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Preface

In this volume we have endeavored to provide a middle ground—hopefully
even a bridge—between “theory” and “experiment” in the matter of prime
numbers. Of course, we speak of number theory and computer experiment.
There are great books on the abstract properties of prime numbers. Each
of us working in the field enjoys his or her favorite classics. But the
experimental side is relatively new. Even though it can be forcefully put
that computer science is by no means young, as there have arguably been
four or five computer “revolutions” by now, it is the case that the theoretical
underpinnings of prime numbers go back centuries, even millennia. So, we
believe that there is room for treatises based on the celebrated classical ideas,
yet authored from a modern computational perspective.

Design and scope of this book

The book combines the essentially complementary areas of expertise of the
two authors. (One author (RC) is more the computationalist, the other (CP)
more the theorist.) The opening chapters are in a theoretical vein, even
though some explicit algorithms are laid out therein, while heavier algorithmic
concentration is evident as the reader moves well into the book. Whether in
theoretical or computational writing mode, we have tried to provide the most
up-to-date aspects of prime-number study. What we do not do is sound the
very bottom of every aspect. Not only would that take orders of magnitude
more writing, but, as we point out in the opening of the first chapter,
it can be said that no mind harbors anything like a complete picture of
prime numbers. We could perhaps also say that neither does any team of
two investigators enjoy such omniscience. And this is definitely the case for
the present team! What we have done is attempt to provide references to
many further details about primes, which details we cannot hope to cover
exhaustively. Then, too, it will undoubtedly be evident, by the time the book
is available to the public, that various prime-number records we cite herein
have been broken already. In fact, such are being broken as we write this very
preface. During the final stages of this book we were in some respects living in
what electronics engineers call a “race condition,” in that results on primes—
via the Internet and personal word of mouth—were coming in as fast or faster
than editing passes were carried out. So we had to decide on a cutoff point.
(In compensation, we often give pointers to websites that do indeed provide
up-to-the-minute results.) The race condition has become a natural part of
the game, especially now that computers are on the team.
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Exercises and research problems

The exercises occur in roughly thematic order at the end of every chapter, and
range from very easy to extremely difficult. Because it is one way of conveying
the nature of the cutting edge in prime-number studies, we have endeavored
to supply many exercises having a research flavor. These are set off after each
chapter’s “Exercises” section under the heading “Research problems.” (But
we still call both normal exercises and research problems “exercises” during
in-text reference.) We are not saying that all the normal exercises are easy,
rather we flag a problem as a research problem if it can be imagined as part
of a long-term, hopefully relevant investigation.

Algorithms and pseudocode

We put considerable effort—working at times on the threshold of frustration—
into the manner of algorithm coding one sees presented herein. From
one point of view, the modern art of proper “pseudocode” (meaning not
machine-executable, but let us say human-readable code) is in a profound
state of disrepair. In almost any book of today containing pseudocode, an
incompatibility reigns between readability and symbolic economy. It is as if
one cannot have both.

In seeking a balance we chose the C language style as a basis for our book
pseudocode. The appendix describes explicit examples of how to interpret
various kinds of statements in our book algorithms. We feel that we shall
have succeeded in our pseudocode design if two things occur:

(1) The programmer can readily create programs from our algorithms;

(2) All readers find the algorithm expositions clear.

We went as far as to ask some talented programmers to put our book
algorithms into actual code, in this way verifying to some extent our goal
(1). (Implementation code is available, in Mathematica form, at website
http://www.perfsci.com.) Yet, as can be inferred from our remarks above,
a completely satisfactory symbiosis of mathematics and pseudocode probably
has to wait until an era when machines are more “human.”

Notes for this 2nd edition

Material and motive for this 2nd edition stem from several sources, as
follows. First, our astute readers—to whom we are deeply indebted—caught
various errors or asked for clarification, even at times suggesting new lines of
thought. Second, the omnipresent edge of advance in computational number
theory moves us to include new results. Third, both authors do teach and have
had to enhance 1st edition material during course and lecture development.
Beyond repairs of errors, reader-friendly clarifications, and the updating
(through early 2005) of computational records, this 2nd edition has additional
algorithms, each expressed in our established pseudocode style. Some of the
added algorithms are new and exciting discoveries.
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Examples of computationally motivated additions to this 2nd edition are as
follows:

The largest known explicit prime (as of Apr 2005) is presented (see Table
1.2), along with Mersenne search-status data.
Other prime-number records such as twin-prime records, long arithmetic
progressions of primes, primality-proving successes, and so on are reported
(see for example Chapter 1 and its exercises).
Recent factoring successes (most—but not all—involving subexponential
methods) are given (see Section 1.1.2).
Recent discrete- and elliptic-discrete-logarithm (DL and EDL, respectively)
records are given (see Section 5.2.3 for the DL and Section 8.1.3 for the EDL
cases).
New verification limits for the Riemann hypothesis (RH) are given (Section
1.4.2).

Examples of algorithmic additions to this 2nd edition are as follows:

We provide theory and algorithms for the new “AKS” method and its even
newer variants for polynomial-time primality proving (see Section 4.5).
We present a new fast method of Bernstein for detecting those numbers in
a large set that have only small prime factors, even when the large set has
no regular structure that might allow for sieving (see Section 3.3).
We present the very new and efficient Stehlé–Zimmermann fast-gcd method
(see Algorithm 9.4.7).
We give references to new results on “industrial algorithms,” such as elliptic-
curve point-counting (see Section 7.5.2), elliptic algebra relevant to smart-
cards (see for example Exercise 8.6), and “gigaelement” FFTs—namely
FFTs accepting a billion complex input elements (end of Section 9.5.2).
Because of its growing importance in computational number theory, a
nonuniform FFT is laid out as Algorithm 9.5.8 (and see Exercise 1.62).

Examples of new theoretical developments surveyed in this 2nd edition are as
follows:

We discuss the sensational new theorem of Green and Tao that there are
arbitrarily long arithmetic progressions consisting entirely of primes (see end
of Section 1.1.5).
We discuss the latest updates on the Fermat–Catalan conjecture that there
are at most finitely many coprime positive integer powers xp, yq, zr with
xp + yq = zr and with 1/p + 1/q + 1/r ≤ 1. The special case that one of
these powers is the number 1 is also discussed: There is just the one solution
8 + 1 = 9, a wonderful recent result of Mihăilescu (see Section 8.4), thus
settling the original Catalan conjecture.
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Exercises have changed in various ways. Additional exercises are presented,
often because of new book algorithms. Some exercises have been improved.
For example, where our 1st book edition said essentially, in some exercise,
“Find a method for doing X,” this 2nd edition might now say “Develop this
outline on how to do X. Extend this method to do the (harder problem) Y.”
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Chapter 1

PRIMES!

Prime numbers belong to an exclusive world of intellectual conceptions. We
speak of those marvelous notions that enjoy simple, elegant description, yet
lead to extreme—one might say unthinkable—complexity in the details. The
basic notion of primality can be accessible to a child, yet no human mind
harbors anything like a complete picture. In modern times, while theoreticians
continue to grapple with the profundity of the prime numbers, vast toil and
resources have been directed toward the computational aspect, the task of
finding, characterizing, and applying the primes in other domains. It is this
computational aspect on which we concentrate in the ensuing chapters. But we
shall often digress into the theoretical domain in order to illuminate, justify,
and underscore the practical import of the computational algorithms.

Simply put: A prime is a positive integer p having exactly two positive
divisors, namely 1 and p. An integer n is composite if n > 1 and n is not
prime. (The number 1 is considered neither prime nor composite.) Thus,
an integer n is composite if and only if it admits a nontrivial factorization
n = ab, where a, b are integers, each strictly between 1 and n. Though the
definition of primality is exquisitely simple, the resulting sequence 2, 3, 5, 7, . . .
of primes will be the highly nontrivial collective object of our attention. The
wonderful properties, known results, and open conjectures pertaining to the
primes are manifold. We shall cover some of what we believe to be theoretically
interesting, aesthetic, and practical aspects of the primes. Along the way,
we also address the essential problem of factorization of composites, a field
inextricably entwined with the study of the primes themselves.

In the remainder of this chapter we shall introduce our cast of characters,
the primes themselves, and some of the lore that surrounds them.

1.1 Problems and progress

1.1.1 Fundamental theorem and fundamental problem

The primes are the multiplicative building blocks of the natural numbers, as
is seen in the following theorem.

Theorem 1.1.1 (Fundamental theorem of arithmetic). For each natural
number n there is a unique factorization

n = pa1
1 pa2

2 · · · pak

k ,
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where exponents ai are positive integers and p1 < p2 < · · · < pk are primes.

(If n is itself prime, the representation of n in the theorem collapses to the
special case k = 1 and a1 = 1. If n = 1, sense is made of the statement by
taking an empty product of primes, that is, k = 0.) The proof of Theorem
1.1.1 naturally falls into two parts, the existence of a prime factorization of n,
and its uniqueness. Existence is very easy to prove (consider the first number
that does not have a prime factorization, factor it into smaller numbers, and
derive a contradiction). Uniqueness is a bit more subtle. It can be deduced
from a simpler result, namely Euclid’s “first theorem” (see Exercise 1.2).

The fundamental theorem of arithmetic gives rise to what might be called
the “fundamental problem of arithmetic.” Namely, given an integer n > 1, find
its prime factorization. We turn now to the current state of computational
affairs.

1.1.2 Technological and algorithmic progress

In a very real sense, there are no large numbers: Any explicit integer can be
said to be “small.” Indeed, no matter how many digits or towers of exponents
you write down, there are only finitely many natural numbers smaller than
your candidate, and infinitely many that are larger. Though condemned
always to deal with small numbers, we can at least strive to handle numbers
that are larger than those that could be handled before. And there has been
remarkable progress. The number of digits of the numbers we can factor is
about eight times as large as just 30 years ago, and the number of digits of
the numbers we can routinely prove prime is about 500 times larger.

It is important to observe that computational progress is two-pronged:
There is progress in technology, but also progress in algorithm development.
Surely, credit must be given to the progress in the quality and proliferation of
computer hardware, but—just as surely—not all the credit. If we were forced
to use the algorithms that existed prior to 1975, even with the wonderful
computing power available today, we might think that, say, 40 digits was
about the limit of what can routinely be factored or proved prime.

So, what can we do these days? About 170 decimal digits is the current
limit for arbitrary numbers to be successfully factored, while about 15000
decimal digits is the limit for proving primality of arbitrary primes. A very
famous factorization was of the 129-digit challenge number enunciated in M.
Gardner’s “Mathematical Games” column in Scientific American [Gardner
1977]. The number

RSA129 =11438162575788886766923577997614661201021829672124236\
25625618429357069352457338978305971235639587050589890\
75147599290026879543541

had been laid as a test case for the then new RSA cryptosystem (see
Chapter 8). Some projected that 40 quadrillion years would be required to
factor RSA129. Nevertheless, in 1994 it was factored with the quadratic sieve
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(QS) algorithm (see Chapter 6) by D. Atkins, M. Graff, A. Lenstra, and
P. Leyland. RSA129 was factored as
3490529510847650949147849619903898133417764638493387843990820577

×
32769132993266709549961988190834461413177642967992942539798288533,

and the secret message was decrypted to reveal: “THE MAGIC WORDS ARE
SQUEAMISH OSSIFRAGE.”

Over the last decade, many other factoring and related milestones have
been achieved. For one thing, the number field sieve (NFS) is by now
dominant: As of this 2nd book edition, NFS has factored RSA-576 (174
decimal digits), and the “special” variant SNFS has reached 248 decimal digits.
The elliptic curve method (ECM) has now reached 59 decimal digits (for a
prime factor that is not the largest in the number). Such records can be found
in [Zimmermann 2000], a website that is continually updated. We provide a
more extensive list of records below.

Another interesting achievement has been the discovery of factors of
various Fermat numbers Fn = 22n

+ 1 discussed in Section 1.3.2. Some of
the lower-lying Fermat numbers such as F9, F10, F11 have been completely
factored, while impressive factors of some of the more gargantuan Fn have
been uncovered. Depending on the size of a Fermat number, either the number
field sieve (NFS) (for smaller Fermat numbers, such as F9) or the elliptic curve
method (ECM) (for larger Fermat numbers) has been brought to bear on the
problem (see Chapters 6 and 7). Factors having 30 or 40 or more decimal
digits have been uncovered in this way. Using methods covered in various
sections of the present book, it has been possible to perform a primality test
on Fermat numbers as large as F24, a number with more than five million
decimal digits. Again, such achievements are due in part to advances in
machinery and software, and in part to algorithmic advances. One possible
future technology—quantum computation—may lead to such a tremendous
machinery advance that factoring could conceivably end up being, in a few
decades, say, unthinkably faster than it is today. Quantum computation is
discussed in Section 8.5.

We have indicated that prime numbers figure into modern cryptography—
the science of encrypting and decrypting secret messages. Because many
cryptographic systems depend on prime-number studies, factoring, and related
number-theoretical problems, technological and algorithmic advancement
have become paramount. Our ability to uncover large primes and prove
them prime has outstripped our ability to factor, a situation that gives some
comfort to cryptographers. As of this writing, the largest number ever to
have been proved prime is the gargantuan Mersenne prime 225964951 − 1,
which can be thought of, roughly speaking, as a “thick book” full of decimal
digits. The kinds of algorithms that make it possible to do speedy arithmetic
with such giant numbers is discussed in Chapter 8.8. But again, alongside
such algorithmic enhancements come machine improvements. To convey an
idea of scale, the current hardware and algorithm marriage that found each
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of the most recent “largest known primes” performed thus: The primality
proof/disproof for a single candidate 2q − 1 required in 2004 about one CPU-
week, on a typical modern PC (see continually updating website [Woltman
2000]). By contrast, a number of order 220000000 would have required, just
a decade earlier, perhaps a decade of a typical PC’s CPU time! Of course,
both machine and algorithm advances are responsible for this performance
offset. To convey again an idea of scale: At the start of the 21st century, a
typical workstation equipped with the right software can multiply together
two numbers, each with a million decimal digits, in a fraction of a second. As
explained at the end of Section 9.5.2, appropriate cluster hardware can now
multiply two numbers each of a billion digits in roughly one minute.

The special Mersenne form 2q − 1 of such numbers renders primality
proofs feasible. For Mersenne numbers we have the very speedy Lucas–
Lehmer test, discussed in Chapter 4. What about primes of no special form—
shall we say “random” primes? Primality proofs can be effected these days
for such primes having a few thousand digits. Much of the implementation
work has been pioneered by F. Morain, who applied ideas of A. Atkin
and others to develop an efficient elliptic curve primality proving (ECPP)
method, along with a newer “fastECPP” method, discussed in Chapter 7. A
typically impressive ECPP result at the turn of the century was the proof
that (27331 − 1)/458072843161, possessed of 2196 decimal digits, is prime (by
Mayer and Morain; see [Morain 1998]). A sensational announcement in July
2004 by Franke, Kleinjung, Morain, and Wirth is that, thanks to fastECPP,
the Leyland number

44052638 + 26384405,

having 15071 decimal digits, is now proven prime.
Alongside these modern factoring achievements and prime-number anal-

yses there stand a great many record-breaking attempts geared to yet more
specialized cases. From time to time we see new largest twin primes (pairs of
primes p, p+2), an especially long arithmetic progression {p, p+d, . . . , p+kd}
of primes, or spectacular cases of primes falling in other particular patterns.
There are searches for primes we expect some day to find but have not yet
found (such as new instances of the so-called Wieferich, Wilson, or Wall–Sun–
Sun primes). In various sections of this book we refer to a few of these many
endeavors, especially when the computational issues at hand lie within the
scope of the book.

Details and special cases aside, the reader should be aware that there
is a widespread “culture” of computational research. For a readable and
entertaining account of prime number and factoring “records,” see, for
example, [Ribenboim 1996] as well as the popular and thorough newsletter
of S. Wagstaff, Jr., on state-of-the-art factorizations of Cunningham numbers
(numbers of the form bn ± 1 for b ≤ 12). A summary of this newsletter is
kept at the website [Wagstaff 2004]. Some new factorization records as of this
(early 2005) writing are the following:
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The Pollard-(p − 1) method (see our Section 5.4) was used in 2003 by
P. Zimmermann to find 57-digit factors of two separate numbers, namely
6396 + 1 and 11260 + 1.
There are recent successes for the elliptic-curve method (ECM) (see our
Section 7.4.1), namely, a 57-digit factor of 2997 − 1 (see [Wagstaff 2004]), a
58-digit factor of 8 · 10141 − 1 found in 2003 by R. Backstrom, and a 59-
digit factor of 10233 − 1 found in 2005 by B. Dodson. (It is surprising, and
historically rare over the last decade, that the (p − 1) method be anywhere
near the ECM in the size of record factors.)
In late 2001, the quadratic sieve (QS) (see our Section 6.1), actually a three-
large-prime variant, factored a 135-digit composite piece of 2803 − 2402 + 1.
This seems to have been in some sense a “last gasp” for QS, being as the
more modern NFS and SNFS have dominated for numbers of this size.
The general-purpose number field sieve (GNFS) has, as we mentioned earlier,
factored the 174-digit number RSA-576. For numbers of special form, the
special number field sieve (SNFS) (see our Section 6.2.7) has factored
numbers beyond 200 digits, the record currently being the 248-digit number
2821 + 2411 + 1.

Details in regard to some such record factorizations can be found in the
aforementioned Wagstaff newsletter. Elsewhere in the present book, for
example after Algorithm 7.4.4 and at other similar junctures, one finds older
records from our 1st edition; we have left these intact because of their historical
importance. After all, one wants not only to see progress, but also track it.

Here at the dawn of the 21st century, vast distributed computations are
not uncommon. A good lay reference is [Peterson 2000]. Another lay treatment
about large-number achievements is [Crandall 1997a]. In the latter exposition
appears an estimate that answers roughly the question, “How many computing
operations have been performed by all machines across all of world history?”
One is speaking of fundamental operations such as logical “and” as well as
“add,” “multiply,” and so on. The answer is relevant for various issues raised
in the present book, and could be called the “mole rule.” To put it roughly,
right around the turn of the century (2000 ad), about one mole—that is, the
Avogadro number 6 · 1023 of chemistry, call it 1024—is the total operation
count for all machines for all of history. In spite of the usual mystery and
awe that surrounds the notion of industrial and government supercomputing,
it is the huge collection of personal computers that allows this 1024, this
mole. The relevance is that a task such as trial dividing an integer N ≈ 1050

directly for prime factors is hopeless in the sense that one would essentially
have to replicate the machine effort of all time. To convey an idea of scale,
a typical instance of the deepest factoring or primality-proving runs of the
modern era involves perhaps 1016 to 1018 machine operations. Similarly, a full-
length graphically rendered synthetic movie of today—for example, the 2003
Pixar/Disney movie Finding Nemo—involves operation counts in the 1018

range. It is amusing that for this kind of Herculean machine effort one may
either obtain a single answer (a factor, maybe even a single “prime/composite”
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decision bit) or create a full-length animated feature whose character is as
culturally separate from a one-bit answer as can be. It is interesting that a
computational task of say 1018 operations is about one ten-millionth of the
overall historical computing effort by all Earth-bound machinery.

1.1.3 The infinitude of primes

While modern technology and algorithms can uncover impressively large
primes, it is an age-old observation that no single prime discovery can be the
end of the story. Indeed, there exist infinitely many primes, as was proved by
Euclid in 300 bc, while he was professor at the great university of Alexandria
[Archibald 1949]. This achievement can be said to be the beginning of the
abstract theory of prime numbers. The famous proof of the following theorem
is essentially Euclid’s.

Theorem 1.1.2 (Euclid). There exist infinitely many primes.

Proof. Assume that the primes are finite in number, and denote by p the
largest. Consider one more than the product of all primes, namely,

n = 2 · 3 · 5 · · · p + 1.

Now, n cannot be divisible by any of the primes 2 through p, because any
such division leaves remainder 1. But we have assumed that the primes up
through p comprise all of the primes. Therefore, n cannot be divisible by
any prime, contradicting Theorem 1.1.1, so the assumed finitude of primes is
contradicted. �

It might be pointed out that Theorem 1.1.1 was never explicitly stated
by Euclid. However, the part of this theorem that asserts that every integer
greater than 1 is divisible by some prime number was known to Euclid, and
this is what is used in Theorem 1.1.2.

There are many variants of this classical theorem, both in the matter of its
statement and its proofs (see Sections 1.3.2 and 1.4.1). Let us single out one
particular variant, to underscore the notion that the fundamental Theorem
1.1.1 itself conveys information about the distribution of primes. Denote by
P the set of all primes. We define the prime-counting function at real values
of x by

π(x) = #{p ≤ x : p ∈ P};

that is, π(x) is the number of primes not exceeding x. The fundamental
Theorem 1.1.1 tells us that for positive integer x, the number of solutions
to ∏

pai
i ≤ x,

where now pi denotes the i-th prime and the ai are nonnegative, is precisely x
itself. Each factor pai

i must not exceed x, so the number of possible choices of
exponent ai, including the choice zero, is bounded above by �1+(lnx)/(ln pi)�.
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It follows that

x ≤
∏

pi≤x

⌊
1 +

lnx

ln pi

⌋
≤

(
1 +

lnx

ln 2

)π(x)

,

which leads immediately to the fact that for all x ≥ 8,

π(x) >
lnx

2 ln lnx
.

Though this bound is relatively poor, it does prove the infinitude of primes
directly from the fundamental theorem of arithmetic.

The idea of Euclid in the proof of Theorem 1.1.2 is to generate new primes
from old primes. Can we generate all of the primes this way? Here are a few
possible interpretations of the question:

(1) Inductively define a sequence of primes q1, q2, . . ., where q1 = 2, and qk+1
is the least prime factor of q1 · · · qk + 1. Does the sequence (qi) contain
every prime?

(2) Inductively define a sequence of primes r1, r2, . . ., where r1 = 2, and rk+1
is the least prime not already chosen that divides some d+1, where d runs
over the divisors of the product r1 · · · rk. Does the sequence (ri) contain
every prime?

(3) Inductively define a sequence of primes s1, s2, . . ., where s1 = 2, s2 = 3,
and sk+1 is the least prime not already chosen that divides some sisj +1,
where 1 ≤ i < j ≤ k. Does the sequence (si) contain every prime? Is the
sequence (si) infinite?

The sequence (qi) of problem (1) was considered by Guy and Nowakowski and
later by Shanks. In [Wagstaff 1993] the sequence was computed through the
43rd term. The computational problem inherent in continuing the sequence
further is the enormous size of the numbers that must be factored. Already,
the number q1 · · · q43 + 1 has 180 digits.

The sequence (ri) of problem (2) was recently shown in unpublished work
of Pomerance to contain every prime. In fact, for i ≥ 5, ri is the i-th prime.
The proof involved a direct computer search over the first (approximately)
one million terms, followed by some explicit estimates from analytic number
theory, about more of which theory we shall hear later in this chapter.
This proof is just one of many examples that manifest the utility of the
computational perspective.

The sequence (si) of problem (3) is not even known to be infinite, though
it almost surely is, and almost surely contains every prime. We do not know
whether anyone has attacked the problem computationally; perhaps you, the
reader, would like to give it a try. The problem is due to M. Newman at the
Australian National University.

