of degree d until either
n is declared composite or f(t) is found with ' =¢ (mod f(t)) and
" tis coprime to f(t) for each prime ¢|d;
Choose random polynomials b(t) € Z,[t] of degree smaller than d until
either n is declared composite or b(t) is found with b(t)""~1 = 1
(mod f(t)) and b(t)(”d’l)/q — 1 is coprime to f(t) for each prime g|r.
2. [Binomial congruence]
If (z — 1)"d #£a2m" — 1 (mod a" — b(t), f(t),n) return “n is composite”;
Return “n is prime”;

Some comments are in order. The search for d,r may proceed determin-
istically, with Theorem 4.3.5 ensuring quick success as discussed above. The
first random search asks for a polynomial f(¢) with several properties. Using
Algorithm 4.3.2 to attempt to prove coprimality may result in a proof that n
is composite if n is indeed composite. If n is prime, then Algorithm 4.3.2 will
not declare n composite, and we will be successful in finding a polynomial
f with the desired properties as soon as we choose an irreducible one; see
Algorithm 2.2.10. Assuming that n is prime and f(t) is irreducible modulo n,
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the ring Z,[t]/(f(t)) is a finite field, and the search for b(¢) will be successful
as soon as a primitive generator for the multiplicative group of this finite field
is found, and perhaps even sooner. Again, if n is composite, Algorithm 4.3.2
may discover this fact.

If n is prime, the expected running time for each item in Step [Setup] is
dominated by the single computation in Step [Binomial congruence], with time
bound estimated as O(rd? In* n). With d bounded by (Inlnn)@(nInlnlnn) “the
total expected complexity is (Inn)*(Inlnn)O(nnInnn) Thig expression is not
quite O(In*n), but it is of the form (Inn)*t°(1). For this reason, Bernstein
refers to the algorithm as running in “essentially” quartic time.

If one is interested in the practical use of the Agrawal-Kayal-Saxena circle
of ideas for primality testing, at present one should start with Algorithm 4.5.9.
And since the most favorable case of this algorithm is the case d = 1, it might
be best to concentrate first on this case to see whether competitive numbers
can be proved prime.

The reader contemplating an AKS implementation might find the
following remarks useful. Whether one attempts an implementation of the
original AKS Algorithm 4.5.1 or one of the more recent variants, various of
our book algorithms may be of interest. For example, binary-segmentation
multiply, Algorithm 9.6.1, is a good candidate for computing products of
polynomials with modulus, in transforming such a product to a single, large-
integer multiply. There is also the possibility of entirely parallel evaluations of
the key polynomial powers for some variants of AKS. The reference [Crandall
and Papadopoulos 2003] gives an implementor’s perspective, with most of the
notions therein applicable to all AKS variants. In that treatment an empirical
rule of thumb is established for the straightforward Algorithm 4.5.1: One
may—using the right fast algorithms—prove primality of a prime p in roughly

T(p) ~ 10001n° p

CPU operations, over the range of resolvable p. This is a real-world empirical
result that concurs with complexity estimates of the text. Thus for example,
the Mersenne prime p = 23! —1 requires about 10! operations (and so perhaps
a minute on a modern PC) with this simplest AKS approach. Note that
the operation complexity 7' rises nearly two orders of magnitude when the
bits in p are doubled. Beyond this benchmark for the easiest AKS variant,
implementation considerations appear in [Bernstein 2003], whereby one gets
down to the aforementioned “essentially” quartic time, and this allows primes
of several hundred decimal digits to be resolvable in a day or so.

4.6 Exercises

4.1. Show that for n prime, n > 200560490131, the number of primitive
roots modulo n is greater than (n — 1)/(21nlnn). The following plan may be
helpful:

(1) The number of primitive roots modulo n is ¢(n — 1).
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(2) If the product P of all the primes p < T is such that P > m, then
1
M > H (1 _ > )
m p

Use ideas such as this to show the inequality for 200560490131 < n <
5.6 - 1012,

(3) Complete the proof using the following estimate in [Rosser and Schoenfeld
1962]:

M ' Inlnm + for m > 223092870.

w(m) Inlnm

4.2. Suppose (4.1) is replaced with “for each prime g|n—1 there is an integer
aq such that a7 ~' =1 (mod n) and agnfl)/q # 1 (mod n).” Show that n must
be prime.

4.3. Suppose we are given a prime n and the complete prime factorization
of n—1, and we try to use Exercise 4.2 to prove n prime by choosing numbers
aq at random. That is, we choose numbers a at random from [1,n — 1], run
through the primes g|n — 1 and check off those for which a can be used as a,
in Exercise 4.2. After all primes ¢g|n — 1 are checked off, the proof of primality
for n is complete. Show that there is a number ¢, independent of n, such that
the expected number of random a’s chosen does not exceed c.

4.4. Suppose elements by, bs, ... are chosen independently and uniformly at
random from the multiplicative group Z¥. Let g(n) be the expected value for
the least number g such that the subgroup generated by by, ..., b, is equal to
Z}. In the spirit of Exercise 4.3 show that g(n) < 3 for all primes n. What
can be said in general when n is not assumed to be prime?

4.5. Show that the Pepin test works with 5 instead of 3 for Fermat numbers
larger than 5.

4.6. In 1999 a group of investigators (R. Crandall, E. Mayer, J. Papadopou-
los) performed—and checked—a Pepin squaring chain for the twenty-fourth
Fermat number F54. The number is composite. This could be called the deep-
est verified calculation ever performed prior to 2000 A.D. for a 1-bit (i.e.,
prime/composite) answer [Crandall et al. 1999]. (More recently, C. Percival
has determined the quadrillionth bit of 7’s binary expansion to be 0; said cal-
culation was somewhat more extensive than the Fby resolution.) Fay can also
be said to be the current largest “genuine Fermat composite” (an F,, proven
composite yet enjoying no known explicit proper factors). See Exercise 1.82
for more on the notion of genuine composites.

As of this writing, F33 is the smallest Fermat number of unknown
character. Estimate how many total operations modulo F33 will be required
for the Pepin test. How will this compare with the total number of machine
operations performed for all purposes, worldwide, prior to 2000 A.D.? By
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what calendar year could F33 be resolved via the Pepin test? Note, in this
connection, the itemized remarks pursuant to Table 1.3.
Analyze and discuss these issues:

(1) The possibility of parallelizing the Pepin squaring (nobody knows how to
parallelize the squaring chain overall in an efficient manner, but indeed one
can parallelize within one squaring operation by establishing each element
of a convolution by way of parallel machinery and the CRT).

(2) The problem of proving the character of F,, is what the final Pepin residue
says it is. This is an issue because, of course, a machine can sustain
either cosmic-ray glitches (hardware) or bugs (software) that ruin the
proof. Incidentally, hardware glitches do happen; after all, any computing
machine, physics tells us, lives in an entropy bath; error probabilities are
patently nonzero. As for checking software bugs, it is important to have
different code on different machines that are supposed to be checking each
other—one does not even want the same programmer responsible for all
machines!

On this latter issue, consider the “wavefront” method, in which one, fastest
available machine performs Pepin squaring, this continual squaring thought of
as a wavefront, with other computations lagging behind in the following way.
Using the wavefront machine’s already deposited Pepin residues, a collection
of (slower, say) machines verify the results of Pepin squarings at various
intermediate junctures along the full Pepin squaring chain. For example,
the fast, wavefront machine might deposit the millionth, two millionth, three
millionth, and four millionth squares of 3; i.e., deposit powers

1000000 2000000 3000000 4000000
2 32 32 32
Y ) )

all modulo Fj,, and each of the slow machines would grab a unique one of
these residues, square it just one million times, and expect to find precisely
the deterministic result (the next deposited power).

4.7. Prove the following theorems of Suyama (see [Williams 1998]):

(1) Suppose k is an odd number and N = k2" 41 divides the Fermat number
F,. Prove that if N < (3-2™%2 4+ 1)2, then N is prime.

(2) Suppose the Fermat number F), is factored as F'R, where we have the
complete prime factorization of F, and R is the remaining unfactored
portion. But perhaps R is prime and the factorization is complete. If
R is composite, the following test often reveals this fact. Let r1 =
3fm=l mod F,, and ro = 371 mod F,,. If 71 # ro (mod R) then R is
composite. (This result is useful, since it replaces most of the mod R
arithmetic with mod F;,, arithmetic. The divisions by F}, are especially
simple, as exemplified in Algorithm 9.2.13.)

4.8. Reminiscent of the Suyama results of Exercise 4.7 is the following
scheme that has actually been used for some cofactors of large Fermat numbers
[Crandall et al. 1999]. Say that F), has been subjected to a Pepin test, and we
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have in hand the final Pepin residue, namely,
r=3F=1/2 mod F,.
Say that someone discovers a factor f of F,,, so that we can write
F, = fG.

Prove that if we assign
z=3""mod F,,

then
ged(r? —z,G) =1

implies that the cofactor G is neither a prime nor a prime power. As in Exercise
4.7, the relatively fast (mod F,) operation is the reason why we interpose said
operation prior to the implicit (mod G) operation in the ged. All of this shows
the importance of carefully squirreling away one’s Pepin residues, to be used
again in some future season!

4.9. There is an interesting way to find, rigorously, fairly large primes of the
Proth form p = k2™ +1. Prove this theorem of Suyama [Williams 1998], that if
a p of this form divides some Fermat number F,,,, and if k27"~™~2 < 9.2m+216,
then p is prime.

4.10. Prove the following theorem of Proth: If n > 1,2¥n—1,2% > /0, and
a®=1/2 = 1 (mod n) for some integer a, then n is prime.

4.11. In the algorithm based on Theorem 4.1.6, one is asked for the integral
roots (if any) of a cubic polynomial with integer coefficients. As an initial
foray, show how to do this efficiently using a Newton method or a divide-
and-conquer strategy. Note the simple Algorithm 9.2.11 for design guidance.
Consider the feasibility of rapidly solving even higher-order polynomials for
possible integer roots.

A hint is in order for the simpler case of polynomials 2* — a. To generalize
Algorithm 9.2.11 for finding integer k-th roots, say | N'/*|, consider

= In Step [Initialize], replace B(N)/2 — B(N)/k;
= In Step [Perform Newton iteration], make the iteration

y = (k= Dz + [N/2""])/k],
or some similar such reduction formula.
4.12. Prove Theorem 4.2.4.

4.13. If the partial factorization (4.2) is found by trial division on n — 1
up to the bound B, then we have the additional information that R’s prime
factors are all > B. Show that if a satisfies (4.3) and also ged(a — 1,n) = 1,
then every prime factor of n exceeds BF. In particular, if BF > n'/2, then n
is prime.
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4.14. Suppose that in addition to the hypotheses of Theorem 4.2.10 we
know that all of the prime factors of Ry{Rs exceed B, where n — 1 = F| Ry,

n+1 = F3R,. Also suppose there is an integer a1 such that a{b_l =1 (mod n),
gcd(af1 — 1,n) = 1, and there are f,A as in (4.12) with ged(n,2b) = 1,
(8) = -1, Upp1 = 0 (mod n), ged(Up,,n) = 1. Let F denote the least

common multiple of Fy, F5. Show that if the residue n mod F' is not a proper
factor of n and BF > y/n, then n is prime.

4.15. Prove Theorem 4.2.9.

4.16. By the methods of Exercise 4.1 show the following: If n > 892271479
is prime, let N denote the expected number of choices of random pairs
a,b € {0,1,...,n — 1}, not both 0, until with f given in (4.12), we have
r¢(n) =n+1. Then N < 4Inlnn.

4.17. Prove that n = 700001 is prime, first using a factorization of n — 1,
and then again using a factorization of n + 1.

4.18. Show how the algorithm of Coppersmith that is mentioned near the
end of Section 4.2.3 can be used to improve the n — 1 test, the n + 1 test, the
combined n? — 1 test, the finite field primality test, and the Gauss sums test.

4.19. Show that every ideal in Z,[z] is principally generated (that is, is the
set of multiples of one polynomial) if and only if n is prime.

4.20. Let ¢ be an odd prime. With the notation of Section 4.4.1 and
Definition 2.3.6 show that for integer m not divisible by ¢, we have x2 4(m) =

(%) and that G(2,q) = G(1,q).

4.21. Let g be an odd prime and let x be a non-principal character modulo
q. Generalize the proof of Lemma 4.4.1 to show that |7(x)|> = ¢. That is,
Lemma 4.4.1 is for a character with prime modulus and prime order, while
this exercise asks for a generalization to any character with prime modulus
as long as its order exceeds 1. Even more generally, show that |7(x)|? = ¢ for
any primitive character y of modulus ¢, regardless of whether ¢ is prime.

4.22. Suppose that n survives steps [Preparation] and [Probable-prime
computation] of Algorithm 4.4.5, and for each prime p|I we either have
w(p) = 1 or some I(p, q) # 0. Show that Step [Coprime check] may be skipped.
Show too in this case that [ in Step [Divisor search] may be taken as n, so that
the Chinese remainder theorem calculations in that step also may be skipped.

4.23. With the notation of Definition 4.4.4, show that if « is a unit in the
ring Z,[(p, (], then ged(n, c(a)) = 1. Show that the converse is false.

4.24. 1If ¢ is a prime and y is a character mod ¢ of order ¢ — 1, show that x
is one-to-one on the residue classes modulo ¢q. Show the converse as well.

4.25. For n an integer at least 2, show that the polynomials (x + 1)™ and
™ + 1 are equal in the ring Z,[z] if and only if n is prime. More generally,
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show that if ged(a,n) = 1, then (z + a)” = ™ + a in Z,[z] if and only if n is
prime.

4.26. Using Theorem 4.5.2 prove that Algorithm 4.5.1 correctly decides
whether n is prime or composite.

4.27. Show that the set G in the proof of Theorem 4.5.2 is the union of {0}
and a cyclic multiplicative group.

4.28. By the same method as in Exercise 3.19, show that if a” = a (mod n)
for each positive integer @ smaller than In®n, then n is squarefree. Further
show that the AKS congruence (z+a)™ = 2™ +a (mod z" — 1,n) implies that
(a+ 1) = a+ 1 (mod n). Conclude that the hypotheses of Theorem 4.5.2
imply that if n is divisible by a prime larger than /¢(r)lgn, then n is equal
to this prime. Use this to establish a shorter version of Algorithm 4.5.1, where
Step [Power test] may be skipped entirely.

4.29. Show that if n = +3 (mod 8), then the value of 7 in Step [Setup] in
Algorithm 4.5.1 is bounded above by 81g? . Hint: Show that if 5 is the least
power of 2 with the order of n in Zy, exceeding lg?n, then ro < 81g%n.

4.30. Using an appropriate generalization of the idea suggested in Exercise
4.29, and Theorem 1.4.7, show that the value of r in Step [Setup] in Algorithm
4.5.1 is bounded above by lg? n1glg n for all but p0551bly o(m(z)) primes n < x.
Conclude that Algorithm 4.5.1 runs in time O(In°n) for almost all primes n,
in the sense that the number of exceptional primes n < z is o(7(z)).

4.31. Prove the converse of Lemma 4.5.5; that is, assuming that r,p are
unequal primes, d|r — 1 and f, q(x) is irreducible modulo p, prove that the
order of p("=1/4 modulo r is d.

4.32. Suppose that ri,79,...,r; are primes and that di,ds,...,d; are
positive and pairwise coprime, with d;|r; — 1 for each i. Let f(z) be the
minimal polynomial for 7., .4, Mrs.dy - - - Wry,,d, OVer Q. Show that for primes p
unequal to each r;, f(x) is irreducible modulo p if and only if the order of
each p(”_l)/d" modulo 7; is d;.

4.33. In the text we only sketched the proof of Theorem 4.5.8. Give a
complete proof.

4.7 Research problems

4.34. Design a practical algorithm that rigorously determines primality of
an arbitrary integer n € [2,...,x] for as large an x as possible, but carry out
the design along the following lines.

Use a probabilistic primality test but create a (hopefully minuscule) table
of exceptions. Or use a small combination of simple tests that has no exceptions
up to the bound z. For example, in [Jaeschke 1993] it is shown that no
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composite below 341550071728321 simultaneously passes the strong probable
prime test (Algorithm 3.5.2) for the prime bases below 20.

4.35. By consideration of the Diophantine equation

nk —4m =1,
prove that no Fermat number can be a power n*, k > 1. That much is known.
But unresolved to this day is this: Must a Fermat number be squarefree? Show
too that no Mersenne number M,,, with n a positive integer, is a nontrivial
power.

4.36. Recall the function M (p) defined in Section 4.1.3 as the number of
multiplications needed to prove p prime by traversing the Lucas tree for p.
Prove or disprove: For all primes p, M (p) = O(lgp).

4.37. (Broadhurst). The Fibonacci series (u,) as defined in Exercise 2.5
yields, for certain n, some impressive primes. Work out an efficient primality-
testing scheme for Fibonacci numbers, perhaps using publicly available
provers.

Incidentally, according to D. Broadhurst all indices are rigorously resolved,
in regard to the primality question on wu,, for all n through n = 35999
inclusive (and, yes, ussg99 is prime). Furthermore, ug;s3g is known to be prime,
yet calculations are still needed to resolve two suspected (probable) primes,
namely the u,, for n € {50833,104911}, and therefore to resolve the primality
question through n = 104911.

4.38. Given a positive nonsquare integer n, show that there is a prime r
with 1 +1g°n < 7 = O(In®n) such that n is a primitive root for r. If you
are prepared to assume the GRH, the discussion in [Hooley 1976] on Artin’s
conjecture may be of help.

4.39. We have seen in Exercise 4.28 that the power test may be omitted
from Algorithm 4.5.1. May we also omit the power test in Algorithm 4.5.97
Do the hypotheses of Theorem 4.5.6 imply that n is squarefree?



Chapter 5
EXPONENTIAL FACTORING ALGORITHMS

For almost all of the multicentury history of factoring, the only algorithms
available were exponential, namely, the running time was, in the worst case,
a fixed positive power of the number being factored. But in the early 1970s,
subexponential factoring algorithms began to come “on line.” These methods,
discussed in the next chapter, have their running time to factor n bounded
by an expression of the form n°(!). One might wonder, then, why the current
chapter exists in this book. We have several reasons for including it.

(1) An exponential factoring algorithm is often the algorithm of choice for
small inputs. In particular, in some subexponential methods, smallish
auxiliary numbers are factored in a subroutine, and such a subroutine
might invoke an exponential factoring method.

(2) In some cases, an exponential algorithm is a direct ancestor of a
subexponential algorithm. For example, the subexponential elliptic curve
method grew out of the exponential p — 1 method. One might think of the
exponential algorithms as possible raw material for future developments,
much as various wild strains of agricultural cash crops are valued for their
possible future contributions to the plant gene pool.

(3) Tt is still the case that the fastest, rigorously analyzed, deterministic
factoring algorithm is exponential.

(4) Some factoring algorithms, both exponential and subexponential, are
the basis for analogous algorithms for discrete logarithm computations.
For some groups the only discrete logarithm algorithms we have are
exponential.

(5) Many of the exponential algorithms are pure delights.
We hope then that the reader is convinced that this chapter is worth it!
5.1 Squares

An old strategy to factor a number is to express it as the difference of two
nonconsecutive squares. Let us now expand on this theme.

5.1.1 Fermat method

If one can write n in the form a? — b2, where a, b are nonnegative integers,
then one can immediately factor n as (a 4+ b)(a — b). If a — b > 1, then the
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factorization is nontrivial. Further, every factorization of every odd number
n arises in this way. Indeed, if n is odd and n = uv, where u, v are positive
integers, then n = a® — b% with a = 3(u+v) and b = 3|u —v|.

For odd numbers n that are the product of two nearby integers, it is easy to
find a valid choice for a, b and so to factor n. For example, consider n = 8051.
The first square above n is 8100 = 902, and the difference to n is 49 = 72. So
8051 = (904 7)(90 — 7) = 97 - 83.

To formalize this as an algorithm, we take trial values of the number a
from the sequence [v/n|, [v/n| +1,... and check whether a? —n is a square. If
it is, say b2, then we have n = a?—b? = (a+b)(a—b). For n odd and composite,
this procedure must terminate with a nontrivial factorization before we reach
a = |(n+9)/6]. The worst case occurs when n = 3p with p prime, in which
case the only choice for a that gives a nontrivial factorization is (n+9)/6 (and
the corresponding b is (n —9)/6).

Algorithm 5.1.1 (Fermat method). We are given an odd integer n > 1.
This algorithm either produces a nontrivial divisor of n or proves n prime.

1. [Main loop]
for([vn] <a < (n+9)/6) {
// Next, apply Algorithm 9.2.11.

if(b = va® — n is an integer) return a — b;

return “n is prime”;

It is evident that in the worst case, Algorithm 5.1.1 is much more tedious than
trial division. But the worst cases for Algorithm 5.1.1 are actually the easiest
cases for trial division, and vice versa, so one might try to combine the two
methods.

There are various tricks that can be used to speed up the Fermat method.
For example, via congruences it may be discerned that various residue classes
for a make it impossible for a? —n to be a square. As an illustration, if n = 1
(mod 4), then a cannot be even, or if n = 2 (mod 3), then @ must be a multiple
of 3.

In addition, a multiplier might be used. As we have seen, if n is the product
of two nearby integers, then Algorithm 5.1.1 finds this factorization quickly.
Even if n does not have this product property, it may be possible for kn to
be a product of two nearby integers, and ged(kn,n) may be taken to obtain
the factorization of n. For example, take n = 2581. Algorithm 5.1.1 has us
start with ¢ = 51 and does not terminate until the ninth choice, a = 59,
where we find that 592 — 2581 = 900 = 302 and 2581 = 89 -29. (Noticing that
n =1 (mod 4),n = 1 (mod 3), we know that a is odd and not a multiple of
3, so 59 would be the third choice if we used this information.) But if we try
Algorithm 5.1.1 on 3n = 7743, we terminate on the first choice for a, namely
a = 88, giving b = 1. Thus 3n = 89 - 87, and note that 89 = gcd(89,n),
29 = ged (87, n).
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5.1.2 Lehman method

But how do we know to try the multiplier 3 in the above example? The
following method of R. Lehman formalizes the search for a multiplier.

Algorithm 5.1.2 (Lehman method). We are given an integer n > 21. This
algorithm either provides a nontrivial factor of n or proves n prime.
1. [Trial division]
Check whether n has a nontrivial divisor d < nl/3. and if so, return d:
2. [Loop]
for(1 <k < [nl/ﬂ) {
for([2vkn] < a < [2Vkn +nY/%/(4Vk)]) {
if(b = v/a® — 4kn is an integer) return ged(a + b, n);
// Via Algorithm 9.2.11.
}
¥

return “n is prime”;

Assuming that this algorithm is correct, it is easy to estimate the running
time. Step [Trial division] takes O(n'/3) operations, and if Step [Loop] is
performed, it takes at most

[n1/3] 16
> (Gz+) —oe)

k=1

calls to Algorithm 9.2.11, each call taking O(Inlnn) operations. Thus, in all,
Algorithm 5.1.2 takes in the worst case O(n!/?Inlnn) arithmetic operations
with integers the size of n. We now establish the integrity of the Lehman
method.

Theorem 5.1.3. The Lehman method (Algorithm 5.1.2) is correct.

Proof. We may assume that n is not factored in Step [Trial division]. If n
is not prime, then it is the product of 2 primes both bigger than n'/3. That
is, n = pq, where p,q are primes and n'/3 < p < ¢. We claim that there is
a value of k < {n1/3—| such that k£ has the factorization uv, with u,v positive
integers, and

lug — vp| < n'/3.

Indeed, by a standard result (see [Hardy and Wright 1979, Theorem 36]), for
any bound B > 1, there are positive integers u, v with v < B and | % — §| < %.

We apply this with B = n'/6,/q/p. Then

lug —vp| < =nt/3,

_a
nt/6\/q/p
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It remains to show that & = uv < nl/S]. Since % < % + % and v < B, we
have

k:uvzgv2<gv2+v<g~ 1/3 1*n1/3+1

v_p a
v q B~qp

so the claim is proved.
With k,u,v as above, let a = uq + vp, b = |uq — vp|. Then 4kn = a? — v?.

We show that 2vkn < a < 2Vkn + 2 4f Since uq - vp = kn, we have
a=uq+vp > 2vVkn. Set a = 2vkn + E. Then

2
Akn + AEVER < (2\/lm n E) — 4 = 4kn + b® < 4kn + n?/3,

so that 4EvVEn < n?/3, and E < Zl—\//g as claimed.

Finally, we show that if a, b are returned in Step [Loop], then ged(a+ b, n)
is a nontrivial factor of n. Since n divides (a + b)(a — b), it suffices to show
that a + b < n. But

nl/6 nl/6
a+b<2VEn+ o 4013 <o /B 4+ 1)+ — 4 nl/8 <,
4\/% ( ) 4‘/711/3 +1
the last inequality holding for n > 21. |

There are various ways to speed up the Lehman method, such as first
trying values for k that have many divisors. We refer the reader to [Lehman
1974] for details.

5.1.3 Factor sieves

In the Fermat method we search for integers a such that a®> — n is a square.
One path that has been followed is to try to make use of the many values of
a for which a? — n is not a square. For example, suppose a? —n = 17. Does
this tell us anything useful about n? Indeed, it does. If p is a prime factor
of n, then a? = 17 (mod p), so that if p # 17, then p is forced to lie in one
of the residue classes +1, £2, +4, +8 (mod 17). That is, half of all the primes
are ruled out as possible divisors of n in one fell swoop. With other values of
a we similarly can rule out other residue classes for prime factors of n. It is
then a hope that we can gain so much information about the residue classes
that prime factors of n must lie in, that these primes are then completely
determined and perhaps easily found.

The trouble with this kind of argument is the exponential growth in its
complexity. Suppose we try this argument for k& values of a, giving us £ moduli
mi, Mo, -+, my, and for each we learn that prime factors p of n must lie in
certain residue classes. For the sake of the argument, suppose the m;’s are
different primes, and we have %(m; — 1) possible residue classes (mod m;)
for the prime factors of n. Then modulo the product M = mimg---myg, we
have 27%(my — 1)(mg — 1) ... (my — 1) = 27Fp(M) possible residue classes
(mod M). On the one hand, this number is small, but on the other, it is large!



5.2 Monte Carlo methods 229

That is, the probability that a random prime p is in one of these residue classes
is 27% so if k is large, this should greatly reduce the possibilities and pinpoint
p. But we know no fast way of finding the small solutions that simultaneously
satisfy all the required congruences, since listing the 27 ¥¢ (M) solutions to
find the small ones is a prohibitive calculation. Early computational efforts at
solving this problem involved ingenious apparatus with bicycle chains, cards,
and photoelectric cells. There are also modern special purpose computers that
have been built to solve this kind of problem. For much more on this approach,
see [Williams and Shallit 1993].

5.2 Monte Carlo methods

There are several interesting heuristic methods that use certain deterministic
sequences that are analyzed as if they were random sequences. Though the
sequences may have a random seed, they are not truly random; we nevertheless
refer to them as Monte Carlo methods. The methods in this section are all
principally due to J. Pollard.

5.2.1 Pollard rho method for factoring

In 1975, J. Pollard introduced a most novel factorization algorithm, [Pollard
1975]. Consider a random function f from S to S, where S = {0,1,...,1—1}.
Let s € S be a random element, and consider the sequence

5, f(5), F(f(s)), ...

Since f takes values in a finite set, it is clear that the sequence must eventually
repeat a term, and then become cyclic. We might diagram this behavior with
the letter p, indicating a precyclic part with the tail of the p, and the cyclic
part with the oval of the p. How long do we expect the tail to be, and how
long do we expect the cycle to be?

It should be immediately clear that the birthday paradox from elementary
probability theory is involved here, and we expect the length of the tail and
the oval together to be of order v/I. But why is this of interest in factoring?

Suppose p is a prime, and we let S = {0,1,...,p — 1}. Let us specify a
particular function f from S to S, namely f(z) = 2% + 1 mod p. So if this
function is “random enough,” then we will expect that the sequence (f()(s)),
i=0,1,..., of iterates starting from a random s € S begins repeating before
O(\/p) steps. That is, we expect there to be 0 < j < k = O(,/p) steps with
FO(s) = fF(s).

Now suppose we are trying to factor a number n, and p is the least prime
factor of n. Since we do not yet know what p is, we cannot compute the
sequence in the above paragraph. However, we can compute values of the
function F defined as F/(x) = 241 mod n. Clearly, f(x) = F(x) mod p. Thus,
F@(s) = F®(s) (mod p). That is, ged (FU(s) — F*)(s),n) is divisible by
p. With any luck, this gcd is not equal to n itself, so that we have a nontrivial
divisor of n.
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There is one further ingredient in the Pollard rho method. We surely
should not be expected to search over all pairs j,k with 0 < j < k and
to compute ged(FW (s) — F*)(s),n) for each pair. This could easily take
longer than a trial division search for the prime factor p, since if we search
up to B, there are about %BQ pairs j,k. And we do not expect to be
successful until B is of order ,/p. So we need another way to search over
pairs other than to examine all of them. This is afforded by a fabulous
expedient, the Floyd cycle-finding method. Let | = k — j, so that for any
m > j, F™)(s) = FmtD(s) = F(m+2D(s) = ... (mod p). Consider this for
m = 1[5/1], the first multiple of [ that exceeds j. Then F(™)(s) = FZ™)(s)
(mod p), and m < k = O(\/p).

So the basic idea of the Pollard rho method is to compute the sequence
ged(FO (s) — F9(s),n) for i = 1,2,..., and this should terminate with a
nontrivial factorization of n in O(,/p) steps, where p is the least prime factor
of n.

Algorithm 5.2.1 (Pollard rho factorization method). We are given a com-
posite number n. This algorithm attempts to find a nontrivial factor of n.
1. [Choose seeds]
Choose random a € [1,n — 3];
Choose random s € [0,n — 1];
U=V =s;
Define function F(z) = (22 + a) mod n;
2. [Factor search]

U = F(U);
V=FV)
V=FV), // F(V) intentionally invoked twice.

g =ged(U =V, n);

if(9 == 1) goto [Factor search];
3. [Bad seed]

if(g == n) goto [Choose seeds];

4. [Success]
return g; // Nontrivial factor found.

A pleasant feature of the Pollard rho method is that very little space is
required: Only the number n that is being factored and the current values of
U,V need be kept in memory.

The main loop, Step [Factor search], involves 3 modular multiplications
(actually squarings) and a ged computation. In fact, with the cost of one
extra modular multiplication, one may put off the ged calculation so that it
is performed only rarely. Namely, the numbers U — V may be accumulated
(multiplied all together) modulo n for k iterations, and then the ged of this
modular product is taken with n. So if k is 100, say, the amortized cost of
performing a ged is made negligible, so that one generic loop consists of 3
modular squarings and one modular multiplication.
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It is certainly possible for the ged at Step [Bad seed] to be n itself, and the
chance for this is enhanced if one uses the above idea to put off performing
ged’s. However, this defect can be mitigated by storing the values U,V at the
last ged. If the next ged is n, one can return to the stored values U,V and
proceed one step at a time, performing a gcd at each step.

There are actually many choices for the function F(z). The key criterion is
that the iterates of F' modulo p should not have long p’s, or as [Guy 1976] calls
them, “epacts.” The epact of a prime p with respect to a function F' from Z, to
Z,, is the largest k for which there is an s with F©)(s), F(M(s),..., F*)(s) all
distinct. (Actually we have taken some liberty with this definition, originally
Guy defined it as the number of iterates to discover the factor p.)

So a poor choice for a function F(z) is ax + b, since the epact for a prime
p is the multiplicative order of @ modulo p (when a # 1 (mod p)), usually a
large divisor of p — 1. (When a = 1 (mod p) and b #Z 0 (mod p), the epact is
p.)

Even among quadratic functions 22 4+ b there can be poor choices, for
example b = 0. Another less evident, but nevertheless poor, choice is 22 — 2. If
x can be represented as y +y~! modulo p, then the k-th iterate is yzk + y’Qk
modulo p.

It is not known whether the epact of 22 +1 for p is a suitably slow-growing
function of p, but Guy conjectures it is O (v/pInp).

If we happen to know some information about the prime factors p of n, it
may pay to use higher-degree polynomials. For example, since all prime factors
of the Fermat number F}, are congruent to 1 (mod 2¢72) when k > 2 (see
Theorem 1.3.5), one might use 22" 41 for the function F when attempting
to factor Fy by the Pollard rho method. One might expect the epact for
a prime factor p of Fj, to be smaller than that of z?> + 1 by a factor of
about v2k+1. To see this consider the following probabilistic model. (Note
that a more refined probabilistic model that agrees somewhat better with the
available data is given in [Brent and Pollard 1981]. Also see Exercise 5.2.)
Iterating z2? 4+ 1 might be thought of as a random walk through the set of
squares plus 1, a set of size (p — 1)/2, while using 22 11 we walk through
the 282 powers plus 1, a set of size (p — 1)/2F+2. The birthday paradox says
we should expect a repeat in about c\/m steps in a random walk through a
set of size m, so we see the improved factor of v2k+1. However, there is a
penalty to using 227 4 1, since a typical loop now involves 3(k + 2) modular
squarings and one modular multiplication. For large k the benefit is evident.
In this connection see Exercise 5.24. Such acceleration was used successfully
in [Brent and Pollard 1981] to factor Fg, historically the most spectacular
factorization achieved with the Pollard rho method. The work of Brent and
Pollard also discusses a somewhat faster cycle-finding method, which is to save
certain iterate values and comparing future ones with those, as an alternative
to the Floyd cycle-finding method.
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5.2.2 Pollard rho method for discrete logarithms

Pollard has also suggested a rho method for discrete logarithm computations,
but it does not involve iterating 2 + 1, or any simple polynomial for that
matter, [Pollard 1978]. If we are given a finite cyclic group G and a generator
g of G, the discrete logarithm problem for G is to express given elements of
G in the form ¢!, where [ is an integer. The rho method can be used for any
group for which it is possible to perform the group operation and for which we
can assign numerical labels to the group elements. However, we shall discuss
it for the specific group Z;, of nonzero residues modulo p, where p is a prime
greater than 3.

We view the elements of Zj as integers in {1,2,...,p — 1}. Let g be a
generator and let ¢t be an arbitrary element. Our goal is to find an integer [
such that ¢! = ¢; that is, t = g’ mod p. Since the order of g is p — 1, it is really
a residue class modulo (p — 1) that we are searching for, not a specific integer
[, though of course, we might request the least nonnegative value.

Consider a sequence of pairs (a;,b;) of integers modulo (p — 1) and a
sequence (z;) of integers modulo p such that x; = t% g* mod p, and we begin
with the initial values ag = by = 0, xg = 1. The rule for getting the i + 1
terms from the ¢ terms is as follows:

((a; +1) mod (p — 1), b;), if 0 < < 3p,
(@i+1,bi41) = ¢ (20; mod (p — 1),2b; mod (p — 1)), if %p <z < %p,
(a;, (b +1) mod (p — 1)), if 2p < a; <p,

and so
tr; modp, if0<uz; < %p,
Tit1 =1 z7mod p, if %p <xz < %p,
gxr; mod p, if %p <x; <p.

Since which third of the interval [0,p] an element is in has seemingly
nothing to do with the group Zj;, one may think of the sequence (z;) as
“random,” and so it may be that there are numbers j, k with j <k = O(,/p)
with z; = xp. If we can find such a pair j, k, then we have ¢%s gb =t gb% so
that if [ is the discrete logarithm of ¢, we have

(a; —ap)l = by — b; (mod (p —1)).

If a; — ay, is coprime to p — 1, this congruence may be solved for the discrete
logarithm [. If the ged of a; — aj with p — 1 is d > 1, then we may solve for
I modulo (p —1)/d, say I =1y (mod (p —1)/d). Then I = ly +m(p — 1)/d for
some m = 0,1,...,d — 1, so if d is small, these various possibilities may be
checked.

As with the rho method for factoring, we use the Floyd cycle-finding
algorithm. Thus, at the i-th stage of the algorithm we have at hand both
xi,a;,b; and o, ag;, be;. If ©; = xo;, then we have our cycle match. If not,
we go to the (i + 1)-th stage, computing x;11,a;+1,b;+1 from x;,a;,b; and
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computing o129, a2it2,b2;+2 from xs;,as;, ba;. The principal work is in the
calculation of the (z;) and (x2;) sequences, requiring 3 modular multiplications
to travel from the i-th stage to the (i + 1)-th stage. As with the Pollard rho
method for factoring, space requirements are minimal.

[Teske 1998] describes a somewhat more complicated version of the rho
method for discrete logs, with 20 branches for the iterating function at each
point, rather than the 3 described above. Numerical experiments indicate that
her random walk gives about a 20% improvement.

The rho method for discrete logarithms can be easily distributed to many
processors, as described in connection with the lambda method below.

5.2.3 Pollard lambda method for discrete logarithms

In the same paper where the rho method for discrete logarithms is described,
[Pollard 1978] also suggests a “lambda” method, so called because the “A”
shape evokes the image of two paths converging on one path. The idea is
to take a walk from ¢, the group element whose discrete logarithm we are
searching for, and another from 7', an element whose discrete logarithm we
know. If the two walks coincide, we can figure the discrete logarithm of ¢.
Pollard views the steps in a walk as jumps of a kangaroo, and so the algorithm
is sometimes referred to as the “kangaroo method.” When we know that the
discrete logarithm for which we are searching lies in a known short interval, the
kangaroo method can be adapted to profit from this knowledge: We employ
kangaroos with shorter strides.

One tremendous feature of the lambda method is that it is relatively
easy to distribute the work over many computers. Each node in the network
participating in the calculation chooses a random number r and begins a
pseudorandom walk starting from ¢", where ¢ is the group element whose
discrete logarithm we are searching for. Each node uses the same easily
computed pseudorandom function f : G — S, where S is a relatively small
set of integers whose mean value is comparable to the size of the group G.
The powers g° for s € S are precomputed. Then the “walk” starting at ¢ is

wo =17, w1 = wog! ), wy = wy gV, L

If another node, choosing 7’ initially and walking through the sequence
wh, wy, wh, ..., has a “collision” with the sequence wg,wy,ws,..., that is,
wj = w; for some ¢, j, then

¢ gl (wo)HF (i)t fwiy) — ¢ f (wo)+f (wi) -+ (wj—1)

So if t = ¢!, then

(==Y Flwa) = 3 flawh) (mod m),
pn=0 v=0

where n is the order of the group.
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The usual case where this method is applied is when the order n is prime,
so as long as the various random numbers r chosen at the start by each node
are all distinct modulo n, then the above congruence can be easily solved for
the discrete logarithm {. (This is true unless we have the misfortune that the
collision occurs on one of the nodes; that is, » = r’. However, if the number of
nodes is large, an internodal collision is much more likely than an intranodal
collision.)

It is also possible to use the pseudorandom function discussed in Section
5.2.2 in connection with the lambda method. In this case all collisions are
useful: A collision occurring on one particular walk with itself can also be used
to compute our discrete logarithm. That is, in this collision event, the lambda
method has turned itself into the rho method. However, if one already knows
that the discrete logarithm that one is searching for is in a small interval, the
above method can be used, and the time spent should be about the square
root of the interval length. However, the mean value of the set of integers in
S needs to be smaller, so that the kangaroos are hopping only through the
appropriate interval.

A central computer needs to keep track of all the sequences on all the
nodes so that collisions may be detected. By the birthday paradox, we expect
a collision when the number of terms of all the sequences is O(y/n). It is clear
that as described, this method has a formidable memory requirement for the
central computer. The following idea, described in [van Oorschot and Wiener
1999] (and attributed to J.-J. Quisquater and J.-P. Delescaille, who in turn
acknowledge R. Rivest) greatly mitigates the memory requirement, and so
renders the method practical for large problems. It is to consider so-called
distinguished points. We presume that the group elements are represented
by integers (or perhaps tuples of integers). A particular field of length k of
binary digits will be all zero about 1/2* of the time. A random walk should
pass through such a distinguished point about every 2* steps on average.
If two random walks ever collide, they will coincide thereafter, and both
will hit the next distinguished point together. So the idea is to send only
distinguished points to the central computer, which cuts the rather substantial
space requirement down by a factor of 27%.

A notable success is the March 1998 calculation of a discrete logarithm
in an elliptic-curve group whose order is a 97-bit prime n; see [Escott et al.
1998]. A group of 588 people in 16 countries used about 1200 computers over
53 days to complete the task. Roughly 2 - 10'* elliptic-curve group additions
were performed, with the number of distinguished points discovered being
186364. (The value of k in the definition of distinguished point was 30, so
only about one out of each billion sequence steps was reported to the main
computer.) In 2002, an elliptic-curve discrete logarithm (EDL) extraction was
completed with a 109-bit (= 33-decimal-digit) prime; see the remarks following
Algorithm 8.1.8.

For discrete logarithms in the multiplicative group of a finite field we
have subexponential methods (see Section 6.4), with significantly larger cases
being handled. The current record for discrete logarithms over F,, is a 2001
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calculation, by A. Joux and R. Lercier, where p is the 120-decimal-digit prime
| 101197 | 4 207819. They actually found two discrete logs in this field for the
generator 2, namely the DL for ¢t = [10'!%] and the DL for ¢ + 1. Their
method was based on the number field sieve.

More recent advances in the world of parallel-rho methods include a
cryptographic-DL treatment [van Oorschot and Wiener 1999] and an attempt
at parallelization of actual Pollard-rho factoring (not DL) [Crandall 1999d].
In this latter regard, see Exercises 5.24 and 5.25. For some recent advances in
the DL version of the rho method, see [Pollard 2000] and [Teske 2001]. There
is also a very accessible review article on the general DL problem [Odlyzko
2000].

5.3 Baby-steps, giant-steps

Suppose G = (g) is a cyclic group of order not exceeding n, and suppose t € G.
We wish to find an integer I such that ¢' = t. We may restrict our search for [
to the interval [0,n — 1]. Write [ in base b, where b = [\/n]. Then [ = Iy + {1,
where 0 < lp,l; < b — 1. Note that gh® = tg=l = thlo where h = g'.
Thus, we can search for lp,l; by computing the lists {go,gb, . ,g(b’l)b}
and {tho, tht,... ,thb’l} and sorting them. Once they are sorted, one passes
through one of the lists, finding where each element belongs in the sorted
order of the second list, with a match then being readily apparent. (This idea
is laid out in pseudocode in Algorithm 7.5.1.) If g = th7, then we may take
l = j + ib, and we are through.
Here is a more formal description:

Algorithm 5.3.1 (Baby-steps, giant-steps for discrete logarithms). We
are given a cyclic group G with generator g, an upper bound n for the order of G,
and an element ¢ € G. This algorithm returns an integer [ such that ¢! = ¢. (It
is understood that we may represent group elements in some numerical fashion
that allows a list of them to be sorted.)

1. [Set limits]
b= [v/n];
h = (gfl)b; // Via Algorithm 2.1.5, for example.

2. [Construct lists]
A={g':i=0,1,...,b—1};
B={thi:j=0,1,...,b—1};
3. [Sort and find intersection]
Sort the lists A, B;
Find an intersection, say ¢g' = th7; // Via Algorithm 7.5.1.
return [ =i + jb;

Note that the hypothesis of the algorithm guarantees that the lists A, B will
indeed have a common element. Note, too, that it is not necessary to sort
both lists. Suppose, say, that A is generated and sorted. As the elements of
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B are sequentially generated, one can look for a match in A, provided that
one has rapid means for content-searching in an ordered list. After the match
is found, it is not necessary to continue to generate B, so that on average a
savings of 50% can be gained.

The complexity for Step [Construct lists] is O(y/n) group operations, and
for Step [Sort and find intersection] is O(y/nInn) comparisons. The space
required is what is needed to store O(y/n) group elements. If one has no idea
how large the group G is, one can let n run through the sequence 2% for
k=1,2,....If no match is found with one value of k, repeat the algorithm
with k& + 1. Of course, the sets from the previous run should be saved and
enlarged for the next run. Thus if the group G has order m, we certainly will
be successful in computing the logarithm of ¢ in operation count O(y/mInm)
and space O(y/m) group elements.

A more elaborate version of this idea can be found in [Buchmann et al.
1997], [Terr 1999]. Also see [Blackburn and Teske 1999] for other baby-steps,
giant-steps strategies.

We compare Algorithm 5.3.1 with the rho method for discrete logarithms
in Section 5.2.2. There the running time is O(y/m) and the space is
negligible. However, the rho method is heuristic, while baby-steps, giant-steps
is completely rigorous. In practice, there is no reason not to use a heuristic
method for a discrete logarithm calculation just because a theoretician has
not yet been clever enough to supply a proof that the method works and does
so within the stated time bound. So in practice, the rho method majorizes
the baby-steps, giant-steps method.

However, the simple and elegant idea behind baby-steps, giant-steps is
useful in many contexts, as we shall see in Section 7.5. It also can be used
for factoring, as shown in [Shanks 1971]. In fact, that paper introduced the
baby-steps, giant-steps idea. The context here is the class group of binary
quadratic forms with a given discriminant. We shall visit this method at the
end of this chapter, in Section 5.6.4.

5.4 Pollard p — 1 method

We know from Fermat’s little theorem that if p is an odd prime, then 2P~ = 1
(mod p). Further, if p — 1|M, then 2 =1 (mod p). So if p is a prime factor
of an integer n, then p divides ged(2™ —1,n). The p — 1 method of J. Pollard
makes use of this idea as a tool to factor n. His idea is to choose numbers
M with many divisors of the form p — 1, and so search for many primes p as
possible divisors of n in one fell swoop.

Let M (k) be the least common multiple of the integers up to k. So, M (1) =
1, M(2) =2, M(3) =6, M(4) = 12, etc. The sequence M (1), M(2), ... may be
computed recursively as follows. Suppose M (k) has already been computed. If
k+1 is not a prime or a power of a prime, then M (k+1) = M (k). If k+1 = p?,
where p is prime, then M (k + 1) = pM (k). A precomputation via a sieve, see
Section 3.2, can locate all the primes up to some limit, and this may be easily
augmented with the powers of the primes. Thus, the sequence M (1), M(2), ...
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can be computed quite easily. In the following algorithm we arrive at M (B)
by using directly the primes up to B and their maximal powers up to B.

Algorithm 5.4.1 (Basic Pollard p — 1 method). We are given a composite
odd number n and a search bound B. This algorithm attempts to find a nontrivial
factor of n.

1. [Establish prime-power base]
Find, for example via Algorithm 3.2.1, the sequence of primes p; < ps <
-+« < pm < B, and for each such prime p;, the maximum integer a;
such that p* < B;

2. [Perform power ladders]
c=2; // Actually, a random ¢ can be tried.
for(1 <i<m) {
for(1 < j < a;) ¢ = ¢ mod n;

3. [Test ged]
g =ged(c—1,n);
return g; // We hope for a success 1 < g < n.

There are two ways that the basic p—1 method can fail: (1) if ged(c—1,n) =1,
or (2) if this ged is n itself. Here is an example to illustrate these problems.
Suppose n = 2047 and B = 10. The prime powers are 23, 32,5, 7, and the final
g value is 1. However, we can increase the search bound. If we increase B to
12, there is one additional prime power, namely 11. Now, the final returned
value is g = n itself, and the algorithm still fails to yield a proper factor of n.
Even taking more frequent ged’s in Step [Test ged] does not help for this n.

What is going on here is that 2047 = 2!' — 1 = 23 .89. Thus,
ged (2M — 1,n) = n if 11|M and is 1 otherwise. In the event of this type
of failure, it is evident that increasing the search bound will not be of any
help. However, one may replace the initial value ¢ = 2 with ¢ = 3 or some
other number. With ¢ = 3 one is computing ged (SM(B) -1, n) However, this
strategy does not work very well for n = 2047; the least initial value that
splits n is ¢ = 12. For this value we find ged (12M(8) — 1,n) = 89.

There is a second alternative in case the algorithm fails with ged equal
to n. Choose a random integer for the initial value ¢, and reorganize the list
of prime powers so that the 2 power comes at the end. Then take a gcd as
in Step [Test ged] repeatedly, once before each factor of 2 is used. It is not
hard to show that if n is divisible by at least 2 different odd primes, then
the probability that a random ¢ will cause a failure because the ged is n is at
most 1/2.

It should be pointed out, though, that failing with ged equal to n rarely
occurs in practice. By far the more common form of failure occurs when the
algorithm runs its course and the ged is still 1 at the end. With this event, we
may increase the search bound B, and/or apply the so-called second stage.

There are various versions of the second stage—we describe here the
original one. Let us consider a second search bound B’ that is somewhat
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larger than B. After searching through the exponents M (1), M (2),..., M(B),
we next search through the exponents QM (B), where @ runs over the
primes in the interval (B, B’]. This then has the chance of uncovering
those primes p|n with p — 1 = Qu, where @ is a prime in (B, B’] and
u|M(B). It is particularly easy to traverse the various exponents QM (B).
Suppose the sequence of primes in (B, B’] is Q1 < Q2 < --- . Note that
2@1M(B) mod n may be computed from 2M(5) mod n in O(InQ,) steps. For
2@2M(B) mod n, we multiply 2€1M(B) mod n by 2@2=QUMB) mod n, then
by 2(@Qs=Q2)M(B) 1od n to get 293M(B) mod n, and so on. The differences
Qi+1—Q; are all much smaller than the @);’s themselves, and for various values
d of these differences, the residues 24 (5) mod n can be precomputed. Thus,
if B’ > 2B, say, the amortized cost of computing all of the 29 (B) mod n
is just one modular multiplication per Q;. If we agree to spend just as much
time doing the second stage as the basic p — 1 method, then we may take B’
much larger than B, perhaps as big as Bln B.

There are many interesting issues pertaining to the second stage, such as
means for further acceleration, birthday paradox manifestations, and so on.
See [Montgomery 1987, 1992a], [Crandall 1996a], and Exercise 5.9 for some of
these issues.

We shall see that the basic idea of the Pollard p—1 method is revisited with
the Lenstra elliptic curve method (ECM) for factoring integers (see Section
7.4).