Thus, even starting with the most fundamental and ancient ideas
concerning prime numbers, one can quickly reach the fringe of modern
research.
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1.1.4 Asymptotic relations and order nomenclature

At this juncture, in anticipation of many more asymptotic density results
and computational complexity estimates, we establish asymptotic relation
nomenclature for the rest of the book. When we intend

f(N) ∼ g(N)

to be read “f is asymptotic to g as N goes to infinity,” we mean that a certain
limit exists and has value unity:

lim
N→∞

f(N)/g(N) = 1.

When we say
f(N) = O(g(N)),

to be read “f is big-O of g,” we mean that f is bounded in this sense: There
exists a positive number C such that for all N , or for all N in a specified set,

|f(N)| ≤ C|g(N)|.

The “little-o” notation can be used when one function seriously dominates
another; i.e., we say

f(N) = o(g(N))

to mean that
lim

N→∞
f(N)/g(N) = 0.

Some examples of the notation are in order. Since π(x), the number of
primes not exceeding x, is clearly less than x for any positive x, we can say

π(x) = O(x).

On the other hand, it is not so clear, and in fact takes some work to prove
(see Exercises 1.11 and 1.13 for two approaches), that

π(x) = o(x). (1.1)

Equation (1.1) can be interpreted as the assertion that at very high levels the
primes are sparsely distributed, and get more sparsely distributed the higher
one goes. If A is a subset of the natural numbers and A(x) denotes the number
of members of A that do not exceed x, then if limx→∞ A(x)/x = d, we call d
the asymptotic density of the set A. Thus equation (1.1) asserts that the set
of primes has asymptotic density 0. Note that not all subsets of the natural
numbers possess an asymptotic density; that is, the limit in the definition may
not exist. As just one example, take the set of numbers with an even number
of decimal digits.

Throughout the book, when we speak of computational complexity of
algorithms we shall stay almost exclusively with “O” notation, even though
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some authors denote bit and operation complexity by such as Ob, Oop
respectively. So when an algorithm’s complexity is cast in “O” form, we
shall endeavor to specify in every case whether we mean bit or operation
complexity. One should take care that these are not necessarily proportional,
for it matters whether the “operations” are in a field, are adds or multiplies,
or are comparisons (as occur within “if” statements). For example, we shall
see in Chapter 8.8 that whereas a basic FFT multiplication method requires
O(D lnD) floating-point operations when the operands possess D digits
each (in some appropriate base), there exist methods having bit complexity
O(n lnn ln lnn), where now n is the total number of operand bits. So in such a
case there is no clear proportionality at work, the relationships between digit
size, base, and bit size n are nontrivial (especially when floating-point errors
figure into the computation), and so on. Another kind of nontrivial comparison
might involve the Riemann zeta function, which for certain arguments can be
evaluated to D good digits in O(D) operations, but we mean full-precision,
i.e., D-digit operations. In contrast, the bit complexity to obtain D good
digits (or a proportional number of bits) grows faster than this. And of
course, we have a trivial comparison of the two complexities: The product
of two large integers takes one (high-precision) operation, while a flurry of bit
manipulations are generally required to effect this multiply! On the face of it,
we are saying that there is no obvious relation between these two complexity
bounds. One might ask,“if these two types of bounds (bit- and operation-
based bounds) are so different, isn’t one superior, maybe more profound than
the other?” The answer is that one is not necessarily better than the other. It
might happen that the available machinery—hardware and software—is best
suited for all operations to be full-precision; that is, every add and multiply
is of the D-digit variety, in which case you are interested in the operation-
complexity bound. If, on the other hand, you want to start from scratch
and create special, optimal bit-complexity operations whose precision varies
dynamically during the whole project, then you would be more interested in
the bit-complexity bound. In general, the safe assumption to remember is that
bit- versus operation-complexity comparisons can often be of the “apples and
oranges” variety.

Because the phrase “running time” has achieved a certain vogue, we
shall sometimes use this term as interchangeable with “bit complexity.”
This equivalence depends, of course, on the notion that the real, physical
time a machine requires is proportional to the total number of relevant bit
operations. Though this equivalence may well decay in the future—what
with quantum computing, massive parallelism, advances in word-oriented
arithmetic architecture, and so on—we shall throughout this book just assume
that running time and bit complexity are the same. Along the same lines, by
“polynomial-time” complexity we mean that bit operations are bounded above
by a fixed power of the number of bits in the input operands. So, for example,
none of the dominant factoring algorithms of today (ECM, QS, NFS) is
polynomial-time, but simple addition, multiplication, powering, and so on are
polynomial-time. For example, powering, that is computing xy mod z, using
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naive subroutines, has bit complexity O(ln3 z) for positive integer operands
x, y, z of comparable size, and so is polynomial-time. Similarly, taking a
greatest common divisor (gcd) is polynomial-time, and so on.

1.1.5 How primes are distributed

In 1737, L. Euler achieved a new proof that there are infinitely many primes:
He showed that the sum of the reciprocals of the primes is a divergent sum,
and so must contain infinitely many terms (see Exercise 1.20).

In the mid-19th century, P. Chebyshev proved the following theorem, thus
establishing the true order of magnitude for the prime-counting function.

Theorem 1.1.3 (Chebyshev). There are positive numbers A, B such that
for all x ≥ 3,

Ax

lnx
< π(x) <

Bx

lnx
.

For example, Theorem 1.1.3 is true with A = 1/2 and B = 2. This was
a spectacular result, because Gauss had conjectured in 1791 (at the age of
fourteen!) the asymptotic behavior of π(x), about which conjecture little had
been done for half a century prior to Chebyshev. This conjecture of Gauss is
now known as the celebrated “prime number theorem” (PNT):

Theorem 1.1.4 (Hadamard and de la Vallée Poussin). As x → ∞,

π(x) ∼ x

lnx
.

It would thus appear that Chebyshev was close to a resolution of the PNT. In
fact, it was even known to Chebyshev that if π(x) were asymptotic to some
Cx/ lnx, then C would of necessity be 1. But the real difficulty in the PNT is
showing that limx→∞ π(x)/(x/ lnx) exists at all; this final step was achieved a
half-century later, by J. Hadamard and C. de la Vallée Poussin, independently,
in 1896. What was actually established was that for some positive number C,

π(x) = li (x) + O
(
xe−C

√
ln x

)
, (1.2)

where li (x), the logarithmic-integral function, is defined as follows (for a
variant of this integral definition see Exercise 1.36):

li (x) =
∫ x

2

1
ln t

dt. (1.3)

Since li (x) ∼ x/ lnx, as can easily be shown via integration by parts (or even
more easily by L’Hôpital’s rule), this stronger form of the PNT implies the
form in Theorem 1.1.4. The size of the “error” π(x)− li (x) has been a subject
of intense study—and refined only a little—in the century following the proof
of the PNT. In Section 1.4 we return to the subject of the PNT. But for the
moment, we note that one useful, albeit heuristic, interpretation of the PNT
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is that for random large integers x the “probability” that x is prime is about
1/ lnx.

It is interesting to ponder how Gauss arrived at his remarkable conjecture.
The story goes that he came across the conjecture numerically, by studying a
table of primes. Though it is clearly evident from tables that the primes thin
out as one gets to larger numbers, locally the distribution appears to be quite
erratic. So what Gauss did was to count the number of primes in blocks of
length 1000. This smoothes out enough of the irregularities (at low levels) for
a “law” to appear, and the law is that near x, the “probability” of a random
integer being prime is about 1/ lnx. This then suggested to Gauss that a
reasonable estimate for π(x) might be the logarithmic-integral function.

Though Gauss’s thoughts on π(x) date from the late 1700s, he did not
publish them until decades later. Meanwhile, Legendre had independently
conjectured the PNT, but in the form

π(x) ∼ x

lnx − B
(1.4)

with B = 1.08366. No matter what choice is made for the number B, we have
x/ lnx ∼ x/(lnx − B), so the only way it makes sense to include a number
B in the result, or to use Gauss’s approximation li (x), is to consider which
option gives a better estimation. In fact, the Gauss estimate is by far the better
one. Equation (1.2) implies that |π(x) − li (x)| = O(x/ lnk x) for every k > 0
(where the big-O constant depends on the choice of k). Since

li (x) =
x

lnx
+

x

ln2 x
+ O

(
x

ln3 x

)
,

it follows that the best numerical choice for B in (1.4) is not Legendre’s choice,
but B = 1. The estimate

π(x) ≈ x

lnx − 1

is attractive for estimations with a pocket calculator.
One can gain insight into the sharpness of the li approximation by

inspecting a table of prime counts as in Table 1.1.
For example, consider x = 1021. We know from a computation

of X. Gourdon (based on earlier work of M. Deléglise, J. Rivat, and
P. Zimmermann) that

π
(
1021) = 21127269486018731928,

while on the other hand

li
(
1021) ≈ 21127269486616126181.3

and
1021

ln(1021) − 1
≈ 21117412262909985552.2 .
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x π(x)

102 25
103 168
104 1229
106 78498
108 5761455
1012 37607912018
1016 279238341033925
1017 2623557157654233
1018 24739954287740860
1019 234057667276344607
1020 2220819602560918840
1021 21127269486018731928
1022 201467286689315906290
4 · 1022 783964159847056303858

Table 1.1 Values of the prime-counting function π(x). In recent times, distributed
computation on networks has been brought to bear on the π(x) counting problem.

It is astounding how good the li (x) approximation really is!
We will revisit this issue of the accuracy of the li approximation later in

the present chapter, in connection with the Riemann hypothesis (RH) (see
Conjecture 1.4.1 and the remarks thereafter).

The most recent values in Table 1.1, namely π(1022), π(4 · 1022), are due
to X. Gourdon and P. Sebah [Gourdon and Sebah 2004]. These researchers,
while attempting to establish the value of π(1023), recently discovered an
inconsistency in their program, a numerical discrepancy in regard to local
sieving. Until this problem has been rectified or there has been a confirming
independent calculation, their values for π(1022) and π(4·1022) should perhaps
be considered tentative.

Another question of historical import is this: What residue classes a mod d
contain primes, and for those that do, how dense are the occurrences of primes
in such a residue class? If a and d have a common prime factor, then such a
prime divides every term of the residue class, and so the residue class cannot
contain more than this one prime. The central classical result is that this is
essentially the only obstruction for the residue class to contain infinitely many
primes.

Theorem 1.1.5 (Dirichlet). If a, d are coprime integers (that is, they have
no common prime factor) and d > 0, then the arithmetic progression
{a, a + d, a + 2d, . . .} contains infinitely many primes. In fact, the sum of
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the reciprocals of the primes contained within this arithmetic progression is
infinite.

This marvelous (and nontrivial) theorem has been given modern refinement.
It is now known that if π(x; d, a) denotes the number of primes in the residue
class a mod d that do not exceed x, then for fixed coprime integers a, d with
d > 0,

π(x; d, a) ∼ 1
ϕ(d)

π(x) ∼ 1
ϕ(d)

x

lnx
∼ 1

ϕ(d)
li (x). (1.5)

Here ϕ is the Euler totient function, so that ϕ(d) is the number of integers
in [1, d] that are coprime to d. Consider that residue classes modulo d that
are not coprime to d can contain at most one prime each, so all but finitely
many primes are forced into the remaining ϕ(d) residue classes modulo d, and
so (1.5) says that each such residue class modulo d receives, asymptotically
speaking, its fair parcel of primes. Thus (1.5) is intuitively reasonable. We
shall later discuss some key refinements in the matter of the asymptotic error
term. The result (1.5) is known as the “prime number theorem for residue
classes.”

Incidentally, the question of a set of primes themselves forming an
arithmetic progression is also interesting. For example,

{1466999, 1467209, 1467419, 1467629, 1467839}

is an arithmetic progression of five primes, with common difference d = 210. A
longer progression with smaller primes is {7, 37, 67, 97, 127, 157}. It is amusing
that if negatives of primes are allowed, this last example may be extended to
the left to include {−113,−83,−53,−23}. See Exercises 1.41, 1.42, 1.45, 1.87
for more on primes lying in arithmetic progression.

A very recent and quite sensational development is a proof that there
are in fact arbitrarily long arithmetic progressions each of whose terms is
prime. The proof does not follow the “conventional wisdom” on how to attack
such problems, but rather breaks new ground, bringing into play the tools of
harmonic analysis. It is an exciting new day when methods from another area
are added to our prime tool-kit! For details, see [Green and Tao 2004]. It has
long been conjectured by Erdős and Turán that if S is a subset of the natural
numbers with a divergent sum of reciprocals, then there are arbitrarily long
arithmetic progressions all of whose terms come from S. Since it is a theorem
of Euler that the reciprocal sum of the primes is divergent (see the discussion
surrounding (1.19) and Exercise 1.20), if the Erdős–Turán conjecture is true,
then the primes must contain arbitrarily long arithmetic progressions. The
thought was that maybe, just maybe, the only salient property of the primes
needed to gain this property is that their reciprocal sum is divergent. Alas,
Green and Tao use other properties of the primes in their proof, leaving the
Erdős–Turán conjecture still open.

Green and Tao use in their proof a result that at first glance appears
to be useless, namely Szemerédi’s theorem, which is a weaker version of the
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Erdős–Turán conjecture: A subset S of the natural numbers that contains
a positive proportion of the natural numbers (that is, the limsup of the
proportion of S ∩ [1, x] in {1, 2, . . . , �x�} is positive) must contain arbitrarily
long arithmetic progressions. This result appears not to apply, since the primes
do not form a positive proportion of the natural numbers. However, Green
and Tao actually prove a version of Szemerédi’s theorem where the universe
of natural numbers is allowed to be somewhat generalized. They then proceed
to give an appropriate superset of the primes for which the Szemerédi analogue
is valid and for which the primes form a positive proportion. Altogether, the
Green–Tao development is quite amazing.

1.2 Celebrated conjectures and curiosities

We have indicated that the definition of the primes is so very simple, yet
questions concerning primes can be so very hard. In this section we exhibit
various celebrated problems of history. The more one studies these questions,
the more one appreciates the profundity of the games that primes play.

1.2.1 Twin primes

Consider the case of twin primes, meaning two primes that differ by 2. It is
easy to find such pairs, take 11, 13 or 197, 199, for example. It is not so easy,
but still possible, to find relatively large pairs, modern largest findings being
the pair

835335 · 239014 ± 1,

found in 1998 by R. Ballinger and Y. Gallot, the pair

361700055 · 239020 ± 1,

found in 1999 by H. Lifchitz, and (see [Caldwell 1999]) the twin-prime pairs
discovered in 2000:

2409110779845 · 260000 ± 1,

by H. Wassing, A. Járai, and K.-H. Indlekofer, and

665551035 · 280025 ± 1,

by P. Carmody. The current record is the pair

154798125 · 2169690 ± 1,

reported in 2004 by D. Papp.
Are there infinitely many pairs of twin primes? Can we predict,

asymptotically, how many such pairs there are up to a given bound? Let
us try to think heuristically, like the young Gauss might have. He had guessed
that the probability that a random number near x is prime is about 1/ lnx,
and thus came up with the conjecture that π(x) ≈

∫ x

2 dt/ ln t (see Section
1.1.5). What if we choose two numbers near x. If they are “independent prime
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events,” then the probability they are both prime should be about 1/ ln2 x.
Thus, if we denote the twin-prime-pair counting function by

π2(x) = #{p ≤ x : p, p + 2 ∈ P},

where P is the set of all primes, then we might guess that

π2(x) ∼
∫ x

2

1
ln2 t

dt.

However, it is somewhat dishonest to consider p and p + 2 as independent
prime events. In fact, the chance of one being prime influences the chance
that the other is prime. For example, since all primes p > 2 are odd, the
number p + 2 is also odd, and so has a “leg up” on being prime. Random
odd numbers have twice the chance of being prime as a random number not
stipulated beforehand as odd. But being odd is only the first in a series of
“tests” a purported prime must pass. For a fixed prime q, a large prime must
pass the “q-test” meaning “not divisible by q.” If p is a random prime and
q > 2, then the probability that p+2 passes the q-test is (q−2)/(q−1). Indeed,
from (1.5), there are ϕ(q) = q − 1 equally likely residue classes modulo q for p
to fall in, and for exactly q−2 of these residue classes we have p+2 not divisible
by q. But the probability that a completely random number passes the q-test
is (q − 1)/q. So, let us revise the above heuristic with the “fudge factor” 2C2,
where C2 = 0.6601618158 . . . is the so-called “twin-prime constant”:

C2 =
∏

2<q∈P

(q − 2)/(q − 1)
(q − 1)/q

=
∏

2<q∈P

(
1 − 1

(q − 1)2

)
. (1.6)

We might then conjecture that

π2(x) ∼ 2C2

∫ x

2

1
ln2 t

dt, (1.7)

or perhaps, more simply, that

π2(x) ∼ 2C2
x

ln2 x
.

The two asymptotic relations are equivalent, which can be seen by integrating
by parts. But the reason we have written the more ungainly expression in
(1.7) is that, like the estimate π(x) ≈ li (x), it may be an extremely good
approximation.

Let us try out the approximation (1.7) at x = 5.4 · 1015. It is reported, see
[Nicely 2004], that

π2
(
5.4 · 1015) = 5761178723343,

while

2C2

∫ 5.4·1015

2

1
ln2 t

dt ≈ 5761176717388.
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Let’s hear it for heuristic reasoning! Very recently P. Sebah found

π2
(
1016) = 10304195697298,

as enunciated in [Gourdon and Sebah 2004].
As strong as the numerical evidence may be, we still do not even know

whether there are infinitely many pairs of twin primes; that is, whether π2(x) is
unbounded. This remains one of the great unsolved problems in mathematics.
The closest we have come to proving this is the theorem of Chen Jing-run
in 1966, see [Halberstam and Richert 1974], that there are infinitely many
primes p such that either p + 2 is prime or the product of two primes.

A striking upper bound result on twin primes was achieved in 1915 by
V. Brun, who proved that

π2(x) = O

(
x

(
ln lnx

lnx

)2
)

, (1.8)

and a year later he was able to replace the expression ln lnx with 1
(see [Halberstam and Richert 1974]). Thus, in some sense, the twin prime
conjecture (1.7) is partially established. From (1.8) one can deduce (see
Exercise 1.50) the following:

Theorem 1.2.1 (Brun). The sum of the reciprocals of all primes belonging
to some pair of twin primes is finite, that is, if P2 denotes the set of all primes
p such that p + 2 is also prime, then

∑
p∈P2

(
1
p

+
1

p + 2

)
< ∞.

(Note that the prime 5 is unique in that it appears in two pairs of twins,
and in its honor, it gets counted twice in the displayed sum; of course, this
has nothing whatsoever to do with convergence or divergence.) The Brun
theorem is remarkable, since we know that the sum of the reciprocals of all
primes diverges, albeit slowly (see Section 1.1.5). The sum in the theorem,
namely

B′ = (1/3 + 1/5) + (1/5 + 1/7) + (1/11 + 1/13) + · · · ,

is known as the Brun constant. Thus, though the set of twin primes may well
be infinite, we do know that they must be significantly less dense than the
primes themselves.

An interesting sidelight on the issue of twin primes is the numerical
calculation of the Brun constant B′. There is a long history on the subject,
with the current computational champion being Nicely. According to the
paper [Nicely 2004], the Brun constant is likely to be about

B′ ≈ 1.902160583,
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to the implied precision. The estimate was made by computing the reciprocal
sum very accurately for twin primes up to 1016 and then extrapolating to the
infinite sum using (1.7) to estimate the tail of the sum. (All that is actually
proved rigorously about B′ (by year 2004) is that it is between a number
slightly larger than 1.83 and a number slightly smaller than 2.347.) In his
earlier (1995) computations concerning the Brun constant, Nicely discovered
the now-famous floating-point flaw in the Pentium computer chip, a discovery
that cost the Pentium manufacturer Intel millions of dollars. It seems safe to
assume that Brun had no idea in 1909 that his remarkable theorem would
have such a technological consequence!

1.2.2 Prime k-tuples and hypothesis H

The twin prime conjecture is actually a special case of the “prime k-tuples”
conjecture, which in turn is a special case of “hypothesis H.” What are these
mysterious-sounding conjectures?

The prime k-tuples conjecture begins with the question, what conditions
on integers a1, b1, . . . , ak, bk ensure that the k linear expressions a1n +
b1, . . . , akn+ bk are simultaneously prime for infinitely many positive integers
n? One can see embedded in this question the first part of the Dirichlet
Theorem 1.1.5, which is the case k = 1. And we can also see embedded the
twin prime conjecture, which is the case of two linear expressions n, n + 2.

Let us begin to try to answer the question by giving necessary conditions
on the numbers ai, bi. We rule out the cases when some ai = 0, since such a
case collapses to a smaller problem. Then, clearly, we must have each ai > 0
and each gcd(ai, bi) = 1. This is not enough, though, as the case n, n + 1
quickly reveals: There are surely not infinitely many integers n for which n
and n + 1 are both prime! What is going on here is that the prime 2 destroys
the chances for n and n+1, since one of them is always even, and even numbers
are not often prime. Generalizing, we see that another necessary condition is
that for each prime p there is some value of n such that none of ain + bi

is divisible by p. This condition automatically holds for all primes p > k;
it follows from the condition that each gcd(ai, bi) = 1. The prime k-tuples
conjecture [Dickson 1904] asserts that these conditions are sufficient:

Conjecture 1.2.1 (Prime k-tuples conjecture). If a1, b1, . . . , ak, bk are in-
tegers with each ai > 0, each gcd(ai, bi) = 1, and for each prime p ≤ k, there
is some integer n with no ain+bi divisible by p, then there are infinitely many
positive integers n with each ain + bi prime.

Whereas the prime k-tuples conjecture deals with linear polynomials,
Schinzel’s hypothesis H [Schinzel and Sierpiński 1958] deals with arbitrary
irreducible polynomials with integer coefficients. It is a generalization of
an older conjecture of Bouniakowski, who dealt with a single irreducible
polynomial.
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Conjecture 1.2.2 (Hypothesis H). Let f1, . . . , fk be irreducible polynomi-
als with integer coefficients such that the leading coefficient of each fi is pos-
itive, and such that for each prime p there is some integer n with none of
f1(n), . . . , fk(n) divisible by p. Then there are infinitely many positive inte-
gers n such that each fi(n) is prime.

A famous special case of hypothesis H is the single polynomial n2 + 1.
As with twin primes, we still do not know whether there are infinitely many
primes of the form n2 + 1. In fact, the only special case of hypothesis H that
has been proved is Theorem 1.1.5 of Dirichlet.

The Brun method for proving (1.8) can be generalized to get upper bounds
of the roughly conjectured order of magnitude for the distribution of the
integers n in hypothesis H that make the fi(n) simultaneously prime. See
[Halberstam and Richert 1974] for much more on this subject.

For polynomials in two variables we can sometimes say more. For example,
Gauss proved that there are infinitely many primes of the form a2 + b2. It was
shown only recently in [Friedlander and Iwaniec 1998] that there are infinitely
many primes of the form a2 + b4.