5.5 Polynomial evaluation method

Suppose the function F(k,n) = k! mod n were easy to evaluate. Then a great
deal of factoring and primality testing would also be easy. For example, the
Wilson-Lagrange theorem (Theorem 1.3.6) says that an integer n > 1 is prime
if and only if F(n — 1,n) = n — 1. Alternatively, n > 1 is prime if and only if
F([v/n],n) is coprime to n. Further, we could factor almost as easily: Carry
out a binary search for the least positive integer k with ged(F(k,n),n) > 1—
this &, of course, will be the least prime factor of n.

As outlandish as this idea may seem, there is actually a fairly fast
theoretical factoring algorithm based on it, an algorithm that stands as the
fastest deterministic rigorously analyzed factoring algorithm of which we
know. This is the Pollard—Strassen polynomial evaluation method; see [Pollard
1974] and [Strassen 1976].

The idea is as follows. Let B = {nl/ﬂ and let f(z) be the polynomial
x(x—1)---(x — B+1). Then f(jB) = (jB)!/((j — 1)B)! for every positive
integer 7, so that the least j with ged(f(jB),n) > 1 isolates the least prime
factor of n in the interval ((j — 1)B, jB]. Once we know this, if the ged is in
the stated interval, it is the least prime factor of n, and if the ged is larger
than jB, we may sequentially try the members of the interval as divisors of
n, the first divisor found being the least prime divisor of n. Clearly, this last
calculation takes at most B arithmetic operations with integers the size of n;
that is, it is O(n'/*). But what of the earlier steps? If we could compute each



5.6 Binary quadratic forms 239

f(GB) mod n for j =1,2,..., B, then we would be in business to check each
ged and find the first that exceeds 1.

Algorithm 9.6.7 provides the computation of f(z) as a polynomial in Z,,[z]
(that is, the coefficients are reduced modulo n) and the evaluation of each
f(4B) modulon for j =1,2,...,Bin O (B In? B) =0 (n1/4 In? n) arithmetic
operations with integers the size of n. This latter big-O expression then stands
as the complexity of the Pollard—Strassen polynomial evaluation method for
factoring n.

5.6 Binary quadratic forms

There is a rich theory of binary quadratic forms, as developed by Lagrange,
Legendre, and Gauss in the late 1700s, a theory that played, and still plays,
an important role in computational number theory.

5.6.1 Quadratic form fundamentals

For integers a, b, ¢ we may consider the quadratic form az? + bxy + cy?. It is a
polynomial in the variables z, y, but often we suppress the variables, and just
refer to a quadratic form as an ordered triple (a, b, ¢) of integers.

We say that a quadratic form (a, b, ¢) represents an integer n if there are
integers x,y with ax® + bxy + cy?> = n. So attached to a quadratic form
(a,b,c) is a certain subset of the integers, namely those numbers that (a, b, ¢)
represents. We note that certain changes of variables can change the quadratic
form (a, b, ¢) to another form (a’, ¥, ¢'), but keep fixed the set of numbers that
are represented. In particular, suppose

r=aX+8Y, y=~X+73Y,
where «, 3,7, are integers. Making this substitution, we have

az? + bry + cy® = a(aX + BY)? + b(aX + BY) (X 4+ 6Y) + c(yX 4 6Y)?
=dX?+ VXY + Y2, (5.1)

say. Thus every number represented by the quadratic form (a’,b’,¢’) is also
represented by the quadratic form (a,b,c). We may assert the converse
statement if there are integers o, 3’,/, " with

X=dz+8y, Y=+~z+dy.

a B o ﬂ/
v 5/ ’}/ 5

are inverses of each other. A square matrix with integer entries has an inverse
with integer entries if and only if its determinant is +1. We conclude that if
the quadratic forms (a, b, ¢) and (a’, V', ¢’) are related by a change of variables
as in (5.1), then they represent the same set of integers if ad — Sy = +1.

That is, the matrices
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Allowing both +1 and —1 for the determinant does not give much more
leeway than restricting to just +1. (For example, one can go from (a,b,c)
to (a,—b,c¢) and to (c¢,b,a) via changes of variables with determinants —1,
but these are easily recognized, and may be tacked on to a more complicated
change of variables with determinant 41, so there is little loss of generality
in just considering +1.) We shall say that two quadratic forms are equivalent
if there is a change of variables as in (5.1) with determinant +1. Such a
change of variables is called unimodular, and so two quadratic forms are called
equivalent if you can go from one to the other by a unimodular change of
variables.

Equivalence of quadratic forms is an “equivalence relation.” That is, each
form (a,b,c) is equivalent to itself; if (a, b, c) is equivalent to (a’,V’,¢’), then
the reverse is true, and two forms equivalent to the same form are equivalent
to each other. We leave the proofs of these simple facts as Exercise 5.10.

There remains the computational problem of deciding whether two given
quadratic forms are equivalent. The discriminant of a form (a,b,c) is the
integer b*> — 4ac. Equivalent forms have the same discriminant (see Exercise
5.12), so it is sometimes easy to see when two quadratic forms are not
equivalent, namely this is so when their discriminants are unequal. However,
the converse is not true. Witness the two forms z?+zy+4y? and 222 +zy+2y>.
They both have discriminant —15, but the first can have the value 1 (when
x = 1 and y = 0), while the second cannot. So the two forms are not
equivalent.

If it is the case that in each equivalence class of binary quadratic forms
there is one distinguished form, and if it is the case that it is easy to find
this distinguished form, then it will be easy to tell whether two given forms
are equivalent. Namely, find the distinguished forms equivalent to each, and
if these distinguished forms are the same form, then the two given forms are
equivalent, and conversely.

This is particularly easy to do in the case of binary quadratic forms of
negative discriminant. In fact, the whole theory of binary quadratic forms
bifurcates on the issue of the sign of the discriminant. Forms of positive
discriminant can represent both positive and negative values, but this is not
the case for forms of negative discriminant. (Forms with discriminant zero are
trivial objects—studying them is essentially studying the sequence of squares.)

The theory of binary quadratic forms of positive discriminant is somewhat
more difficult than the corresponding theory of negative-discriminant forms.
There are interesting factorization algorithms connected with the positive-
discriminant case, and also with the negative-discriminant case. In the
interests of brevity, we shall mainly consider the easier case of negative
discriminants, and refer the reader to [Cohen 2000] for a description of
algorithms involving quadratic forms of positive discriminant.

We make a further restriction. Since a binary quadratic form of negative
discriminant does not represent both positive and negative numbers, we shall
restrict attention to those forms that never represent negative numbers. If
(a,b,c) is such a form, then (—a, —b, —c) never represents positive numbers,
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so our restriction is not so severe. Another way of putting these restrictions
is to say we are only considering forms (a, b, c) with > — 4ac < 0 and a > 0.
Note that these conditions then force ¢ > 0.

We say that a form (a, b, ¢) of negative discriminant is reduced if

—a<b<a<cor 0<b<a=c (5.2)

Theorem 5.6.1 (Gauss). No two different reduced forms of negative dis-
criminant are equivalent, and every form (a,b,c) of negative discriminant
with a > 0 is equivalent to some reduced form.

Thus, Theorem 5.6.1 provides the mechanism for establishing a distinguished
form in each equivalence class; namely, the reduced forms serve this purpose.
For a proof of the theorem, see, for example, [Rose 1988].

We now discuss how to find the reduced form equivalent to a given form,
and for this task there is a very simple algorithm due to Gauss.

Algorithm 5.6.2 (Reduction for negative discriminant). We are given a
quadratic form (A, B, C'), where A, B, C are integers with B2 —4AC < 0, A > 0.
This algorithm constructs a reduced quadratic form equivalent to (A4, B, C).

1. [Replacement loop]
while(A > C or B> Aor B< —A4) {
if(A > C) (4,B,C) = (C,—B, A); // ‘Type (1) move.
if(A<Cand (B>Aor B<—A4)){
Find B*, C* such that the three conditions:

~A<B*<A,
B* = B (mod 24),
B*? —4AC* = B? — 4AC

hold;
(A,B,C) = (A,B*,C*), // ‘Type (2)" move.
}
}
2. [Final adjustment]
if(A==Cand —A< B<0)(A,B,C)=(A,-B,C),
return (A, B, C);

Moves of type (2) leave the initial coordinate A unchanged, while a move of
type (1) reduces it. So there can be at most finitely many type (1) moves.
Further, we never do two type (2) moves in a row. Thus the algorithm
terminates for each input. We leave it for Exercise 5.13 to show that the
output is equivalent to the initial form. (This then shows that every form
with negative discriminant and positive initial coordinate is equivalent to a
reduced form, which is half of Theorem 5.6.1.)
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5.6.2 Factoring with quadratic form representations

An old factoring strategy going back to Fermat is to try to represent n in two
intrinsically different ways by the quadratic form (1,0,1). That is, one tries
to find two different ways to write n as a sum of two squares. For example,
we have 65 = 82 + 12 = 72 + 42, Then the ged of (84 — 1-7) and 65 is the
proper factor 5. In general, if

n=zi+yi=a3+y3, 1>y >0, T2>y2>0, 1> o,

then 1 < ged(z1y2—y122,n) < n. Indeed, let A = z1ys—y129, B = T1y2+y122.
It will suffice to show that

AB=0(modn), 1<A<B<n.

The first follows from y? = —2? (mod n) for i = 1,2, since AB = z3y3 —
yirs = —a322 + 2223 = 0 (mod n). It is obvious that A < B. To see

that A > 1, note that y1x2 < yax2 < yox1. To see that B < n, note that
wv < 2u? + 2v? for positive numbers u, v, with equality if and only if u = v.
Then, since 1 > y2, we have

B =21ys +yr1a2 < 521 + 393 + 3Y7 + 323 = gn+ gn=mn,

which completes the proof.

Two questions arise. Should we expect a composite number n to have
two different representations as a sum of two squares? And if n does have
two representations as a sum of two squares, should we expect to be able
to find them easily? Unfortunately, the answer to both questions is in the
negative. For the first question, it is a theorem that the set of numbers that
can be represented as a sum of two squares in at least one way has asymptotic
density zero. In fact, any number divisible by a prime p = 3 (mod 4) to an odd
exponent has no representation as a sum of two squares, and these numbers
constitute almost all natural numbers (see Exercise 5.16). However, there still
are plenty of numbers that can be represented as a sum of two squares; in
fact, any number pg where p, ¢ are primes that are 1 (mod 4) can indeed be
represented as a sum of two squares in two ways. But we know no way to
easily find these representations.

Despite these obstacles, people have tried to work with this idea to come
up with a factorization strategy. We now describe an algorithm in [McKee
1996] that can factor n in O(n!/3%€) operations, for each fixed € > 0.

Observe that if (a,b,c) represents the positive integer n, say ax? +
bry + cy? = n, and if D = b% — 4ac is the discriminant of (a,b,c), then
(2az + by)? — Dy? = 4an. That is, we have a solution u,v to u? — Dv? =
(mod 4n). Let

S(D,n) = {(u,v) : u* — Dv*> =0 (mod 4n)},

so that the above observation gives a mapping from representations of n
by forms of discriminant D into S(D,n). It is straightforward to show that
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equivalent representations of n via (5.1) give pairs (u,v), (v/,v") in S(D,n)
with the property that uv’ = v/v (mod 2n) (see Exercise 5.18).

Fix now the numbers D, n with D < 0 and n not divisible by any prime up
to \/|D|. If b is a solution to A2 = D (mod 4n), then the form (A, h,n), where
h? = D + 4An, represents n via x = 0,y = 1. This maps to the pair (h,1)
in §(D,n). Suppose now we reduce (A, h,n), and (a, b, ¢) is the reduced form
equivalent to it. Say the corresponding representation of n is given by x, y, and
this maps to the pair (u,v) in S(D,n). Then from the above paragraph, we
have u = vh (mod 2n). Moreover, v is coprime to n. Indeed, if p is a prime that
divides both v (= y) and n, then p also divides u = 2ax + by, so that p divides
2az. But ged(z, y) = 1, since a unimodular change of variables changed 0, 1 to
x,y. So p divides 2a. But the form (a, b, ¢) is reduced, so that 0 < a < +/|D|/3
(see Exercise 5.14). The assumption on n implies that p > \/W > 2, so that
p cannot divide 2a after all.

Now suppose we have two solutions hi,hy to h? = D (mod 4n) with
hi # +hs (mod n). As in the above paragraph, these solutions give rise
respectively to pairs (u;,v;) in S(D,n) with u; = v;h; (mod 2n) and vyv9
coprime to n. We claim, then, that

1 < ged(ugve — ugvy,n) < n.

Indeed, we have u3v3 —u3vi = Dv?v3 — Dv3v? = 0 (mod 4n), so it will suffice
to show that uyve Z Fusvy (mod n). If ujvy = ugvy (mod n), then

0 = vy — ugvy = v1h1vy — vahovy = v1v2(hy — ha) (mod n),

so that h; = he (mod n), a contradiction. Similarly, if u1ve = —ugv; (mod n),
then we get hy = —hy (mod n), again a contradiction.

We conclude that if there are two square roots h1, ho of D modulo 4n such
that hy #Z +hy (mod n), then there are two pairs (u1,v1), (ug,v2) as above,
where ged(ujvg — ugvy, n) is a nontrivial factor of n.

McKee thus proposes to search for pairs (u,v) in S(D,n) to come up with
two pairs (u1,v1), (u2,v2) as above. It is clear that we may restrict the search
to pairs (u,v) with « > 0,v > 0.

Note that if (a, b, ¢) has negative discriminant D and if az®+bxy+cy? = n,
then the corresponding pair (u,v) in S(D, n) satisfies u> — Dv? = 4an, so that
|u] < 2y/an. Further, if (a,b,c) is reduced, then 1 < a < +/|D|/3. McKee
suggests we fix a choice for a with 1 < a < /|D|/3 and then search for
integers u with 0 < u < 2y/an and u? = 4an (mod |D|). For each such u,
check whether (u? —4an)/D is a square. If we know the prime factorization of
D, then we may quickly solve for the residue classes modulo |D| that u must
lie in; there are fewer than |D|¢ of such classes. For each such residue class, our
search for w is in an arithmetic progression of at most [1 + 2y/an/|D|] terms.
So, for a given a, we must search over at most | D|*+2/an/|D|*~¢ choices for u.
Summing this expression for a up to \/|D[/3 gives O(|D|Y/?+<+/n/|D|'/4~¢).
So if we can find a suitable D with |D| about n?/3, we will have an algorithm
that takes at most O(n'/3%¢) steps to factor n.
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Such a suitable D is found very easily. Take z¢ = {\/n - nz/SJ, so that if

d =n — %, then n?/3 < d < n?/3 + 2n'/2. We let D = —4d. Note that the
quadratic form (1,0, d) is already reduced, it represents n with = = z¢,y = 1,
and it gives rise to the pair (2z,1) in S(D,n). Thus, we get for free one
of the two pairs we are looking for. Moreover, if n is divisible by at least 2
odd primes not dividing d, then there are two solutions hi,hy to h? = D
(mod 4n) with hy # £hs (mod n). So the above search will be successful in
finding a second pair in S(D,n), which, together with the pair (2z,1), will
be successful in splitting n.
The following algorithm summarizes the above discussion.

Algorithm 5.6.3 (McKee test). We are given an integer n > 1 that has
no prime factors below 3n!/3. This algorithm decides whether n is prime or
composite, the algorithm giving in the composite case the prime factorization
of n. (Note that any nontrivial factorization must be the prime factorization,
since each prime factor of n exceeds the cube root of n.)

1. [Square test]
If n is a square, say p?, return the factorization p - p;
// A number may be tested for squareness via Algorithm 9.2.11.

2. [Side factorization]

2
d=n— {\/n — n2/3J : // Thus, each prime factor of n is > 2/d.

if (gcd(n,d) > 1) return the factorization ged(n,d) - (n/ ged(n, d));
By trial division, find the complete prime factorization of d;

3. [Congruences]

for(1 < a < |2/d/3)) {
Using the prime factorization of d and a method from Section 2.3.2 find
the solutions uy, ..., u; of the congruence u? = 4an (mod 4d);
for(1 <i<t){ // If t = 0 this loop is not executed.
For all integers u with 0 < u < 2v/an, u = u; (mod 4d), use
Algorithm 9.2.11 to see whether (4an — u?)/4d is a square;
If such a square is found, say v?, and u # 4+2zv (mod 2n), goto
[gcd computation];

}
}

return “n is prime”;
4. [ged computation]
g = ged(2z9v — u, n);
return the factorization g - (n/g);
// The factorization is nontrivial and the factors are primes.

Theorem 5.6.4. Consider a procedure that on input of an integer n > 1
first removes from n any prime factor up to 3n'/3 (via trial division), and
if this does mot completely factor n, the unfactored portion is used as the
input in Algorithm 5.6.3. In this way, the complete prime factorization of n



5.6 Binary quadratic forms 245

is assembled. For each fized € > 0, the running time of this procedure to find
the complete prime factorization of n is O(n'/3+€).

For another McKee method of different complexity, see Exercise 5.21.

5.6.3 Composition and the class group

Suppose D is a nonsquare integer, (a1,b,c1), (as,b, c2) are quadratic forms of
discriminant D, and suppose c; /as is an integer. Since the middle coefficients
are equal, we have ajc; = asca, so that ¢1/as = c2/a;. We claim that the
product of a number represented by the first form and a number represented
by the second form is a number represented by the form (ajas,b,c1/asz). To
see this assertion, it is sufficient to verify the identity

(a12] + baryr + c1y7) (a223 + bzays + c2y3) = araswi + brsys + (c1/a2)y3,
where

3 = 2122 — (c1/a2)t1y2, Y3 = a1x1Y2 + a2xay1 + by1ye.

So in some sense, we can combine the two forms (a1,b,¢1), (az,b,c2) of
discriminant D to get a third form (ajasg,b,c1/as). Note that this third form
is also of discriminant D. This is the start of the definition of composition of
forms.

We say that a binary quadratic form (a, b, ¢) is primitive if ged(a, b, c) = 1.
Given an integer D that is not a square, but is 0 or 1 (mod 4), let C(D)
denote the set of equivalence classes of primitive binary quadratic forms of
discriminant D; where each class is the set of those forms equivalent to a given
form. We shall use the notation (a,b,c) for the equivalence class containing
the form (a, b, c).

Lemma 5.6.5. Suppose (a1,b,c1) = (A1,B,C1) € C(D), (az,b,ca) =
(A2, B,C3) € C(D), and suppose that ci/as,C1/As are integers. Then
(a1az,b,c1/az) = (A142, B,C1/As).

See [Rose 1988], for example.

Lemma 5.6.6. Suppose (a1,b1,c1), (ag,ba, ca) are primitive quadratic forms
of discriminant D. Then there is a form (A1, B,C1) equivalent to (aq,b1,c1)
and a form (Aa, B, C3) equivalent to (ag,ba, ca) such that ged(Aq, Ag) = 1.

Proof. We first show that there are coprime integers x1,y; such that
alx% + bixryr + cly% is coprime to as. Write as = mimaoms, where every
prime that divides m, also divides a1, but does not divide c¢;; every prime that
divides ms also divides ¢, but does not divide a;; and every prime that divides
mg also divides ged(aq, ¢1). Find integers uq, v1 such that u;mi +vimoms = 1,
and let 1 = u;m;. Find integers ug, vo such that usme + vomsx; = 1, and
let y1 = uamo. Then x1,y; have the desired properties.

Make the unimodular change of variables x = 21 X =Y, y = y1 X +vamsY.
This changes (a1,b1,¢1) to an equivalent form (A, By,CY), where A; =
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am% + bix1yr + cly% is coprime to as. To bring B; and by into agreement,
find integers r, s such that rA; + saz = 1, and let k = r(by — By)/2. (Note
that bs and Bj have the same parity as D.) Set B = By +2kA;, so that B = by
(mod 2as). Then (see Exercise 5.18) (A1, B1, C}) is equivalent to (A1, B, Ch)
for some integer C1, and (az, b, ¢2) is equivalent to (aq, B, Cs) for some integer
Cs. Let Ay = ao, and we are done. O

Given two primitive quadratic forms (a1, b1, ¢1), (ag, b2, c2) of discriminant
D, let (A1, B,C4),(As, B,C5) be the respectively equivalent forms given in
Lemma 5.6.6. We define a certain operation like so:

(a1,b1,c1) * (az,ba, c2) = (as, bs, c3),

where az = AlAQ, bg = B7 C3 = Cl/AQ. (Note that A1C1 = AQCQ and
ged(Aq, Ag) = 1 imply that C7/As is an integer.) Then Lemma 5.6.5 asserts
that “x” is a well-defined binary operation on C(D). This is the composition
operation that we alluded to above. It is clearly commutative, and the
proof that it is associative is completely straightforward. If D is even, then
(1,0, D/4) acts as an identity for x, while if D is odd, then (1,1, (1—D)/4) acts
as an identity. We denote this identity by 1p. Finally, if {a,b,c) is in C(D),
then (a,b,c) % (¢,b,a) = 1p (see Exercise 5.20). We thus have that C(D) is
an abelian group under . This is called the class group of primitive binary
quadratic forms of discriminant D.

It is possible to trace through the above argument and come up with an
algorithm for the composition of forms. Here is a relatively compact procedure:
it may be found in [Shanks 1971] and in [Schoof 1982].

Algorithm 5.6.7 (Composition of forms). We are given two primitive
quadratic forms (a1,b1,c¢1), (az, b, c2) of the same negative discriminant. This
algorithm computes integers as,bs,cs such that (aj,b1,c1) * (ag,ba,ca) =
<a3, b3, C3>.
1. [Extended Euclid operation]

g= gcd(al,ag, (b1 + b2)/2),

Find u, v, w such that ua; + vas + w(by + b2)/2 = g;
2. [Final assignment]

Return the values:

by —b b: —
agzalgz, b3=b2+2a2(1 2@—02w>, 03:379.
g g 2 4@3

(To find the numbers g,u, v, w in Step [Extended Euclid operation] first use
Algorithm 2.1.4 to find integers U,V with h = ged(a1,a2) = Uay + Vag,
and then to find integers U', V' with g = ged(h, (b1 + b2)/2)) = U'h +
V'(by + b2)/2. Then u = U'U,v = U'V, w = V') We remark that even
if (a1,b1,¢1), (ag,ba,ca) are reduced, the form (as,bs,cs) that is generated
by the algorithm need not be reduced. One can follow Algorithm 5.6.7 with
Algorithm 5.6.2 to get the reduced form in the class {ag, b3, c3).
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In the case that D < 0, Theorem 5.6.1 immediately implies that C(D) is
a finite group. Indeed, each member of C(D) corresponds to a unique reduced
form (a, b, c) satistying (5.2). Thus h(D), the order of C(D), is equal to the
number of coprime triples a,b, ¢ satisfying (5. 2) and b? — 4ac = D. Using
|b| < a, we have —D = 4ac — b* > 4ac — a?, and using a < ¢, we have
—D > 3a?. Thus, 0 < a < /|D|/3. Since c is determlned once a, b are chosen,
we thus have h(D) <> 2a < 2|D|/3.

But we can do better. Given an integer b with [b| < y/|D|/3 and b = D
(mod 2), the number of choices of a that correspond to b is at most the number
of divisors of b2 — D. But the number of divisors of n is n°") as n — oo, so
h(D) < |D|Y/?t°(M) as D — —oo.

And we can do better still. The famous Dirichlet class number formula
(see [Davenport 1980]) asserts that for D < 0 and D =0 or 1 (mod 4),

h(D) = ZL(1,xp)V/IDl, (5.3)

where w = 3 if D = —3, w = 2 if D = —4, and w = 1 otherwise. The
character xp is the Kronecker symbol (D/-). This is defined as follows: xp
is completely multiplicative, xp(p) is the Legendre symbol (D/p) for p an
odd prime, and xp(2) is 0 if D is even, is 1 if D = 1 (mod 8), and is —1
if D = 5 (mod 8). The L-function L(s,xp) is discussed in Section 1.4.3;
L(1,xp) is the value of the infinite series > xp(n)/n. In 1918, I. Schur
showed that L(1, XD) 1In[D|+Inln|D|+1, so that 2L(1,xp) < In|D| for

D < —4. Hence h(D \/|D |In|D| for these values of D. Since h(—3) = 1,
the inequality holds for D = —3 as well; that is, it holds for all negative
discriminants.

C. Siegel has shown that k(D) = |D|'/?*°(1) as D — —o0, but the proof
is ineffective. That is, it is impossible to use the proof to give a bound, say,
for the largest |D| with hA(D) < 1000, though the theorem says such a bound
exists. After work of D. Goldfeld, B. Gross, and D. Zagier, [Oesterlé 1985]
(also, see [Watkins 2004]) established the explicit inequality

h(D )>70001nDH< )

where the product is over the primes that divide D and are smaller than
\/|D|/4. Combining this with the result 28=1|h(D), where k is the number of
distinct odd prime factors of D (see Lemma 5.6.8), we get, for example, that
h(D) > 1000 for —D > 10310" Though almost surely very far from the
truth, at least it is an explicit bound, something that cannot be obtained just
with the Siegel theorem. Under an assumption of an unproved hypothesis that
is weaker than the ERH, namely that the L-functions L(s, x) never have a real
zero greater than 1/2, [Tatuzawa 1951] gave an inequality that would imply
that h(D) > 1000 for —D > 1.9 - 10!1. Probably even this greatly lowered
bound is about 100 times too high. It may well be possible to establish this
remaining factor of 100 or so conditionally on the ERH.
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In a computational (and theoretical) tour de force, [Watkins 2004] shows
unconditionally that h(D) > 100 for —D > 2384797.