1.2.3 The Goldbach conjecture

In 1742, C. Goldbach stated, in a letter to Euler, a belief that every integer
exceeding 5 is a sum of three primes. (For example, 6 = 2 + 2 + 2 and 21 =
13 + 5 + 3.) Euler responded that this follows from what has become known
as the Goldbach conjecture, that every even integer greater than two is a sum
of two primes. This problem belongs properly to the field of additive number
theory, the study of how integers can be partitioned into various sums. What
is maddening about this conjecture, and many “additive” ones like it, is that
the empirical evidence and heuristic arguments in favor become overwhelming.
In fact, large even integers tend to have a great many representations as a sum
of two primes.

Denote the number of Goldbach representations of an even n by

R2(n) = #{(p, q) : n = p + q; p, q ∈ P}.
Thinking heuristically as before, one might guess that for even n,

R2(n) ∼
∑

p≤n−3

1
ln(n − p)

,

since the “probability” that a random number near x is prime is about 1/ lnx.
But such a sum can be shown, via the Chebyshev Theorem 1.1.3 (see Exercise
1.40) to be ∼ n/ ln2 n. The frustrating aspect is that to settle the Goldbach
conjecture, all one needs is that R2(n) be positive for even n > 2. One can
tighten the heuristic argument above, along the lines of the argument for (1.7),
to suggest that for even integers n,

R2(n) ∼ 2C2
n

ln2 n

∏
p|n,p>2

p − 1
p − 2

, (1.9)
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where C2 is the twin-prime constant of (1.6). The Brun method can be used
to establish that R2(n) is big-O of the right side of (1.9) (see [Halberstam and
Richert 1974).

Checking (1.9) numerically, we have R2(108) = 582800, while the right
side of (1.9) is approximately 518809. One gets better agreement using the
asymptotically equivalent expression R2(n) defined as

R2(n) = 2C2

∫ n−2

2

dt

(ln t)(ln(n − t))

∏
p|n,p>2

p − 1
p − 2

, (1.10)

which at n = 108 evaluates to about 583157.
As with twin primes, [Chen 1966] also established a profound theorem on

the Goldbach conjecture: Any sufficiently large even number is the sum of a
prime and a number that is either a prime or the product of two primes.

It has been known since the late 1930s, see [Ribenboim 1996], that “almost
all” even integers have a Goldbach representation p + q, the “almost all”
meaning that the set of even natural numbers that cannot be represented
as a sum of two primes has asymptotic density 0 (see Section 1.1.4 for the
definition of asymptotic density). In fact, it is now known that the number of
exceptional even numbers up to x that do not have a Goldbach representation
is O

(
x1−c

)
for some c > 0 (see Exercise 1.41).

The Goldbach conjecture has been checked numerically up through 1014

in [Deshouillers et al. 1998], through 4 · 1014 in [Richstein 2001], and through
1017 in [Silva 2005]. And yes, every even number from 4 up through 1017 is
indeed a sum of two primes.

As Euler noted, a corollary of the assertion that every even number after
2 is a sum of two primes is the additional assertion that every odd number
after 5 is a sum of three primes. This second assertion is known as the
“ternary Goldbach conjecture.” In spite of the difficulty of such problems of
additive number theory, Vinogradov did in 1937 resolve the ternary Goldbach
conjecture, in the asymptotic sense that all sufficiently large odd integers n
admit a representation in three primes: n = p+q+r. It was shown in 1989 by
Chen and Y. Wang, see [Ribenboim 1996], that “sufficiently large” here can
be taken to be n > 1043000. Vinogradov gave the asymptotic representation
count of

R3(n) = #{(p, q, r) : n = p + q + r; p, q, r ∈ P} (1.11)

as

R3(n) = Θ(n)
n2

2 ln3 n

(
1 + O

(
ln lnn

lnn

))
, (1.12)

where Θ is the so-called singular series for the ternary Goldbach problem,
namely

Θ(n) =
∏
p∈P

(
1 +

1
(p − 1)3

) ∏
p|n,p∈P

(
1 − 1

p2 − 3p + 3

)
.
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It is not hard to see that Θ(n) for odd n is bounded below by a positive
constant. This singular series can be given interesting alternative forms (see
Exercise 1.68). Vinogradov’s effort is an example of analytic number theory
par excellence (see Section 1.4.4 for a very brief overview of the core ideas).

[Zinoviev 1997] shows that if one assumes the extended Riemann
hypothesis (ERH) (Conjecture 1.4.2), then the ternary Goldbach conjecture
holds for all odd n > 1020. Further, [Saouter 1998] “bootstrapped” the then
current bound of 4 · 1011 for the binary Goldbach problem to show that the
ternary Goldbach conjecture holds unconditionally for all odd numbers up
to 1020. Thus, with the Zinoviev theorem, the ternary Goldbach problem is
completely solved under the assumption of the ERH.

It follows from the Vinogradov theorem that there is a number k such
that every integer starting with 2 is a sum of k or fewer primes. This corollary
was actually proved earlier by G. Shnirel’man in a completely different
way. Shnirel’man used the Brun sieve method to show that the set of even
numbers representable as a sum of two primes contains a subset with positive
asymptotic density (this predated the results that almost all even numbers
were so representable), and using just this fact was able to prove there is such
a number k. (See Exercise 1.44 for a tour of one proof method.) The least
number k0 such that every number starting with 2 is a sum of k0 or fewer
primes is now known as the Shnirel’man constant. If Goldbach’s conjecture is
true, then k0 = 3. Since we now know that the ternary Goldbach conjecture
is true, conditionally on the ERH, it follows that on this condition, k0 ≤ 4.
The best unconditional estimate is due to O. Ramaré who showed that k0 ≤ 7
[Ramaré 1995]. Ramaré’s proof used a great deal of computational analytic
number theory, some of it joint with R. Rumely.

1.2.4 The convexity question

One spawning ground for curiosities about the primes is the theoretical issue
of their density, either in special regions or under special constraints. Are there
regions of integers in which primes are especially dense? Or especially sparse?
Amusing dilemmas sometimes surface, such as the following one. There is an
old conjecture of Hardy and Littlewood on the “convexity” of the distribution
of primes:

Conjecture 1.2.3. If x ≥ y ≥ 2, then π(x + y) ≤ π(x) + π(y).

On the face of it, this conjecture seems reasonable: After all, since the primes
tend to thin out, there ought to be fewer primes in the interval [x, x+ y] than
in [0, y]. But amazingly, Conjecture 1.2.3 is known to be incompatible with
the prime k-tuples Conjecture 1.2.1 [Hensley and Richards 1973].

So, which conjecture is true? Maybe neither is, but the current thinking is
that the Hardy–Littlewood convexity Conjecture 1.2.3 is false, while the prime
k-tuples conjecture is true. It would seem fairly easy to actually prove that the
convexity conjecture is false; you just need to come up with numerical values of
x and y where π(x+y), π(x), π(y) can be computed and π(x+y) > π(x)+π(y).
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It sounds straightforward enough, and perhaps it is, but it also may be that
any value of x required to demolish the convexity conjecture is enormous. (See
Exercise 1.92 for more on such issues.)

1.2.5 Prime-producing formulae

Prime-producing formulae have been a popular recreation, ever since the
observation of Euler that the polynomial

x2 + x + 41

attains prime values for each integer x from 0 to 39 inclusive. Armed with
modern machinery, one can empirically analyze other polynomials that give,
over certain ranges, primes with high probability (see Exercise 1.17). Here
are some other curiosities, of the type that have dubious value for the
computationalist (nevertheless, see Exercises 1.5, 1.77):

Theorem 1.2.2 (Examples of prime-producing formulae). There exists a
real number θ > 1 such that for every positive integer n, the number⌊

θ3n
⌋

is prime. There also exists a real number α such that the n-th prime is given
by:

pn =
⌊
102n+1

α
⌋

− 102n
⌊
102n

α
⌋

.

This first result depends on a nontrivial theorem on the distribution of primes
in “short” intervals [Mills 1947], while the second result is just a realization of
the fact that there exists a well-defined decimal expansion α =

∑
pm10−2m+1

.
Such formulae, even when trivial or almost trivial, can be picturesque.

By appeal to the Wilson theorem and its converse (Theorem 1.3.6), one may
show that

π(n) =
n∑

j=2

(⌊
(j − 1)! + 1

j

⌋
−

⌊
(j − 1)!

j

⌋)
,

but this has no evident value in the theory of the prime-counting function
π(n). Yet more prime-producing and prime-counting formulae are exhibited
in the exercises.

Prime-producing formulae are often amusing but, relatively speaking,
useless. There is a famous counterexample though. In connection with the
ultimate resolution of Hilbert’s tenth problem, which problem asks for a
deterministic algorithm that can decide whether a polynomial in several
variables with integer coefficients has an all integral root, an attractive
side result was the construction of a polynomial in several variables with
integral coefficients, such that the set of its positive values at positive integral
arguments is exactly the set of primes (see Section 8.4).
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1.3 Primes of special form

By prime numbers of special form we mean primes p enjoying some interesting,
often elegant, algebraic classification. For example, the Mersenne numbers Mq

and the Fermat numbers Fn defined by

Mq = 2q − 1, Fn = 22n

+ 1

are sometimes prime. These numbers are interesting for themselves and for
their history, and their study has been a great impetus for the development
of computational number theory.

1.3.1 Mersenne primes

Searching for Mersenne primes can be said to be a centuries-old research
problem (or recreation, perhaps). There are various easily stated constraints
on exponents q that aid one in searches for Mersenne primes Mq = 2q −1. An
initial result is the following:

Theorem 1.3.1. If Mq = 2q − 1 is prime, then q is prime.

Proof. A number 2c − 1 with c composite has a proper factor 2d − 1, where
d is any proper divisor of c. �

This means that in the search for Mersenne primes one may restrict oneself to
prime exponents q. Note the important fact that the converse of the theorem
is false. For example, 211 − 1 is not prime even though 11 is. The practical
import of the theorem is that one may rule out a great many exponents,
considering only prime exponents during searches for Mersenne primes.

Yet more weeding out of Mersenne candidates can be achieved via the
following knowledge concerning possible prime factors of Mq:

Theorem 1.3.2 (Euler). For prime q > 2, any prime factor of Mq = 2q −1
must be congruent to 1 (mod q) and furthermore must be congruent to ±1
(mod 8).

Proof. Let r be a prime factor of 2q − 1, with q a prime, q > 2. Then 2q ≡ 1
(mod r), and since q is prime, the least positive exponent h with 2h ≡ 1
(mod r) must be q itself. Thus, in the multiplicative group of nonzero residues
modulo r (a group of order r−1), the residue 2 has order q. This immediately
implies that r ≡ 1 (mod q), since the order of an element in a group divides
the order of the group. Since q is an odd prime, we in fact have q| r−1

2 , so
2

r−1
2 ≡ 1 (mod r). By Euler’s criterion (2.6), 2 is a square modulo r, which

in turn implies via (2.10) that r ≡ ±1 (mod 8). �

A typical Mersenne prime search runs, then, as follows. For some set of
prime exponents Q, remove candidates q ∈ Q by checking whether

2q ≡ 1 (mod r)
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for various small primes r ≡ 1 (mod q) and r ≡ ±1 (mod 8). For the survivors,
one then invokes the celebrated Lucas–Lehmer test, which is a rigorous
primality test (see Section 4.2.1).

As of this writing, the known Mersenne primes are those displayed in
Table 1.2.

22 − 1 23 − 1 25 − 1 27 − 1
213 − 1 217 − 1 219 − 1 231 − 1
261 − 1 289 − 1 2107 − 1 2127 − 1
2521 − 1 2607 − 1 21279 − 1 22203 − 1
22281 − 1 23217 − 1 24253 − 1 24423 − 1
29869 − 1 29941 − 1 211213 − 1 219937 − 1
221701 − 1 223209 − 1 244497 − 1 286243 − 1
2110503 − 1 2132049 − 1 2216091 − 1 2756839 − 1
2859433 − 1 21257787 − 1 21398269 − 1 22976221 − 1
23021377 − 1 26972593 − 1 213466917 − 1 220996011 − 1
224036583 − 1 225964951 − 1

Table 1.2 Known Mersenne primes (as of Apr 2005), ranging in size from 1 decimal
digit to over 7 million decimal digits.

Over the years 1979–96, D. Slowinski found seven Mersenne primes, all
of the Mersenne primes from 244497 − 1 to 21257787 − 1, inclusive, except
for 2110503 − 1 (the first of the seven was found jointly with H. Nelson and
the last three with P. Gage). The “missing” prime 2110503 − 1 was found by
W. Colquitt and L. Welsh, Jr., in 1988. The record for consecutive Mersenne
primes is still held by R. Robinson, who found the five starting with 2521 − 1
in 1952. The prime 21398269 − 1 was found in 1996 by J. Armengaud and
G. Woltman, while 22976221−1 was found in 1997 by G. Spence and Woltman.
The prime 23021377 − 1 was discovered in 1998 by R. Clarkson, Woltman,
S. Kurowski, et al. (further verified by D. Slowinski as prime in a separate
machine/program run). Then in 1999 the prime 26972593 − 1 was found by
N. Hajratwala, Woltman, and Kurowski, then verified by E. Mayer and
D. Willmore. The case 213466917 − 1 was discovered in November 2001 by
M. Cameron, Woltman, and Kurowski, then verified by Mayer, P. Novarese,
and G. Valor. In November 2003, M. Shafer, Woltman, and Kurowski found
220996011 − 1. The Mersenne prime 224036583 − 1 was found in May 2004 by
J. Findley, Woltman, and Kurowski. Then in Feb 2005, M. Nowak, Woltman
and Kurowski found 225964951 −1. Each of these last two Mersenne primes has
more than 7 million decimal digits.

The eight largest known Mersenne primes were found using a fast
multiplication method—the IBDWT—discussed in Chapter 8.8 (Theorem
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9.5.18 and Algorithm 9.5.19). This method has at least doubled the search
efficiency over previous methods.

It should be mentioned that modern Mersenne searching is sometimes of
the “hit or miss” variety; that is, random prime exponents q are used to check
accordingly random candidates 2q − 1. (In fact, some Mersenne primes were
indeed found out of order, as indicated above). But much systematic testing
has also occurred. As of this writing, exponents q have been checked for all
q ≤ 12830000. Many of these exponents are recognized as giving composite
Mersennes because a prime factor is detected. For example, if q is a prime
that is 3 (mod 4), and p = 2q + 1 is prime, then p|Mq. (See also Exercises
1.47, 1.81.) For the remaining values of q, the Lucas–Lehmer test (see Section
4.2.1) was used. In fact, for all q ≤ 9040000 for which a factor of Mq was
not found, the Lucas–Lehmer test was carried out twice (see [Woltman 2000],
which website is frequently updated).

As mentioned in Section 1.1.2, the prime M25964951 is the current record
holder as not only the largest known Mersenne prime, but also the largest
explicit number that has ever been proved prime. With few exceptions, the
record for largest proved prime in the modern era has always been a Mersenne
prime. One of the exceptions occurred in 1989, when the “Amdahl Six” found
the prime [Caldwell 1999]

391581 · 2216193 − 1,

which is larger than 2216091 − 1, the record Mersenne prime of that time.
However, this is not the largest known explicit non-Mersenne prime, for Young
found, in 1997, the prime 5 ·2240937+1, and in 2001, Cosgrave found the prime

3 · 2916773 + 1.

Actually, the 5th largest known explicit prime is the non-Mersenne

5359 · 25054502 + 1,

found by R. Sundquist in 2003.
Mersenne primes figure uniquely in the ancient subject of perfect numbers.

A perfect number is a positive integer equal to the sum of its divisors other
than itself. For example, 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14 are
perfect numbers. An equivalent way to define “perfection” is to denote by
σ(n) the sum of the positive divisors of n, whence n is perfect if and only if
σ(n) = 2n. The following famous theorem completely characterizes the even
perfect numbers.

Theorem 1.3.3 (Euclid–Euler). An even number n is perfect if and only if
it is of the form

n = 2q−1Mq,

where Mq = 2q − 1 is prime.
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Proof. Suppose n = 2am is an even number, where m is the largest odd
divisor of n. The divisors of n are of the form 2jd, where 0 ≤ j ≤ a
and d|m. Let D be the sum of the divisors of m excluding m, and let
M = 2a+1 − 1 = 20 + 21 + · · · + 2a. Thus, the sum of all such divisors of
n is M(D + m). If M is prime and M = m, then D = 1, and the sum of all
the divisors of n is M(1 + m) = 2n, so that n is perfect. This proves the first
half of the assertion. For the second, assume that n = 2am is perfect. Then
M(D + m) = 2n = 2a+1m = (M + 1)m. Subtracting Mm from this equation,
we see that

m = MD.

If D > 1, then D and 1 are distinct divisors of m less than m, contradicting
the definition of D. So D = 1, m is therefore prime, and m = M = 2a+1 − 1.
�

The first half of this theorem was proved by Euclid, while the second half
was proved some two millennia later by Euler. It is evident that every
newly discovered Mersenne prime immediately generates a new (even) perfect
number. On the other hand, it is still not known whether there are any odd
perfect numbers, the conventional belief being that none exist. Much of the
research in this area is manifestly computational: It is known that if an odd
perfect number n exists, then n > 10300, a result in [Brent et al. 1993], and that
n has at least eight distinct prime factors, an independent result of E. Chein
and P. Hagis; see [Ribenboim 1996]. For more on perfect numbers, see Exercise
1.30.

There are many interesting open problems concerning Mersenne primes.
We do not know whether there are infinitely many such primes. We do not
even know whether infinitely many Mersenne numbers Mq with q prime
are composite. However, the latter assertion follows from the prime k-tuples
Conjecture 1.2.1. Indeed, it is easy to see that if q ≡ 3 (mod 4) is prime and
2q + 1 is also prime, then 2q + 1 divides Mq. For example, 23 divides M11.
Conjecture 1.2.1 implies that there are infinitely many such primes q.

Various interesting conjectures have been made in regard to Mersenne
numbers, for example the “new Mersenne conjecture” of P. Bateman,
J. Selfridge, and S. Wagstaff, Jr. This stems from Mersenne’s original assertion
in 1644 that the exponents q for which 2q−1 is prime and 29 ≤ q ≤ 257 are 31,
67, 127, and 257. (The smaller exponents were known at that time, and it was
also known that 237−1 is composite.) Considering that the numerical evidence
below 29 was that every prime except 11 and 23 works, it is rather amazing
that Mersenne would assert such a sparse sequence for the exponents. He was
right on the sparsity, and on the exponents 31 and 127, but he missed 61, 89,
and 107. With just five mistakes, no one really knows how Mersenne effected
such a claim. However, it was noticed that the odd Mersenne exponents below
29 are all either 1 away from a power of 2, or 3 away from a power of 4 (while
the two missing primes, 11 and 23, do not have this property), and Mersenne’s
list just continues this pattern (perhaps with 61 being an “experimental error,”
since Mersenne left it out). In [Bateman et al. 1989] the authors suggest a new
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Mersenne conjecture, that any two of the following implies the third: (a) the
prime q is either 1 away from a power of 2, or 3 away from a power of 4, (b)
2q − 1 is prime, (c) (2q + 1)/3 is prime. Once one gets beyond small numbers,
it is very difficult to find any primes q that satisfy two of the statements, and
probably there are none beyond 127. That is, probably the conjecture is true,
but so far it is only an assertion based on a very small set of primes.

It has also been conjectured that every Mersenne number Mq, with q
prime, is squarefree (which means not divisible by a square greater than 1),
but we cannot even show that this holds infinitely often. Let M denote the
set of primes that divide some Mq with q prime. We know that the number
of members of M up to x is o(π(x)), and it is known on the assumption of
the generalized Riemann hypothesis that the sum of the reciprocals of the
members of M converges [Pomerance 1986].

It is possible to give a heuristic argument that supports the assertion that
there are ∼ c lnx primes q ≤ x with Mq prime, where c = eγ/ ln 2 and γ is
Euler’s constant. For example, this formula suggests that there should be, on
average, about 23.7 values of q in an interval [x, 10000x]. Assuming that the
machine checks of the Mersenne exponents up to 12000000 are exhaustive,
the actual number of values of q with Mq prime in [x, 10000x] is 23, 24, or
25 for x = 100, 200, . . . , 1200, with the count usually being 24. Despite the
good agreement with practice, some still think that the “correct” value of c
is 2/ ln 2 or something else. Until a theorem is actually proved, we shall not
know for sure.

We begin the heuristic with the fact that the probability that a random
number near Mq = 2q − 1 is prime is about 1/ lnMq, as seen by the prime
number Theorem 1.1.4. However, we should also compare the chance of Mq

being prime with a random number of the same size. It is likely not the same,
as Theorem 1.3.2 already indicates. Let us ignore for a moment the intricacies
of this theorem and use only that Mq has no prime factors in the interval
[1, q]. Here q is about lg Mq (here and throughout the book, lg means log2).
What is the chance that a random number near x whose least prime factor
exceeds lg x is prime? We know how to answer this question rigorously. First
consider the chance that a random number near x has its least prime factor
exceeding lg x. Intuitively, this probability should be

P :=
∏

p≤lg x

(
1 − 1

p

)
,

since each prime p has probability 1/p of dividing a random number, and
these should be at least roughly independent events. They cannot be totally
independent, for example, no number in [1, x] is divisible by two primes in the
interval (x1/2, x], yet a purely probabilistic argument suggests that a positive
proportion of the numbers in [1, x] actually have this property! However, when
dealing with very small primes, and in this case only those up to lg x, the
heuristic guess is provable. Now, each prime near x survives this sieve; that is,
it is not divisible by any prime p ≤ lg x. So, if a number n near x has already
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passed this lg x sieve, then its probability of being prime should climb from
1/ lnx to

1
P lnx

.

We know P asymptotically. It follows from the Mertens theorem (see Theorem
1.4.2) that 1/P ∼ eγ ln lg x as x → ∞. Thus, one might conclude that Mq is
prime with “probability” eγ ln lg Mq/ lnMq. But this expression is very close to
eγ ln q/(q ln 2). Summing this expression for primes q ≤ x, we get the heuristic
asymptotic expression for the number of Mersenne prime exponents up to x,
namely c lnx with c = eγ/ ln 2.

If one goes back and tries to argue in a more refined way using Theorem
1.3.2, then one needs to use not only the fact that the possible prime factors of
Mq are quite restricted, but also that a prime that meets the condition of this
theorem has an enhanced chance of dividing Mq. For example, if p = kq +1 is
prime and p ≡ ±1 (mod 8), then one might argue that the chance that p|Mq

is not 1/p, but rather the much larger 2/k. It seems that these two criteria
balance out, that is, the restricted set of possible prime factors balances with
the enhanced chance of divisibility by them, and we arrive at the same estimate
as above. This more difficult argument was presented in the first edition of
this book.

1.3.2 Fermat numbers

The celebrated Fermat numbers Fn = 22n

+1, like the Mersenne numbers, have
been the subject of much scrutiny for centuries. In 1637 Fermat claimed that
the numbers Fn are always prime, and indeed the first five, up to F4 = 65537
inclusive, are prime. However, this is one of the few cases where Fermat was
wrong, perhaps very wrong. Every other single Fn for which we have been
able to decide the question is composite! The first of these composites, F5,
was factored by Euler.

A very remarkable theorem on prime Fermat numbers was proved by
Gauss, again from his teen years. He showed that a regular polygon with n
sides is constructible with straightedge and compass if and only if the largest
odd divisor of n is a product of distinct Fermat primes. If F0, . . . , F4 turn out
to be the only Fermat primes, then the only n-gons that are constructible are
those with n = 2am with m|232 − 1 (since the product of these five Fermat
primes is 232 − 1).

If one is looking for primes that are 1 more than a power of 2, then one
need look no further than the Fermat numbers:

Theorem 1.3.4. If p = 2m + 1 is an odd prime, then m is a power of two.

Proof. Assume that m = ab, where a is the largest odd divisor of m. Then p
has the factor 2b +1. Therefore, a necessary condition that p be prime is that
p = 2b + 1; that is, a = 1 and m = b is a power of 2. �
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Again, as with the Mersenne numbers, there is a useful result that restricts
possible prime factors of a Fermat number.

Theorem 1.3.5 (Euler, Lucas). For n ≥ 2, any prime factor p of Fn =
22n

+ 1 must have p ≡ 1 (mod 2n+2).

Proof. Let r be a prime factor of Fn and let h be the least positive integer
with 2h ≡ 1 (mod r). Then, since 22n ≡ −1 (mod r), we have h = 2n+1. As in
the proof of Theorem 1.3.1, 2n+1 divides r−1. Since n ≥ 2, we thus have that
r ≡ 1 (mod 8). This condition implies via (2.10) that 2 is a square modulo
r, so that h = 2n+1 divides r−1

2 , from which the assertion of the theorem is
evident. �

It was this result that enabled Euler to find a factor of F5, and thus be the
first to “dent” the ill-fated conjecture of Fermat. (Euler’s version of Theorem
1.3.5 had the weaker conclusion that p ≡ 1 (mod 2n+1), but this was good
enough to find that 641 divides F5.) To this day, Theorem 1.3.5 is useful in
factor searches on gargantuan Fermat numbers.

As with Mersenne numbers, Fermat numbers allow a very efficient test
that rigorously determines prime or composite character. This is the Pepin
test, or the related Suyama test (for Fermat cofactors); see Theorem 4.1.2 and
Exercises 4.5, 4.7, 4.8.

By combinations of various methods, including the Pepin/Suyama tests
or in many cases the newest factoring algorithms available, various Fermat
numbers have been factored, either partially or completely, or, barring that,
have been assigned known character (i.e., determined composite). The current
situation for all Fn, n ≤ 24, is displayed in Table 1.3.

We give a summary of the theoretically interesting points concerning Table
1.3 (note that many of the factoring algorithms that have been successful on
Fermat numbers are discussed in Chapters 5, 6, and 7).
(1) F7 was factored via the continued fraction method [Morrison and Brillhart

1975], while F8 was found by a variant of the Pollard-rho method [Brent
and Pollard 1981].

(2) The spectacular 49-digit factor of F9 was achieved via the number field
sieve (NFS) [Lenstra et al. 1993a].

(3) Thanks to the recent demolition, via the elliptic curve method, of F10
[Brent 1999], and an earlier resolution of F11 also by Brent, the smallest
Fermat number not yet completely factored is F12.

(4) The two largest known prime factors of F13, and the largest prime factors
of both F15 and F16 were found in recent years, via modern, enhanced
variants of the elliptic curve method (ECM) [Crandall 1996a], [Brent et
al. 2000], as we discuss in Section 7.4.1. The most recent factor found in
this way is the 23-digit factor of F18 found by R. McIntosh and C. Tardif
in 1999.

(5) The numbers F14, F20, F22, F24 (and the other C’s of the table) are, as of
this writing, “genuine” composites, meaning that we know the numbers
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F0 = 3 = P

F1 = 5 = P

F2 = 17 = P

F3 = 257 = P

F4 = 65537 = P

F5 = 641 · 6700417
F6 = 274177 · 67280421310721
F7 = 59649589127497217 · 5704689200685129054721
F8 = 1238926361552897 · P

F9 = 2424833 · 7455602825647884208337395736200454918783366342657 · P

F10 = 45592577 · 6487031809 · 4659775785220018543264560743076778192897 · P

F11 = 319489 · 974849 · 167988556341760475137 · 3560841906445833920513 · P

F12 = 114689 · 26017793 · 63766529 · 190274191361 · 1256132134125569 · C

F13 = 2710954639361 · 2663848877152141313 · 3603109844542291969·
319546020820551643220672513 · C

F14 = C

F15 = 1214251009 · 2327042503868417 · 168768817029516972383024127016961 · C

F16 = 825753601 · 188981757975021318420037633 · C

F17 = 31065037602817 · C

F18 = 13631489 · 81274690703860512587777 · C

F19 = 70525124609 · 646730219521 · C

F20 = C

F21 = 4485296422913 · C

F22 = C

F23 = 167772161 · C

F24 = C

Table 1.3 What is known about the first 25 Fermat numbers (as of Apr 2005);
P = a proven prime, C = a proven composite, and all explicitly written factors are
primes. The smallest Fermat number of unknown character is F33.

not to be prime, but do not know a single prime factor of any of the
numbers. However, see Exercise 1.82 for conceptual difficulties attendant
on the notion of “genuine” in this context.

(6) The Pepin test proved that F14 is composite [Selfridge and Hurwitz 1964],
while F20 was shown composite in the same way [Buell and Young 1988].

(7) The character of F22 was resolved [Crandall et al. 1995], but in this case
an interesting verification occurred: A completely independent (in terms
of hardware, software, and location) research team in South America
[Trevisan and Carvalho 1993] performed the Pepin test, and obtained the
same result for F22. Actually, what they found were the same Selfridge–
Hurwitz residues, taken to be the least nonnegative residue modulo Fn
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then taken again modulo the three coprime moduli 236, 236 − 1, 235 − 1 to
forge a kind of “parity check” with probability of error being roughly
2−107. Despite the threat of machine error in a single such extensive
calculation, the agreement between the independent parties leaves little
doubt as to the composite character of F22.

(8) The character of F24—and the compositeness of the F23 cofactor—were
resolved in 1999–2000 by Crandall, Mayer, and Papadopoulos [Crandall et
al. 2003]. In this case, rigor was achieved by having (a) two independent
floating-point Pepin “wavefront” tests (by Mayer and Papadopoulos,
finishing in that order in August 1999), but also (b) a pure-integer
convolution method for deterministic checking of the Pepin squaring chain.
Again the remaining doubt as to composite character must be regarded
as minuscule. More details are discussed in Exercise 4.6.

(9) Beyond F24, every Fn through n = 32 inclusive has yielded at least one
proper factor, and all of those factors were found by trial division with
the aid of Theorem 1.3.5. (Most recently, A. Kruppa and T. Forbes found
in 2001 that 46931635677864055013377 divides F31.) The first Fermat
number of unresolved character is thus F33. By conventional machinery
and Pepin test, the resolution of F33 would take us well beyond the next
ice age! So the need for new algorithms is as strong as can be for future
work on giant Fermat numbers.
There are many other interesting facets of Fermat numbers. There is the

challenge of finding very large composite Fn. For example, W. Keller showed
that F23471 is divisible by 5·223473+1, while more recently J. Young (see [Keller
1999]) found that F213319 is divisible by 3 ·2213321 +1, and even more recent is
the discovery by J. Cosgrave (who used remarkable software by Y. Gallot) that
F382447 is divisible by 3 ·2382449 +1 (see Exercise 4.9). To show how hard these
investigators must have searched, the prime divisor Cosgrave found is itself
currently one of the dozen or so largest known primes. Similar efforts reported
recently in [Dubner and Gallot 2002] include K. Herranen’s generalized Fermat
prime

101830214
+ 1

and S. Scott’s gargantuan prime

48594216
+ 1.

A compendium of numerical results on Fermat numbers is available at [Keller
1999].

It is amusing that Fermat numbers allow still another proof of Theorem
1.1.2 that there are infinitely many primes: Since the Fermat numbers are odd
and the product of F0, F1, . . . , Fn−1 is Fn − 2, we immediately see that each
prime factor of Fn does not divide any earlier Fj , and so there are infinitely
many primes.

What about heuristic arguments: Can we give a suggested asymptotic
formula for the number of n ≤ x with Fn prime? If the same kind of
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argument is made as with Mersenne primes, we get that the number of
Fermat primes is finite. This comes from the convergence of the sum of n/2n,
which expression one finds is proportional to the supposed probability that
Fn is prime. If this kind of heuristic is to be taken seriously, it suggests that
there are no more Fermat primes after F4, the point where Fermat stopped,
confidently predicting that all larger Fermat numbers are prime! A heuristic
suggested by H. Lenstra, similar in spirit to the previous estimate on the
density of Mersenne primes, says that the “probability” that Fn is prime is
approximately

eγ lg b

2n
, (1.13)

where b is the current limit on the possible prime factors of Fn. If nothing is
known about possible factors, one might use the smallest possible lower bound
b = 3·2n+2+1 for the numerator calculation, giving a rough a priori probability
of n/2n that Fn is prime. (Incidentally, a similar probability argument for
generalized Fermat numbers b2n

+ 1 appears in [Dubner and Gallot 2002].) It
is from such a probabilistic perspective that Fermat’s guess looms as ill-fated
as can be.

1.3.3 Certain presumably rare primes

There are interesting classes of presumably rare primes. We say “presumably”
because little is known in the way of rigorous density bounds, yet empirical
evidence and heuristic arguments suggest relative rarity. For any odd prime p,
Fermat’s “little theorem” tells us that 2p−1 ≡ 1 (mod p). One might wonder
whether there are primes such that

2p−1 ≡ 1 (mod p2), (1.14)

such primes being called Wieferich primes. These special primes figure strongly
in the so-called first case of Fermat’s “last theorem,” as follows. In [Wieferich
1909] it is proved that if

xp + yp = zp,

where p is a prime that does not divide xyz, then p satisfies relation (1.14).
Equivalently, we say that p is a Wieferich prime if the Fermat quotient

qp(2) =
2p−1 − 1

p

vanishes (mod p). One might guess that the “probability” that qp(2) so
vanishes is about 1/p. Since the sum of the reciprocals of the primes is
divergent (see Exercise 1.20), one might guess that there are infinitely many
Wieferich primes. Since the prime reciprocal sum diverges very slowly, one
might also guess that they are very few and far between.

The Wieferich primes 1093 and 3511 have long been known. Crandall,
Dilcher, and Pomerance, with the computational aid of Bailey, established
that there are no other Wieferich primes below 4 · 1012 [Crandall et al. 1997].
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McIntosh has pushed the limit further—to 16 · 1012. It is not known whether
there are any more Wieferich primes beyond 3511. It is also not known whether
there are infinitely many primes that are not Wieferich primes! (But see
Exercise 8.19.)

A second, presumably sparse class is conceived as follows. We first state a
classical result and its converse:

Theorem 1.3.6 (Wilson–Lagrange). Let p be an integer greater than one.
Then p is prime if and only if

(p − 1)! ≡ −1 (mod p).

This motivates us to ask whether there are any instances of

(p − 1)! ≡ −1 (mod p2), (1.15)

such primes being called Wilson primes. For any prime p we may assign a
Wilson quotient

wp =
(p − 1)! + 1

p
,

whose vanishing (mod p) signifies a Wilson prime. Again the “probability”
that p is a Wilson prime should be about 1/p, and again the rarity is
empirically manifest, in the sense that except for 5, 13, and 563, there are
no Wilson primes less than 5 · 108.

A third presumably sparse class is that of Wall–Sun–Sun primes, namely
those primes p satisfying

up−(p
5) ≡ 0 (mod p2), (1.16)

where un denotes the n-th Fibonacci number (see Exercise 2.5 for definition)
and where

(
p
5

)
is 1 if p ≡ ±1 (mod 5), is −1 if p ≡ ±2 (mod 5), and is 0 if

p = 5. As with the Wieferich and Wilson primes, the congruence (1.16) is
always satisfied (mod p). R. McIntosh has shown that there are no Wall–Sun–
Sun primes whatsoever below 3.2 ·1012. The Wall–Sun–Sun primes also figure
into the first case of Fermat’s last theorem, in the sense that a prime exponent
p for xp + yp = zp, where p does not divide xyz, must also satisfy congruence
(1.16) [Sun and Sun 1992].

Interesting computational issues arise in the search for Wieferich, Wilson,
or Wall–Sun–Sun primes. Various such issues are covered in the exercises; for
the moment we list a few salient points. First, computations (mod p2) can be
effected nicely by considering each congruence class to be a pair (a, b) = a+bp.
Thus, for multiplication one may consider an operator ∗ defined by

(a, b) ∗ (c, d) ≡ (ac, (bc + ad) (mod p)) (mod p2),

and with this relation all the arithmetic necessary to search for the rare
primes of this section can proceed with size-p arithmetic. Second, factorials in
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particular can be calculated using various enhancements, such as arithmetic
progression-based products and polynomial evaluation, as discussed in
Chapter 8.8. For example, it is known that for p = 240 + 5,

(p − 1)! ≡ −1 − 533091778023p (mod p2),

as obtained by polynomial evaluation of the relevant factorial [Crandall et al.
1997]. This p is therefore not a Wilson prime, yet it is of interest that in this
day and age, machines can validate at least 12-digit primes via application of
Lagrange’s converse of the classical Wilson theorem.

In searches for these rare primes, some “close calls” have been encountered.
Perhaps the only importance of a close call is to verify heuristic beliefs about
the statistics of such as the Fermat and Wilson quotients. Examples of the
near misses with their very small (but alas nonzero) quotients are

p = 76843523891, qp(2) ≡ −2 (mod p),
p = 12456646902457, qp(2) ≡ 4 (mod p),
p = 56151923, wp ≡ −1 (mod p),
p = 93559087, wp ≡ −3 (mod p),

and we remind ourselves that the vanishing of any Fermat or Wilson quotient
modulo p would have signaled a successful “strike.”

1.4 Analytic number theory

Analytic number theory refers to the marriage of continuum analysis with the
theory of the (patently discrete) integers. In this field, one can use integrals,
complex domains, and other tools of analysis to glean truths about the natural
numbers. We speak of a beautiful and powerful subject that is both useful in
the study of algorithms, and itself a source of many interesting algorithmic
problems. In what follows we tour a few highlights of the analytic theory.

1.4.1 The Riemann zeta function

It was the brilliant leap of Riemann in the mid-19th century to ponder an
entity so artfully employed by Euler,

ζ(s) =
∞∑

n=1

1
ns

, (1.17)

but to ponder with powerful generality, namely, to allow s to attain complex
values. The sum converges absolutely for Re(s) > 1, and has an analytic
continuation over the entire complex plane, regular except at the single point
s = 1, where it has a simple pole with residue 1. (That is, (s−1)ζ(s) is analytic
in the entire complex plane, and its value at s = 1 is 1.) It is fairly easy to
see how ζ(s) can be continued to the half-plane Re(s) > 0: For Re(s) > 1 we
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have identities such as

ζ(s) =
s

s − 1
− s

∫ ∞

1
(x − �x�)x−s−1 dx.

But this formula continues to apply in the region Re(s) > 0, s = 1, so we
may take this integral representation as the definition of ζ(s) for the extended
region. The equation also shows the claimed nature of the singularity at s = 1,
and other phenomena, such as the fact that ζ has no zeros on the positive
real axis. There are yet other analytic representations that give continuation
to all complex values of s.

The connection with prime numbers was noticed earlier by Euler (with
the variable s real), in the form of a beautiful relation that can be thought of
as an analytic version of the fundamental Theorem 1.1.1:

Theorem 1.4.1 (Euler). For Re(s) > 1 and P the set of primes,

ζ(s) =
∏
p∈P

(1 − p−s)−1. (1.18)

Proof. The “Euler factor” (1 − p−s)−1 may be rewritten as the sum of a
geometric progression: 1 + p−s + p−2s + · · ·. We consider the operation of
multiplying together all of these separate progressions. The general term in the
multiplied-out result will be

∏
p∈P p−aps, where each ap is a positive integer

or 0, and all but finitely many of these ap are 0. Thus the general term is n−s

for some natural number n, and by Theorem 1.1.1, each such n occurs once
and only once. Thus the right side of the equation is equal to the left side of
the equation, which completes the proof. �

As was known to Euler, the zeta function admits various closed-form
evaluations, such as

ζ(2) = π2/6,

ζ(4) = π4/90,

and in general, ζ(n) for even n is known; although not a single ζ(n) for odd
n > 2 is known in closed form. But the real power of the Riemann zeta
function, in regard to prime number studies, lies in the function’s properties
for Re(s) ≤ 1. Closed-form evaluations such as

ζ(0) = −1/2

are sometimes possible in this region. Here are some salient facts about
theoretical applications of ζ:

(1) The fact that ζ(s) → ∞ as s → 1 implies the infinitude of primes.
(2) The fact that ζ(s) has no zeros on the line Re(s) = 1 leads to the prime

number Theorem 1.1.4.
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(3) The properties of ζ in the “critical strip” 0 < Re(s) < 1 lead to deep
aspects of the distribution of primes, such as the essential error term in
the PNT.

On the point (1), we can prove Theorem 1.1.2 as follows:

Another proof of the infinitude of primes. We consider ζ(s) for s real, s > 1.
Clearly, from relation (1.17), ζ(s) diverges as s → 1+ because the harmonic
sum

∑
1/n is divergent. Indeed, for s > 1,

ζ(s) >
∑

n≤1/(s−1)

n−s =
∑

n≤1/(s−1)

n−1n−(s−1)

≥ e−1/e
∑

n≤1/(s−1)

n−1 > e−1/e| ln(s − 1)|.

But if there were only finitely many primes, the product in (1.18) would tend
to a finite limit as s → 1+, a contradiction. �

The above proof actually can be used to show that the sum of the
reciprocals of the primes diverges. Indeed,

ln

⎛
⎝∏

p∈P
(1 − p−s)−1

⎞
⎠ = −

∑
p∈P

ln(1 − p−s) =
∑
p∈P

p−s + O(1), (1.19)

uniformly for s > 1. Since the left side of (1.19) goes to ∞ as s → 1+ and
since p−s < p−1 when s > 1, the sum

∑
p∈P p−1 is divergent. (Compare

with Exercise 1.20.) It is by a similar device that Dirichlet was able to prove
Theorem 1.1.5; see Section 1.4.3.

Incidentally, one can derive much more concerning the partial sums of 1/p
(henceforth we suppress the notation p ∈ P, understanding that the index p
is to be a prime variable unless otherwise specified):

Theorem 1.4.2 (Mertens). As x → ∞,

∏
p≤x

(
1 − 1

p

)
∼ e−γ

lnx
, (1.20)

where γ is the Euler constant. Taking the logarithm of this relation, we have

∑
p≤x

1
p

= ln lnx + B + o(1), (1.21)

for the Mertens constant B defined as

B = γ +
∑

p

(
ln
(
1 − 1

p

)
+

1
p

)
.
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This theorem is proved in [Hardy and Wright 1979]. The theorem is also a
corollary of the prime number Theorem 1.1.4, but it is simpler than the PNT
and predates it. The PNT still has something to offer, though; it gives smaller
error terms in (1.20) and (1.21). Incidentally, the computation of the Mertens
constant B is an interesting challenge (Exercise 1.90).

We have seen that certain facts about the primes can be thought of as
facts about the Riemann zeta function. As one penetrates more deeply into
the “critical strip,” that is, into the region 0 < Re(s) < 1, one essentially gains
more and more information about the detailed fluctuations in the distribution
of primes. In fact it is possible to write down an explicit expression for π(x)
that depends on the zeros of ζ(s) in the critical strip. We illustrate this for
a function that is related to π(x), but is more natural in the analytic theory.
Consider the function ψ0(x). This is the function ψ(x) defined as

ψ(x) =
∑

pm≤x

ln p =
∑
p≤x

ln p

⌊
lnx

ln p

⌋
, (1.22)

except if x = pm, in which case ψ0(x) = ψ(x) − 1
2 ln p. Then (see [Edwards

1974], [Davenport 1980], [Ivić 1985]) for x > 1,

ψ0(x) = x −
∑

ρ

xρ

ρ
− ln(2π) − 1

2
ln

(
1 − x−2) , (1.23)

where the sum is over the zeros ρ of ζ(s) with Re(ρ) > 0. This sum is not
absolutely convergent, and since the zeros ρ extend infinitely in both (vertical)
directions in the critical strip, we understand the sum to be the limit as T → ∞
of the finite sum over those zeros ρ with |ρ| < T . It is further understood that
if a zero ρ is a multiple zero of ζ(s), it is counted with proper multiplicity in
the sum. (It is widely conjectured that all of the zeros of ζ(s) are simple.)

Riemann posed what has become a central conjecture for all of number
theory, if not for all of mathematics:

Conjecture 1.4.1 (Riemann hypothesis (RH)). All the zeros of ζ(s) in the
critical strip 0 < Re(s) < 1 lie on the line Re(s) = 1/2.

There are various equivalent formulations of the Riemann hypothesis. We
have already mentioned one in Section 1.1.5. For another, consider the Mertens
function

M(x) =
∑
n≤x

µ(n),

where µ(n) is the Möbius function defined to be 1 if n is squarefree with an
even number of prime factors, −1 if n is squarefree with an odd number of
prime factors, and 0 if n is not squarefree. (For example, µ(1) = µ(6) = 1,
µ(2) = µ(105) = −1, and µ(9) = µ(50) = 0.) The function M(x) is related to
the Riemann zeta function by

1
ζ(s)

=
∞∑

n=1

µ(n)
ns

= s

∫ ∞

1

M(x)
xs+1 dx, (1.24)
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valid certainly for Re(s) > 1. It is interesting that the behavior of the Mertens
function runs sufficiently deep that the following equivalences are known (in
this and subsequent such uses of big-O notation, we mean that the implied
constant depends on ε only):

Theorem 1.4.3. The PNT is equivalent to the statement

M(x) = o(x),

while the Riemann hypothesis is equivalent to the statement

M(x) = O
(
x

1
2+ε

)
for any fixed ε > 0.

What a compelling notion, that the Mertens function, which one might
envision as something like a random walk, with the Möbius µ contributing to
the summation for M in something like the style of a random coin flip, should
be so closely related to the great theorem (PNT) and the great conjecture
(RH) in this way. The equivalences in Theorem 1.4.3 can be augmented with
various alternative statements. One such is the elegant result that the PNT
is equivalent to the statement

∞∑
n=1

µ(n)
n

= 0,

as shown by von Mangoldt. Incidentally, it is not hard to show that the sum
in relation (1.24) converges absolutely for Re(s) > 1; it is the rigorous sum
evaluation at s = 1 that is difficult (see Exercise 1.19). In 1859, Riemann
conjectured that for each fixed ε > 0,

π(x) = li (x) + O
(
x1/2+ε

)
, (1.25)

which conjecture is equivalent to the Riemann hypothesis, and perforce to the
second statement of Theorem 1.4.3. In fact, the relation (1.25) is equivalent
to the assertion that ζ(s) has no zeros in the region Re(s) > 1/2 + ε. The
estimate (1.25) has not been proved for any ε < 1/2.