The following formula for h(D) is attractive (but admittedly not very
efficient when |D] is large) in that it replaces the infinite sum implicit in
L(1,xp) with a finite sum. The formula is due to Dirichlet, see [Narkiewicz
1986]. For D < 0, D a fundamental discriminant (this means that either
D =1 (mod 4) and D is squarefree or D = 8 or 12 (mod 16) and D/4 is
squarefree), we have

|D|

WD) = % 3 xp(m)n.
n=1

Though an appealing formula, such a summation with its | D| terms is suitable
for the exact computation of h(D) only for small |D|, say |D| < 10%. There
are various ways to accelerate such a series; for example, in [Cohen 2000]
one can find error-function summations of only O(|D|'/?) summands, and
such formulae allow one easily to handle |D| ~ 10'6. Moreover, it can be
shown that directly counting the primitive reduced forms (a, b, ¢) of negative
discriminant D computes k(D) in O (|D[*/?*€) operations. And the Shanks
baby-steps, giant-steps method reduces the exponent from 1/2 to 1/4. We
revisit the complexity of computing h(D) in the next section.

5.6.4 Ambiguous forms and factorization

It is not very hard to list all of the elements of the class group C(D) that are
their own inverse. When D < 0, the reduced member of such a class is called an
“ambiguous” form. They come in three types: (a,0,c¢), (a,a,c), (a,b,a). These
forms have an intimate relationship with factorizations of the discriminant
into two coprime factors.

We state the classification, and leave the simple verification to the reader.

Lemma 5.6.8. Suppose D is a negative discriminant. If D is even, then the
ambiguous forms of discriminant D include the forms (u,0,v), where 0 < u <
v, ged(u,v) = 1, and uwv = —D /4. In addition, if vv = —D /4, with ged(u,v) =
1 or 2 and i(u+ v) odd, we have the forms (i(u+v),v—u,3(u+v))
when %v < uw < v and the forms (2u,2u, %(u + v)) when 0 < u < %v,
If D is odd, then the ambiguous forms of discriminant D are the forms
(F(u+v),2(v—u), t(u+v)), where =D = wv with 0 < v < u < v,
ged(u,v) = 1, and the forms (u7u, i(u—l—v)), where —D = wv, 0 < u < %’U,
ged(u,v) = 1.

Note that the form (1,0,|D]|/4) in the case that D is even, and the form
(1,1,(1 — D)/4) in the case that D is odd, are ambiguous. As we have seen
in the previous section, each is, in its respective case, the reduced form in the
class 1p. They correspond to the trivial factorization of D/4 or D where one
factor is 1. Also, if D = 12 (mod 16) and D < —20, then the ambiguous form
(2,2,(4— D)/8) corresponds to the trivial factorization of D/4. We also have
the ambiguous forms (4, 4,1— D/16) corresponding to the trivial factorization
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of D/4 when D = 0 (mod 32) and D < —64, and the form (3,2,3) with
discriminant —32. However, every other ambiguous form gives rise, and arises
from, a nontrivial factorization of D/4 or D. Suppose that D has k distinct
odd prime factors. It follows from Lemma 5.6.8 that there are 2*~! ambiguous
forms of discriminant D, except for the cases D = 12 (mod 16) and the cases
D =0 (mod 32), when there are 2¥ and 2+ ambiguous forms, respectively.

Suppose now that n is a positive odd integer divisible by at least two
distinct primes. If n = 3 (mod 4), then D = —n is a discriminant, while if
n =1 (mod 4), then D = —4n is a discriminant. If we can find any ambiguous
form in the first case, other than (1,1, (1 + n)/4), we will have a nontrivial
factorization of n. And if we can find any ambiguous form in the second
case, other than (1,0,n) and (2,2, (1 + n)/2), then we will have a nontrivial
factorization of n. And in either case, if we find all of the ambiguous forms,
we can use these to construct the complete prime factorization of n.

Thus, one can say that the search for nontrivial factorizations is really a
search for ambiguous forms.

So, let us see how one might find an ambiguous form, given a negative
discriminant D. Let h = h(D) denote the class number, that is, the order
of the group C(D) (see Section 5.6.3). Say h = 2'h,, where h, is odd.
If f = {(a,b,c) € C(D), let F = fho. Then either F = 1p, or one of
F,F2, F* ... F?"" has order 2 in the group. A reduced member of a class of
order 2 is ambiguous (this is the definition), so knowing h and f, it is a simple
matter to construct an ambiguous form. If the ambiguous form constructed
corresponds to 1p oris (2,2, (14+n)/2) (in the case n = 1 (mod 4)), then the
factorization corresponding to our ambiguous form is trivial. Otherwise it is
nontrivial.

So if the above scheme does not work with one choice of f in C(D),
then presumably we could try again with another f. If we had a small set
of generators of the class group, we could try anew with each generator and
so factor n. (In fact, in this case, we would have enough ambiguous forms to
find the complete prime factorization of n, by refining different factorizations
through ged’s.) If we did not have available a small set of generators, we might
instead take random choices of f.

The principal hurdle in applying the scheme to factor n is not coming up
with an appropriate f in C(D), but in coming up with the class number h.
We can actually get by with less. All we need in the above idea is the order
of f in the class group.

Now, forgetting this for a moment, and actually going for the full order
h of the class group, one might think that since we actually have a formula
for the order of this group, given by (5.3), we are home free. However, this
formula involves an infinite sum, and it is not clear how many terms we have
to take to get a good enough approximation to make the formula useful.
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Note that the infinite sum L(1, xp) that is in the class number formula
(5.3) can be written, too, as an infinite product:

L(1,xp) = H (1 - XD(W>17

» p

where the product is over all primes. It is shown in [Shanks 1971}, [Schoof
1982] that if the ERH is assumed (see Conjecture 1.4.2), and if

i= I (1’“’“’”) h = (w/m)/IDIL,

p<nt/s P

then there is a computable number ¢ such that |h — k| < en?/® In* n. If we go
to the trouble to compute L to some accuracy, we then have for our trouble
an estimate h to the class number h that is within ¢n?/5Inn of the truth.
Then the Shanks baby-steps, giant-steps method discussed in Section 7.5 and
Section 5.3 can then be used to find a multiple of the order of any given
f € C(D) that lies in the interval (h — en?/5In®*n, h + en?/°1n®n) in time
O(n'/®Inn). Since the computation of L can be accomplished in O(n!/®)
steps, we can then achieve a factorization of n, given an appropriate f, in
O(n'/®Inn) operations with integers the size of n.

If one is willing to assume the ERH, which seems a fair enough gamble
in a factoring algorithm (if the method fails to factor your number, you have
for your effort a disproof of the ERH, presumably something of far greater
interest than the factorization you were attempting), one might ask what other
information the ERH might give, other than the predictable convergence of the
infinite product for L(1, xp). In fact, it can help in a second way. Assuming the
ERH, there is a computable number ¢’ such that the classes of the primitive
reduced forms (a,b,c) of discriminant D, with a < ¢ In?|D|), generate the
full class group C(D) (see [Schoof 1982]). Thus, there need be no uncertainty
on the choice of f in the above scenario. Namely, just make all choices for f
with a representative (a,b,c) with a < ¢ In* |D.

Assembling these ingredients, we have, then, a deterministic factoring
algorithm with a complexity of O (nl/ 5n® n) operations with integers the
size of n. The proof of correctness for this algorithm depends on the so-far
unproved ERH.

Shanks goes further, and shows that on assumption of the ERH, one can
actually compute the class number h, and the group structure for C(D), and
in time O (|D|1/5+€).

It was shown in [Srinivasan 1995] that there is a probabilistic algorithm
to approximate L that is expected to give enough precision to approximate h
again with an error of O (\D|2/ 5+6), after which the Shanks baby-steps, giant-
steps method may take over. The Srinivasan probabilistic method gets the
approximation in expected time O (|D|1/ 5+€), and so becomes a probabilistic
factoring algorithm with expected running time O (n!/5+¢). This algorithm
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is completely rigorous, depending on no unproved hypotheses. Her method
also computes the class number and group structure in the expected time
O (|D|'/5+¢). However, unlike with factoring, which may be easily checked for
correctness, there is no simple way to see whether Srinivasan’s computation
of the class number is correct, though it almost certainly is. As we shall see in
the next chapter, there are faster, completely rigorous, probabilistic factoring
algorithms. The Srinivasan method, though, stands as the fastest known
completely rigorous probabilistic method for computing the class number
C(D). ([Hafner and McCurley 1989] have a subexponential probabilistic
method, but its analysis depends on the ERH.)

5.7 Exercises

5.1. Starting with Lenstra’s Algorithm 4.2.11, develop a deterministic
factoring method that takes at most n'/3+°(1) operations to factor n.

5.2. Suppose one models the iteration of 22 + @ mod p in the Pollard-rho
method as a random function f from {0,1,...,p—1} to {0,1,...,p—1}. The
function f describes a directed graph on the residues modulo p where a residue
i has a unique out-arrow pointing to f(i). Show that the expected length of
the longest path rq,72, ..., 7 of distinct residues is of order of magnitude ,/p.
Here is a possible strategy: If s1, s9,...,5s; is a path of distinct residues, then
the probability that f(s;) & {s1,...,s;} is (p — j)/p. Thus the probability
that a path starting from s hits distinct points for at least j steps is the
product of (p —i)/p for i = 1,2,...,j. The expectation asked for is thus
Z?;g J_1(p—i)/p. See [Purdom and Williams 1968].

Next investigate the situation that is more relevant to the Pollard-rho
factorization method, where one assumes the random function f is 2 : 1, or
more generally 2K : 1 (see Exercise 5.24). In this regard see [Brent and Pollard
1981] and [Arney and Bender 1982].

5.3. One fact used in the analysis of the Pollard rho method is that the
function f(z) = 2% + a on Z, to Z, has the property that for each divisor
d of n we have that v = v (mod d) implies that f(u) = f(v) (mod d). It is
easy to see that any polynomial f(z) in Z,[z] has this property. Show the
converse. That is, if f is any function from Z,, to Z,, with the property that
f(u) = f(v) (mod d) whenever djn and u = v (mod d), then f(x) must be
a polynomial in Z,[z]. (Hint: First show this for n a prime, then extend to
prime powers, and conclude with the Chinese remainder theorem.)

5.4. Let G be a cyclic group of order n with generator g, and element ¢. Say
our goal is to solve for the discrete logarithm [ of ¢; that is, an integer [ with
g' = t. Assume that we somehow discover an instance g® = t. Show that the
desired logarithm is then given by

I = ((bu+ kn)/d) mod n,
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for some integer k € [0,d — 1], where d = ged(a,n) and u is a solution to the
extended-Euclid relation au + nv = d.

This exercise shows that finding a logarithm for a nontrivial power of ¢ is,
if d is not too large, essentially equivalent to the original DL problem.

5.5. Suppose G is a finite cyclic group, you know the group order n, and
you know the prime factorization of n. Show how the Shanks baby-steps,
giant-steps method of Section 5.3 can be used to solve discrete logs in G in
@] (\/ﬁln n) operations, where p is the largest prime factor of n. Give a similar
bound for the space required.

5.6. As we have seen in the chapter, the basic Shanks baby-steps, giant-
steps procedure can be summarized thus: Make respective lists for baby steps
and giant steps, sort one list, then find a match by sequentially searching
through the other list. As we know, solving ¢! =t (where g is a generator of
the cyclic group of order n and t is an element) can be effected in this way
in O(n'/?1nn) operations (comparisons). But there is a so-called hash-table
construction that heuristically alters this complexity (albeit slightly) and in
practice works quite efficiently. A summary of such a method runs as follows:

(1) Construct the baby-step list, but in hash-table form.

(2) On each successive giant step look up (rapidly) the corresponding hash-
table entry, seeking a match.

The present exercise is to work through—by machine—the following example
of an actual DL solution. This example, unlike the fundamental Algorithm
5.3.1, uses some tricks that exploit the way machines tend to function,
effectively reducing complexity in this way. For the prime p = 23! — 1 and
an explicitly posed DL problem, say to solve

g =t (mod p),

we proceed as follows. Reminiscent of Algorithm 5.3.1 set b = [,/p], but
in addition choose a special parameter 8 = 2'2 to create a baby-steps “hash
table” whose r-th row, for r € [0, 3—1], consists of all those residues g’ mod p,
for j € [0,b— 1], that have r = (¢/ mod p) mod 3. That is, the row of the hash
table into which a power ¢/ mod p is inserted depends only on that modular
power’s low Ig 3 bits. Thus, in about ,/p multiplies (successively, by g) we
construct a hash table of 3 rows. As a check on the programming effort, for a
specific choice g = 7 the (r = 1271)-th row should appear as

((704148727,507), (219280631,3371), (896259319,4844)...),
meaning, for example,

7% mod p = 704148727 = (...010011110111)s,
733" mod p = 219280631 = (...010011110111)s,

and so on. After the baby-steps hash table is constructed, you can run through
giant-step terms tg~%® for i € [0,b— 1] and, by inspecting only the low 12 bits
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of each of these terms, index directly into the table to discover a collision. For
the example ¢t = 31, this leads immediately to the DL solution

7723739097 =31 (mod 231 _ 1)

This exercise is a good start for working out out a general DL solver,
which takes arbitrary input of p,g,l,t, then selects optimal parameters
such as (. Incidentally, hash-table approaches such as this one have the
interesting feature that the storage is essentially that of one list, not two
lists. Moreover, if the hash-table indexing is thought of as one fundamental
operation, the algorithm has operation complexity O(pl/ 2); i.e., the Inp factor
is removed. Note also one other convenience, which is that the hash table, once

constructed, can be reused for another DL calculation (as long as g remains
fixed).

5.7. [E. Teske] Let g be a generator of the finite cyclic group G, and let
h € G. Suppose #G = 2™ - n with m > 0 and n odd. Consider the following
walk:

ho =g h, hi1 = hi”.

The terms hy are computed until hy = h; for some j < k, or hy, = 1. Let us

investigate whether this is a good walk for computing discrete logarithms.

(1) Let (o) and (8x) be the sequences of exponents for g and h, respectively.
That is, hy = g** * hP for each k. Determine closed formulae for aj, and
Br-

(2) Determine all possible group elements h for which it can happen that
hr = 1 for some k. Determine the largest possible value of k£ for which
this can happen.

(3) Determine the period A of the sequence (hy) under the assumption that
#G is prime.

(4) Would you recommend this walk to use for discrete logarithm computa-
tion? If yes, why? If no, why not?

5.8. Here are tasks that allow practical testing of any implementation of the
p — 1 method, Algorithm 5.4.1.

(1) Use the basic algorithm with search bound B = 1000 to achieve the
factorization

n = 67030883744037259 = 179424673 - 373587883.

(2) Explain why, in view of the factorization of 373587882, your value of B
worked.

(3) Again in view of the factorization of 373587882, write a second-stage
version of the algorithm, this time finding the factor with B = 100 but
second-stage bound B’ = 1000. This program should be faster than the
first instance, of course.

(4) Find a nontrivial factor of Mgy = 257 — 1 using B = 100, B’ = 2000.
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5.9. Here we describe an interesting way to effect a second stage, and end up
asking an also interesting computational question. We have seen that a second
stage makes sense if a hidden prime factor p of n has the form p = zq+1 where
z is B-smooth and ¢ € (B, B’] is a single outlying prime. One novel approach
([Montgomery 1992al, [Crandall 1996a]) to a second-stage implementation is
this: After a stage-one calculation of b = a™®) mod n as described in the
text, one can as a second stage accumulate some product (here, g, h run over
some fixed range, or respective sets) like this one:

c= H (bQK —th) mod n

g#h

and take ged(n, ¢), hoping for a nontrivial factor. The theoretical task here is
to explain why this method works to uncover that outlying prime ¢, indicating
a rough probability (based on ¢, K, and the range of g, h) of uncovering a factor
because of a lucky instance g = A% (mod q).

An interesting computational question arising from this
how does one compute rapidly the chain

“gK” method is,

blK 7 b2K 7 bSK bAK

yeeey 5

where each term is, as usual, obtained modulo n? Find an algorithm that in
fact generates the indicated “hyperpower” chain, for fixed K, in only O(A)
operations in Zy.

5.10. Show that equivalence of quadratic forms is an equivalence relation.

5.11. If two quadratic forms az? + bxy + cy? and a’2? + b'zy + 'y? have
the same range, must the coefficients (a’,’,¢’) be related to the coefficients
(a,b,c) as in (5.1) where a, 3,7, 0 are integers and «d — Sy = £17?

5.12. Show that equivalent quadratic forms have the same discriminant.

5.13. Show that the quadratic form that is the output of Algorithm 5.6.2 is
equivalent to the quadratic form that is the input.

5.14. Show that if (a, b, ¢) is a reduced quadratic form of discriminant D < 0,
then a < +/|D|/3.

5.15. Show that for input (A, B, C), the operation complexity of Algorithm
5.6.2 is O(1 + In(min{A, C})), with operations involving integers no larger
than 4AC.

5.16. Show that a positive integer n is a sum of two squares if and only if
there is no prime p = 3 (mod 4) that divides n to an odd exponent. Using
the fact that the sum of the reciprocals of the primes that are congruent to
3 (mod 4) diverges (Theorem 1.1.5), prove that the set of natural numbers
that are representable as a sum of two squares has asymptotic density 0. (See
Exercises 1.10, 1.91, and 3.17.)



5.8 Research problems 255

5.17. Show that if p is a prime and p = 1 (mod 4), then there is a
probabilistic algorithm to write p as a sum of two squares that is expected
to succeed in polynomial time. In the case that p =5 (mod 8), show how the
algorithm can be made deterministic. Using the deterministic polynomial-time
method in [Schoof 1985] for taking the square root of —1 modulo p, show how
in the general case the algorithm can be made deterministic, and still run in
polynomial time.

5.18. Suppose that (a,b,c), (a/,V,c¢’) are equivalent quadratic forms, n is
a positive integer, ax? 4 bxy + cy? = n, and under the equivalence, x,y gets
taken to 2’,%y’. Let u = 2ax + by, v’ = 2a’z’ + b'y’. Show that uy’ = u'y
(mod 2n).

5.19. Show that if (a, b, ¢) is a quadratic form, then for each integer b’ = b
(mod 2a), there is an integer ¢ such that (a,b,c) is equivalent to (a,b’,c).

5.20. Suppose {a,b,c) € C(D). Prove that {(a, b, ¢) is the identity 1p in C(D)
if and only if (a, b, ¢) represents 1. Conclude that (a, b, c) * (¢,b,a) = 1p.

5.21. Study, and implement the McKee O(nl/ 4+€) factoring algorithm as
described in [McKee 1999]. The method is probabilistic, and is a kind of
optimization of the celebrated Fermat method.

5.22. On the basis of the Dirichlet class number formula (5.3), derive the
following formulae for 7:

7T—2H <1+ (P 1)/2> 741_[ (1 )(p 1)/2>

p>2

From the mere fact that these formulae are well-defined, prove that there
exist infinitely many primes of each of the forms p = 4k + 1 and p = 4k + 3.
(Compare with Exercise 1.7.) As a computational matter, about how many
primes would you need to attain a reliable value for 7 to a given number of
decimal places?

5.8 Research problems

5.23. Show that for p = 257, the rho iteration z = 2 — 1 mod p has only
three possible cycle lengths, namely 2, 7, 12. For p = 7001, show the iteration
x = 22 4+ 3 mod p has only the 8 cycle lengths 3, 4, 6, 7, 19, 28, 36, 67. Find
too the number of distinct connected components in the cycle graphs of these
two iterations. Is it true that the number of distinct cycle lengths, as well as
the number of connected components (which always is at least as large) is
O(Inp)? A similar result has been proved in the case of a random function;
see [Flajolet and Odlyzko 1990].

5.24. If a Pollard-rho iteration be taken not as z = 22 + a mod N but as

z =2?%X + a mod N,
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it is an established heuristic that the expected number of iterations to uncover
a hidden prime factor p of N is reduced from c¢,/p to

cy/p
Veed(p —1,2K) — 1

For research involving this complexity reduction, it may be helpful first to
work through this heuristic and explore some possible implementations based
on the ged reduction [Brent and Pollard 1981], [Montgomery 1987], [Crandall
1999d]. Note that when we know something about K the speedup is tangible,
as in the application of Pollard-rho methods to Fermat or Mersenne numbers.
(If K is small, it may be counterproductive to use an iteration x = 22X + qa,
even if we know that p = 1 (mod 2K), since the cost per iteration may not
be outweighed by the gain of a shorter cycle.) However, it is when we do not
know anything about K that really tough complexity issues arise.

So an interesting open issue is this: Given M machines each doing Pollard
rho, and no special foreknowledge of K, what is the optimal way to assign
respective values {K,, : m € [1,...,M]} to said machines? Perhaps the
answer is just K,, = 1 for each machine, or maybe the K,, values should
be just small distinct primes. It is also unclear how the K values should be
altered—if at all—as one moves from an “independent machines” paradigm
into a “parallel” paradigm, the latter discussed in Exercise 5.25. An intuitive
glimpse of what is intended here goes like so: The McIntosh—Tardif factor of
Fig, namely

81274690703860512587777 = 1 4 223 - 29 - 293 - 1259 - 905678539

(which was found via ECM) could have been found via Pollard rho, especially
if some “lucky” machine were iterating according to

23
=22 "%+ amod Fis.

In any complexity analysis, make sure to take into account the problem that
the number of operations per iteration grows as O(InK,,), the operation
complexity of a powering ladder.

5.25. Analyze a particular idea for parallelization of the Pollard rho
factoring method (not the parallelization method for discrete logarithms as
discussed in the text) along the following lines. Say the j-th of M machines
computes a Pollard sequence, from iteration a:( ? 224+ a mod N, with common
J
1

parameter a but machine-dependent initial x;’’ seed, as

{zgj): i:1,2,...,n},

so we have such a whole length-n sequence for each j € [1, M]. Argue that if
we can calculate the product

M=
M=

Q=

%

(s~ o)

n

1j

I
—

k=1
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modulo the N to be factored, then the full product has about n?M? algebraic
factors, implying, in turn, about p'/2 /M parallel iterations for discovering a
hidden factor p. So the question comes down to this: Can one parallelize the
indicated product, using some sort of fast polynomial evaluation scheme? The
answer is yes, subject to some heuristic controversies, with details in [Crandall
1999d], where it is argued that with M machines one should be able to find a

hidden factor p in
In® M
o(v )

5.26. Recall that the Pollard-rho approach to DL solving has the feature
that very little memory is required. What is more, variants of the basic rho
approach are pleasantly varied. The present exercise is to work through a very
simple such variant (that is not computationally optimized), with a view to
solving the specific DL relation

parallel operations.

g' =t (mod p),

where ¢ and primitive root g are given as usual. First define a pseudorandom
function on residues z mod p, for example,

f(z) =2+30(z - p/2),

that is, f(z) = 2 for z < p/2, and f(z) = 5 otherwise. Now define a sequence
r1 =t,x9,T3,... with

Tny1 = gf(w")xnt

for n > 1. The beautiful thing is that we can use two sequences (w, = xa,),
(z5,) just as in Algorithm 5.2.1, with one sequence forging ahead of the other
via twofold acceleration. We perform, then, these iterations and hope for a
collision

Toan = Tp (mOd p)v

the point being that such a collision signals a relation
t* = ¢° (mod p),

and we can use the result of Exercise 5.4 to infer the desired DL solution. In
this way, using the explicit form for the pseudorandom f given above, solve
by machine for the logarithm in such test cases as

11495011427 =3 (mod 231 o 1),

171929 = 3 (mod 27 — 1).

An interesting research question is this: Just how varied are the Pollard-
rho possibilities? We have now seen more than one way of creating Pollard
sequences as mixtures of powers of x and g, but one can even consider
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fractional powers. For example, if a root chain can be established in Pollard-
rho fashion

\/ge" coA)ge2/geit = \/ge% .../ g%V g%t (mod p),

where the powers e,, are random (except always chosen so that a square root
along the chain can indeed be taken), then each side of the collision can
be formally squared often enough to get a mixed relation in g,t as before.
Though square-rooting is not inexpensive, this approach would be of interest
if statistically short cycles for the root chains could somehow be generated.

5.27. In connection with the Pollard p — 1 method, show that if n is
composite and not a power, and if you are in possession of an integer m < n?
such that p — 1|m for some prime p|n, then you can use this number m in a
probabilistic algorithm to get a nontrivial factorization of n. Argue that the
algorithm is expected to succeed in polynomial time (the number of arithmetic
steps with integers the size of n is bounded by a power of Inn).

5.28. Here we investigate the “circle group,” defined for odd prime p as the
set

Cp={(z,y): 2,y €[0,p—1];2° +y* =1 (mod p)},
together with an operation “®” defined by

(z,y) @ (2',y') = (z2’ — yy', 2y’ + y2') mod p.
Show that the order of the circle group is

—1
#Cp=p- <p>

Prove the corollary that this order is always divisible by 4. Explain how the &
operation is equivalent to complex multiplication (for Gaussian integers) and
discuss any algebraic connection between the circle group and the field Fe.