In 1901, H. von Koch strengthened (1.25) slightly by showing that the
Riemann hypothesis is true if and only if |π(x) − li (x)| = O(

√
x lnx). In fact,

for x ≥ 2.01 we can take the big-O constant to be 1 in this assertion; see
Exercise 1.37.

Let pn denote the n-th prime. It follows from (1.25) that if the Riemann
hypothesis is true, then

pn+1 − pn = O
(
p1/2+ε

n

)
holds for each fixed ε > 0. Remarkably, we know rigorously that pn+1 − pn =
O

(
p0.525

n

)
, a result of R. Baker, G. Harman, and J. Pintz. But much more is
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conjectured. The famous conjecture of H. Cramér asserts that

lim sup
n→∞

(pn+1 − pn)/ ln2 n = 1.

A. Granville has raised some doubt on the value of this limsup, suggesting
that it may be as least as large as 2e−γ ≈ 1.123. For primes above 100, the
largest known value of (pn+1 − pn)/ ln2 n is ≈ 1.210 when pn = 113. The
next highest known values of this quotient are ≈ 1.175 when pn = 1327, and
≈ 1.138 when pn = 1693182318746371, this last being a recent discovery of
B. Nyman.

The prime gaps pn+1 − pn, which dramatically showcase the apparent
local randomness of the primes, are on average ∼ lnn; this follows from the
PNT (Theorem 1.1.4). The Cramér–Granville conjecture, mentioned in the
last paragraph, implies that these gaps are infinitely often of magnitude ln2 n,
and no larger. However, the best that we can currently prove is that pn+1 −pn

is infinitely often at least of magnitude

lnn ln lnn ln ln ln lnn/(ln ln lnn)2,

an old result of P. Erdős and R. Rankin. We can also ask about the minimal
order of pn+1−pn. The twin-prime conjecture implies that (pn+1−pn)/ lnn has
liminf 0, but until very recently the best we knew was the result of H. Maier
that the liminf is at most a constant that is slightly less than 1/4. As we go to
press for this 2nd book edition, a spectacular new result has been announced
by D. Goldston, J. Pintz, and C. Yildirim: Yes, the liminf of (pn+1 − pn)/ lnn
is indeed 0.

1.4.2 Computational successes

The Riemann hypothesis (RH) remains open to this day. However, it became
known after decades of technical development and a great deal of computer
time that the first 1.5 billion zeros in the critical strip (ordered by increasing
positive imaginary part) all lie precisely on the critical line Re(s) = 1/2 [van
de Lune et al. 1986]. It is highly intriguing—and such is possible due to a
certain symmetry inherent in the zeta function—that one can numerically
derive rigorous placement of the zeros with arithmetic of finite (yet perhaps
high) precision. This is accomplished via rigorous counts of the number of
zeros to various heights T (that is, the number of zeros σ + it with imaginary
part t ∈ (0, T ]), and then an investigation of sign changes of a certain real
function that is zero if and only if zeta is zero on the critical line. If the sign
changes match the count, all of the zeros to that height T are accounted for
in rigorous fashion [Brent 1979].

The current height to which Riemann-critical-zero computations have
been pressed is that in [Gourdon and Sebah 2004], namely the RH is intact up
to the 1013-th zero. Gourdon has also calculated 2 billion zeros near t = 1024.
This advanced work uses a variant of the parallel-zeta method of [Odlyzko
and Schönhage 1988] discussed in Section 3.7.2. Another important pioneer
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in the ongoing RH verification is S. Wedeniwski, who maintains a “zetagrid”
distributed project [Wedeniwski 2004].

Another result along similar lines is the recent settling of the “Mertens
conjecture,” that

|M(x)| <
√

x. (1.26)
Alas, the conjecture turns out to be ill-fated. An earlier conjecture that the
right-hand side could be replaced by 1

2

√
x was first disproved in 1963 by

Neubauer; later, H. Cohen found a minimal (least x) violation in the form

M(7725038629) = 43947.

But the Mertens conjecture (1.26) was finally demolished when it was shown
in [Odlyzko and te Riele 1985] that

lim supx−1/2M(x) > 1.06,

lim inf x−1/2M(x) < −1.009.

It has been shown by Pintz that for some x less than 101065
the ratio M(x)/

√
x

is greater than 1 [Ribenboim 1996]. Incidentally, it is known from statistical
theory that the summatory function m(x) =

∑
n≤x tn of a random walk (with

tn = ±1, randomly and independently) enjoys (with probability 1) the relation

lim sup
m(x)√

(x/2) ln lnx
= 1,

so that on any notion of sufficient “randomness” of the Möbius µ function
M(x)/

√
x would be expected to be unbounded.

Yet another numerical application of the Riemann zeta function is in the
assessment of the prime-counting function π(x) for particular, hopefully large
x. We address this computational problem later, in Section 3.7.2.

Analytic number theory is rife with big-O estimates. To the computation-
alist, every such estimate raises a question: What constant can stand in place
of the big-O and in what range is the resulting inequality true? For example,
it follows from a sharp form of the prime number theorem that for sufficiently
large n, the n-th prime exceeds n lnn. It is not hard to see that this is true
for small n as well. Is it always true? To answer the question, one has to
go through the analytic proof and put flesh on the various O-constants that
appear, so as to get a grip on the “sufficiently large” aspect of the claim. In a
wonderful manifestation of this type of analysis, [Rosser 1939] indeed showed
that the n-th prime is always larger than n lnn. Later, in joint work with
Schoenfeld, many more explicit estimates involving primes were established.
These collective investigations continue to be an interesting and extremely
useful branch of computational analytic number theory.

1.4.3 Dirichlet L-functions

One can “twist” the Riemann zeta function by a Dirichlet character. To
explain what this cryptic statement means, we begin at the end and explain
what is a Dirichlet character.
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Definition 1.4.4. Suppose D is a positive integer and χ is a function from
the integers to the complex numbers such that

(1) For all integers m, n, χ(mn) = χ(m)χ(n).
(2) χ is periodic modulo D.
(3) χ(n) = 0 if and only if gcd(n, D) > 1.

Then χ is said to be a Dirichlet character to the modulus D.

For example, if D > 1 is an odd integer, then the Jacobi symbol
(

n
D

)
is a

Dirichlet character to the modulus D (see Definition 2.3.3).
It is a simple consequence of the definition that if χ is a Dirichlet character

(mod D) and if gcd(n, D) = 1, then χ(n)ϕ(D) = 1; that is, χ(n) is a root of
unity. Indeed, χ(n)ϕ(D) = χ

(
nϕ(D)

)
= χ(1), where the last equality follows

from the Euler theorem (see (2.2)) that for gcd(n, D) = 1 we have nϕ(D) ≡ 1
(mod D). But χ(1) = 1, since χ(1) = χ(1)2 and χ(1) = 0.

If χ1 is a Dirichlet character to the modulus D1 and χ2 is one
to the modulus D2, then χ1χ2 is a Dirichlet character to the modulus
lcm [D1, D2], where by (χ1χ2)(n) we simply mean χ1(n)χ2(n). Thus, the
Dirichlet characters to the modulus D are closed under multiplication. In
fact, they form a multiplicative group, where the identity is χ0, the “principal
character” to the modulus D. We have χ0(n) = 1 when gcd(n, D) = 1, and 0
otherwise. The multiplicative inverse of a character χ to the modulus D is its
complex conjugate, χ.

As with integers, characters can be uniquely factored. If D has the prime
factorization pa1

1 · · · pak

k , then a character χ (mod D) can be uniquely factored
as χ1 · · ·χk, where χj is a character (mod p

aj

j ).
In addition, characters modulo prime powers are easy to construct and

understand. Let q = pa be an odd prime power or 2 or 4. There are primitive
roots (mod q), say one of them is g. (A primitive root for a modulus D is a
cyclic generator of the multiplicative group Z∗

D of residues modulo D that are
coprime to D. This group is cyclic if and only if D is not properly divisible
by 4 and not divisible by two different odd primes.) Then the powers of g
(mod q) run over all the residue classes (mod q) coprime to q. So, if we pick
a ϕ(q)-th root of 1, call it η, then we have picked the unique character χ
(mod q) with χ(g) = η. We see there are ϕ(q) different characters χ (mod q).

It is a touch more difficult in the case that q = 2a with a > 2, since
then there is no primitive root. However, the order of 3 (mod 2a) for a > 2 is
always 2a−2, and 2a−1 + 1, which has order 2, is not in the cyclic subgroup
generated by 3. Thus these two residues, 3 and 2a−1 + 1, freely generate the
multiplicative group of odd residues (mod 2a). We can then construct the
characters (mod 2a) by choosing a 2a−2-th root of 1, say η, and choosing
ε ∈ {1,−1}, and then we have picked the unique character χ (mod 2a) with
χ(3) = η, χ(2a−1 + 1) = ε. Again there are ϕ(q) characters χ (mod q).

Thus, there are exactly ϕ(D) characters (mod D), and the above proof
not only lets us construct them, but it shows that the group of characters
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(mod D) is isomorphic to the multiplicative group Z∗
D of residues (mod D)

coprime to D. To conclude our brief tour of Dirichlet characters we record the
following two (dual) identities, which express a kind of orthogonality:

∑
χ (mod D)

χ(n) =
{

ϕ(D), if n ≡ 1 (mod D),
0, if n ≡ 1 (mod D), (1.27)

D∑
n=1

χ(n) =
{

ϕ(D), if χ is the principal character (mod D)
0, if χ is a nonprincipal character (mod D). (1.28)

Now we can turn to the main topic of this section, Dirichlet L-functions.
If χ is a Dirichlet character modulo D, let

L(s, χ) =
∞∑

n=1

χ(n)
ns

.

The sum converges in the region Re(s) > 1, and if χ is nonprincipal, then
(1.28) implies that the domain of convergence is Re(s) > 0. In analogy to
(1.18) we have

L(s, χ) =
∏
p

(
1 − χ(p)

ps

)−1

. (1.29)

It is easy to see from this formula that if χ = χ0 is the principal character
(mod D), then L(s, χ0) = ζ(s)

∏
p|D(1 − p−s), that is, L(s, χ0) is almost the

same as ζ(s).
Dirichlet used his L-functions to prove Theorem 1.1.5 on primes in a

residue class. The idea is to take the logarithm of (1.29) just as in (1.19),
getting

ln(L(s, χ)) =
∑

p

χ(p)
ps

+ O(1), (1.30)

uniformly for Re(s) > 1 and all Dirichlet characters χ. Then, if a is an integer
coprime to D, we have

∑
χ (mod D)

χ(a) ln(L(s, χ)) =
∑

χ (mod D)

∑
p

χ(a)χ(p)
ps

+ O(ϕ(D))

= ϕ(D)
∑

p≡a (mod D)

1
ps

+ O(ϕ(D)), (1.31)

where the second equality follows from (1.27) and from the fact that
χ(a)χ(p) = χ(bp), where b is such that ba ≡ 1 (mod D). Equation (1.31) thus
contains the magic that is necessary to isolate the primes p in the residue class
a (mod D). If we can show the left side of (1.31) tends to infinity as s → 1+,
then it will follow that there are infinitely many primes p ≡ a (mod D), and
in fact, they have an infinite reciprocal sum. We already know that the term
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on the left corresponding to the principal character χ0 tends to infinity, but
the other terms could cancel this. Thus, and this is the heart of the proof
of Theorem 1.1.5, it remains to show that if χ is not a principal character
(mod D), then L(1, χ) = 0. See [Davenport 1980] for a proof.

Just as the zeros of ζ(s) say much about the distribution of all of the
primes, the zeros of the Dirichlet L-functions L(s, χ) say much about the
distribution of primes in a residue class. In fact, the Riemann hypothesis has
the following extension:

Conjecture 1.4.2 (The extended Riemann hypothesis (ERH)). Let χ be
an arbitrary Dirichlet character. Then the zeros of L(s, χ) in the region
Re(s) > 0 lie on the vertical line Re(s) = 1

2 .

We note that an even more general hypothesis, the generalized Riemann
hypothesis (GRH) is relevant for more general algebraic domains, but we limit
the scope of our discussion to the ERH above. (Note that one qualitative way
to think of the ERH/GRH dichotomy is: The GRH says essentially that every
general zeta-like function that should reasonably be expected not to have zeros
in an interesting specifiable region indeed does not have any [Bach and Shallit
1996].) Conjecture 1.4.2 is of fundamental importance also in computational
number theory. For example, one has the following conditional theorem.

Theorem 1.4.5. Assume the ERH holds. For each positive integer D and
each nonprincipal character χ (mod D), there is a positive integer n < 2 ln2 D
with χ(n) = 1 and a positive integer m < 3 ln2 D with χ(m) = 1 and
χ(m) = 0.

This result is in [Bach 1990]. That both estimates are O
(
ln2 D

)
, assuming

the ERH, was originally due to N. Ankeny in 1952. Theorem 1.4.5 is what
is behind ERH-conditional “polynomial time” primality tests, and it is also
useful in other contexts.

The ERH has been checked computationally, but not as far as the Riemann
hypothesis has. We know that it is true up to height 10000 for all characters χ
with moduli up to 13, and up to height 2500 for all characters χ with moduli
up to 72, and for various other moduli [Rumely 1993]. Using these calculations,
[Ramaré and Rumely 1996] obtain explicit estimates for the distribution of
primes in certain residue classes. (In recent unpublished calculations, Rumely
has verified the ERH up to height 100000 for all characters with moduli up
through 9.) Incidentally, the ERH implies an explicit estimate of the error in
(1.5), the prime number theorem for residue classes; namely, for x ≥ 2, d ≥ 2,
and gcd(a, d = 1,∣∣∣∣π(x; d, a) − 1

ϕ(d)
li (x)

∣∣∣∣ < x1/2(lnx + 2 ln d) (on the ERH). (1.32)

We note the important fact that there is here not only a tight error bound,
but an explicit bounding constant (as opposed to the appearance of just an
implied, nonspecific constant on the right-hand side). It is this sort of hard
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bounding that enables one to combine computations and theory, and settle
conjectures in this way. Also on the ERH, if d > 2 and gcd(d, a) = 1 there is a
prime p ≡ a (mod d) with p < 2d2 ln2 d (see [Bach and Shallit 1996] for these
and related ERH-contingent results). As with the PNT itself, unconditional
estimates (i.e., those not depending on the ERH) on π(x; d, a) are less precise.
For example, there is the following historically important (and unconditional)
theorem:

Theorem 1.4.6 (Siegel–Walfisz). For any number η > 0 there is a positive
number C(η) such that for all coprime positive integers a, d with d < lnη x,

π(x; d, a) =
1

ϕ(d)
li (x) + O

(
x exp

(
−C(η)

√
lnx

))
,

where the implied big-O constant is absolute.

Discussions of this and related theorems are found in [Davenport 1980]. It is
interesting that the number C(η) in Theorem 1.4.6 has not been computed for
any η ≥ 1. Furthermore it is not computable from the method of proof of the
theorem. (It should be pointed out that numerically explicit error estimates for
π(x; d, a)− 1

ϕ(d) li (x) are possible in the range 1 ≤ η < 2, though with an error
bound not as sharp as in Theorem 1.4.6. For η ≥ 2, no numerically explicit
error estimate is known at all that is little-o of the main term.) Though error
bounds of the Siegel–Walfisz type fall short of what is achievable on the ERH,
such estimates nevertheless attain profound significance when combined with
other analytic methods, as we discuss in Section 1.4.4.

We close this subsection with a different kind of theorem about π(x; d, a).
Often the more subtle and deeper problem is a nontrivial lower bound. But
what if we ask only for an upper bound? This kind of question is well-suited for
a family of techniques from analytic number theory known as “sieve methods.”
As with sieving in computational number theory, for example see Section 3.2,
the starting point for these methods is the sieve of Eratosthenes, but the
viewpoint is quite different. For example, it is through these methods that
Brun was able to prove (1.8). Sometimes, via sieve methods, very beautiful,
numerically explicit inequalities may be proved. One of the nicest is the
following version of the Brun–Titchmarsh inequality from [Montgomery and
Vaughan 1973]:

Theorem 1.4.7 (Brun–Titchmarsh inequality). If d, a are positive integers
with gcd(a, d) = 1, then for all x > d,

π(x; d, a) <
2x

ϕ(d) ln(x/d)
.

1.4.4 Exponential sums

Beyond the Riemann zeta function and special arithmetic functions that arise
in analytic number theory, there are other important entities, the exponential
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sums. These sums generally contain information—one might say “spectral”
information—about special functions and sets of numbers. Thus, exponential
sums provide a powerful bridge between complex Fourier analysis and number
theory. For a real-valued function f , real t, and integers a < b, denote

E(f ; a, b, t) =
∑

a<n≤b

e2πitf(n). (1.33)

Each term in such an exponential sum has absolute value 1, but the terms can
point in different directions in the complex plane. If the various directions are
“random” or “decorrelated” in an appropriate sense, one would expect some
cancellation of terms, reducing |E| well below the trivial bound b − a. Thus,
E(f ; a, b, t) measures in a certain sense the distribution of fractional parts for
the sequence (tf(n)), a < n ≤ b. In fact, H. Weyl’s celebrated theorem (see
[Weyl 1916]) asserts that the sequence (f(n)), n = 1, 2, . . . is equidistributed
modulo 1 if and only if for every integer h = 0 we have E(f ; 0, N, h) = o(N).
Though distribution of fractional parts is a constant undercurrent, the theory
of exponential sums has wide application across many subfields of number
theory. We give here a brief summary of the relevance of such sums to
prime-number studies, ending with a brief, somewhat qualitative tour of
Vinogradov’s resolution of the ternary-Goldbach problem.

The theory of exponential sums began with Gauss and underwent a certain
acceleration on the pivotal work of Weyl, who showed how to achieve rigorous
upper bounds for specific classes of sums. In particular, Weyl discovered a
simple but powerful estimation technique: Establish bounds on the absolute
powers of a sum E. A fundamental observation is that

|E(f ; a, b, t)|2 =
∑

n∈(a,b]

∑
k∈(a−n,b−n]

e2πit(f(n+k)−f(n)). (1.34)

Now, something like a “derivative” of f appears in the exponent, allowing one
to establish certain bounds on |E| for polynomial f , by recursively applying
a degree reduction. The manner in which one reduces the exponent degree
can be instructive and gratifying; see, for example, Exercise 1.66 and other
exercises referenced therein.

An important analytic problem one can address via exponential sums is
that of the growth of the Riemann zeta function. The problem of bounding
ζ(σ + it), for fixed real σ and varying real t, comes down to the bounding of
sums ∑

N<n≤2N

1
nσ+it

,

which in turn can be bounded on the basis of estimates for the exponential
sum

E(f ; N, 2N, t) =
∑

N<n≤2N

e−it ln n,

where now the specific function is f(n) = −(lnn)/(2π). Expanding on Weyl’s
work, [van der Corput 1922] showed how to estimate such cases so that the
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bound on ζ(σ + it) could be given as a nontrivial power of t. For example, the
Riemann zeta function can be bounded on the critical line σ = 1/2, as

ζ(1/2 + it) = O(t1/6),

when t ≥ 1; see [Graham and Kolesnik 1991]. The exponent has been
successively reduced over the years; for example, [Bombieri and Iwaniec 1986]
established the estimate O

(
t9/56+ε

)
and [Watt 1989] obtained O

(
t89/560+ε

)
.

The Lindelöf hypothesis is the conjecture that ζ(1/2 + it) = O(tε) for any
ε > 0. This conjecture also has consequences for the distribution of primes,
such as the following result in [Yu 1996]: If pn denotes the n-th prime, then
on the Lindelöf hypothesis,∑

pn≤x

(pn+1 − pn)2 = x1+o(1).

The best that is known unconditionally is that the sum is O
(
x23/18+ε

)
for any

ε > 0, a result of D. Heath-Brown. A consequence of Yu’s conditional theorem
is that for each ε > 0, the number of integers n ≤ x such that the interval
(n, n+nε) contains a prime is ∼ x. Incidentally, there is a connection between
the Riemann hypothesis and the Lindelöf hypothesis: The former implies the
latter.

Though not easy, it is possible to get numerically explicit estimates via
exponential sums. A recent tour de force is the paper [Ford 2002], where it is
shown that

|ζ(σ + it)| ≤ 76.2t4.45(1−σ)3/2
ln2/3 t,

for 1/2 ≤ σ ≤ 1 and t ≥ 2. Such results can lead to numerically explicit zero-
free regions for the zeta function and numerically explicit bounds relevant to
various prime-number phenomena.

As for additive problems with primes, one may consider another important
class of exponential sums, defined by

En(t) =
∑
p≤n

e2πitp, (1.35)

where p runs through primes. Certain integrals involving En(t) over finite
domains turn out to be associated with deep properties of the prime numbers.
In fact, Vinogradov’s proof that every sufficiently large odd integer is the
sum of three primes starts essentially with the beautiful observation that the
number of three-prime representations of n is precisely

R3(n) =
∫ 1

0

∑
n≥p,q,r ∈P

e2πit(p+q+r−n) dt (1.36)

=
∫ 1

0
E3

n(t)e−2πitn dt.
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Vinogradov’s proof was an extension of the earlier work of Hardy and
Littlewood (see the monumental collection [Hardy 1966]), whose “circle
method” was a tour de force of analytic number theory, essentially connecting
exponential sums with general problems of additive number theory such as,
but not limited to, the Goldbach problem.

Let us take a moment to give an overview of Vinogradov’s method for
estimating the integral (1.36). The guiding observation is that there is a
strong correspondence between the distribution of primes and the spectral
information embodied in En(t). Assume that we have a general estimate
on primes not exceeding n and belonging to an arithmetic progression
{a, a + d, a + 2d, . . .} with gcd(a, d) = 1, in the form

π(n; d, a) =
1

ϕ(d)
π(n) + ε(n; d, a),

which estimate, we assume, will be “good” in the sense that the error
term ε will be suitably small for the problem at hand. (We have given a
possible estimate in the form of the ERH relation (1.32) and the weaker,
but unconditional Theorem 1.4.6.) Then for rational t = a/q we develop an
estimate for the sum (1.35) as

En(a/q) =
q−1∑
f=0

∑
p≡f (mod q), p≤n

e2πipa/q

=
∑

gcd(f,q)=1

π(n; q, f)e2πifa/q +
∑

p|q, p≤n

e2πipa/q

=
∑

gcd(f,q)=1

π(n; q, f)e2πifa/q + O(q),

where it is understood that the sums involving gcd run over the elements
f ∈ [1, q − 1] that are coprime with q. It turns out that such estimates are of
greatest value when the denominator q is relatively small. In such cases one
may use the chosen estimate on primes in a residue class to arrive at

En(a/q) =
cq(a)
ϕ(q)

π(n) + O(q + |ε|ϕ(q)),

where |ε| denotes the maximum of |ε(n; q, f)| taken over all residues f coprime
to q, and cq is the well-studied Ramanujan sum

cq(a) =
∑

gcd(f,q)=1

e2πifa/q. (1.37)

We shall encounter this Ramanujan sum later, during our tour of discrete
convolution methods, as in equation (9.26). For the moment, we observe that
[Hardy and Wright 1979]

cq(a) =
µ(q/g)ϕ(q)

ϕ(q/g)
, g = gcd(a, q). (1.38)
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In particular, when a, q are coprime, we obtain a beautiful estimate of the
form

En(a/q) =
∑
p≤n

e2πipa/q =
µ(q)
ϕ(q)

π(n) + ε′, (1.39)

where the overall error ε′ depends in complicated ways on a, q, n, and, of
course, whatever is our theorem of choice on the distribution of primes in
a residue class. We uncover thus a fundamental spectral property of primes:
When q is small, the magnitude of the exponential sum is effectively reduced,
by an explicit factor µ/ϕ, below the trivial estimate π(n). Such reduction
is due, of course, to cancellation among the oscillating summands; relation
(1.39) quantifies this behavior.

Vinogradov was able to exploit the small-q estimate above in the following
way. One chooses a cutoff Q = lnB n for appropriately large B, thinking
of q as “small” when 1 ≤ q ≤ Q. (It turns out to be enough to consider
only the range Q < q < n/Q for “large” q.) Now, the integrand in (1.36)
exhibits “resonances” when the integration variable t lies near to a rational
a/q for the small q ∈ [1, Q]. These regions of t are traditionally called
the “major arcs.” The rest of the integral—over the “minor arcs” having
t ≈ a/q with q ∈ (Q, n/Q)—can be thought of as “noise” that needs to
be controlled (bounded). After some delicate manipulations, one achieves an
integral estimate in the form

R3(n) =
n2

2 ln3 n

Q∑
q=1

µ(q)cq(n)
ϕ3(q)

+ ε′′, (1.40)

where we see a resonance sum from the major arcs, while ε′′ now contains
all previous arithmetic-progression errors plus the minor-arc noise. Already in
the above summation over q ∈ [1, Q] one can, with some additional algebraic
effort, see how the final ternary-Goldbach estimate (1.12) results, as long as
the error ε′′ and the finitude of the cutoff Q and are not too troublesome (see
Exercise 1.68).

It was the crowning achievement of Vinogradov to find an upper bound on
the minor-arc component of the overall error ε′′. The relevant theorem is this:
If gcd(a, q) = 1, q ≤ n, and a real t is near a/q in the sense |t − a/q| ≤ 1/q2,
then

|En(t)| < C

(
n

q1/2 + n4/5 + n1/2q1/2
)

ln3 n, (1.41)

with absolute constant C. This result is profound, the proof difficult—
involving intricate machinations with arithmetic functions—though having
undergone some modern revision, notably by R. Vaughan (see references
below). The bound is powerful because, for q ∈ (Q, n/Q) and a real t of
the theorem, the magnitude of En(t) is reduced by a logarithmic-power factor
below the total number π(n) of summands. In this way the minor-arc noise
has been bounded sufficiently to allow rigor in the ternary-Goldbach estimate.
(Powerful as this approach may be, the binary Goldbach conjecture has so far



48 Chapter 1 PRIMES!

been beyond reach, the analogous error term ε′′, which includes yet noisier
components, being so very difficult to bound.)

In summary: The estimate (1.39) is used for major-arc “resonances,”
yielding the main-term sum of (1.40), while the estimate (1.41) is used to
bound the minor-arc “noise” and control the overall error ε′′ . The relation
(1.40) leads finally to the ternary-Goldbach estimate (1.12). Though this
language has been qualitative, the reader may find the rigorous and compelling
details—on this and related additive problems—in the references [Hardy
1966], [Davenport 1980], [Vaughan 1977, 1997], [Ellison and Ellison 1985,
Theorem 9.4], [Nathanson 1996, Theorem 8.5], [Vinogradov 1985], [Estermann
1952].

Exponential-sum estimates can be, as we have just seen, incredibly
powerful. The techniques enjoy application beyond just the Goldbach problem,
even beyond the sphere of additive problems. Later, we shall witness the
groundwork of Gauss on quadratic sums; e.g., Definition 2.3.6 involves
variants of the form (1.33) with quadratic f . In Section 9.5.3 we take
up the issue of discrete convolutions (as opposed to continuous integrals)
and indicate through text and exercises how signal processing, especially
discrete spectral analysis, connects with analytic number theory. What is
more, exponential sums give rise to attractive and instructive computational
experiments and research problems. For reader convenience, we list here some
relevant Exercises: 1.35, 1.66, 1.68, 1.70, 2.27, 2.28, 9.41, 9.80.

1.4.5 Smooth numbers

Smooth numbers are extremely important for our computational interests,
notably in factoring tasks. And there are some fascinating theoretical
applications of smooth numbers, just one example being applications to a
celebrated problem upon which we just touched, namely the Waring problem
[Vaughan 1989]. We begin with a fundamental definition:

Definition 1.4.8. A positive integer is said to be y-smooth if it does not
have any prime factor exceeding y.

What is behind the usefulness of smooth numbers? Basically, it is that for y
not too large, the y-smooth numbers have a simple multiplicative structure,
yet they are surprisingly numerous. For example, though only a vanishingly
small fraction of the primes in [1, x] are in the interval [1,

√
x], nevertheless

more than 30% of the numbers in [1, x] are
√

x-smooth (for x sufficiently
large). Another example illustrating this surprisingly high frequency of smooth
numbers: The number of (ln2 x)-smooth numbers up to x exceeds

√
x for all

sufficiently large numbers x.
These examples suggest that it is interesting to study the counting function

for smooth numbers. Let

ψ(x, y) = #{1 ≤ n ≤ x : n is y-smooth}. (1.42)

Part of the basic landscape is the Dickman theorem from 1930:
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Theorem 1.4.9 (Dickman). For each fixed real number u > 0, there is a
real number ρ(u) > 0 such that

ψ(x, x1/u) ∼ ρ(u)x.

Moreover, Dickman described the function ρ(u) as the solution of a certain
differential equation: It is the unique continuous function on [0,∞) that
satisfies (A) ρ(u) = 1 for 0 ≤ u ≤ 1 and (B) for u > 1, ρ′(u) = −ρ(u − 1)/u.
In particular, ρ(u) = 1− lnu for 1 ≤ u ≤ 2, but there is no known closed form
(using elementary functions) for ρ(u) for u > 2. The function ρ(u) can be
approximated numerically (cf. Exercise 3.5), and it becomes quickly evident
that it decays to zero rapidly. In fact, it decays somewhat faster than u−u,
though this simple expression can stand in as a reasonable estimate for ρ(u)
in various complexity studies. Indeed, we have

ln ρ(u) ∼ −u lnu. (1.43)

Theorem 1.4.9 is fine for estimating ψ(x, y) when x, y tend to infinity with
u = lnx/ ln y fixed or bounded. But how can we estimate ψ

(
x, x1/ ln ln x

)
or ψ

(
x, e

√
ln x

)
or ψ

(
x, ln2 x

)
? Estimates for these and similar expressions

became crucial around 1980 when subexponential factoring algorithms were
first being studied theoretically (see Chapter 6). Filling this gap, it was shown
in [Canfield et al. 1983] that

ψ
(
x, x1/u

)
= xu−u+o(u) (1.44)

uniformly as u → ∞ and u < (1−ε) lnx/ ln lnx. Note that this is the expected
estimate, since by (1.43) we have that ρ(u) = u−u+o(u). Thus we have a
reasonable estimate for ψ(x, y) when y > ln1+ε x and x is large. (We have
reasonable estimates in smaller ranges for y as well, but we shall not need
them in this book.)

It is also possible to prove explicit inequalities for ψ(x, y). For example,
in [Konyagin and Pomerance 1997] it is shown that for all x ≥ 4 and
2 ≤ x1/u ≤ x,

ψ
(
x, x1/u

)
≥ x

lnu x
. (1.45)

The implicit estimate here is reasonably good when x1/u = lnc x, with c > 1
fixed (see Exercises 1.72, 3.19, and 4.28).

As mentioned above, smooth numbers arise in various factoring algo-
rithms, and in this context they are discussed later in this book. The compu-
tational problem of recognizing the smooth numbers in a given set of integers
is discussed in Chapter 3. For much more on smooth numbers, see the new
survey article [Granville 2004b].

1.5 Exercises

1.1. What is the largest integer N having the following property: All integers
in [2, . . . , N − 1] that have no common prime factor with N are themselves
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prime? What is the largest integer N divisible by every integer smaller than√
N?

1.2. Prove Euclid’s “first theorem”: The product of two integers is divisible
by a prime p if and only if one of them is divisible by p. Then show that
Theorem 1.1.1 follows as a corollary.

1.3. Show that a positive integer n is prime if and only if
∞∑

m=1

(⌊ n

m

⌋
−

⌊
n − 1

m

⌋)
= 2.

1.4. Prove that for integer x ≥ 2,

π(x) =
x∑

n=2

⌊
1∑n

k=2��n/k�k/n�

⌋
.

1.5. Sometimes a prime-producing formula, even though computationally
inefficient, has actual pedagogical value. Prove the Gandhi formula for the
n-th prime:

pn =

⎢⎢⎢⎣1 − log2

⎛
⎝−1

2
+

∑
d|pn−1!

µ(d)
2d − 1

⎞
⎠
⎥⎥⎥⎦ .

One instructive way to proceed is to perform (symbolically) a sieve of
Eratosthenes (see Chapter 3) on the binary expansion 1 = (0.11111 . . .)2.

1.6. By refining the method of proof for Theorem 1.1.2, one can achieve
lower bounds (albeit relatively weak ones) on the prime-counting function
π(x). To this end, consider the “primorial of p,” the number defined by

p# =
∏
q≤p

q = 2 · 3 · · · p,

where the product is taken over primes q. Deduce, along the lines of Euclid’s
proof, that the n-th prime pn satisfies

pn < pn−1#,

for n ≥ 3. Then use induction to show that

pn ≤ 22n−1
.

Conclude that
π(x) >

1
ln 2

ln lnx,

for x ≥ 2.
Incidentally, the numerical study of primorial primes p#+1 is interesting

in its own right. A modern example of a large primorial prime, discovered by
C. Caldwell in 1999, is 42209#+1, with more than eighteen thousand decimal
digits.
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1.7. By considering numbers of the form:

n = 22 · 3 · 5 · . . . · p − 1,

prove that there exist infinitely many primes congruent to 3 modulo 4. Find
a similar proof for primes that are congruent to 2 modulo 3. (Compare with
Exercise 5.22.)

1.8. By considering numbers of the form:

(2 · 3 · . . . · p)2 + 1,

prove that there are infinitely many primes ≡ 1 (mod 4). Find a similar proof
that there are infinitely many primes that are ≡ 1 (mod 3).

1.9. Suppose a, n are natural numbers with a ≥ 2. Let N = an − 1. Show
that the order of a (mod N) in the multiplicative group Z∗

N is n, and conclude
that n|ϕ(N). Use this to show that if n is prime, there are infinitely many
primes congruent to 1 modulo n

1.10. Let S be a nonempty set of primes with sum of reciprocals S < ∞,
and let A be the set of natural numbers that are not divisible by any member
of S. Show that A has asymptotic density less than e−S . In particular, show
that if S has an infinite sum of reciprocals, then the density of A is zero. Using
that the sum of reciprocals of the primes that are congruent to 3 (mod 4) is
infinite, show that the set of numbers that can be written as a sum of two
coprime squares has asymptotic density zero. (See Exercises 1.91 and 5.16.)

1.11. Starting from the fact that the sum of the reciprocals of the primes
is infinite, use Exercise 1.10 to prove that the set of primes has asymptotic
density zero, i.e., that π(x) = o(x).

1.12. As we state in the text, the “probability” that a random positive
integer x is prime is “about ” 1/ lnx. Assuming the PNT, cast this probability
idea in rigorous language.

1.13. Using the definition

φ(x, y) = #{1 ≤ n ≤ x : each prime dividing n is greater than y}
(which appears later, Section 3.7.1, in connection with prime counting), argue
that

φ(x,
√

x) = π(x) − π(
√

x) + 1.

Then prove the classical Legendre relation

π(x) = π(
√

x) − 1 +
∑
d|Q

µ(d)
⌊x

d

⌋
, (1.46)

where Q is a certain product of primes, namely,

Q =
∏

p≤√
x

p.
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This kind of combinatorial reasoning can be used, as Legendre once did, to
show that π(x) = o(x). To that end, show that

φ(x, y) = x
∏
p≤y

(
1 − 1

p

)
+ E,

where the error term E is O(2π(y)). Now use this last relation and the fact that
the sum of the reciprocals of the primes diverges to argue that π(x)/x → 0 as
x → ∞. (Compare with Exercise 1.11.)

1.14. Starting with the fundamental Theorem 1.1.1, show that for any fixed
ε > 0, the number d(n) of divisors of n (including always 1 and n) satisfies

d(n) = O(nε).

How does the implied O-constant depend on the choice of ε? You might get
started in this problem by first showing that for fixed ε, there are only finitely
many prime powers q with d(q) > qε.

1.15. Consider the sum of the reciprocals of all Mersenne numbers Mn =
2n − 1 (for positive integers n), namely,

E =
∞∑

n=1

1
Mn

.

Prove the following alternative form involving the divisor function d (defined
in Exercise 1.14):

E =
∞∑

k=1

d(k)
2k

.

Actually, one can give this sum a faster-than-linear convergence. To that end
show that we also have

E =
∞∑

m=1

1
2m2

2m + 1
2m − 1

.

Incidentally, the number E has been well studied in some respects. For
example, it is known [Erdős 1948], [Borwein 1991] that E is irrational, yet
it has never been given a closed form. Possible approaches to establishing
deeper properties of the number E are laid out in [Bailey and Crandall 2002].

If we restrict such a sum to be over Mersenne primes, then on the basis of
Table 1.2, and assuming that said table is exhaustive up through its final entry
(note that this is not currently known), to how many good decimal digits do
we know ∑

Mq∈P

1
Mq

?

1.16. Euler’s polynomial x2+x+41 has prime values for each integer x with
−40 ≤ x ≤ 39. Show that if f(x) is a nonconstant polynomial with integer
coefficients, then there are infinitely many integers x with f(x) composite.
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1.17. It can happen that a polynomial, while not always producing primes,
is very likely to do so over certain domains. Show by computation that a
polynomial found in [Dress and Olivier 1999],

f(x) = x2 + x − 1354363,

has the astounding property that for a random integer x ∈ [1, 104], the number
|f(x)| is prime with probability exceeding 1/2. An amusing implication is this:
If you can remember the seven-digit “phone number” 1354363, then you have
a mental mnemonic for generating thousands of primes.

1.18. Consider the sequence of primes 2, 3, 5, 11, 23, 47. Each but the first
is one away from the double of the prior prime. Show that there cannot be
an infinite sequence of primes with this property, regardless of the starting
prime.

1.19. As mentioned in the text, the relation

1
ζ(s)

=
∞∑

n=1

µ(n)
ns

is valid (the sum converges absolutely) for Re(s) > 1. Prove this. But the
limit as s → 1, for which we know the remarkable PNT equivalence

∞∑
n=1

µ(n)
n

= 0,

is not so easy. Two good exercises are these: First, via numerical experiments,
furnish an estimate for the order of magnitude of

∑
n≤x

µ(n)
n

as a function of x; and second, provide an at least heuristic argument as to
why the sum should vanish as x → ∞. For the first option, it is an interesting
computational challenge to work out an efficient implementation of the µ
function itself. As for the second option, you might consider the first few
terms in the form

1 −
∑
p≤x

1
p

+
∑
pq≤x

1
pq

− · · ·

to see why the sum tends to zero for large x. It is of interest that even without
recourse to the PNT, one can prove, as J. Gram did in 1884 [Ribenboim 1996],
that the sum is bounded as x → ∞.

1.20. Show that for all x > 1, we have

∑
p≤x

1
p

> ln lnx − 1,
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where p runs over primes. Conclude that there are infinitely many primes.
One possible route is to establish the following intermediate steps:

(1) Show that
∑
x�

n=1
1
n > lnx.

(2) Show that
∑ 1

n =
∏

p≤x(1 − 1
p )−1, where the sum is over the natural

numbers n not divisible by any prime exceeding x.

1.21. Use the multinomial (generalization of the binomial) theorem to show
that for any positive integer u and any real number x > 0,

1
u!

⎛
⎝∑

p≤x

1
p

⎞
⎠

u

≤
∑

n≤xu

1
n

,

where p runs over primes and n runs over natural numbers. Using this
inequality with u = �ln lnx�, show that for x ≥ 3,

∑
p≤x

1
p

≤ ln lnx + O(ln ln lnx).

1.22. By considering the highest power of a given prime that divides a given
factorial, prove that

N ! =
∏

p≤N

p
∑∞

k=1

N/pk�,

where the product runs over primes p. Then use the inequality

N ! >

(
N

e

)N

(which follows from eN =
∑∞

k=0 Nk/k! > NN/N !), to prove that

∑
p≤N

ln p

p − 1
> lnN − 1.

Conclude that there are infinitely many primes.

1.23. Use the Stirling asymptotic formula

N ! ∼
(

N

e

)N √
2πN

and the method of Exercise 1.22 to show that∑
p≤N

ln p

p
= lnN + O(1).

Deduce that the prime-counting function π(x) satisfies π(x) = O(x/ lnx) and
that if π(x) ∼ cx/ lnx for some number c, then c = 1.
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1.24. Derive from the Chebyshev Theorem 1.1.3 the following bounds on
the n-th prime number pn for n ≥ 2:

Cn lnn < pn < Dn lnn,

where C, D are absolute constants.

1.25. As a teenager, P. Erdős proved the following Chebyshev-type
inequality: for each x > 0, ∏

p≤x

p < 4x.

Find a proof of this result, perhaps by first noting that it suffices to prove it
for x an odd integer. Then you might proceed by induction, using

∏
n+1<p≤2n+1

p ≤
(

2n + 1
n

)
≤ 4n.

1.26. Using Exercise 1.25, prove that π(x) = O(x/ lnx). (Compare with
Exercise 1.23.)

1.27. Prove the following theorem of Chebyshev, known as the Bertrand
postulate: For a positive integer N there is at least one prime in the interval
(N, 2N ]. The following famous ditty places the Bertrand postulate as part of
the lore of number theory:

Chebyshev said it,
we’ll say it again:
There is always a prime
between N and 2N .

Here is an outline of a possible strategy for the proof. Let P be the product
of the primes p with N < p ≤ 2N . We are to show that P > 1. Show that
P divides

(2N
N

)
. Let Q be such that

(2N
N

)
= PQ. Show that if qa is the exact

power of the prime q that divides Q, then a ≤ ln(2N)/ ln q. Show that the
largest prime factor of Q does not exceed 2N/3. Use Exercise 1.25 to show
that

Q < 4
2
3 N4(2N)1/2

4(2N)1/3 · · · 4(2N)1/k

,

where k = �lg(2N)�. Deduce that

P >

(
2N

N

)
4− 2

3 N−(2N)1/2−(2N)1/3 lg(N/2).

Also show that
(2N

N

)
> 4N/N for N ≥ 4 (by induction) and deduce that P > 1

for N ≥ 250. Handle the remaining cases of N by a direct argument.

1.28. We saw in Exercise 1.25 that
∏

p≤x p < 4x for all x > 0. In this exercise
we obtain an explicit lower bound for this product of primes:∏

p≤x

p > 2x for all x ≥ 31.
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While the prime number theorem is equivalent to the assertion that the
product of the primes in [1, x] is e(1+o(1))x, it is still of interest to have
completely explicit inequalities as in this exercise and Exercise 1.25.

For a positive integer N , let

C(N) =
(6N)!N !

(3N)!(2N)!(2N)!
.

(1) Show that C(N) is an integer.
(2) Show that if p is a prime with p > (6N)1/k, then pk does not divide C(N).
(3) Using Exercise 1.25 and the idea in Exercise 1.27, show that∏

p≤6N

p > C(N)/4(6N)1/2+(6N)1/3 lg(1.5N).

(4) Use Stirling’s formula (or mathematical induction) to show that C(N) >
108N/(4

√
N) for all N .

(5) Show that
∏

p≤x p > 2x for x ≥ 212.

(6) Close the gap from 212 to 31 with a direct calculation.

1.29. Use Exercise 1.28 to show that π(x) > x/ lg x, for all x ≥ 5.
Since we have the binary logarithm here rather than the natural logarithm,
this inequality for π(x) might be humorously referred to as the “computer
scientist’s prime number theorem.” Use Exercise 1.25 to show that π(x) <
2x/ lnx for all x > 0. In this regard, it may be helpful to first establish the
identity

π(x) =
θ(x)
lnx

+
∫ x

2

θ(t)
t ln2 t

dt,

where θ(x) :=
∑

p≤x ln p. Note that the two parts of this exercise prove
Theorem 1.1.3.

1.30. Here is an exercise involving a healthy mix of computation and theory.
With σ(n) denoting the sum of the divisors of n, and recalling from the
discussion prior to Theorem 1.3.3 that n is deemed perfect if and only if
σ(n) = 2n, do the following, wherein we adopt a unique prime factorization
n = pt1

1 · · · ptk

k :

(1) Write a condition on the pi, ti alone that is equivalent to the condition
σ(n) = 2n of perfection.

(2) Use the relation from (1) to establish (by hand, with perhaps some minor
machine computations) some lower bound on odd perfect numbers; e.g.,
show that any odd perfect number must exceed 106 (or an even larger
bound).

(3) An “abundant number” is one with σ(n) > 2n, as in the instance
σ(12) = 28. Find (by hand or by small computer search) an odd abundant
number. Does an odd abundant number have to be divisible by 3?



1.5 Exercises 57

(4) For odd n, investigate the possibility of “close calls” to perfection. For
example, show (by machine perhaps) that every odd n with 10 < n < 106

has |σ(n) − 2n| > 5.
(5) Explain why σ(n) is almost always even. In fact, show that the number

of n ≤ x with σ(n) odd is �√x� + �
√

x/2�.
(6) Show that for any fixed integer k > 1, the set of integers n with k|σ(n)

has asymptotic density 1. (Hint: Use the Dirichlet Theorem 1.1.5.) The
case k = 4 is easier than the general case. Use this easier case to show
that the set of odd perfect numbers has asymptotic density 0.

(7) Let s(n) = σ(n) − n for natural numbers n, and let s(0) = 0. Thus, n is
abundant if and only if s(n) > n. Let s(k)(n) be the function s iterated k
times at n. Use the Dirichlet Theorem 1.1.5 to prove the following theorem
of H. Lenstra: For each natural number k there is a number n with

n < s(1)(n) < s(2)(n) < · · · < s(k)(n). (1.47)

It is not known whether there is any number n for which this inequality
chain holds true for every k, nor is it known whether there is any number
n for which the sequence

(
s(k)(n)

)
is unbounded. The smallest n for which

the latter property is in doubt is 276. P. Erdős has shown that for each
fixed k, the set of n for which n < s(n), yet (1.47) fails, has asymptotic
density 0.

1.31. [Vaughan] Prove, with cq(n) being the Ramanujan sum defined in
relation (1.37), that n is a perfect number if and only if

∞∑
q=1

cq(n)
q2 =

12
π2 .