Next, describe a factoring algorithm—which could be called a “p + 17
method—based on the circle group. One would start with an initial point
Py = (0.y0), and evaluate multiples [n]Py in much the same style as we do
in ECM. How does one even find an initial point? (In this connection see
Exercise 5.16.) How efficient is your method, as compared to the standard
p — 1 method? In assessing efficiency, observe that a point may be doubled
in only two field multiplies. How many multiplies does it take to add two
arbitrary points?

Then, analyze whether a “hyperspherical” group factoring method makes
sense. The group would be

Hp: {(xvyasz) DXLy, 2w E [0,]3—1]; $2+y2+w2+2251 (mOdp)}a

and the group operation would be quaternion hypercomplex multiplication.
Show that the order of the group is

#H, =p’ —p.



5.8 Research problems 259

In judging the efficacy of such a factoring method, one should address at
least the following questions. How, in this case, do we find an initial point
(20, Yo, wo, 20) in the group? How many field operations are required for point
doubling, and for arbitrary point addition?

Explore any algebraic connections of the circle and hyperspherical groups
(and perhaps further relatives of these) with groups of matrices (mod p).
For example, all n X n matrices having determinant 1 modulo p form a
group that can for better or worse be used to forge some kind of factoring
algorithm. These relations are well known, including yet more relations with
so-called cyclotomic factoring. But an interesting line of research is based on
this question: How do we design efficient factoring algorithms, if any, using
these group/matrix ideas? We already know that complex multiplication, for
example, can be done in three multiplies instead of four, and large-matrix
multiplication can be endowed with its own special speedups, such as Strassen
recursion [Crandall 1994b] and number-theoretical transform acceleration
[Yagle 1995]; see Exercise 9.84.

5.29. Investigate the possibility of modifying the polynomial evaluation
method of Pollard and Strassen for application to the factorization of Fermat
numbers F,, = 22" + 1. Since we may restrict factor searches to primes of the
form p = k272 + 1, consider the following approach. Form a product

P = H (k2" +1)

(all modulo F},), where the {k;} constitute some set of cleverly chosen integers,
with a view to eventual taking of gcd(F),, P). The Pollard-Strassen notion of
evaluating products of consecutive integers is to be altered: Now we wish to
form the product over a special multiplier set. So investigate possible means
for efficient creation of P. There is the interesting consideration that we should
be able somehow to presieve the {k;}, or even to alter the exponents n + 2
in some i-dependent manner. Does it make sense to describe the multiplier
set {k;} as a union of disjoint arithmetic progressions (as would result from a
presieving operation)? One practical matter that would be valuable to settle is
this: Does a Pollard—Strassen variant of this type have any hope of exceeding
the performance of direct, conventional sieving (in which one simply checks
22" (mod p) for various p = k2"*2? 4+ 1)? The problem is not without merit,
since beyond Fyg or thereabouts, direct sieving has been the only recourse to
date for discovering factors of the mighty Fi,.



Chapter 6
SUBEXPONENTIAL FACTORING ALGORITHMS

The methods of this chapter include two of the three basic workhorses of
modern factoring, the quadratic sieve (QS) and the number field sieve (NF'S).
(The third workhorse, the elliptic curve method (ECM), is described in
Chapter 7.) The quadratic sieve and number field sieve are direct descendants
of the continued fraction factoring method of Brillhart and Morrison, which
was the first subexponential factoring algorithm on the scene. The continued
fraction factoring method, which was introduced in the early 1970s, allowed
complete factorizations of numbers of around 50 digits, when previously, about
20 digits had been the limit. The quadratic sieve and the number field sieve,
each with its strengths and domain of excellence, have pushed our capability
for complete factorization from 50 digits to now over 150 digits for the size
of numbers to be routinely factored. By contrast, the elliptic curve method
has allowed the discovery of prime factors up to 50 digits and beyond, with
fortunately weak dependence on the size of number to be factored. We include
in this chapter a small discussion of rigorous factorization methods that in
their own way also represent the state of the art. We also discuss briefly some
subexponential discrete logarithm algorithms for the multiplicative groups of
finite fields.

6.1 The quadratic sieve factorization method

Though first introduced in [Pomerance 1982], the quadratic sieve (QS) method
owes much to prior factorization methods, including the continued-fraction
method of [Morrison and Brillhart 1975]. See [Pomerance 1996b] for some of
the history of the QS method and also the number field sieve.

6.1.1 Basic QS

Let n be an odd number with exactly k distinct prime factors. Then there are
exactly 2F square roots of 1 modulo n. This is easy in the case k = 1, and it
follows in the general case from the Chinese remainder theorem; see Section
2.1.3. Two of these 2 square roots of 1 are the old familiar 1. All of the
others are interesting in that they can be used to split n. Indeed, if a% = 1
(mod n) and a #Z £1 (mod n), then ged(a — 1,n) must be a nontrivial factor
of n. To see this, note that n|(a—1)(a+1), but n does not divide either factor,
so part of n must divide a — 1 and part must divide a + 1.
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For example, take the case a = 11 and n = 15. We have a? = 1 (mod n),
and ged(a — 1,n) = 5, a nontrivial factor of 15.

Consider the following three simple tasks: Find a factor of an even number,
factor nontrivial powers, compute gcd’s. The first task needs no comment! The
second can be accomplished by extracting Lnl/ ’“J and seeing whether its k-th
power is n, the root extraction being done via Newton’s method and for k
up to lgn. The third simple task is easily done via Algorithm 2.1.2. Thus, we
can “reduce” the factorization problem to finding nontrivial square roots of
1 for odd composites that are not powers. We write “reduce” in quotes since
it is not much of a reduction—the two tasks are essentially computationally
equivalent. Indeed, if we can factor n, an odd composite that is not a power,
it is easy to play with this factorization and with ged’s to get a factorization
n = AB where A, B are greater than 1 and coprime; see the Exercises. Then
let a be the solution to the Chinese remainder theorem problem posed thus:

a=1 (mod A), , a=—1 (mod B).

We have thus created a nontrivial square root of 1 modulo n.

So we now set out on the task of finding a nontrivial square root of 1
modulo n, where n is an odd composite that is not a power. This task, in
turn, is equivalent to finding a solution to 22 = y? (mod n), where xy is
coprime to n and x #Z 4y (mod n). For then, zy~! (mod n) is a nontrivial
square root of 1. However, as we have seen, any solution to 22 = y? (mod n)
with & £ £y (mod n) can be used to split n.

The basic idea of the QS algorithm is to find congruences of the form
2?2 = a; (mod n), where [ a; is a square, say y2. If x = [[x;, then 22 = y?
(mod n). The extra requirement that x # 4y (mod n) is basically ignored.
If this condition works out, we are happy and can factor n. If it does not
work out, we try the method again. We shall see that we actually can
obtain many pairs of congruent squares, and assuming some kind of statistical
independence, half of them or more should lead to a nontrivial factorization of
n. It should be noted, though, right from the start, that QS is not a random
algorithm. When we talk of statistical independence we do so heuristically.
The numbers we are trying to factor don’t seem to mind our lack of rigor,
they get factored anyway.

Let us try this out on n = 1649, which is composite and not a power.
Beginning as with Fermat’s method, we take for the x;’s the numbers just
above /n (see Section 5.1.1):

412 = 1681 = 32 (mod 1649),
42% = 1764 = 115 (mod 1649),
43% = 1849 = 200 (mod 1649).

2

With the Fermat method we would continue this computation until we reach
572, but with our new idea of combining congruences, we can stop with the
above three calculations. Indeed, 32 - 200 = 6400 = 802, so we have

(41 - 43)? = 802 (mod 1649).
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Note that 41 -43 = 1763 = 114 (mod 1649) and that 114 £ £80 (mod 1649),
so we are in business. Indeed, ged(114 — 80, 1649) = 17, and we discover that
1649 = 17 - 97.

Can this idea be tooled up for big numbers? Say we look at the numbers
22 mod n for  running through integers starting at [v/n]. We wish to find a
nonempty subset of them with product a square. An obvious problem comes
to mind: How does one search for such a subset?

Let us make some reductions in the problem to begin to address the issue
of searching. First, note that if some 22 mod n has a large prime factor to the
first power, then if we are to involve this particular residue in our subset with
square product, there will have to be another x> mod n that has the same
large prime factor. For example, in our limited experience above with 1649,
the second residue is 115 which has the relatively large prime factor 23 (large
compared with the prime factors of the other two residues), and indeed we
threw this congruence away and did not use it in our product. So, what if we
do this systematically and throw away any z2 mod n that has a prime factor
exceeding B, say? That is, suppose we keep only the B-smooth numbers, (see
Definition 1.4.8)7 A relevant question is the following:

How many positive B-smooth numbers are necessary before we are sure
that the product of a nonempty subset of them is a square?

A moment’s reflection leads one to realize that this question is really in the
arena of linear algebra! Let us associate an “exponent vector” to a B-smooth
number m = [[p;*, where p1,pa,...,pr(p) are the primes up to B and each
exponent e; > 0. The exponent vector is

¥(m) = (e1,€2,...,€ex(B))

If m1,mo,...,my are all B-smooth, then Hle m; is a square if and only if
Zle v(m;) has all even coordinates.

This last thought suggests we reduce the exponent vectors modulo 2 and
think of them in the vector space F;(B). The field of scalars of this vector
space is F5 which has only the two elements 0, 1. Thus a linear combination
of different vectors in this vector space is precisely the same thing as a subset
sum; the subset corresponds to those vectors in the linear combination that
have the coefficient 1. So the search for a nonempty subset of integers with
product being a square is reduced to a search for a linear dependency in a set
of vectors.

There are two great advantages of this point of view. First, we immediately
have the theorem from linear algebra that a set of vectors is linearly dependent
if there are more of them than the dimension of the vector space. So we have
an answer: The creation of a product as a square requires at most n(B) + 1
positive B-smooth numbers. Second, the subject of linear algebra also comes
equipped with efficient algorithms such as matrix reduction. So the issue of
finding a linear dependency in a set of vectors comes down to row-reduction
of the matrix formed with these vectors.
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So we seem to have solved the “obvious problem” stated above for ramping
up the 1649 example to larger numbers. We have a way of systematically
handling our residues 2 mod n, a theorem to tell us when we have enough of
them, and an algorithm to find a subset of them with product being a square.

We have not, however, specified how the smoothness bound B is to be
chosen, and actually, the above discussion really does not suggest that this
scheme will be any faster than the method of Fermat.

If we choose B small, we have the advantage that we do not need many
B-smooth residues to find a subset product that is a square. But if B is too
small, the property of being B-smooth is so special that we may not find any
B-smooth numbers. So we need to balance the two forces operating on the
smoothness bound B: The bound should be small enough that we do not need
too many B-smooth numbers to be successful, yet B should be large enough
that the B-smooth numbers are arriving with sufficient frequency.

To try to solve this problem, we should compute what the frequency of
B-smooth numbers will be as a function of B and n. Perhaps we can try to
use (1.44), and assume that the “probability” that 22 mod n is B-smooth is
about u~*, where v =Inn/In B.

There are two thoughts about this approach. First, (1.44) applies only to
a total population of all numbers up to a certain bound, not a special subset.
Are we so sure that members of our subset are just as likely to be smooth as
is a typical number? Second, what exactly is the size of the numbers in our
subset? In the above paragraph we just used the bound n when we formed
the number w.

We shall overlook the first of these difficulties, since we are designing a
heuristic factorization method. If the method works, our “conjecture” that our
special numbers are just like typical numbers, as far as smoothness goes, gains
some validity. The second of the difficulties, after a little thought, actually can
be resolved in our favor. That is, we are wrong about the size of the residues
22 mod n, they are actually smaller than n, much smaller.

Recall that we have suggested starting with z = [/n] and running up
from that point. But until we get to {\/m, the residue z2 mod n is given
by the simple formula 22 — n. And if V/n < 2 < \/n + n¢, where € > 0 is
small, then 2 — n is of order of magnitude n'/2*¢. Thus, we should revise
our heuristic estimate on the likelihood of z leading to a B-smooth number
to ™" with u now about % Inn/InB.

There is one further consideration before we try to use the u~* estimate
to pick out an optimal B and estimate the number of x’s needed. That is, how
long do we need to spend with a particular number x to see whether 22 — n
is B-smooth? One might first think that the answer is about 7(B), since trial
division with the primes up to B is certainly an obvious way to see whether
a number is B-smooth. But in fact, there is a much better way to do this, a
way that makes a big difference. We can use the sieving methods of Section
3.2.5 and Section 3.2.6 so that the average number of arithmetic operations
spent per value of = is only about Inln B, a very small bound indeed. These
sieving methods require us to sieve by primes and powers of primes where
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the power is as high as could possibly divide one of the values 22 — n. The
primes p on which these powers are based are those for which z2 —n = 0
(mod p) is solvable, namely the prime p = 2 and the odd primes p < B for
which the Legendre symbol (%) = 1. And for each such odd prime p and each
relevant power of p, there are two residue classes to sieve over. Let K be the
number of primes up to B that over which we sieve. Then, heuristically, K is
about %7‘(‘(3). We will be assured of a linear dependency among our exponent
vectors once we have assembled K + 1 of them.

If the probability of a value of x leading to a B-smooth is u~*, then the
expected number of values of x to get one success is u*, and the expected
number of values to get K + 1 successes is u“(K + 1). We multiply this
expectation by Inln B, the amount of work on average to deal with each value
of x. So let us assume that this all works out, and take the expression

Inn

T(B)=u"(K +1)Inln B, where u = B

We now attempt to find B as a function of n so as to minimize T'(B). Since
K ~ im(B) is of order of magnitude B/InB (see Theorem 1.1.4), we have
that InT(B) ~ S(B), where S(B) = ulnu + In B. Putting in what u is we
have that the derivative is given by

ds —Inn

1
diB = m(lﬂlﬂﬂ*lnlnB71n2+l) + —=.

B

Setting this equal to zero, we find that In B is somewhere between a constant
times vInn and a constant times vInn Inlnn, so that Inln B ~ % Inlnn. Thus
we find that the critical B and other entities behave as

1
InB ~ §vlnnlnlnn, u~+/Inn/Inlnn, S(B)~ Vinnlnlnn.

We conclude that an optimal choice of the smoothness bound B is about
exp (%\/ Innlnln n), and that the running time with this choice of B is about

B2, that is, the running time for the above scheme to factor n should be about

exp (m) .

We shall abbreviate this last function of n as follows:

L(’Il) _ e\/lnnlnlnn. (61)

The above argument ignores the complexity of the linear algebra step, but
it can be shown that this, too, is about B?; see Section 6.1.3. Assuming the
validity of all the heuristic leaps made, we have described a deterministic
algorithm for factoring an odd composite n that is not a power. The running
time is L(n)'T°(). This function of n is subexponential; that is, it is of the
form n°M) | and as such, it is a smaller-growing function of n than any of the
complexity estimates for the factoring algorithms described in Chapter 5.
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6.1.2 Basic QS: A summary

We have described the basic QS algorithm in the above discussion. We now
give a summary description.

Algorithm 6.1.1 (Basic quadratic sieve). We are given an odd composite
number n that is not a power. This algorithm attempts to give a nontrivial
factorization of n.
1. [Initialization]
B = [L(n)?]; // Or tune B to taste.
Set py =2 and a1 = 1;
Find the odd primes p < B for which (%) =1, and label them po, ..., px;
for(2 < i < K) find roots +a; with a? =n (mod p;);
// Find such roots via Algorithm 2.3.8 or 2.3.9.
2. [Sieving]
Sieve the sequence (22 —n), z = [\/n], [v/n]+1,... for B-smooth values,
until K + 1 such pairs (z,22 — n) are collected in a set S;
// See Sections 3.2.5, 3.2.6, and remarks (2), (3), (4).

3. [Linear algebra]
for((z,2* —n) € S) {
Establish prime factorization 2 — n = [, p¢';
F(x? —n) = (e1,e2,...,€eK); // Exponent vector.
}
Form the (K +1) x K matrix with rows being the various vectors #(z% —n)
reduced mod 2;
Use algorithms of linear algebra to find a nontrivial subset of the rows of
the matrix that sum to the 0-vector (mod 2), say ¥(x1) + U(z2) +-- -+
#(xy) = 0;
4. [Factorization]
T =129+ T mod n;
y=+/(22 —n) (23 —n)... (27 — n) mod n;
// Infer this root directly from the known prime factorization of the
perfect square (23 — n)(z3 —n)...(x2 —n), see remark (6).
d = ged(x — y,n);
return d;

There are several points that should be made about this algorithm:

(1) In practice, people generally use a somewhat smaller value of B than that
given by the formula in Step [Initialization]. Any value of B of order of
magnitude L(n)l/ 2 will lead to the same overall complexity, and there
are various practical issues that mitigate toward a smaller value, such as
the size of the matrix that one deals with in Step [Linear algebral, and
the size of the moduli one sieves with in comparison to cache size on the
machine used in Step [Sieving]. The optimal B-value is more of an art
than a science, and is perhaps best left to experimentation.
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(2) To do the sieving, one must know which residue classes to sieve for each p;

found in Step [Initialization]. (For simplicity, we shall ignore the problem
of sieving with higher powers of these primes. Such sieving is easy to do—
one can use Algorithm 2.3.11, for example—but might also be ignored in
practice, since it does not contribute much to the finding of B-smooth
numbers.) For the odd primes p; in Step [Initialization], we have solved
the congruence x> = n (mod p;). This is solvable, since the p;’s have
been selected in Step [Initialization] precisely to have this property. Either
Algorithm 2.3.8 or Algorithm 2.3.9 may be used to solve the congruence.
Of course, for each solution, we also have the negative of this residue class
as a second solution, so we sieve two residue classes for each p; with p; odd.
(Though we could sieve with p; = 2 as indicated in the pseudocode, we
do not have to sieve at all with 2 and other small primes; see the remarks
in Section 3.2.5.)

(3) An important point is that the arithmetic involved in the actual sieving

~—

can be done through additions of approximate logarithms of the primes
being sieved, as discussed in Section 3.2.5. In particular, one should set up
a zero-initialized array of some convenient count of b bytes, corresponding
to the first b of the = values. Then one adds a lgp; increment (rounded
to the nearest integer) starting at offsets x;, z}, the least integers > [/n]
that are congruent (mod p;) to a;, —a;, respectively, and at every spacing
p; from there forward in the array. If necessary (i.e., not enough smooth
numbers have been found) a new array is zeroed with its first element
corresponding to [y/n]+b, and continue in the same fashion. The threshold
set for reporting a location with a B-smooth value is set as ng |22 — n|J,
minus some considerable fudge, such as 20, to make up for the errors in
the approximate logarithms, and other errors that might accrue from not
sieving with small primes or higher powers. Any value reported must be
tested by trial division to see if it is indeed B-smooth. This factorization
plays a role in step [Linear algebra]. (To get an implementation working
properly, it helps to test the logarithmic array entries against actual, hard
factorizations.)

Instead of starting at [/n] and running up through the integers, consider
instead the possibility of x running through a sequence of integers centered
at y/n. There is an advantage and a disadvantage to this thought. The
advantage is that the values of the polynomial 22 — n are now somewhat
smaller on average, and so presumably they are more likely to be B-
smooth. The disadvantage is that some values are now negative, and the
sign is an important consideration when forming squares. Squares not
only have all their prime factors appearing with even exponents, they are
also positive. This disadvantage can be handled very simply. We enlarge
the exponent vectors by one coordinate, letting the new coordinate, say
the zeroth one, be 1 if the integer is negative and 0 if it is positive. So,
just like all of the other coordinates, we wish to get an even number
of 1’s. This has the effect of raising the dimension of our vector space
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from K to K + 1. Thus the disadvantage of using negatives is that our
vectors are 1 bit longer, and we need one more vector to be assured of
a linear dependency. This disadvantage is minor; it is small compared to
the advantage of smaller numbers in the sieve. We therefore go ahead and
allow negative polynomial values.

(5) We have been ignoring the problem that there is no guarantee that the
number d produced in Step [Factorization] is a nontrivial divisor of n.
Assuming some kind of randomness (which is certainly not the case, but
may be a reasonable heuristic assumption), the “probability” that d is a
nontrivial divisor is 1/2 or larger; see Exercise 6.2. If we find a few more
dependencies among our exponent vectors, and again assuming statistical
independence, we can raise the odds for success. For example, say we sieve
in Step [Sieving] until K + 11 polynomial values are found that are B-
smooth. Assuming that the dimension of our space is now K +1 (because
we allow negative values of the polynomial; see above), there will be at
least 10 independent linear dependencies. The odds that none will work
to give a nontrivial factorization of n is smaller than 1 in 1000. And if
these odds for failure are still too high for your liking, you can collect a
few more B-smooth numbers for good measure.

(6) In Step [Factorizaton] we have to take the square root of perhaps a very
large square, namely Y2 = (2 — n)(23 — n)--- (2} — n). However, we
are interested only in y = Y mod n. We can exploit the fact that we
actually know the prime factorization of Y2, and so we know the prime
factorization of Y. We can thus compute y by using Algorithm 2.1.5 to
find the residue of each prime power in Y modulo n, and then multiply
these together, again reducing modulo n. We shall find that in the number
field sieve, the square root problem cannot be solved so easily.

In the next few sections we shall discuss some of the principal enhancements
to the basic quadratic sieve algorithm.

6.1.3 Fast matrix methods

With B = exp (%\/ Inninln n), we have seen that the time to complete the

sieving stage of QS is (heuristically) B2t°(1). After this stage, one has about
B vectors of length about B, with entries in the finite field F5 of two elements,
and one wishes to find a nonempty subset with sum being the zero vector.
To achieve the overall complexity of B>t°(1) for QS, we shall need a linear
algebra subroutine that can find the nonempty subset within this time bound.

We first note that forming a matrix with our vectors and using Gaussian
elimination to find subsets with sum being the zero vector has a time bound
of O (B3) (assuming that the matrix is B x B). Nevertheless, in practice,
Gaussian elimination is a fine method to use for smaller factorizations. There
are several reasons why the high-complexity estimate is not a problem in
practice.
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(1) Since the matrix arithmetic is over Fg, it naturally lends itself to computer
implementation. With w being the machine word length (typically 8 or
16 bits on older machines, 32 or 64 or even more bits on newer ones), we
can deal with blocks of w coordinates in a row at a time, where one step
is just a logical operation requiring very few clock cycles.

(2) The initial matrix is quite sparse, so at the start, before “fill in” occurs,
there are few operations to perform, thus somewhat reducing the worst
case time bound.

(3) If the number we are factoring is not too large, we can load the algorithm
toward the sieving stage and away from the matrix stage. That is, we
can choose a bound B that is somewhat too small, thus causing the
sieving stage to run longer, but easing difficulties in the matrix stage.
Space difficulties with higher values of B form another practical reason to
choose B smaller than an otherwise optimal choice.

Concerning point (2), ways have been found to use Gaussian elimination
in an “intelligent” way so as to preserve sparseness as long as possible,
see [Odlyzko 1985] and [Pomerance and Smith 1992]. These methods are
sometimes referred to as “structured-Gauss” methods.

As the numbers we try to factor get larger, the matrix stage of QS
(and especially of the number field sieve; see Section 6.2) looms larger.
The unfavorable complexity bound of Gaussian elimination ruins our overall
complexity estimates, which assume that the matrix stage is not a bottleneck.
In addition, the awkwardness of dealing with huge matrices seems to require
large and expensive computers, computers for which it is not easy to get large
blocks of time.

There have been suggested at least three alternative sparse-matrix
methods intended to replace Gaussian elimination, two of which having
already been well-studied in numerical analysis. These two, the conjugate
gradient method and the Lanczos method, have been adapted to matrices with
entries in a finite field. A third option is the coordinate recurrence method in
[Wiedemann 1986]. This method is based on the Berlekamp-Massey algorithm
for discovering the smallest linear recurrence relation in a sequence of finite
field elements.

Each of these methods can be accomplished with a sparse encoding of the
matrix, namely an encoding that lists merely the locations of the nonzero
entries. Thus, if the matrix has IN nonzero entries, the space required is
O(N1n B). Since our factorization matrices have at most O(lnn) nonzero
entries per row, the space requirement for the matrix stage of the algorithm,
using a sparse encoding, is O (B In? n)

Both the Wiedemann and Lanczos methods can be made rigorous. The
running time for these methods is O(BN), where N is the number of
nonzero entries in the matrix. Thus, the time bound for the matrix stage
of factorization algorithms such as QS is B>t°(1) | equaling the time bound for
sieving.
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For a discussion of the conjugate gradient method and the Lanczos
method, see [Odlyzko 1985]. For a study of the Lanczos method in a theoretical
setting see [Teitelbaum 1998]. For some practical improvements to the Lanczos
method see [Montgomery 1995].

6.1.4 Large prime variations

As discussed above and in Section 3.2.5, sieving is a very cheap operation.
Unlike trial division, which takes time proportional to the number of trial
divisors, that is, one “unit” of time per prime used as a trial, sieving takes less
and less time per prime sieved as the prime modulus grows. In fact the time
spent per sieve location, on average, for each prime modulus p is proportional
to 1/p. However, there are hidden costs for increasing the list of primes p with
which we sieve. One is that it is unlikely we can fit the entire sieve array into
memory on a computer, so we segment it. If a prime p exceeds the length of
this part of the sieve, we have to spend a unit of time per segment to see
whether this prime will “hit” something or not. Thus, once the prime exceeds
this threshold, the 1/p “philosophy” of the sieve is left behind, and we spend
essentially the same time for each of these larger primes: Sieving begins to
resemble trial division. Another hidden cost is perhaps not so hidden at all.
When we turn to the linear-algebra stage of the algorithm, the matrix will be
that much bigger if more primes are used. Suppose we are using 10 primes, a
number that is not inconceivable for the sieving stage. The matrix, if encoded
as a binary (0,1) matrix, would have 10'? bits. Indeed, this would be a large
object on which to carry out linear algebra! In fact, some of the linear algebra
routines that will be used, see Section 6.1.3, involve a sparse encoding of the
matrix, namely, a listing of where the 1’s appear, since almost all of the entries
are 0’s. Nevertheless, space for the matrix is a worrisome concern, and it puts
a limit on the size of the smoothness bound we take.

The analysis in Section 6.1.1 indicates a third reason for not taking
the smoothness bound too large; namely, it would increase the number of
reports necessary to find a linear dependency. Somehow, though, this reason
is specious. If there is already a dependency around with a subset of our data,
having more data should not destroy this, but just make it a bit harder to
find, perhaps. So we should not take an overshooting of the smoothness bound
as a serious handicap if we can handle the two difficulties mentioned in the
above paragraph.

In its simplest form, the large-prime variation allows us a cheap way to
somewhat increase our smoothness bound, by giving us for free many numbers
that are almost B-smooth, but fail because they have one larger prime factor.
This larger prime could be taken in the interval (B, B2]. It should be noted
from the very start that allowing for numbers that are B-smooth except for
having one prime factor in the interval (B, B?] is not the same as taking
B2%-smooth numbers. With B about L(n)l/z, as suggested in Section 6.1.1, a
typical B2-smooth number near n'/2*¢ in fact has many prime factors in the
interval (B, B?], not just one.
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Be that as it may, the large-prime variation does give us something that
we did not have before. By allowing sieve reports of numbers that are close to
the threshold for B-smoothness, but not quite there, we can discover numbers
that have one slightly larger prime. In fact, if a number has all the primes
up to B removed from its prime factorization, and the resulting number is
smaller than B?, but larger than 1, then the resulting number must be a
prime. It is this idea that is at work in the large-prime variation. Our sieve
is not perfect, since we are using approximate logarithms and perhaps not
sieving with small primes (see Section 3.2.5), but the added grayness does
not matter much in the mass of numbers being considered. Some numbers
with a large prime factor that might have been reported are possibly passed
over, and some numbers are reported that should not have been, but neither
problem is of great consequence.

So if we can obtain these numbers with a large prime factor for free, how
then can we process them in the linear algebra stage of the algorithm? In
fact, we should not view the numbers with a large prime as having longer
exponent vectors, since this could cause our matrix to be too large. There is
a very cheap way to process these large prime reports. Simply sort them on
the value of the large prime factor. If any large prime appears just once in
the sorted list, then this number cannot possibly be used to make a square
for us, so it is discarded. Say we have k reports with the same large prime:
x? —n=yP, fori=1,2,... k. Then

(r12;)? = 91y P? (mod n), fori=2,...,k.

So when k& > 2 we can use the exponent vectors for the £k — 1 numbers yyy;,
since the contribution of P? to the exponent vector, once it is reduced mod
2, is 0. That is, duplicate large primes lead to exponent vectors on the primes
up to B. Since it is very fast to sort a list, the creation of these new exponent
vectors is like a gift from heaven.

There is one penalty to using these new exponent vectors, though it has
not proved to be a big one. The exponent vector for a y;y; as above is usually
not as sparse as an exponent vector for a fully smooth report. Thus, the
matrix techniques that take advantage of sparseness are somewhat hobbled.
Again, this penalty is not severe, and every important implementation of the
QS method uses the large-prime variation.

One might wonder how likely it is to have a pair of large primes matching.
That is, when we sort our list, could it be that there are very few matches,
and that almost everything is discarded because it appears just once? The
birthday paradox from probability theory suggests that matches will not be
uncommon, once one has plenty of large prime reports. In fact the experience
that factorers have is that the importance of the large prime reports is nil near
the beginning of the run, because there are very few matches, but as the data
set gets larger, the effect of the birthday paradox begins, and the matches for
the large primes blossom and become a significant source of rows for the final
matrix.
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It is noticed in practice, and this is supported too by theory, that the
larger the large prime, the less likely for it to be matched up. Thus, most
practitioners eschew the larger range for large primes, perhaps keeping only
those in the interval (B, 20B] or (B, 100B].

Various people have suggested over the years that if one large prime is
good, perhaps two large primes are better. This idea has been developed in
[Lenstra and Manasse 1994], and they do, in fact, find better performance for
larger factorizations if they use two large primes. The landmark factorization
of the RSA129 challenge number mentioned in Section 1.1.2 was factored using
this double large-prime variation.

There are various complications for the double large-prime variation that
are not present in the single large-prime variation discussed above. If an integer
in the interval (1, B?] has all prime factors exceeding B, then it must be
prime: This is the fundamental observation used in the single large-prime
variation. What if an integer in (B?, B3] has no prime factor < B? Then
either it is a prime, or it is the product of two primes each exceeding B.
In essence, the double large prime variation allows for reports where the
unfactored portion is as large as B3. If this unfactored portion m exceeds
B2, a cheap pseudoprimality test is applied, say checking whether 2m~! =1
(mod m); see Section 3.4.1. If m satisfies the congruence, it is discarded, since
then it is likely to be prime, and also too large to be matched with another
large prime. If m is proved composite by the congruence, it is then factored,
say by the Pollard rho method; see Section 5.2.1. This will then allow reports
that are B-smooth, except for two prime factors larger than B (and not much
larger).

As one can see, this already requires much more work than the single large-
prime variation. But there is more to come. One must search the reported
numbers with a single large prime or two large primes for cycles; that is,
subsets whose product is B-smooth, except for larger primes that all appear
to even exponents. For example, say we have the reports y1 P1, yo Ps, y3 Py Ps,
where y1,y2,ys are B-smooth and P;, P are primes exceeding B (so we are
describing here a cycle consisting of two single large prime reports and one
double large prime report). The product of these three reports is y1y2y3 P2 P2,
whose exponent vector modulo 2 is the same as that for the B-smooth number
y1y2y3. Of course, there can be more complicated cycles than this, some even
involving only double large-prime factorizations (though that kind will be
infrequent). It is not as simple as before, to search through our data set for
these cycles. For one, the data set is much larger than before and there is
a possibility of being swamped with data. These problems are discussed in
[Lenstra and Manasse 1994]. They find that with larger numbers they gain a
more than twofold speed-up using the double large-prime variation. However,
they also admit that they use a value of B that is perhaps smaller than others
would choose. It would be interesting to see an experiment that allows for
variations of all parameters involved to see which combination is the best for
numbers of various sizes.
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And what, then, of three large primes? One can appreciate that the added
difficulties with two large primes increase still further. It may be worth it, but
it seems likely that instead, using a larger B would be more profitable.

6.1.5 Multiple polynomials

In the basic QS method we let 2 run over integers near y/n, searching for values
22 — n that are B-smooth. The reason we take x near \/n is to minimize the
size of 2 — n, since smaller numbers are more likely to be smooth than larger
numbers. But for x near to v/n, we have 2 —n ~ 2 (z — \/n) \/n, and so as
marches away from /7, so, too, do the numbers 22 — n, and at a steady and
rapid rate. There is thus built into the basic QS method a certain diminishing
return as one runs the algorithm, with perhaps a healthy yield rate for smooth
reports at the beginning of the sieve, but this rate declining perceptibly as
one continues to sieve.

The multiple polynomial variation of the QS method allows one to get
around this problem by using a family of polynomials rather than just the
one polynomial 22 — n. Different versions of using multiple polynomials have
been suggested independently by Davis, Holdridge, and Montgomery; see
[Pomerance 1985]. The Montgomery method is slightly better and is the
way we currently use the QS algorithm. Basically, what Montgomery does
is replace the variable z with a wisely chosen linear function in z.

Suppose a,b,c are integers with b> — ac = n. Consider the quadratic
polynomial f(x) = az? + 2bx + c. Then

af(z) = a®x? + 2abz + ac = (ax + b)* — n, (6.2)

so that
(az +b)? = af(x) (mod n).

If we have a value of a that is a square times a B-smooth number and a value
of z for which f(x) is B-smooth, then the exponent vector for af(z), once it is
reduced modulo 2, gives us a row for our matrix. Moreover, the possible odd
primes p that can divide f(z) (and do not divide n) are those with (£) = 1,
namely the same primes that we are using in the basic QS algorithm. (It is
somewhat important to have the set of primes occurring not depend on the
polynomial used, since otherwise, we will have more columns for our matrix,
and thus need more rows to generate a dependency.)

We are requiring that the triple a, b, ¢ satisfy b> — ac = n and that a be
a B-smooth number times a square. However, the reason we are using the
polynomial f(z) is that its values might be small, and so more likely to be
smooth. What conditions should we put on a,b,c to have small values for
f(x) = az? + 2bx + ¢? Well, this depends on how long an interval we sieve
on for the given polynomial. Let us decide beforehand that we will only sieve
the polynomial for arguments z running in an interval of length 2M. Also,
by (6.2), we can agree to take the coefficient b so that it satisfies |b] < Za
(assuming a is positive). That is, we are ensuring our interval of length 2M
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for x to be precisely the interval [—-M, M]. Note that the largest value of f(x)
on this interval is at the endpoints, where the value is about (a?M? — n)/a,
and the least value is at z = 0, being there about —n/a. Let us set the absolute
values of these two expressions approximately equal to each other, giving the
approximate equation a2M? ~ 2n, so that a ~ v/2n/M.

If a satisfies this approximate equality, then the absolute value of f(z) on
the interval [—M, M] is bounded by (M /+/2)y/n. This should be compared
with the original polynomial 22 — n used in the basic QS method. On the
interval [\/n — M, /n+ M], the values are bounded by approximately 2M +/n.
So we have saved a factor 2v/2 in size. But we have saved much more than that.
In the basic QS method the values continue to grow, we cannot stop at a preset
value M. But when we use a family of polynomials, we can continually change.
Roughly, using the analysis of Section 6.1.1, we can choose M = B = L(n)'/?
when we use multiple polynomials, but must choose M = B2 = L(n) when
we use only one polynomial. So the numbers that “would be smooth” using
multiple polynomials are smaller on average by a factor B. A heuristic analysis
shows that using multiple polynomials speeds up the quadratic sieve method
by roughly a factor %\/ Innlnlnn. When n is about 100 digits, this gives a
savings of about a factor 17; that is, QS with multiple polynomials runs about
17 times as fast as the basic QS method. (This “thought experiment” has not
been numerically verified, though there can be no doubt that using multiple
polynomials is considerably faster in practice.)

However, there is one last requirement for the leading coefficient a: We
need to find values of b, c to go along with it. If we can solve b> = n (mod a)
for b, then we can ensure that |b| < a/2, and we can let ¢ = (b> — n)/a.
Note that the methods of Section 2.3.2 will allow us to solve the congruence
provided that we choose a such that a is odd, we know the prime factorization

of a, and for each prime p|a, we have (%) = 1. One effective way to do this is

to take various primes p ~ (2n)'/4/M'/?  with (%) = 1, and choose a = p?.
Then such values of a meet all the criteria we have set for them:
(1) We have a equal to a square times a B-smooth number.
(2) We have a ~ v/2n/M.
(3) We can efficiently solve b2 = n (mod a) for b.
The congruence b> = n (mod a) has two solutions, if we take a = p? as

above. However, the two solutions lead to equivalent polynomials, so we use
only one of the solutions, say the one with 0 < b < %a.

6.1.6 Self initialization

In Section 6.1.5 we learned that it is good to change polynomials frequently.
The question is, how frequently? One constraint, already implicitly discussed,
is that the length, 2M, of the interval on which we sieve a polynomial should
be at least B, the bound for the moduli with which we sieve. If this is the only
constraint, then a reasonable choice might then be to take M with 2M = B.
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For numbers in the range of 50 to 150 digits, typical choices for B are in
the range 10* to 107, approximately. It turns out that sieving is so fast an
operation, that if we changed polynomials every time we sieved B numbers,
the overhead in making the change would be so time-consuming that overall
efficiency would suffer. This overhead is principally to solve the initialization
problem. That is, given a, b, c as in Section 6.1.5, for each odd prime p < B
with (%) = 1, we have to solve the congruence

az® + 2bx 4+ ¢ = 0 (mod p)

for the two roots r(p) mod p and s(p) mod p (we assume here that p does not
divide an). Thus, we have

r(p) = (=b+t(p))a”" mod p, s(p) = (—b—t(p))a™" mod p, (6.3)

where
t(p)? = n (mod p).

For each polynomial, we can use the exact same residue ¢(p) each time when
we come to finding r(p),s(p). So the principal work in using (6.3) is in
computing a~! mod p for each p (say by Algorithm 2.1.4) and the two mod p
multiplications. If there are many primes p for which this needs to be done,
it is enough work that we do not want to do it too frequently.

The idea of self initialization is to amortize the work in (6.3) over several
polynomials with the same value of a. For each value of a, we choose b such
that b> = n (mod a) and 0 < b < a/2; see Section 6.1.5. For each such b we can
write down a polynomial az? + 2bz + ¢ to use in QS, by letting ¢ = (b —n)/a.
The number of choices for b for a given value of a is 2°~1, where @ has k
distinct prime factors (assuming that a is odd, and for each prime p|a we have
(g) = 1). So, choosing a as the square of a prime, as suggested in Section 6.1.5,
gives exactly 1 choice for b. Suppose instead we choose a as the product of 10
different primes p. Then there are 512 = 2° choices for b corresponding to the
given a, and so the a~! (mod p) computations need only be done once and
then used for all 512 of the polynomials. Moreover, if none of the 10 primes
used in a exceeds B, then it is not necessary to have them squared in a, their
elimination is already built into the matrix step anyway.

There can be more savings with self initialization if one is willing to do
some additional precomputation and store some files. For example, if one
computes and stores the list of all 2¢(p)a~! mod p for all the primes p with
which we sieve, then the computation to get r(p), s(p) in (6.3) can be done
with a single multiplication rather than 2. Namely, multiply —b + ¢(p) by the
stored value a~! mod p and reduce mod p. This gives r(p). Subtracting the
stored value 2¢(p)a~! mod p and adding p if necessary, we get s(p).

It is even possible to eliminate the one multiplication remaining, by
traversing the different solutions b using a Gray code; see Exercise 6.7. In
fact, the Chinese remainder theorem, see Section 2.1.3, gives the different
solutions b in the form By £ Bo+--- 4+ Bg. (If a = p1pa - - - i, then B; satisfies
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B? = n (mod p;) and B; = 0 (mod a/p;).) If we traverse the 2~ numbers
B, + By +...+ By, using a Gray code and precompute the lists 2B;a~" mod p
for all p with which we sieve, then we can move from the sieving coordinates
for one polynomial to the next doing merely some low-precision adds and
subtracts for each p. One can get by with storing only the most frequently
used files 2B;a~! mod a if space is at a premium. For example, storing this
file only for ¢ = k, which is in action every second step in the Gray code,
we have initialization being very cheap half the time, and done with a single
modular multiplication for each p (and a few adds and subtracts) the other
half of the time.

The idea for self initialization was briefly sketched in [Pomerance et al.
1988] and more fully described in [Alford and Pomerance 1995] and [Peralta
1993]. In [Contini 1997] it is shown through some experiments that self
initialization gives about a twofold speedup over standard implementations
of QS using multiple polynomials.

6.1.7 Zhang’s special quadratic sieve

What makes the quadratic sieve fast is that we have a polynomial progression
of small quadratic residues. That they are quadratic residues renders them
useful for obtaining congruent squares that can split n. That they form a
polynomial progression (that is, consecutive values of a polynomial) makes
it easy to discover smooth values, namely, via a sieve. And of course, that
they are small makes them more likely to be smooth than random residues
modulo n. One possible way to improve this method is to find a polynomial
progression of even smaller quadratic residues. Recently, M. Zhang has found
such a way, but only for special values of n, [Zhang 1998]. We call his method
the special quadratic sieve, or SQS.

Suppose the number n we are trying to factor (which is odd, composite,
and not a power) can be represented as

n =m?®+ agm? + aym + ag, (6.4)

where m, as, a1, ag are integers, m ~ n'/3. Actually, every number n can be
represented in this way; just choose m = [n!/3|, let a1 = az = 0, and let
ap = n — m3. We shall see below, though, that the representation (6.4) will
be useful only when the a;’s are all small in absolute value, and so we are
considering only special values of n.

Let bg, b1, by be integer variables, and let

xr = b2m2 + b1m =+ bo,

where m is as in (6.4). Since

m? = —aym? — aym — ap (mod n),

m4

(a2 — ay)m? + (ayas — ag)m + agas (mod n),

we have
22 = com? + ¢ym + ¢ (mod n), (6.5)
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where

Co = (a% - al)bg — 2a2b1b2 + b% + 2b0b2,
C1 = (alag — ao)bg — 2a1b1b2 + Qbobh
co = aoagbg — 2agb1bs + bg

Since by, b1, by are free variables, perhaps they can be chosen so that they are
small integers and that co = 0. Indeed, they can. Let

by =2, by =2b, by=a; — a3+ 2ab — b,
where b is an arbitrary integer. With these choices of by, b1, b2 we have
2(b)* = y(b) (mod n), (6.6)
where

z(b) = 2m? 4 2bm + a1 — a2 + 2a2b — b2,
y(b) = (4a1a2 —4ag — (4a1 + 4a§) b+ 8asb® — 4b3) m
+ 4agas — 8agb + (a1 — a% + 2a9b — b2)2 .

The proposal is to let b run through small numbers, use a sieve to search for
smooth values of y(b), and then use a matrix of exponent vectors to find a
subset of the congruences (6.6) to construct two congruent squares mod n
that then may be tried for factoring n. If ag, a1, az, and b are all O(n), where
0 <e<1/3, and m = O (n'/?), then y(b) = O(n'/3+3). The complexity
analysis of Section 6.1.1 gives a heuristic running time of

L(n) 2/3+66+0(1)7

where L(n) is defined in (6.1). If € is small enough, this estimate beats the
heuristic complexity of QS.
It may also be profitable to generalize (6.4) to

an =m> + agm2 +aym + ag.

The number a does not appear in the expressions for z(b),y(b), but it does
affect the size of the number m, which is now about (an)'/?.

For example, consider the number 26! — 1. We have the two prime factors
3607 and 64863527, but the resulting number ny when these primes are divided
into 2691 — 1 is a composite of 170 decimal digits for which we know no factor.
We have

22 3607 - 64863527ng = 2603 — 22 = (2201)° _ 4,

so that we may take ag = —4, a; = ay = 0, m = 22°1, These assignments give
the congruence (6.6) with

z(b) = 2m? 4+ 2bm — b2, y(b) = (16 — 4b%)m + 32b + b*, m = 221,
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As the number b grows in absolute value, y(b) is dominated by the term
—4b3m. Tt is not unreasonable to expect that b will grow as large as 240,
in which case the size of |y(b)| will be near 23?3. This does not compare
favorably with the quadratic sieve with multiple polynomials, where the size
of the numbers we sieve for smooths would be about 22°y/n ~ 23, (This
assumes a sieving interval of about 22° per polynomial.)

However, we can also use multiple polynomials with the special quadratic
sieve. For example, for the above number ng, take by = —2u?, by = 2uv,
by = v2. This then implies that we may take

z(u,v) = v*m? + 2uvm — 2u?, y(u,v) = (4* — 8udv)m + 16uv® + 4u*,

and let u,v range over small, coprime integers. (It is important to take wu, v
coprime, since otherwise, we shall get redundant relations.) If u, v are allowed
to range over numbers with absolute value up to 229, we get about the same
number of pairs as choices for b above, but the size of |y(u,v)| is now about
2283 " a savings over the ordinary quadratic sieve. (There is a small additional
savings, since we may actually consider the pair “2z(u, v), 2y(u,v).)

It is perhaps not clear why the introduction of u,v may be considered as
“multiple polynomials.” The idea is that we may fix one of these letters, and
sieve over the other. Each choice of the first letter gives a new polynomial in
the second letter.

The assumption in the above analysis of a sieve of length 2% is probably
on the small side for a number the size of ng. A larger sieve length will make
SQS look poorer in comparison with ordinary QS.

It is not clear whether the special quadratic sieve, as described above, will
be a useful factoring algorithm (as of this writing, it has not actually been tried
out in significant settings). If the number n is not too large, the growth of the
coefficient of m in y(b) or y(u, v) will dominate and make the comparison with
the ordinary quadratic sieve poor. If the number n is somewhat larger, so that
the special quadratic sieve starts to look better, as in the above example, there
is actually another algorithm that may come into play and again majorize the
special quadratic sieve. This is the number field sieve, something we shall
discuss in the next section.

6.2 Number field sieve

We have encountered some of the inventive ideas of J. Pollard in Chapter 5. In
1988 (see [Lenstra and Lenstra 1993]) Pollard suggested a factoring method
that was very well suited for numbers, such as Fermat numbers, that are close
to a high power. Before long, this method had been generalized so that it
could be used for general composites. Today, the number field sieve (NFS)
stands as the asymptotically fastest heuristic factoring algorithm we know for
“worst-case” composite numbers.
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6.2.1 Basic NFS: Strategy

The quadratic sieve factorization method is fast because it produces small
quadratic residues modulo the number we are trying to factor, and because
we can use a sieve to quickly recognize which of these quadratic residues
are smooth. The QS method would be faster still if the quadratic residues
it produces could be arranged to be smaller, since then they would be more
likely to be smooth, and so we would not have to sift through as many of
them. An interesting thought in this regard is that it is not necessary that
they be quadratic residues, only smalll We have a technique through linear
algebra of multiplying subsets of smooth numbers so as to obtain squares. In
the quadratic sieve, we had only to worry about one side of the congruence,
since the other side was already a square. In the number field sieve we use the
linear algebra method on both sides of the key congruence.

However, our congruences will not start with two integers being congruent
mod n. Rather, they will start with pairs 0, ¢(6), where 6 lies in a particular
algebraic number ring, and ¢ is a homomorphism from the ring to Z,,. (These
concepts will be described concretely, in a moment.) Suppose we have k such
pairs 601,¢(61),...,0k, &(6k), such that the product 6; ---0 is a square in
the number ring, say v2, and there is an integer square, say v2, such that
d(01) - ¢(0x) = v? (mod n). Then if ¢(v) = u (mod n) for an integer u, we
have

u? = ¢(7)? = ¢(v?) = ¢(01 - 0x) = $(01) -~ $(0)) = v* (mod n).
That is, stripping away all of the interior expressions, we have the congruence
u? = v? (mod n), and so could try to factor n via ged(u — v,n).

The above ideas constitute the strategy of NFS. We now discuss the basic
setup that introduces the number ring and the homomorphism ¢. Suppose we
are trying to factor the number n, which is odd, composite, and not a power.
Let

fx)=a2%+cqg 12+ 4 ¢

be an irreducible polynomial in Z[z], and let « be a complex number that
is a root of f. We do not need to numerically approximate a; we just use
the symbol “a” to stand for one of the roots of f. Our number ring will
be Z[a]. This is computationally thought of as the set of ordered d-tuples
(ap,ai,...,aq—1) of integers, where we “picture” such a d-tuple as the element
ag+aro+---ag_1a? 1. We add two such expressions coordinatewise, and we
multiply via the normal polynomial product, but then reduce to a d-tuple via
the identity f(«) = 0. Another, equivalent way of thinking of the number ring
Z[a] is to realize it as Z[z]/(f(x)), that is, involving polynomial arithmetic
modulo f(z).

The connection to the number n we are factoring comes via an integer m

with the property that

f(im) =0 (mod n).
We do need to know what the integer m is. We remark that there is a
very simple method of coming up with an acceptable choice of f(z) and
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m. Choose the degree d for our polynomial. (We will later give a heuristic
argument on how to choose d so as to minimize the running time to factor
n. Experimentally, for numbers of around 130 digits, the choice d = 5 is
acceptable.) Let m = Lnl/dJ, and write n in base m, so that

d d—1
n=m -+ cq—1m + -+ Co,

where each ¢; € [0, m—1]. (From Exercise 6.8 we have that if 1.5(d/In2)¢ < n,
then n < 2m<, so the m9coefficient is indeed 1, as in the above display.) So
the polynomial f(z) falls right out of the base-m expansion of n: We have
f(z) = 2% +cqg 12971+ - -+ ¢p. This polynomial is self-evidently monic. But it
may not be irreducible. Actually, this is an excellent situation in which to find
ourselves, since if we have the nontrivial factorization f(z) = g(x)h(z) in Z|z],
then the integer factorization n = g(m)h(m) is also nontrivial; see [Brillhart
et al. 1981] and Exercises 6.9 and 6.10. Since polynomial factorization is
relatively easy, see [Lenstra et al. 1982], [Cohen 2000, p. 139], one should
factor f into irreducibles in Z[xz]. If the factorization is nontrivial, one has a
nontrivial factorization of n. If f is irreducible, we may continue with NFS.