1.32. It is known [Copeland and Erdős 1946] that the number

0.235711131719 . . . ,

where all the primes written in decimal are simply concatenated in order, is
“normal to base 10,” meaning that each finite string of k consecutive digits
appears in this expansion with “fair” asymptotic frequency 10−k. Argue a
partial result, that each string of k digits appears infinitely often.

In fact, given two finite strings of decimal digits, show there are infinitely
many primes that in base 10 begin with the first string and—regardless of
what digits may appear in between—end with the second string, provided the
last digit of the second string is 1, 3, 7, or 9.

The relative density of primes having a given low-order decimal digit 1, 3, 7,
or 9 is 1/4, as evident in relation (1.5). Does the set of all primes having a
given high-order decimal digit have a similarly well-defined relative density?

1.33. Here we use the notion of normality of a number to a given base as
enunciated in Exercise 1.32, and the notion of equidistribution enunciated in
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Exercise 1.35. Now think of the ordered, natural logarithms of the Fermat
numbers as a pseudorandom sequence of real numbers. Prove this theorem: If
said sequence is equidistributed modulo 1, then the number ln 2 is normal to
base 2. Is the converse of this theorem true?

Note that it remains unknown to this day whether ln 2 is normal to any
integer base. Unfortunately, the same can be said for any of the fundamental
constants of history, such as π, e, and so on. That is, except for instances
of artificial digit construction as in Exercise 1.32, normality proofs remain
elusive. A standard reference for rigorous descriptions of normality and
equidistribution is [Kuipers and Niederreiter 1974]. A discussion of normality
properties for specific fundamental constants such as ln 2 is [Bailey and
Crandall 2001].

1.34. Using the PNT, or just Chebyshev’s Theorem 1.1.3, prove that the
set of rational numbers p/q with p, q prime is dense in the positive reals.

1.35. It is a theorem of Vinogradov that for any irrational number α,
the sequence (αpn), where the pn are the primes in natural order, is
equidistributed modulo 1. Equidistribution here means that if #(a, b, N)
denotes the number of times any interval [a, b) ⊂ [0, 1) is struck after N
primes are used, then #(a, b, N)/N ∼ (b − a) as N → ∞. On the basis of this
Vinogradov theorem, prove the following: For irrational α > 1, and the set

S(α) = {�kα� : k = 1, 2, 3, . . .},

the prime count defined by

πα(x) = #{p ≤ x : p ∈ P ∩ S(α)}

behaves as

πα(x) ∼ 1
α

x

lnx
.

What is the behavior of πα for α rational?
As an extension to this exercise, the Vinogradov equidistribution theorem

itself can be established via the exponential sum ideas of Section 1.4.4. One
uses the celebrated Weyl theorem on spectral properties of equidistributed
sequences [Kuipers and Niederreiter 1974, Theorem 2.1] to bring the problem
down to showing that for irrational α and any integer h = 0,

EN (hα) =
∑
p≤N

e2πihαp

is o(N). This, in turn, can be done by finding suitable rational approximants
to α and providing bounds on the exponential sum, using essentially our book
formula (1.39) for well-approximable values of hα, while for other α using
(1.41). The treatment in [Ellison and Ellison 1985] is pleasantly accessible on
this matter.
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As an extension, use exponential sums to study the count

πc(x) = # {n ∈ [1, x] : �nc� ∈ P} .

Heuristically, one might expect the asymptotic behavior

πc(x) ∼ 1
c

x

lnx
.

Show first, on the basis of the PNT, that for c ≤ 1 this asymptotic relation
indeed holds. Use exponential sum techniques to establish this asymptotic
behavior for some c > 1; for example, there is the Piatetski-Shapiro theorem
[Graham and Kolesnik 1991] that the asymptotic relation holds for any c with
1 < c < 12/11.

1.36. The study of primes can lead to considerations of truly astoundingly
large numbers, such as the Skewes numbers

10101034

, eeee7.705

,

the second of these being a proven upper bound for the least x with π(x) >
li0(x), where li0(x) is defined as

∫ x

0 dt/ ln t. (The first Skewes number is
an earlier, celebrated bound that Skewes established conditionally on the
Riemann hypothesis.) For x > 1 one takes the “principal value” for the
singularity of the integrand at t = 1, namely,

li0(x) = lim
ε→0

(∫ 1−ε

0

1
ln t

dt +
∫ x

1+ε

1
ln t

dt

)
.

The function li0(x) is li (x) + c, where c ≈ 1.0451637801. Before Skewes came
up with his bounds, J. Littlewood had shown that π(x) − li0(x) (as well as
π(x) − li (x)) not only changes sign, but does so infinitely often.

An amusing first foray into the “Skewes world” is to express the second
Skewes number above in decimal-exponential notation (in other words, replace
the e’s with 10’s appropriately, as has been done already for the first Skewes
number). Incidentally, a newer reference on the problem is [Kaczorowski
1984], while a modern estimate for the least x with π(x) > li0(x) is
x < 1.4 · 10316 [Bays and Hudson 2000a, 2000b]. In fact, these latter authors
have recently demonstrated—using at one juncture 106 numerical zeros of
the zeta function supplied by A. Odlyzko—that π(x) > li0(x) for some
x ∈ (1.398201, 1.398244) · 10316.

One interesting speculative exercise is to estimate roughly how many more
years it will take researchers actually to find and prove an explicit case of
π(x) > li0(x). It is intriguing to guess how far calculations of π(x) itself can
be pushed in, say, 30 years. We discuss prime-counting algorithms in Section
3.7, although the state of the art is today π

(
1021

)
or somewhat higher than

this (with new results emerging often).
Another speculative direction: Try to imagine numerical or even physical

scenarios in which such huge numbers naturally arise. One reference for
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this recreation is [Crandall 1997a]. In that reference, what might be called
preposterous physical scenarios—such as the annual probability of finding
oneself accidentally quantum-tunneled bodily (and alive, all parts intact!) to
planet Mars—are still not much smaller than A−A, where A is the Avogadro
number (a mole, or about 6·1023). It is difficult to describe a statistical scenario
relevant to the primes that begs of yet higher exponentiation as manifest in
the Skewes number.

Incidentally, for various technical reasons, the logarithmic-integral func-
tion li0, on many modern numerical/symbolic systems, is best calculated in
terms of Ei(lnx), where we refer to the standard exponential-integral function

Ei(z) =
∫ z

−∞
t−1et dt,

with principal value assumed for the singularity at t = 0. In addition, care
must be taken to observe that some authors use the notation li for what we
are calling li0, rather than the integral from 2 in our defining equation (1.3)
for li . Calling our book’s function li , and the latter li0, we can summarize
this computational advice as follows:

li (x) = li0(x) − li0(2) = Ei(lnx) − Ei(ln 2) ≈ Ei(lnx) − 1.0451637801.

1.37. In [Schoenfeld 1976] it is shown that on the Riemann hypothesis we
have the strict bound (for x ≥ 2657)

|π(x) − li0(x)| <
1
8π

√
x lnx,

where li0(x) is defined in Exercise 1.36. Show via computations that none of
the data in Table 1.1 violates the Riemann hypothesis!

By direct computation and the fact that li (x) < li0(x) < li (x) + 1.05,
prove the assertion in the text that assuming the Riemann hypothesis,

|π(x) − li (x)| <
√

x lnx for x ≥ 2.01. (1.48)

It follows from the discussion in connection to (1.25) that (1.48) is equivalent
to the Riemann hypothesis. Note too that (1.48) is an elementary assertion,
which to understand one needs to know only what a prime is, the natural
logarithm, and integrals. Thus, (1.48) may be considered as a formulation of
the Riemann hypothesis that could be presented in, say, a calculus course.

1.38. With ψ(x) defined as in (1.22), it was shown in [Schoenfeld 1976] that
the Riemann hypothesis implies that

|ψ(x) − x| <
1
8π

√
x ln2 x for x ≥ 73.2.

By direct computation show that on assumption of the Riemann hypothesis,

|ψ(x) − x| <
√

x ln2 x for x ≥ 3.
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Then using Exercise 1.37 give a proof that the Riemann hypothesis is
equivalent to the elementary assertion

|L(n) − n| <
√

n ln2 n for every integer n ≥ 3, (1.49)

where L(n) is the natural logarithm of the least common multiple of 1, 2, . . . , n.
If (1.48) is to be the “calculus-course” version of the Riemann hypothesis,
perhaps (1.49) might be referred to as the “precalculus-course” version, in
that all that is used in the formulation here is the concept of least common
multiple and the natural logarithm.

1.39. Using the conjectured form of the PNT in (1.25), prove that
there is a prime between every pair of sufficiently large cubes. Use (1.48)
and any relevant computation to establish that (again, on the Riemann
hypothesis) there is a prime between every two positive cubes. It was shown
unconditionally by Ingham in 1937 that there is a prime between every pair
of sufficiently large cubes, and it was shown, again unconditionally, by Cheng
in 1999, that this is true for cubes greater than ee15

.

1.40. Show that
∑

p≤n−2 1/ ln(n − p) ∼ n/ ln2 n, where the sum is over
primes.

1.41. Using the known theorem that there is a positive number c such that
the number of even numbers up to x that cannot be represented as a sum of
two primes is O(x1−c), show that there are infinitely many triples of primes in
arithmetic progression. (For a different approach to the problem, see Exercise
1.42.)

1.42. It is known via the theory of exponential sums that

∑
n≤x

(R2(2n) − R2(2n))2 = O

(
x3

ln5 x

)
, (1.50)

where R2(2n) is, as in the text, the number of representations p+q = 2n with
p, q prime, and where R2(2n) is given by (1.10); see [Prachar 1978]. Further,
we know from the Brun sieve method that

R2(2n) = O

(
n ln lnn

ln2 n

)
.

Show, too, that R2(2n) enjoys the same big-O relation. Use these estimates to
prove that the set of numbers 2p with p prime and with 2p not representable
as a sum of two distinct primes has relative asymptotic density zero in the set
of primes; that is, the number of these exceptional primes p ≤ x is o(π(x)).
In addition, let

A3(x) = #
{
(p, q, r) ∈ P3 : 0 < q − p = r − q; q ≤ x

}
,
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so that A3(x) is the number of 3-term arithmetic progressions p < q < r of
primes with q ≤ x. Prove that for x ≥ 2,

A3(x) =
1
2

∑
p≤x,p∈P

(R2(2p) − 1) ∼ C2
x2

ln3 x
,

where C2 is the twin-prime constant defined in (1.6).
In a computational vein, develop an efficient algorithm to compute A3(x)

exactly for given values of x, and verify that A3(3000) = 15482 (i.e., there are
15482 triples of distinct primes in arithmetic progression with the middle
prime not exceeding 3000), that A3(104) = 109700, and that A3(106) =
297925965. (The last value here was computed by R. Thompson.) There are
at least two ways to proceed with such calculations: Use some variant of an
Eratosthenes sieve, or employ Fourier transform methods (as intimated in
Exercise 1.67). The above asymptotic formula for A3 is about 16% too low at
106. If x2/ ln3 x is replaced with∫ x

2

∫ 2t−2

2

1
(ln t)(ln s)(ln(2t − s))

ds dt,

the changed formula is within 0.4% of the exact count at 106. Explain why
the double integral should give a better estimation.

1.43. In [Saouter 1998], calculations are described to show how the validity
of the binary Goldbach conjecture for even numbers up through 4 ·1011 can be
used to verify the validity of the ternary Goldbach conjecture for odd numbers
greater than 7 and less then 1020. We now know that the binary Goldbach
conjecture is true for even numbers up to 4 · 1014. Describe a calculation
that could be followed to extend Saouter’s bound for the ternary Goldbach
conjecture to, say, 1023.

Incidentally, research on the Goldbach conjecture can conceivably bring
special rewards. In connection with the novel Uncle Petros and Goldbach’s
Conjecture by A. Doxiadis, the publisher announced in 2000 a $1,000,000
prize for a proof of the (binary) Goldbach conjecture, but the prize expired
unclaimed in 2002.

1.44. Here we prove (or at least finish the proof for) the result of
Shnirel’man—as discussed in Section 1.2.3—that the set S = {p + q : p, q ∈
P} has “positive lower density” (the terminology to be clarified below). As in
the text, denote by R2(n) the number of representations n = p + q with p, q
prime. Then:
(1) Argue from the Chebyshev Theorem 1.1.3 that

∑
n≤x

R2(n) > A1
x2

ln2 x
,

for some positive constant A1 and all sufficiently large values of x.
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(2) Assume outright (here is where we circumvent a great deal of hard work!)
the fact that ∑

n≤x

R2(n)2 < A2
x3

ln4 x
,

for x > 1, where A2 is a constant. This result can be derived via such
sophisticated techniques as the Selberg and Brun sieves [Nathanson 1996].

(3) Use (1), (2), and the Cauchy–Schwarz inequality(
x∑

n=1

anbn

)2

≤
(

x∑
n=1

a2
n

)(
x∑

n=1

b2
n

)

(valid for arbitrary real numbers an, bn) to prove that for some positive
constant A3 we have

#{n ≤ x : R2(n) > 0} > A3x,

for all sufficiently large values of x, this kind of estimate being what is
meant by “positive lower density” for the set S. (Hint: Define an = R2(n)
and (bn) to be an appropriate binary sequence.)

As discussed in the text, Shnirel’man proved that this lower bound on density
implies his celebrated result that for some fixed s, every integer starting with
2 is the sum of at most s primes. It is intriguing that an upper bound on
Goldbach representations—as in task (2)—is the key to this whole line of
reasoning! That is because, of course, such an upper bound reveals that
representation counts are kept “under control,” meaning “spread around”
such that a sufficient fraction of even n have representations. (See Exercise
9.80 for further applications of this basic bounding technique.)

1.45. Assuming the prime k-tuples Conjecture, 1.2.1 show that for each k
there is an arithmetic progression of k consecutive primes.

1.46. Note that each of the Mersenne primes 22 − 1, 23 − 1, 25 − 1 is a
member of a pair of twin primes. Do any other of the known Mersenne primes
from Table 1.2 enjoy this property?

1.47. Let q be a Sophie Germain prime, meaning that s = 2q + 1 is likewise
prime. Prove that if also q ≡ 3 (mod 4) and q > 3, then the Mersenne number
Mq = 2q −1 is composite, in fact divisible by s. A large Sophie Germain prime
is Kerchner and Gallot’s

q = 18458709 · 232611 − 1,

with 2q + 1 also prime, so that the resulting Mersenne number Mq is a truly
gargantuan composite of nearly 10104

decimal digits.

1.48. Prove the following relation between Mersenne numbers:

gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1.
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Conclude that for distinct primes q, r the Mersenne numbers Mq, Mr are
coprime.

1.49. From W. Keller’s lower bound on a factor p of F24, namely,

p > 6 · 1019,

estimate the a priori probability from relation (1.13) that F24 is prime (we
now know it is not prime, but let us work in ignorance of that computational
result here). Using what can be said about prime factors of arbitrary Fermat
numbers, estimate the probability that there are no more Fermat primes
beyond F4 (that is, use the special form of possible factors and also the known
character of some of the low-lying Fermat numbers).

1.50. Prove Theorem 1.2.1, assuming the Brun bound (1.8).

1.51. For the odd number n = 3 · 5 · · · 101 (consecutive odd-prime product)
what is the approximate number of representations of n as a sum of three
primes, on the basis of Vinogradov’s estimate for R3(n)? (See Exercise 1.68.)

1.52. Show by direct computation that 108 is not the sum of two base-
2 pseudoprimes (see Section 3.4 for definitions). You might show in passing,
however, that if p denotes a prime and P2 denotes an odd base-2 pseudoprime,
then

108 = p + P2 or P2 + p

in exactly 120 ways (this is a good check on any such programming effort).
By the way, one fine representation is

108 = 99999439 + 561,

where 561 is well known as the smallest Carmichael number (see Section
3.4.2). Is 108 the sum of two pseudoprimes to some base other than 2? What
is the statistical expectation of how many “pseudoreps” of various kinds p+Pb

should exist for a given n?

1.53. Prove: If the binary expansion of a prime p has all of its 1’s lying in
an arithmetic progression of positions, then p cannot be a Wieferich prime.
Prove the corollary that neither a Mersenne prime nor a Fermat prime can be
a Wieferich prime.

1.54. Show that if u−1 denotes a multiplicative inverse modulo p, then for
each odd prime p, ∑

p/2<u<p

u−1 ≡ 2p − 2
p

(mod p).

1.55. Use the Wilson–Lagrange Theorem 1.3.6 to prove that for any prime
p ≡ 1 (mod 4) the congruence x2 + 1 ≡ 0 (mod p) is solvable.
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1.56. Prove the following theorem relevant to Wilson primes: if g is a
primitive root of the prime p, then the Wilson quotient is given by

wp ≡
p−1∑
j=1

⌊
gj

p

⌋
gp−1−j (mod p).

Then, using this result, give an algorithm that determines whether p with
primitive root g = 2 is a Wilson prime, but using no multiplications; merely
addition, subtraction, and comparison.

1.57. There is a way to connect the notion of twin-prime pairs with the
Wilson–Lagrange theorem as follows. Let p be an integer greater than 1. Prove
the theorem of Clement that p, p + 2 is a twin-prime pair if and only if

4(p − 1)! ≡ −4 − p (mod p(p + 2)).

1.58. How does one resolve the following “Mertens paradox”? Say x is a
large integer and consider the “probability” that x is prime. As we know,
primality can be determined by testing x for prime divisors not exceeding√

x. But from Theorem 1.4.2, it would seem that when all the primes less
than

√
x are probabilistically sieved out, we end up with probability

∏
p≤√

x

(
1 − 1

p

)
∼ 2e−γ

lnx
.

Arrive again at this same estimate by simply removing the floor functions in
(1.46). However, the PNT says that the correct asymptotic probability that
x is prime is 1/ lnx. Note that 2e−γ = 1.1229189 . . ., so what is a resolution?

It has been said that the sieve of Eratosthenes is “more efficient than
random,” and that is one way to envision the “paradox.” Actually, there has
been some interesting work on ways to think of a resolution; for example, in
[Furry 1942] there is an analysis of the action of the sieve of Eratosthenes on a
prescribed interval [x, x + d], with some surprises uncovered in regard to how
many composites are struck out of said interval; see [Bach and Shallit 1996,
p. 365] for a historical summary.

1.59. By assuming that relation (1.24) is valid whenever the integral
converges, prove that M(x) = O(x1/2+ε) implies the Riemann hypothesis.

1.60. There is a compact way to quantify the relation between the PNT and
the behavior of the Riemann zeta function. Using the relation

−ζ ′(s)
ζ(s)

= s

∫ ∞

1
ψ(x)x−s−1 dx,

show that the assumption

ψ(x) = x + O(xα)
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implies that ζ(s) has no zeros in the half-plane Re(s) > α. This shows the
connection between the essential error in the PNT estimate and the zeros of ζ.

For the other (harder) direction, assume that ζ has no zeros in the half-
plane Re(s) > α. Looking at relation (1.23), prove that

∑
Im(ρ) ≤ T

xρ

|ρ| = O(xα ln2 T ),

which proof is nontrivial and interesting in its own right [Davenport 1980].
Finally, conclude that

ψ(x) = x + O
(
xα+ε

)
for any ε > 0. These arguments reveal why the Riemann conjecture

π(x) = li (x) + O(x1/2 lnx)

is sometimes thought of as “the PNT form of the Riemann hypothesis.”

1.61. Here we show how to evaluate the Riemann zeta function on the
critical line, the exercise being to implement the formula and test against
some high-precision values given below. We describe here, as compactly as we
can, the celebrated Riemann–Siegel formula. This formula looms unwieldy on
the face of it, but when one realizes the formula’s power, the complications
seem a small price to pay! In fact, the formula is precisely what has been used
to verify that the first 1.5 billion zeros (of positive imaginary part) lie exactly
on the critical line (and parallel variants have been used to push well beyond
this; see the text and Exercise 1.62).

A first step is to define the Hardy function

Z(t) = eiϑ(t)ζ(1/2 + it),

where the assignment

ϑ(t) = Im
(

ln Γ
(

1
4

+
it

2

))
− 1

2
t lnπ

renders Z a real-valued function on the critical line (i.e., for t real). Moreover,
the sign changes in Z correspond to the zeros of ζ. Thus if Z(a), Z(b) have
opposite sign for reals a < b, there must be at least one zero in the interval
(a, b). It is also convenient that

|Z(t)| = |ζ(1/2 + it)|.

Note that one can either work entirely with the real Z, as in numerical studies
of the Riemann hypothesis, or backtrack with appropriate evaluations of Γ and
so on to get ζ itself on the critical line.

That having been said, the Riemann–Siegel prescription runs like so [Brent
1979]: Assign τ = t/(2π), m = �√τ�, z = 2(

√
τ − m) − 1. Then the
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computationally efficient formula is

Z(t) = 2
m∑

n=1

n−1/2 cos(t lnn − ϑ(t))

+ (−1)m+1τ−1/4
M∑

j=0

(−1)jτ−j/2Φj(z) + RM (t).

Here, M is a cutoff integer of choice, the Φj are entire functions defined for
j ≥ 0 in terms of a function Φ0 and its derivatives, and RM (t) is the error. A
practical instance is the choice M = 2, for which we need

Φ0(z) =
cos( 1

2πz2 + 3
8π)

cos(πz)
,

Φ1(z) =
1

12π2 Φ(3)
0 (z),

Φ2(z) =
1

16π2 Φ(2)
0 (z) +

1
288π4 Φ(6)

0 (z).

In spite of the complexity here, it is to be stressed that the formula is
immediately applicable in actual computation. In fact, the error R2 can be
rigorously bounded:

|R2(t)| < 0.011t−7/4 for all t > 200.

Higher-order (M > 2) bounds, primarily found in [Gabcke 1979], are known,
but just R2 has served computationalists well for two decades.

Implement the Riemann–Siegel formula for M = 2, and test against some
known values such as

ζ(1/2 + 300i) ≈ 0.4774556718784825545360619
+ 0.6079021332795530726590749 i,

Z(1/2 + 300i) ≈ 0.7729870129923042272624525,

which are accurate to the implied precision. Using your implementation, locate
the nearest zero to the point 1/2+300i, which zero should have t ≈ 299.84035.
You should also be able to find, still at the M = 2 approximation level and
with very little machine time, the value

ζ(1/2 + 106i) ≈ 0.0760890697382 + 2.805102101019 i,

again correct to the implied precision.
When one is armed with a working Riemann–Siegel implementation, a

beautiful world of computation in support of analytic number theory opens.
For details on how actually to apply ζ evaluations away from the real axis,
see [Brent 1979], [van de Lune et al. 1986], [Odlyzko 1994], [Borwein et al.
2000]. We should point out that in spite of the power and importance of
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the Riemann–Siegel formula, there are yet alternative means for efficient
evaluation when imaginary parts are large. In fact it is possible to avoid
the inherently asymptotic character of the Riemann–Siegel series, in favor of
manifestly convergent expansions based on incomplete gamma function values,
or on saddle points of certain integrals. Alternative schemes are discussed in
[Galway 2000], [Borwein et al. 2000], and [Crandall 1999c].