The homomorphism ¢ from Z[a] to Z,, is defined by ¢(«) being the residue
class m (mod n). That is, ¢ first sends ag+aja+- - 4ag_10%1 to the integer
ag + arm ~+ - - + ag_1m®1, and then reduces this integer mod n. It will be
interesting to think of ¢ in this “two step” way, since we will also be dealing
with the integer ag + aym + - - - + ag_1m~! before it is reduced.

The elements 6 in the ring Z[«] that we will consider will all be of the
form a — ba, where a,b € Z, with ged(a,b) = 1. Thus, we are looking for a set
S of coprime integer pairs (a,b) such that

H (a — ba) = ~2, for some v € Zal,
(a,b)eS

H (a — bm) =12, for some v € Z.
(a,b)eS
Then, if u is an integer such that ¢(v) = u (mod n), then, as above, u? = v?
(mod n), and we may try to factor n via ged(u — v,n). (The pairs (a,b) in §
are assumed to be coprime so as to avoid trivial redundancies.)

6.2.2 Basic NFS: Exponent vectors

How, then, are we supposed to find the set S of pairs (a,b)? The method
resembles what we do in the quadratic sieve. There we have a single variable
that runs over an interval. We use a sieve to detect smooth values of the
given polynomial, and associate exponent vectors to these smooth values,
using linear algebra to find a subset of them with product being a square.
With NFS, we have two variables a,b. As with the special quadratic sieve
(see Section 6.1.7), we can fix the first variable, and sieve over the other, then
change to the next value of the first variable, sieve on the other, and so on.
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But sieve what? To begin to answer this question, let us begin with a
simpler question. Let us ignore the problem of having the product of the
a — ba being a square in Z[a] and instead focus just on the second property
that S is supposed to have, namely, the product of the a — bm is a square
in Z. Here, m is a fixed integer that we compute at the start. Say we let a,b
run over pairs of integers with 0 < |a|,b < M, where M is some large bound
(large enough so that there will be enough pairs a, b for us to be successful).
Then we have just the degree-1 homogeneous polynomial G(a,b) = a — bm,
which we sieve for smooth values, say B-smooth. We toss out any pair (a,b)
found with ged(a, b) > 1. Once we have found more than w(B)+ 1 such pairs,
linear algebra modulo 2 can be used on the exponent vectors corresponding
to the smooth values of G(a,b) to find a subset of them whose product is a
square.

This is all fine, but we are ignoring the hardest part of the problem: to
sitmultaneously have our set of pairs (a,b) have the additional property that
the product of a — ba is a square in Z[a].

Let the roots of f(z) in the complex numbers be «i,...,aq, where
a = ai. The norm of an element 8 = sy + sia + -+ + sg_1a® ! in
the algebraic number field Q[a] (where the coefficients sg, s1,...,84—1 are
arbitrary rational numbers) is simply the product of the complex numbers
S0+ 8105 -+ sd,la?71 for j =1,2,...,d. This complex number, denoted
by N(8), is actually a rational number, since it is a symmetric expression
in the roots ag,...,aq, and the elementary symmetric polynomials in these
roots are £¢; for j = 0,1,...,d — 1, which are integers. In particular, if the
rationals s; are all actually integers, then N(3) is an integer, too. (We shall
later refer to what is called the trace of 8. This is the sum of the conjugates
so + s10y —l—---—l—sd,la?*l for j=1,2,...,d.)

The norm function N is also fairly easily seen to be multiplicative, that
is, N(33') = N(B)N(3'). An important corollary goes: If 3 = +? for some
~v € Z[a], then N(() is an integer square, namely the square of the integer
N().

Thus, a necessary condition for the product of a — ba for (a,b) in S to be
a square in Z[a] is for the corresponding product of the integers N(a — ba)
to be a square in Z. Let us leave aside momentarily the question of whether
this condition is also sufficient and let us see how we might arrange for the
product of N(a — ba) to be a square.

We first note that

N(a—ba) = (a—bag) - (a— bay)
=b¥a/b—ayi)---(a/b— ag)
=b"f(a/b),

since f(x) = (x —aq) - - (x — aq). Let F(x,y) be the homogeneous form of f,
namely,

F(z,y) = 2%+ camr1z®ly + -+ ey’ =y f(z/y).
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Then N(a —ba) = F(a,b). That is, N(a — ba) may be viewed quite explicitly
as a polynomial in the two variables a, b.

Thus, we can arrange for the product of N(a — ba) for (a,b) € S to be
a square by letting a,b run so that |al,[b] < M, using a sieve to detect B-
smooth values of F(a,b), form the corresponding exponent vectors, and use
matrix methods to find the subset S. And if we want S also to have the first
property that the product of the a —bm is also a square in Z, then we alter the
procedure to sieve for smooth values of F(a,b)G(a,b), this product, too, being
a polynomial in the variables a, b. For the smooth values we create exponent
vectors with two fields of coordinates. The first field corresponds to the prime
factorization of F(a,b), and the second to the prime factorization of G(a,b).
These longer exponent vectors are then collected into a matrix, and again we
can do linear algebra modulo 2. Before, we needed just m(B) 4 2 vectors to
ensure success. Now we need 27(B) + 3 vectors to ensure success, since each
vector will have 27(B)+2 coordinates: the first half for the prime factorization
of F(a,b), and the second half for the prime factorization of G(a,b). So we
need only to collect twice as many vectors, and then we can accomplish both
tasks simultaneously.

We return now to the question of sufficiency. That is, if N(3) is a square
in Z and 8 € Z]a], must it be true that 3 is a square in Z[a]? The answer is a
resounding no. It is perhaps instructive to look at a simple example. Consider
the case f(z) = 22 + 1, and let us denote a root by the symbol “” (as one
might have guessed). Then N (a+bi) = a?+b?. If a®+b? is a square in Z, then
a + bi need not be a square in Z[i]. For example, if a is a positive, nonsquare
integer, then it is also a nonsquare in Z[i], yet N(a) = a? is a square in Z.

Actually, the ring Z[i], known as the ring of Gaussian integers, is a well-
understood ring with many beautiful properties in complete analogy to the
ring Z. The Gaussian integers are a unique factorization domain, as Z is.
Each prime in Z[i] “lies over” an ordinary prime p in Z. If the prime p is 1
(mod 4), it can be written in the form a? + b, and then a + bi and a — bi are
the two different primes of Z[i] that lie over p. (Each prime has 4 “associates”
corresponding to multiplying by the 4 units: 1,—1,4, —i. Associated primes
are considered the same prime, since the principal ideals they generate are
exactly the same.) If the ordinary prime p is 3 (mod 4), then it remains prime
in Z[i]. And the prime 2 has the single prime 1 + ¢ (and its associates) lying
over it. For more on the arithmetic of the Gaussian integers, see [Niven et al.
1991].

So we can see, for example, that 5i is definitely not a square in Z[é], since
it has the prime factorization (2 +¢)(1+ 27), and 2+ and 1+ 2i are different
primes. (In contrast, 2i is a square, it is (1 + i)2.) However, N(5i) = 25, and
of course, 25 is recognized as a square in Z. The problem is that the norm
function smashes together the two different primes 1+ 2i and 2+ 7. We would
like then to have some way to distinguish the different primes.

If our ring Z[a] in the number field sieve were actually a unique
factorization domain, our challenge would be much simpler: Just form
exponent vectors based on the prime factorization of the various elements
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a — ba.. There is a problem with units, and if we were to take this route, we
would also want to find a system of “fundamental units” and have coordinates
in our exponent vectors for each of these. (In the case of Z[i] the fundamental
unit is rather trivial, it is just ¢, and we can take for distinguished primes
in each associate class the one that is in the first quadrant but not on the
imaginary axis.)

However, we shall see that the number field sieve can work just fine even
if the ring Z[a] is far from being a unique factorization domain, and even if
we have no idea about the units.

For each prime p, let R(p) denote the set of integers r € [0,p — 1] with
f(r) =0 (mod p). For example, if f(x) = 22+1, then R(2) = {1}, R(3) = { },
and R(5) = {2,3}. Then if a,b are coprime integers,

F(a,b) =0 (mod p) if and only if a = br (mod p) for some r € R(p).

Thus, if we discover that p|F(a,b), we also have a second piece of information,
namely a number r € R(p) with a = br (mod p). (Actually, the sets R(p) are
used in the sieve that we use to factor the numbers F(a,b). We may fix
the number b and consider F'(a,b) as a polynomial in the variable a. Then
when sieving by the prime p, we sieve the residue classes a = br (mod p) for
multiples of p.) We keep track of this additional information in our exponent
vectors. The field of coordinates of our exponent vectors that correspond to
the factorization of F'(a,b) will have entries for each pair p,r, where p is a
prime < B, and r € R(p).

Let us again consider the polynomial f(zx) = 22 + 1. If B = b,
then exponent vectors for B-smooth members of Z[i] (that is, members
of Z[i] whose norms are B-smooth integers) will have three coordinates,
corresponding to the three pairs: (2,1), (5,2), and (5,3). Then

F(3,1)
F(2,1)
F(1,1) = 2 has the exponent vector (1,0,0),
F(2,—1) = 5 has the exponent vector (0,0, 1).

10 has the exponent vector (1,0,1),
5 has the exponent vector (0,1,0),

Although F(3,1)F(2,1)F(1,1) = 100 is a square, the exponent vectors allow
us to see that (3 +4)(2 +4)(1 + 4) is not a square: The sum of the three
vectors modulo 2 is (0,1, 1), which is not the zero vector. But now consider
(3+1)(2—14)(14+4) = 8 + 6i. The sum of the three corresponding exponent
vectors modulo 2 is (0,0,0), and indeed, 8 + 67 is a square in Z[i].

This method is not foolproof. For example, though ¢ has the zero vector
as its exponent vector in the above scheme, it is not a square. If this were
the only problem, namely the issue of units, we could fairly directly find a
solution. However, this is not the only problem.

Let Z denote the ring of algebraic integers in the algebraic number field
Q[a]. That is, Z is the set of elements of Q[a] that are the root of some monic
polynomial in Z[z]. The set Z is closed under multiplication and addition.
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That is, it is a ring; see [Marcus 1977]. In the case of f(z) = 2 + 1, the
algebraic integers in Q[i] constitute exactly the ring Z[:]. The ring Z[a] will
always be a subset of Z, but in general, it will be a proper subset. For example,
consider the case where f(z) = 22 — 5. The ring of all algebraic integers in
Q [\/5] is Z [(1 + \/5)/2], which properly contains Z [\/ﬂ

We now summarize the situation regarding the exponent vectors for the
numbers a—ba. We say that a—ba is B-smooth if its norm N(a—ba) = F(a,b)
is B-smooth. For a,b coprime and a — ba: being B-smooth, we associate to it
an exponent vector ¥(a — ber) that has entries v, »(a — ba) for each pair (p,r),
where p is a prime number not exceeding B with r € R(p). (Later we shall
use the notation ¥(a — ba) for a longer vector that contains within it what is
being considered here.) If a # br (mod p), then we define v, .(a — ba) = 0.
Otherwise a = br (mod p) and v, (@ — ba) is defined to be the exponent on p
in the prime factorization of F(a,b). We have the following important result.

Lemma 6.2.1. If S is a set of coprime integer pairs a,b such that each
a —ba is B-smooth, and if H(a,b)es(a —ba) is the square of an element in I,
the ring of algebraic integers in Q[a], then

> a—ba) =0 (mod 2). (6.7)

(a,b)eS

Proof. We begin with a brief discussion of what the numbers v, ,(a — ba)
represent. It is well known in algebraic number theory that the ring Z is a
Dedekind domain; see [Marcus 1977]. In particular, nonzero ideals of Z may
be uniquely factored into prime ideals. We also use the concept of norm of an
ideal: If J is a nonzero ideal of Z, then N(J) is the number of elements in the
(finite) quotient ring Z/J. (The norm of the zero ideal is defined to be zero.)
The norm function is multiplicative on ideals, that is, N(J1Jo) = N(J1)N(J2)
for any ideals Ji,J> in Z. The connection with the norm of an element of 7
and the norm of the principal ideal it generates is beautiful: If § € Z, then
N((8)) = IN(B).

If p is a prime number and r € R(p), let P1,..., Py be the prime ideals of
7 that divide the ideal (p,a — 7). (This ideal is not the unit ideal, since
N(a — r) = f(r), an integer divisible by p.) There are positive integers
e1,...,ex such that N(P;) = p% for j = 1,..., k. The usual situation is that
k=1, e; =1, and that (p,a« —r) = P;. In fact, this scenario occurs whenever
p does not divide the index of Z[«] in Z; see [Marcus 1977]. However, we will
deal with the general case.

Note that if v’ € R(p) and ' # r, then the prime ideals that divide
(p,a — r) are different from the prime ideals that divide (p, « — r'); that is,
the ideals (p,a — ') and (p,« — r) are coprime. This observation follows,
since the integer r — 7’ is coprime to the prime p. In addition, if a,b are
integers, then a — ba € (p,a — r) if and only if a = br (mod p). To see this,
write @ — bae = a — br — b(aw — 1), so that a — ba € (p,a — r) if and only
if a—br € (p,a —r), if and only if @ = br (mod p). We need one further
property: If a,b are coprime integers, a = br (mod p), and if P is a prime
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ideal of Z that divides both (p) and (a—ba), then P divides (p, @ —r); that is,
P is one of the P;. To see this, note that the hypotheses that a, b are coprime
and a = br (mod p) imply b Z 0 (mod p), so there is an integer ¢ with ¢b =1

(mod p). Then, since a —ba = a —br —b(av —r) € P and a — br = 0 (mod p),
we have b(a —r) € P, so that ¢cb(a—r) € P, and oo —r € P. Thus, P divides
(p,a — 1), as claimed.

Suppose a, b are coprime integers and that P/ - - - P.* appears in the prime
ideal factorization of (a — ba). As we have seen, if any of these exponents a;
are positive, it is necessary and sufficient that ¢ = br (mod p), in which case
all of the exponents a; are positive and no other prime ideal divisor of (p)
divides (a — ba). Thus the “p part” of the norm of a — ba is exactly the norm
of Pt --- P2*; that is,

pv"”'(afba) = N(Plal . P‘lk) _ e1a1+--~+ekak.

Let vp(a — bar) denote the exponent on the prime ideal P in the prime ideal
factorization of (a — ba). Then from the above,

M»

e;jvp, (a — ba).

Upr %

Jj=1

Now, if H(a b)es(a —ba) is a square in Z, then the principal ideal it generates
is a square of an ideal. Thus, for every prime ideal P in Z we have that
Z(a,b)es vp(a — ba) is even. We apply this principle to the prime ideals P;
dividing (p, @ — r). We have

Z vp,r(a —ba) = Ze] Z vp,(a — ba).

(a,b)eS (a,b)eS

As each inner sum on the right side of this equation is an even integer, the
integer on the left side of the equation must also be even. O

6.2.3 Basic NFS: Complexity

We have not yet given a full description of NF'S, but it is perhaps worthwhile to
envision why the strategy outlined so far leads to a fast factorization method,
and to get an idea of the order of magnitude of the parameters to be chosen.

In both QS and NF'S we are presented with a stream of numbers on which
we may use a sieve to detect smooth values. When we have enough smooth
values, we can use linear algebra on exponent vectors corresponding to the
smooth values to find a nonempty subset of these vectors whose sum in the
zero vector mod 2. Let us model the general problem as follows. We have a
random sequence of positive integers bounded by X. How far does one expect
to go in this sequence before a nontrivial subsequence has product being a
square? The heuristic analysis in Section 6.1.1 gives an answer: It is at most
L(X)V2to()  where the smoothness bound to achieve this is L(X)Y V2. (We
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use here the notation of (6.1).) This heuristic upper bound can actually be
rigorously proved as a two-sided estimate via the following theorem.

Theorem 6.2.2 (Pomerance 1996a). Suppose mq,ma,... is a sequence of
integers in [1,X], each chosen independently and with uniform distribu-
tion. Let N be the least integer such that a monempty subsequence from
mi,ma,...,my has product being a square. Then the expected value for N
1S L(X)ﬂJro(l). The same expectation holds if we also insist that each m;

used in the product be B-smooth, with B = L(X)'/V2.

Thus, in some sense, smooth numbers are forced upon us, and are not merely
an artifact. Interestingly, there is an identical theorem for the random variable

N’, being the least integer such that mi,mo,...,mys are “multiplicatively
dependent”, which means that there are integers ai,as, ..., an, not all zero,
such that ] m?j = 1. (Equivalently, the numbers Inmq,Inma,...,Inmy are

linearly dependent over Q.)

In the QS analysis, the bound X is n!/2t°() and this is where we get
the complexity L(n)'*°() for QS. This complexity estimate is not a theorem,
since the numbers we are looking at to form squares are not random—we just
assume they are random for convenience in the analysis.

This approach, then, seems like a relatively painless way to do a complexity
analysis. Just find the bound X for the numbers that we are trying to
combine to make squares. The lower X is, the lower the complexity of the
algorithm. In NFS the integers that we deal with are the values of the
polynomial F(x,y)G(z,y), where F(z,y) = 2% + cq_12% 7ty + - + coy?
and G(z,y) = © — my. We will ignore the fact that integers of the form
F(a,b)G(a,b) are already factored into the product of two numbers, and
so may be more likely to be smooth than random numbers of the same
magnitude, since this property has little effect on the asymptotic complexity.

Let us assume that the integer m in NFS is bounded by n'/?, the
coefficients ¢; of the polynomial f(x) are also bounded by n'/¢, and that
we investigate values of a,b with |al|, |b] < M. Then a bound for the numbers
|F(a,b)G(a,b)| is 2(d + 1)n?/¢M4+1. If we call this number X, then from
Theorem 6.2.2, we might expect to have to look at L(X)V2+t°() pairs a,b
to find enough to be used to complete the algorithm. Thus, M should
satisfy the constraint M? = L(X)‘/i'*‘o(l). Putting this into the equation
X = 2(d+ 1)n?/4M4+! and taking the logarithm of both sides, we have

lnXN1n(2(d—|—1))+%1nn+(d+1)\/%lnXlnlnX. (6.8)

It is clear that the first term on the right is negligible compared to the
third term. Suppose first that d is fixed; that is, we are going to analyze
the complexity of NFS when we fix the degree of the polynomial f(z), and
assume that n — oo. Then the last term on the right of (6.8) is small compared
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to the left side, so (6.8) simplifies to

2
In X ~ Elnn.

Hence the running time with d fixed is
L<X)\/§+o(1) _ L(n)‘/4/d+o(1),

which suggests that NFS will not do better than QS until we take d = 5 or
larger.

Now let us assume that d — oo as n — oo. Then we may replace the
coefficient d + 1 in the last term of (6.8) with d, getting

/1
InX ~ %lnn—i—d ilnXlnlnX.

w_»

Let us somewhat imprecisely change the “~” to and try to choose d so
as to minimize X. (An optimal X, will have the property that In Xy ~ In X.)
Taking the derivative with respect to the “variable” d, we have

A 1 (1+1nl
£:—21mn+,Lha)(lmhnXJr dX'(1+lnln X)
X d? 2 1

4X 2hrlenlnX

Setting X’ = 0, we get

d=(2Inn)"?((1/2)In X Inln X)~1/4,

so that
In X =2(2Inn)2((1/2) In X Inln X)1/4,

Then
(In X)** = 2(21nn)"/2((1/2) In1n X)*/4,

so that %ln In X ~ %ln Inn. Substituting, we get
(In X)3/4 ~ 2(21nn)*/2((1/3) Inlnn)*/4,
or

4
InX ~ 31ﬁ(ln71)2/3(1nlnn)1/3.

So the running time for NFS is
L(X>ﬂ+o(1) — ex ( 1/3 1/3 2/3
=exp ( ((64/9)"% 4+ 0(1))(Inn)"/?(InInn) .

The values of d that achieve this heuristic asymptotic complexity satisfy

3lnn 1/3
dn~ .
Inlnn
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One can see that “at infinity,” NFS is far superior (heuristically) than QS.
The low complexity estimate should motivate us to forge on and solve the
remaining technical problems in connection with the algorithm.

If we could come up with a polynomial with smaller coefficients, the
complexity estimate would be smaller. In particular, if the polynomial f(x)
has coefficients that are bounded by n¢/?, then the above analysis gives the

complexity L(n)V (242¢)/d+o(1) for fixed d; and for d — oo as n — o0, it is
exp (((32(1 +€)/9)/3 + 0(1)) (Inn)/3(Inlnn)?/?). The case € = o(1) is the
“special” number field sieve; see Section 6.2.7.

6.2.4 Basic NFS: Obstructions

After this interlude into complexity theory, we return to the strategy of NFS.
We are looking for some easily checkable condition for the product of (a — ba)
for (a,b) € S to be a square in Z[a]. Lemma 6.2.1 goes a long way to meet
this condition, but there are several “obstructions” that remain. Suppose that
(6.7) holds. Let 8 =[], y)es(a — bav).

(1) If the ring Z[a] is equal to Z (the ring of all algebraic integers in Q(«)),
then we at least have the ideal (8) in Z being the square of some ideal J.
But it may not be that Z[a] = Z. So it may not be that (8) in Z is the
square of an ideal in Z.

(2) Even if (3) = J? for some ideal J in Z, it may not be that J is a principal
ideal.

(3) Even if (8) = (7)? for some v € Z, it may not be that 8 = ~2.
(4) Even if 3 = 4?2 for some 7 € Z, it may not be that vy € Z[a].
Though these four obstructions appear forbidding, we shall see that two simple

devices can be used to overcome all four. We begin with the last of the four.
The following lemma is of interest here.

Lemma 6.2.3. Let f(z) be a monic irreducible polynomial in Z[x], with root
a in the complex numbers. Let T be the ring of algebraic integers in Q(a), and

let B €. Then f'(a)B € Z]a].

Proof. Our proof follows an argument in [Weiss 1963, Sections 3-7]. Let
Bos B1,- -, Ba—1 be the coefficients of the polynomial f(z)/(x — «). That is,
fl@)/(x —a) = Z}i;é B;x?. From Proposition 3-7-12 in [Weiss 1963], a result
attributed to Euler, we have 8o/ f'(a),...,Ba=1/f'(a) a basis for Q(«) over
Q, each 3; € Z[a], and the trace of a*3;/f(a) is 1 if j = k, and 0 otherwise.
(See Section 6.2.2 for the definition of trace. From this definition it is easy to
see that the trace operation is Q-linear, it takes values in Q, and on elements
of 7 it takes values in Z.) Let 8 € Z. There are rationals sg,...,sq—1 such
that 8 = Z?;é si3j/f'(a). Then the trace of Bak is sy for k =0,...,d — 1.
So each s, € Z. Thus, f'(a)B = 9] s;3; is in Z[al]. m
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We use Lemma 6.2.3 as follows. Instead of holding out for a set S of
coprime integers with ] (a,b)e s(a—ba) being a square in Z[a], as we originally
desired, we settle instead for the product being a square in Z, say v2. Then
by Lemma 6.2.3, f'(a)y € Z[a], so that f'(«)? 1 p)es(a—ba) is a square in
Z[a].

The first three obstructions are all quite different, but they have a common
theme, namely well-studied groups. Obstruction (1) is concerned with the
group Z/Z[a]. Obstruction (2) is concerned with the class group of Z. And
obstruction (3) is concerned with the unit group of Z. A befuddled reader may
well consult a text on algebraic number theory for full discussions of these
groups, but as we shall see below, a very simple device will let us overcome
these first three obstructions. Further, to understand how to implement the
number field sieve, one needs only to understand this simple device. This
hypothetical befuddled reader might well skip ahead a few paragraphs!

For obstruction (1), though the prime ideal factorization (into prime ideals

in7) of (H(a)b)e s(a —ba)) | may not have all even exponents, the prime ideals

with odd exponents all lie over prime numbers that divide the index of Z[«]
in Z, so that the number of these exceptional prime ideals is bounded by the
(base-2) logarithm of this index.

Obstruction (2) is more properly described as the ideal class group modulo
the subgroup of squares of ideal classes. This is a 2-group whose rank is the
2-rank of the ideal class group, which is bounded by the (base-2) logarithm
of the order of the class group; that is, the logarithm of the class number.

Obstruction (3) is again more properly described as the group of units
modulo the subgroup of squares of units. This again is a 2-group, and its rank
is < d, the degree of f(x). (We use here the famous Dirichlet unit theorem.)

The detailed analysis of these obstructions can be found in [Buhler et al.
1993]. We shall be content with the conclusion that though all are different,
obstructions (1), (2), and (3) are all “small.” There is a brute force way
around these three obstructions, but there is also a beautiful and simple
circumvention. The circumvention idea is due to Adleman and runs as follows.
For a moment, suppose you somehow could not tell positive numbers from
negative numbers, but you could discern prime factorizations. Thus both 4
and —4 would look like squares to you, since in their prime factorizations we
have 2 raised to an even power, and no other primes are involved. However,
—4 is not a square. Without using that it is negative, we can still tell that —4
is not a square by noting that it is not a square modulo 7. We can detect
this via the Legendre symbol (_74) = —1. More generally, if ¢ is an odd
prime and if (%) = —1, then m is not a square. Adleman’s idea is to use
the converse statement, even though it is not a theorem! The trick is to think
probabilistically. Suppose for a given integer m, we choose k distinct odd
primes ¢ at random in the range ¢ < |m|. And suppose for each of the k test

m

primes ¢ we have (?) = 1. If m is not a square, then the probability of this

event occurring is (heuristically) about 27%. So, if the event does occur and k
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is large (say, k > lg|m|), then it is reasonable to suppose that m actually is a
square.

We wish to use this idea with the algebraic integers a — ba, and the
following result allows us to do so via ordinary Legendre symbols.

Lemma 6.2.4. Let f(z) be a monic, irreducible polynomial in Z[x] and let
a be a root of f in the complex numbers. Suppose q is an odd prime number
and s is an integer with f(s) =0 (mod q) and f'(s) Z 0 (mod q). Let S be a
set of coprime integer pairs (a,b) such that q does not divide any a — bs for
(a,b) € S and f'(a)? Lo pyes(a —ba) is a square in Z[o]. Then

I1 (aqbs> ~ 1 (6.9)

(a,b)esS

Proof. Consider the homomorphism ¢, from Z[a] to Z, where ¢4(a) is the
residue class s (mod ¢). We have f'(a)? o pesla = ba) = 72 for some

v € Z[a]. By the hypothesis, ¢,(7?) = f'(s)? [l p)es(a —bs) # 0 (mod q).
Then (M) = (M) =1 and (M) =1, so that
q q q

(H(a,b)es(a - bs)) _1

q
which implies that (6.9) holds. a

So again we have a necessary condition for squareness, while we are still
searching for a sufficient condition. But we are nearly there. As we have seen,
one might heuristically argue that if k is sufficiently large and if ¢, ..., g are
odd primes that divide no N(a — ba) for (a,b) € S and if we have s; € R(q;)
for j =1,...,k, where f'(s;) # 0 (mod ¢;), then

Z ¥(a —ba) =0 (mod 2)

(a,b)eS
and )
I1 <a_lsj) —lforj=1,....,k
(a,b)eS 4
imply that

H (a —ba) = ~* for some vy € Z.
(a,b)eS

And how large is sufficiently large? Again, since the dimensions of obstructions
(1), (2), (3) are all small, k¥ need not be very large at all. We shall choose the
polynomial f(z) so that the degree d satisfies 2 <n (where n is the number
we are factoring), and the coefficients of ¢; of f all satisfy |c;| < n'/¢. Under
these conditions, it can be shown that the sum of the dimensions of the first
three obstructions is less than lgn; see [Buhler et al. 1993], Theorem 6.7. It
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is conjectured that it is sufficient to choose k = |31gn| (with the k primes g;
chosen as the least possible). Probably a somewhat smaller value of k would
also suffice, but this aspect is not a time bottleneck for the algorithm.

We use the pairs g;, s; to augment our exponent vectors with k additional

a—bs;

entries. If ( ) = 1, the entry corresponding to g;, s; in the exponent vector

j
for a — ba is 0. If the Legendre symbol is —1, the entry is 1. (This allows the
translation from the multiplicative group {1,—1} of order 2 to the additive
group Zs of order 2.) These augmented exponent vectors turn out now to be

not only necessary, but also sufficient (in practice) for constructing squares.

6.2.5 Basic NFS: Square roots

Suppose we have overcome all the obstructions of the last section, and we now
have a set S of coprime integer pairs such that f’(«)? [Tiapyesla —ba) = 72
for v € Z[a], and [], )es(a — bm) = v? for v € Z. We then are nearly done,
for if u is an integer with ¢(7) = u (mod n), then u? = (f'(m)v)? (mod n),
and we may attempt to factor n via ged(u — f/(m)v, n).

However, a problem remains. The methods of the above sections allow us
to find the set S with the above properties, but they do not say how we might
go about finding the square roots v and v. That is, we have squares, one in
Z]a], the other in Z, and we wish to find their square roots.

The problem for v is simple, and can be done in the same way as in QS.
From the exponent vectors, we can deduce easily the prime factorization of
v2, and from this, we can deduce even more easily the prime factorization of
v. We actually do not need to know the integer v; rather, we need to know
only its residue modulo n. For each prime power divisor of v, compute its
residue mod n by a fast modular powering algorithm, say Algorithm 2.1.5.
Then multiply these residues together in Z,,, finally getting v (mod n).

The more difficult, and more interesting, problem is the computation of ~.
If 7y is expressed as ag + a1+ -+ -+ ag—1a%1, then an integer u that works is
ag +aym+ - -+ ag_1m?t. Since again we are interested only in the residue
u (mod n), it means that we are interested only in the residues a; (mod n).
This is good, since the integers ay,...,aq—1 might well be very large, with
perhaps about as many digits as the square root of the number of steps for
the rest of the algorithm! One would not want to do much arithmetic with
such huge numbers. Even if one computed only the algebraic integer v2, and
did not worry about finding the square root 7y, one would have to use the
fast multiplication methods of Chapter 8.8 in order to keep the computation
within the time bound of Section 6.2.3. And this does not even begin to touch
how one would take the square root.

If we are in the special case where Z[a] = Z and this ring is a unique
factorization domain, we can use a method similar to the one sketched above
for computing v (mod n). But in the general case, our ring may be far from
being a UFD.
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One method, suggested in [Buhler et al. 1993], begins by finding a prime p
such that f(z) is irreducible modulo p. Then we solve for v (mod p) (that is,
for the coefficients of v modulo p). We do this as a computation in the finite
field Z,[x]/(f(z)); see Section 2.2.2. The square root computation can follow
along the lines of Algorithm 2.3.8; see Exercise 2.16. So this is a start, since
we can actually find the residues ag (mod p),...,aq—1 (mod p) fairly easily.
Why not do this for other primes p, and then glue using the Chinese remainder
theorem? There is a seemingly trivial problem with this overall approach. For
each prime p for which we do this, there are two square roots, and we don’t
know how to choose the signs in the gluing. We could try every possibility,
but if we use k primes, only 2 of the 2* possibilities work. We may choose one
of the solutions for one of the primes p, and then get it down to 2¥=! choices
for the other primes, but this is small comfort if k is large.

There are at least two possible ways to overcome this problem of choosing
the right signs. The method suggested in [Buhler et al. 1993] is not to use
Chinese remaindering with different primes, but rather to use Hensel lifting
to get solutions modulo higher and higher powers of the same fixed prime p;
see Algorithm 2.3.11. When the power of p exceeds a bound for the coefficients
aj, it means we have found them. This is simpler than using the polynomial
factorization methods of [Lenstra 1983], but at the top of the Hensel game
when we have our largest prime powers, we are doing arithmetic with huge
integers, and to keep the complexity bound under control we must use fast
subroutines as in Chapter 8.8.

Another strategy, suggested in [Couveignes 1993], allows Chinese remain-
dering, but it works only for the case d odd. In this case, the norm of —1 is —1,
so that we can set off right from the beginning and insist that we are looking
for the choice for v with positive norm. Since the prime factorization of N(v)
is known from the exponent vectors, we may compute N(v) (mod p), where p
is as above, a prime modulo which f(z) is irreducible. When we compute -,
that satisfies 72 = 4* (mod p), we choose 7, or —7, according to which has
norm congruent to N () (mod p). This, then, allows a correct choice of signs
for each prime p used. This idea does not seem to generalize to even degrees d.

As it turns out there is a heuristic approach for finding square roots that
seems to work very well in practice, making this step of the algorithm not
of great consequence for the overall running time. The method uses some of
the ideas above, as well as some others. For details, see [Montgomery 1994],
[Nguyen 1998].

6.2.6 Basic NFS: Summary algorithm

We now sum up the preceding sections by giving a reasonably concise
description of the NF'S. Due to the relative intricacy of the algorithm, we have
chosen to use a fair amount of English description in the following display.
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Algorithm 6.2.5 (Number field sieve). We are given an odd composite
number n that is not a power. This algorithm attempts to find a nontrivial
factorization of n.
1. [Setup]
d=|(3Inn/Inlnn)'/3|; // This d has d?@* < n.
B = |exp((8/9)"/3(Inn)"/3(Inlnn)*?)|;
// Note that d, B can optionally be tuned to taste.

m = |nV/4];
Write n in base m: n = m® + cg_im® 4+ - + ¢p;
f@) =2+ cq 1zt + -+ cp; // Establish the polynomial f.

Attempt to factor f(x) into irreducible polynomials in Z[z] using the
factoring algorithm in [Lenstra et al. 1982] or a variant such as [Cohen
2000, p. 139];

If f(x) has the nontrivial factorization g(x)h(x), return the (also nontrivial)
factorization n = g(m)h(m);

F(z,y) = 2%+ cqg 129y + - + coy; // Establish polynomial F.

G(z,y) =z —my;

for(prime p < B) compute the set

R(p) = {r € [0,p—1]: f(r) =0 (mod p)};

k=|3lgn];

Compute the first k primes ¢1,...,qr > B such that R(g;) contains some
element s; with f’(s;) # 0 (mod g;), storing the k pairs (g;, s;);

B' = ZPSB #R(p);

V=1+n(B)+B +k

M = B;

2. [The sieve]

Use a sieve to find a set &’ of coprime integer pairs (a, b) with 0 < |a|,b <
M, and F(a,b)G(a,b) being B-smooth, until #8’ >V, or failing this,
increase M and try again, or goto [Setup] and increase B;

3. [The matrix]
// We shall build a V' x #8’ binary matrix, one row per (a,b) pair.

// We shall compute ¥(a—ba), the binary exponent vector for a —bo
having V bits (coordinates) as follows:
Set the first bit of ¥ to 1 if G(a,b) < 0, else set this bit to 0;
// The next w(B) bits depend on the primes p < B: Define p" as
the power of p in the prime factorization of |G(a, b)|.
Set the bit for p to 1 if «y is odd, else set this bit to 0;
// The next B’ bits are to correspond to the pairs p,r where p is
a prime not exceeding B and r € R(p). We use the notation
vp,r(a — bar) defined prior to Lemma 6.2.1.
Set the bit for p,r to 1 if v, ,.(a — ba) is odd, else set it to 0;

// Next, the last k bits correspond to the pairs g¢;, s;.
Set the bit for ¢;,s; to 1 if (

a—bs;

9=250) s —1, else set it to 0;
qj
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Install the exponent vector ¥(a — ba) as the next row of the matrix;

}

4. [Linear algebra]
By some method of linear algebra (see Section 6.1.3), find a nonempty
subset S of &' such that 3, s U(a — ba) is the O-vector (mod 2);

5. [Square roots]
Use the known prime factorization of the integer square [ ], ;) cs(a —bm)
to find a residue v mod n with [](, ) cs(a —bm) =v? (mod n);
By some method, such as those of Section 6.2.5, find a square root -y in
Z[a] of f'(c)? 10 p)es(a@ —ba), and, via simple replacement v — m,
compute u = ¢(7y) (mod n);

6. [Factorization]
return ged(u — f/(m)v, n);

If the divisor of n that is reported in Algorithm 6.2.5 is trivial, one has the
option of finding more linear dependencies in the matrix and trying again. If
we run out of linear dependencies, one again has the option to sieve further
to find more rows for the matrix, and so have more linear dependencies.

6.2.7 NFS: Further considerations

As with the basic quadratic sieve, there are many “bells and whistles” that
may be added to the number field sieve to make it an even better factorization
method. In this section we shall briefly discuss some of these improvements.

Free relations

Suppose p is a prime in the “factor base,” that is, p < B. Our exponent
vectors have a coordinate corresponding to p as a possible prime factor of
a — bm, and #R(p) further coordinates corresponding to integers r € R(p).
(Recall that R(p) is the set of residues r (mod p) with f(r) =0 (mod p).) On
average, #R(p) is 1, but it can be as low as 0 (in the case that f(x) has no
roots (mod p), or it can be as high as d, the degree of f(z) (in the case that
f(z) splits into d distinct linear factors (mod p)). In this latter case, we have
that the product of the prime ideals (p,a — r) in the full ring of algebraic
integers in Q[a] is (p).

Suppose p is a prime with p < B, and R(p) has d members. Let us throw
into our matrix an extra row vector ¥(p), which has 1’s in the coordinates
corresponding to p and to each pair p,r where r € R(p). Also, in the final
field of k coordinates corresponding to the quadratic characters modulo g;
for 5 = 1,...,k, put a 0 in place j of #(p) if (q%) =1 and put a 1 in place
g if (%) = —1. Such a vector #(p) is called a free relation, since it is found
in the precomputations, and not in the sieving stage. Now, when we find a
subset of rows that sum to the zero vector mod 2, we have that the subset
corresponds to a set S of coprime pairs a,b and a set F of free relations. Let
w be the product of the primes p corresponding to the free relations in F.
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Then it should be that

wf'(a)? H (a — ba) = 2, for some v € Zal,
(a,b)eS

wf'(m)? H (a — bm) = v?, for some v € Z.
(a,b)eS

Then if ¢(y) = u, we have u? = v? (mod n), as before.

The advantage of free relations is that the more of them there are, the
fewer relations need be uncovered in the time-consuming sieve stage. Also, the
vectors ¥(p) are sparser than a typical exponent vector ¥(a,b), so including
free relations allows the matrix stage to run faster.

So, how many free relations do we expect to find? A free relation
corresponds to a prime p that splits completely in the algebraic number field
Q(«). Let g be the order of the splitting field of f(x); that is, the Galois
closure of Q(a) in the complex numbers. It follows from the Chebotarev
density theorem that the number of primes p up to a bound X that split
completely in Q(«) is asymptotically %W(X ), as X — oo. That is, on average,
1 out of every g prime numbers corresponds to a free relation. Assuming that
our factor base bound B is large enough so that the asymptotics are beginning
to take over (this is yet another heuristic, but reasonable, assumption), we thus
should expect about %W(B) free relations. Now, the order g of the splitting
field could be as small as d, the degree of f(x), or as high as d!. Obviously,
the smaller g is, the more free relations we should expect. Unfortunately, the
generic case is g = d!. That is, for most irreducible polynomials f(z) in Z[x]
of degree d, the order of the splitting field of f(x) is d!. So, for example, if
d = 5, we should expect only about ﬁW(B) free relations, if we choose our
polynomial f(z) according to the scheme in Step [Setup] in Algorithm 6.2.5.
Since our vectors have about 27 (B) coordinates, the free relations in this case
would only reduce the sieving time by less than one-half of 1 per cent. But
still, it is free, so to speak, and every little bit helps.

Free relations can help considerably more in the case of special polynomials
f(z) with small splitting fields. For example, in the factorization of the ninth
Fermat number Fy, the polynomial f(x) = z° + 8 was used. The order of
the splitting field here is 20, so free relations allowed the sieving time to be
reduced by about 2.5%.

Partial relations

As in the quadratic sieve method, sieving in the number field sieve not
only reveals those pairs a, b where both of the numbers N(a—ba) = F(a,b) =
b?f(a/b) and a — bm are B-smooth, but also pairs a,b where one or both of
these numbers are a B-smooth number times one somewhat larger prime. If
we allow relations that have such large primes, at most one each for N(a—ba)
and a — bm, we then have a data structure not unlike the quadratic sieve with
the double large-prime variation; see Section 6.1.4. It has also been suggested
that reports can be used with N(a — ba) having two large primes and a — bm
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being B-smooth, and vice versa. And some even consider using reports where
both numbers in question have up to two large prime factors. One wonders
whether it would not be simpler and more efficient in this case just to increase
the size of the bound B.

Nonmonic polynomials

It is specified in Algorithm 6.2.5 that the polynomial f(z) chosen in Step
[Setup] be done so in a particular way, a way that renders f monic. The
discussion in the above sections assumed that the polynomial f(x) is indeed
monic. In this case, where « is a root of f(x), the ring Z[a] is a subring of the
ring of algebraic integers in Q(«). In fact, we have more freedom in the choice
of f(x) than stated. It is necessary only that f(z) € Z[x] be irreducible. It
is not necessary that f be chosen in the particular way of Step [Setup]|, nor
is it necessary that f be monic. Primes that divide the leading coefficient of
f (a:) have a somewhat suspect treatment in our exponent vectors. But we are
used to this kind of thing, since also primes that divide the discriminant of
f(z) in the treatment of the monic case were suspect, and became part of
the need for the quadratic characters in Step [The matrix| of Algorithm 6.2.5
(discussed in Section 6.2.4). Suffice it to say that nonmonic polynomials do
not introduce any significant new difficulties.

But why should we bother with nonmonic polynomials? As we saw in
Section 6.2.3, the key to a faster algorithm is reducing the size of the numbers
that over which we sieve in the hope of finding smooth ones. The size of
these numbers in NFS depends directly on the size of the number m and the
coefficients of the polynomial f(z), for a given degree d. Choosing a monic
polynomial we could arrange for m and these coefficients to be bounded by
n'/4.1f we now allow nonmonic polynomials, we can choose m to be [n!/(d+1)].
Writing n in base m, we have n = cqm® + cg_1m%~! 4 - - + ¢o. This suggests
that we use the polynomial f(z) = cqz?+cq4_1297 1 +---+cy. The coefficients
¢; are bounded by n!/(¢+1) so both m and the coefficients are smaller by a
factor of about n!/(@°+d),

For numbers at infinity, this savings in the coefficient size is not very
significant: The heuristic complexity of NFS stands roughly as before. (The
asymptotic speedup is about a factor of In'/¢ n.) However, we are still not
factoring numbers at infinity, and for the numbers we are factoring, the savings
is important.

Suppose f(z) = cqz? + cq_12%7 1 + .-+ + ¢ is irreducible in Z[z] and
that @ € C is a root. Then cqa is an algebraic integer. It is a root of
F(r)=2%+cg 129 P+ eqeqgoz®2 4+ + cg_lco, which can be easily seen,
since F(cqr) = ¢4 ! f(x). We conclude that if S is a set of coprime integer
pairs a, b, if

H (a — ba)

(a,b)eS
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is a square in Q(«), and if S has an even number of pairs, then

F'(cqa)? H (acq — bega)
(a,b)eS

is a square in Z[cqa], say 2. Finding the integral coefficients (modulo n)
of v with respect to the basis 1, cqc, ..., (cda)d_1 then allows us as before
to get two congruent squares modulo n, and so gives us a chance to factor
n. (Note that if F(z,y) = y?f(x/y) is the homogenized form of f(z), then
F(eqx,cq) = cqF(cqx), and so Fy(cqa,cq) = caF'(cqa)). We thus may use
F,(cqa, ¢q) in place of F'(cqar) in the above, if we wish.) So, using a nonmonic
polynomial poses no great complications. To ensure that the cardinality of the
set S is even, we can enlarge all of our exponent vectors by one additional
coordinate, which is always set to be 1.

The above argument assumes that the coefficient ¢4 is coprime to n.
However, it is a simple matter to check that ¢4 and n are coprime. And, since
cq is smaller than n in all the cases that would be considered, a nontrivial
ged would lead to a nontrivial splitting of n. For further details on how to
use nonmonic polynomials, and also how to use homogeneous polynomials,
[Buhler et al. 1993, Section 12].

There have been some exciting developments in polynomial selection,
developments that were very important in the record 155-digit factorization
of the famous RSA challenge number in late 1999. It turns out that a
good polynomial makes so much difference that it is worthwhile to spend
a considerable amount of resources searching through polynomial choices. For
details on the latest strategies see [Murphy 1998, 1999].

Polynomial pairs

The description of NFS given in the sections above actually involves two
polynomials, though we have emphasized only the single polynomial f(z) for
which we have an integer m with f(m) = 0 (mod n). It is more precisely
the homogenized form of f that we considered, namely F(z,y) = y?f(z/y),
where d is the degree of f(x). The second polynomial is the rather trivial
g(z) = x — m. Its homogenized form is G(z,y) = yg(z/y) = = — my.
The numbers that we sieve looking for smooth values are the values of
F(z,y)G(z,y) in a box near the origin.

However, it is not necessary for the degree of g(z) to be 1. Suppose we have
two distinct, irreducible (not necessarily monic) polynomials f(x), g(x) € Z[z],
and an integer m with f(m) = g(m) =0 (mod n). Let « be a root of f(z) in
C and let 8 be a root of g(z) in C. Assuming that the leading coefficient ¢ of
f(z) and C of g(z) are coprime to n, we have homomorphisms ¢ : Z[ca] = Z,
and v : Z[CB] = Z,, where ¢(ca) = em (mod n) and ¥(CB) = Cm (mod n).

Suppose, too, that we have a set S consisting of an even number of coprime
integer pairs a,b and elements v € Z[a] and § € Z[5] with

Fy(ca,e)® [ (ac—bea) =+, G.(CB,C)* [] (aC —bCpB) =4

(a,b)eS (a,b)ES
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If S has 2k elements, and ¢(v) = v (mod n), ¥(§) = w (mod n), then
(C’sz(C’m,C)v)Q = (cka(crrL,c)w)2 (mod n),

and so we may attempt to factor n via ged(C*G,(Cm, C)u—cFF,(cm, c)v,n).

One may wonder why it is advantageous to use two polynomials of degree
higher than 1. The answer is a bit subtle. Though the first-order desirable
quality for the numbers that we sieve for smooth values is their size, there is
a second-order quality that also has some significance. If a number near x is
given to us as a product of two numbers near z'/2, then it is more likely to
be smooth than if it is a random number near x that is not necessarily such a
product. If it is y-smoothness we are interested in and u = In 2/ Iny, then this
second-order effect may be quantified as about 2*. That is, a number near x
given as a product of two random numbers near z'/2 is about 2% times as likely
to be y-smooth than is a random number near x. If we have two polynomials in
the number field sieve with the same degree and with coefficients of the same
magnitude, then their respective homogeneous forms have values that are of
the same magnitude. It is the product of the two homogeneous forms that we
are sieving for smooth values, so this 2% philosophy seems to be relevant.

However, in the “ordinary” NFS as described in Algorithm 6.2.5, we
are also looking for the product of two numbers to be smooth: One is the
homogeneous form F'(a,b), and the other is the linear form a — bm. They do
not have roughly equal magnitude. In fact, using the parameters suggested,
F(a,b) is about the 3/4 power of the product, and a — bm is about the 1/4
power of the product. Such numbers also have an enhanced probability of
being y-smooth, namely, (4/33/4)u.

1/3

So, using two polynomials of the same degree d ~ %(3 Inn/Inlnn)t/? and

with coefficients bounded by about n'/2¢, we get an increased probability of

smoothness over the choices in Algorithm 6.2.5 of about (33/4/2)u. Now, u is
about 2(31nn/Inlnn)'/?, so that using the two polynomials of degree d saves

a factor of about (1.46)(ln n/Innn)'? While not altering the basic complexity,
such a speedup represents significant savings.

The trouble, though, with using dual polynomials is finding them. Other
than an exhaustive search, perhaps augmented with fast lattice techniques, no
one has suggested a good way of finding such polynomials. For example, take
the case of d = 3. We do not know any good method when given a large integer
n of coming up with two distinct, irreducible, degree 3 polynomials f(z), g(z),
with coefficients bounded by n'/%, say, and an integer m, perhaps very large,
such that f(m) = g(m) = 0 (mod n). A counting argument suggests that
such polynomials should exist with coefficients even somewhat smaller, say
bounded by about n'/8.

Special number field sieve (SNF'S)

Counting arguments show that for most numbers n, we cannot do very
much better in finding polynomials than the simple-minded strategy of
Algorithm 6.2.5. However, there are many numbers for which much better
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polynomials do exist, and if we can find such polynomials, then the complexity
of NFS is significantly lowered. The special number field sieve (SNFS) refers to
the cases of NF'S where we are able to find extraordinarily good polynomials.

The SNF'S has principally been used to factor many Cunningham numbers
(these are numbers of the form b* + 1 for b = 2,3,5,6,7,10,11,12, see
[Brillhart et al. 1988]). We have already mentioned the factorization of the
ninth Fermat number, Fy = 2°!2 + 1, by [Lenstra et al. 1993a]. They used the
polynomial f(r) = 2%+ 8 and the integer m = 2103, so that f(m) = 8Fy =0
(mod Fy). Even though we already knew the factor 2424833 of Fy (found by
A. E. Western in 1903), this was ignored. That is, the pretty nature of Fy
itself was used; the number Fy/2424833 is not so pretty!

What makes a polynomial extraordinary is that it has very small
coefficients. If we have a number n = b¥ + 1, we can create a polynomial
as follows. Say we wish the degree of f(x) to be 5. Write k = 51 + r, where r
is the remainder when 5 is divided into k. Then b°~"n = b5+ £ 55" Thus,
we may use the polynomial f(z) = x° 4+ b>~", and choose m = b'*1. When &
is large, the coefficients of f(x) are very small in comparison to n.

A small advantage of a polynomial of the form z? 4 ¢ is that the order of
the Galois group is a divisor of dp(d), rather than having the generic value
d! for degree-d polynomials. Recall that the usefulness of free relations is
proportional to the reciprocal of the order of the Galois group. Thus, free
relations are more useful with special polynomials of the form z% + ¢ than in
the general case.

Sometimes a fair amount of ingenuity c