1.62. For the Riemann–Siegel formula of Exercise 1.61, and for similar
prescriptions when s = σ + it is not on the half-line, it is evident that sums
of the form

Sm(s) =
m∑

n=1

1
ns

,

where m is an appropriate cutoff (typically, m ∼
√

t), could be used in actual
computations. Investigate the notion of calculating Sm(s) over an arithmetic
progression of s values, using the nonuniform FFT algorithm we present as
Algorithm 9.5.8. That is, for values

s = σ + ikτ,

for say k = 0, . . . , K − 1, we have

Sm(σ + ikτ) =
m∑

n=1

1
nσ

e−ikτ ln n,

and sure enough, this suggests a strategy of (m/K) nonuniform FFTs each of
length K. Happily, the sum Sm can thus be calculated, for all k ∈ [0, K − 1],
in a total of

O(m lnK)

operations, where desired accuracy enters (only logarithmically) into the
implied big-O constant. This is a remarkable gain over the naive approach
of doing a length-m sum K times, which would require O(mK).

Such speedups can be used not only for RH verification, but analytic
methods for prime-counting. Incidentally, this nonuniform FFT approach
is essentially equivalent in complexity to the parallel method in [Odlyzko
and Schönhage 1988]; however, for computationalists familiar with FFT, or
possessed of efficient FFT software (which the nonuniform FFT could call
internally), the method of the present exercise should be attractive.

1.63. Show that ψ(x), defined in (1.22), is the logarithm of the least
common multiple of all the positive integers not exceeding x. Show
that the prime number theorem is equivalent to the assertion ψ(x) ∼
x. Incidentally, in [Deléglise and Rivat 1998], ψ

(
1015

)
is found to be

999999997476930.507683 . . ., an attractive numerical instance of the relation
ψ(x) ∼ x. We see, in fact, that the error |ψ(x) − x| is very roughly

√
x for

x = 1015, such being the sort of error one expects on the basis of the Riemann
hypothesis.
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1.64. Perform computations that connect the distribution of primes with the
Riemann critical zeros by way of the ψ function defined in (1.22). Starting
with the classical exact relation (1.23), obtain a numerical table of the first 2K
critical zeros (K of them having positive imaginary part), and evaluate the
resulting numerical approximation to ψ(x) for, say, noninteger x ∈ (2, 1000).
As a check on your computations, you should find, for K = 200 zeros and
denoting by ψ(K) the approximation obtained via said 2K zeros, the amazing
fact that ∣∣∣ψ(x) − ψ(200)(x)

∣∣∣ < 5

throughout the possible x values. This means—heuristically speaking—
that the first 200 critical zeros and their conjugates determine the prime
occurrences in (2, 1000) “up to a handful,” if you will. Furthermore, a plot of
the error vs. x is nicely noisy around zero, so the approximation is quite good
in some sense of average. Try to answer this question: For a given range on x,
about how many critical zeros are required to effect an approximation as good
as |ψ − ψ(K)| < 1 across the entire range? And here is another computational
question: How numerically good is the approximation (based on the Riemann
hypothesis)

ψ(x) = x + 2
√

x
∑

t

sin(t lnx)
t

+ O
(√

x
)
,

with t running over the imaginary parts of the critical zeros [Ellison and
Ellison 1985]? For an analogous analytic approach to actual prime-counting,
see Section 3.7 and especially Exercise 3.50.

1.65. This, like Exercise 1.64, also requires a database of critical zeros of the
Riemann zeta function. There exist some useful tests of any computational
scheme attendant on the critical line, and here is one such test. It is a
consequence of the Riemann hypothesis that we would have an exact relation
(see [Bach and Shallit 1996, p. 214])

∑
ρ

1
|ρ|2 = 2 + γ − ln(4π),

where ρ runs over all the zeros on the critical line. Verify this relation
numerically, to as much accuracy as possible, by:
(1) Performing the sum for all zeros ρ = 1/2+ it for |t| ≤ T , some T of choice.
(2) Performing such a sum for |t| ≤ T but appending an estimate of

the remaining, infinite, tail of the sum, using known formulae for the
approximate distribution of zeros [Edwards 1974], [Titchmarsh 1986], [Ivić
1985].
Note in this connection Exercises 1.61 (for actual calculation of ζ values)

and 8.34 (for more computations relating to the Riemann hypothesis).

1.66. There are attractive analyses possible for some of the simpler
exponential sums. Often enough, estimates—particularly upper bounds—on
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such sums can be applied in interesting ways. Define, for odd prime p and
integers a, b, c, the sum

S(a, b, c) =
p−1∑
x=0

e2πi(ax2+bx+c)/p.

Use the Weyl relation (1.34) to prove

|S(a, b, c)| = 0, p, or
√

p,

and give conditions on a, b, c that determine precisely which of these three
values for |S| is attained. And here is an extension: Obtain results on |S|
when p is replaced by a composite integer N . With some care, you can handle
even the cases when a, N are not coprime. Note that we are describing here a
certain approach to the estimation of Gauss sums (see Exercises 2.27, 2.28).

Now use the same basic approach on the following “cubic-exponential”
sum (here for any prime p and any integer a):

T (a) =
p−1∑
x=0

e2πiax3/p.

It is trivial that 0 ≤ |T (a)| ≤ p. Describe choices of p, a such that equality
(to 0 or p) occurs. Then prove: Whenever a ≡ 0 (mod p) we always have an
upper bound

|T (a)| <
√

p3/2 + p < 2p3/4.

Note that one can do better, by going somewhat deeper than relation (1.34),
to achieve a best-possible estimate O

(
p1/2

)
[Korobov 1992, Theorem 5],

[Vaughan 1997, Lemma 4.3]. Yet, the 3/4 power already leads to some
interesting results. In fact, just showing that T (a) = o(p) establishes that
as p → ∞, the cubes mod p approach equidistribution (see Exercise 1.35).
Note, too, that providing upper bounds on exponential sums can allow certain
other sums to be given lower bounds. See Exercises 9.41 and 9.80 for additional
variations on these themes.

1.67. The relation (1.36) is just one of many possible integral relations for
interesting prime-related representations. With our nomenclature

EN (t) =
∑
p≤N

e2πitp

adopted, establish each of the following equivalences:

(1) The infinitude of twin primes is equivalent to the divergence as N → ∞
of ∫ 1

0
e4πitEN (t)EN (−t) dt.
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(2) The infinitude of prime triples in arithmetic progression (see Exercises
1.41, 1.42) is equivalent to the divergence as N → ∞ of∫ 1

0
E2

N (t)EN (−2t) dt.

(3) The (binary) Goldbach conjecture is equivalent to∫ 1

0
e−2πitNE2

N (t) dt = 0

for even N > 2, and the ternary Goldbach conjecture is equivalent to∫ 1

0
e−2πitNE3

N (t) dt = 0

for odd N > 5.
(4) The infinitude of Sophie Germain primes (i.e., primes p such that 2p + 1

is likewise prime) is equivalent to the divergence as N → ∞ of∫ 1

0
e2πitEN (2t)EN (−t) dt.

1.68. We mentioned in Section 1.4.4 that there is a connection between
exponential sums and the singular series Θ arising in the Vinogradov
resolution (1.12) for the ternary Goldbach problem. Prove that the Euler
product form for Θ(n) converges (what about the case n even?), and is equal
to an absolutely convergent sum, namely,

Θ(n) =
∞∑

q=1

µ(q)
ϕ3(q)

cq(n),

where the Ramanujan sum cq is defined in (1.37). It is helpful to observe
that µ, ϕ, c are all multiplicative, the latter function in the sense that if
gcd(a, b) = 1, then ca(n)cb(n) = cab(n). Show also that for sufficiently large
B in the assignment Q = lnB n, the sum (1.40) being only to Q (and not to
∞) causes negligible error in the overall ternary Goldbach estimate.

Next, derive the representation count, call it Rs(n), for n the sum of s
primes, in the following way. It is known that for s > 2, n ≡ s (mod 2),

Rs(n) =
Θs(n)
(s − 1)!

ns−1

lns n

(
1 + O

(
ln lnn

lnn

))
,

where now the general singular series is given from exponential-sum theory as

Θs(n) =
∞∑

q=1

µs(q)
ϕs(q)

cq(n).
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Cast this singular series into an Euler product form, which should agree with
our text formula for s = 3. Verify that there are positive constants C1, C2
such that for all s > 2 and n ≡ s (mod 2),

C1 < Θs(n) < C2.

Do you obtain the (conjectured, unproven) singular series in (1.9) for the case
s = 2? Of course, it is not that part but the error term in the theory that
has for centuries been problematic. Analysis of such error terms has been a
topic of fascination for much of the 20th century, with new bounds being
established, it seems, every few years. For example, the paper [Languasco
2000] exemplifies a historical chain of results involving sharp error bounds for
any s ≥ 3, obtained conditionally on the generalized Riemann hypothesis.

As a computational option, give a good numerical value for the singular
series in (1.12), say for n = 108 − 1, and compare the actual representation
count R3(n) with the Vinogradov estimate (1.12). Might the expression
n2/ ln3 n be replaced by an integral so as to get a closer agreement? Compare
with the text discussion of the exact value of R2(108).

1.69. Define a set

S = {n�ln n� : n = 1, 2, 3 . . .},

and prove that every sufficiently large integer is in S+S; that is, can be written
as a sum of two numbers from S. (A proof can be effected either through
combinatorics and the Chinese remainder theorem—see Section 2.1.3—or via
convolution methods discussed elsewhere in this book.) Is every integer greater
than 221 in S + S? For the set

T = {�n lnn� : n = 1, 2, 3, . . .},

is every integer greater than 25 in T + T?
Since the n-th prime is asymptotically n lnn, these results indicate that

the Goldbach conjecture has nothing to fear from just the sparseness of primes.
Interesting questions abound in this area. For example, can you find a set of
integers U such that the n-th member of U is asymptotically n lnn, yet the
set of numbers in U + U has asymptotic density 0?

1.70. This exercise is a mix of theoretical and computational tasks
pertaining to exponential sums. All of the tasks concern the sum we have
denoted by EN , for which we discussed the estimate

EN (a/q) =
∑
p≤N

e2πipa/q ≈ µ(q/g)
ϕ(q/g)

π(N),

where g = gcd(a, q). We remind ourselves that the approximation here is
useful mainly when g = 1 and q is small. Let us start with some theoretical
tasks.



1.5 Exercises 73

(1) Take q = 2 and explain why the above estimate on EN is obvious for
a = 0, 1.

(2) Let q = 3, and for a = 1, 2 explain using a vector diagram in the complex
plane how the above estimate works.

(3) Let q = 4, and note that for some a values the right-hand side of the above
estimate is actually zero. In such cases, use an error estimate (such as the
conditional result (1.32)) to give sharp, nonzero estimates on EN (a/4) for
a = 1, 3.

These theoretical examples reveal the basic behavior of the exponential sum
for small q.

For a computational foray, test numerically the behavior of EN by way of
the following steps:
(1) Choose N = 105, q = 31, and by direct summation over primes p ≤ N ,

create a table of E values for a ∈ [0, q − 1]. (Thus there will be q complex
elements in the table.)

(2) Create a second table of values of π(N)µ(q/g)
ϕ(q/g) , also for each a ∈ [0, q − 1].

(3) Compare, say graphically, the two tables. Though the former table is
“noisy” compared to the latter, there should be fairly good average
agreement. Is the discrepancy between the two tables consistent with
theory?

(4) Explain why the latter table is so smooth (except for a glitch at the
(a = 0)-th element). Finally, explain how the former table can be
constructed via fast Fourier transform (FFT) on a binary signal (i.e.,
a certain signal consisting of only 0’s and 1’s).

Another interesting task is to perform direct numerical integration to verify
(for small cases of N , say) some of the conjectural equivalences of Exercise
1.67.

1.71. Verify the following: There exist precisely 35084 numbers less than
10100 that are 4-smooth. Prove that for a certain constant c, the number of
4-smooth numbers not exceeding x is

ψ(x, 4) ∼ c ln2 x,

giving the explicit c and also as sharp an error bound on this estimate as you
can. Generalize by showing that for each y ≥ 2 there is a positive number cy

such that

ψ(x, y) ∼ cy lnπ(y) x, where y is fixed and x → ∞.

1.72. Carry out some numerical experiments to verify the claim after
equation (1.45) that the implicit lower bound is a “good” one.

1.73. Compute by empirical means the approximate probability that a
random integer having 100 decimal digits has all of its prime factors less than
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1010. The method in [Bernstein 1998] might be used in such an endeavor. Note
that the probability predicted by Theorem 1.4.9 is ρ(10) ≈ 2.77 × 10−11.

1.74. What is the approximate probability that a random integer (but of
size x, say) has all but one of its prime factors not exceeding B, with a
single outlying prime in the interval (B, C]? This problem has importance
for factoring methods that employ a “second stage,” which, after a first stage
exhausts (in a certain algorithm-dependent sense) the first bound B, attempts
to locate the outlying prime in (B, C]. It is typical in implementations of
various factoring methods that C is substantially larger than B, for usually
the operations of the second stage are much cheaper. See Exercise 3.5 for
related concepts.

1.75. Here is a question that leads to interesting computational issues.
Consider the number

c = 1/3 +
1

1/5 + 1
1/7+···

,

where the so-called elements of this continued fraction are the reciprocals of
all the odd primes in natural order. It is not hard to show that c is well-
defined. (In fact, a simple continued fraction—a construct having all 1’s in
the numerators—converges if the sum of the elements, in the present case
1/3 + 1/5 + · · ·, diverges.) First, give an approximate numerical value for
the constant c. Second, provide numerical (but rigorous) proof that c is not
equal to 1. Third, investigate this peculiar idea: that using all primes, that is,
starting the fraction as 1/2+ 1

1/3+··· , results in nearly the same fraction value!
Prove that if the two fractions in question were, in fact, equal, then we would
have c =

(
1 +

√
17

)
/4. By invoking more refined numerical experiments, try

to settle the issue of whether c is actually this exact algebraic value.

1.76. It is a corollary of an attractive theorem in [Bredihin 1963] that if n
is a power of two, the number of solutions

N(n) = #{(x, y, p) : n = p + xy; p ∈ P; x, y ∈ Z+}

enjoys the following asymptotic relation:

N(n)
n

∼ 105
2π4 ζ(3) ≈ 0.648 . . . .

From a computational perspective, consider the following tasks. First, attempt
to verify this asymptotic relation by direct counting of solutions. Second, drop
the restriction that n be a power of two, and try to verify experimentally,
theoretically, or both that the constant 105 should in general be replaced by

315
∏

p∈P, p|n

(p − 1)2

p2 − p + 1
.
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1.6 Research problems

1.77. In regard to the Mills theorem (the first part of Theorem 1.2.2), try
to find an explicit number θ and a large number n such that

⌊
θ3j

⌋
is prime

for j = 1, 2, . . . , n. For example if one takes the specific rational θ = 165/92,
show that each of ⌊

θ31
⌋

,
⌊
θ32

⌋
,
⌊
θ33

⌋
,
⌊
θ34

⌋

is prime, yet the number
⌊
θ35

⌋
is, alas, composite. Can you find a simple

rational θ that has all cases up through n = 5 prime, or even further? Say a
(finite or infinite) sequence of primes q1 < q2 < . . . is a “Mills sequence” if
there is some number θ such that qj =

⌊
θ3j

⌋
for j = 1, 2, . . . . Is it true that

any finite Mills sequence can be extended to an infinite Mills sequence (not
necessarily with the same θ, but keeping the same initial sequence of primes)?
If so, it would follow that for each prime p there is an infinite Mills sequence
starting with p. It may be possible to settle the more general question for q1
sufficiently large using the original method in [Mills 1947] (also see [Ellison
and Ellison 1985, p. 31]). Of course, if the more general question is false, it
may be possible to prove it so with a numerical example. In [Weisstein 2005]
it is reported that a number θ slightly larger than 1.3 works in the Mills
theorem. This has not yet been rigorously proved, so a research problem is to
prove this conjecture.

1.78. Is there a real number θ > 1 such that the sequence (�θn�) consists
entirely of primes? The existence of such a θ seems unlikely, yet the authors
are unaware of results along these lines. For θ = 1287/545, the integer
parts of the first 8 powers are 2, 5, 13, 31, 73, 173, 409, 967, each of which is
prime. Find a longer chain. If an infinite chain were to exist, there would
be infinitely many triples of primes p, q, r for which there is some α with
p = �α� , q =

⌊
α2

⌋
, r =

⌊
α3

⌋
. Probably there are infinitely many such triples

of primes p, q, r, and maybe this is not so hard to prove, but again the authors
are unaware of such a result. It is known that there are infinitely many pairs
of primes p, q of the form p = �α� , q =

⌊
α2

⌋
; this result is in [Balog 1989].

1.79. For a sequence A = (an), let D(A) be the sequence (|an+1 − an|). For
P the sequence of primes, consider D(P), D(D(P)), etc. Is it true that each of
these sequences begins with the number 1? This has been verified by Odlyzko
for the first 3 · 1011 sequences [Ribenboim 1996], but has never been proved
in general.

1.80. Find large primes of the form (2n+1)/3, invoking possible theorems on
allowed small factors, and so on. Three recent examples, due to R. McIntosh,
are

p = (242737 + 1)/3, q = (283339 + 1)/3, r = (295369 + 1)/3.
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These numbers are “probable primes” (see Chapter 3). True primality proofs
have not been achieved (and these examples may well be out of reach, for the
foreseeable future!).

1.81. Candidates Mp = 2p − 1 for Mersenne primes are often ruled out
in practice by finding an actual nontrivial prime factor. Work out software
for finding factors for Mersenne numbers, with a view to the very largest
ones accessible today. You would use the known form of any factor of Mp

and sequentially search over candidates. You should be able to ascertain, for
example, that

460401322803353 | 220295923 − 1.

On the issue of such large Mersenne numbers; see Exercise 1.82.

1.82. In the numerically accessible region of 220000000 there has been at least
one attempt at a compositeness proof, using not a search for factors but the
Lucas–Lehmer primality test. The result (unverified as yet) by G. Spence is
that 220295631 − 1 is composite. As of this writing, that would be a “genuine”
composite, in that no explicit proper factor is known. One may notice that
this giant Mersenne number is even larger than F24, the latter recently having
been shown composite. However, the F24 result was carefully verified with
independent runs and so might be said still to be the largest “genuine”
composite.

These ruminations bring us to a research problem. Note first a curious
dilemma, that this “game of genuine composites” can lead one to trivial claims,
as pointed out by L. Washington to [Lenstra 1991]. Indeed, if C be proven
composite, then 2C −1, 22C−1−1 and so on are automatically composite. So in
absence of new knowledge about factors of numbers in this chain, the idea of
“largest genuine composite” is a dubious one. Second, observe that if C ≡ 3
(mod 4) and 2C +1 happens to be prime, then this prime is a factor of 2C −1.
Such a C could conceivably be a genuine composite (i.e., no factors known) yet
the next member of the chain, namely 2C − 1, would have an explicit factor.
Now for the research problem at hand: Find and prove composite some number
C ≡ 3 (mod 4) such that nobody knows any factors of C (nor is it easy to
find them), you also have proof that 2C + 1 is prime, so you also know thus
an explicit factor of 2C − 1. The difficult part of this is to be able to prove
primality of 2C + 1 without recourse to the factorization of C. This might be
accomplished via the methods of Chapter 4 using a factorization of C + 1.

1.83. Though it is unknown whether there are infinitely many Mersenne
or Fermat primes, some results are known for other special number classes.
Denote the n-th Cullen number by Cn = n2n + 1. The Cullen and related
numbers provide fertile ground for various research initiatives.

One research direction is computational: to attempt the discovery of prime
Cullen numbers, perhaps by developing first a rigorous primality test for the
Cullen numbers. Similar tasks pertain to the Sierpiński numbers described
below.



1.6 Research problems 77

A good, simple exercise is to prove that there are infinitely many composite
Cullen numbers, by analyzing say Cp−1 for odd primes p. In a different vein, Cn

is divisible by 3 whenever n ≡ 1, 2 (mod 6) and Cn is divisible by 5 whenever
n ≡ 3, 4, 6, 17 (mod 20). In general show there are p−1 residue classes modulo
p(p − 1) for n where Cn is divisible by the prime p. It can be shown via sieve
methods that the set of integers n for which Cn is composite has asymptotic
density 1 [Hooley 1976].

For another class where something, at least, is known, consider Sierpiński
numbers, being numbers k such that k2n + 1 is composite for every positive
integer n. Sierpiński proved that there are infinitely many such k. Prove
this Sierpiński theorem, and in fact show, as Sierpiński did, that there is
an infinite arithmetic progression of integers k such that k2n +1 is composite
for all positive integers n. Every Sierpiński number known is a member of
such an infinite arithmetic progression. For example, the smallest known
Sierpiński number, k = 78557, is in an infinite arithmetic progression of
Sierpiński numbers; perhaps you would enjoy finding such a progression. It
is an interesting open problem in computational number theory to decide
whether 78557 actually is the smallest. (Erdős and Odlyzko have shown on
the other side that there is a set of odd numbers k of positive asymptotic
density such that for each k in the set, there is at least one number n with
k2n + 1 prime; see [Guy 1994].)

1.84. Initiate a machine search for a large prime of the form n = k2q ± 1,
alternatively a twin-prime pair using both + and −. Assume the exponent q
is fixed and that k runs through small values. You wish to eliminate various k
values for which n is clearly composite. First, describe precisely how various
values of k could be eliminated by sieving, using a sieving base consisting of
odd primes p ≤ B, where B is a fixed bound. Second, answer this important
practical question: If k survives the sieve, what is now the conditional heuristic
“probability” that n is prime?

Note that in Chapter 3 there is material useful for the practical task
of optimizing such prime searching. One wants to find the best tradeoff
between sieving out k values and actually invoking a primality test on the
remaining candidates k2q ± 1. Note also that under certain conditions on the
q, k, there are relatively rapid, deterministic means for establishing primality
(see Chapter 4).

1.85. The study of prime n-tuplets can be interesting and challenging. Prove
the easy result that there exists only one prime triplet {p, p + 2, p + 4}.
Then specify a pattern in the form {p, p + a, p + b} for fixed a, b such that
there should be infinitely many such triplets, and describe an algorithm for
efficiently finding triplets. One possibility is the pattern (a = 2, b = 6), for
which the starting prime

p = 23456 + 5661177712051

gives a prime triplet, as found by T. Forbes in 1995 with primalities proved
in 1998 by F. Morain [Forbes 1999].
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Next, as for quadruplets, argue heuristically that {p, p + 2, p + 6, p + 8}
should be an allowed pattern. The current largest known quadruplet with this
pattern has its four member primes of the “titanic” class, i.e., exceeding 1000
decimal digits [Forbes 1999].

Next, prove that there is just one prime sextuplet with pattern: {p, p +
2, p + 6, p + 8, p + 12, p + 14}. Then observe that there is a prime septuplet
with pattern {p, p + 2, p + 6, p + 8, p + 12, p + 18, p + 20}; namely for p = 11.
Find a different septuplet having this same pattern.

To our knowledge the largest septuplet known with the above specific
pattern was found in 1997 by Atkin, with first term

p = 4269551436942131978484635747263286365530029980299077\
59380111141003679237691.

1.86. Study the Smarandache–Wellin numbers, being

wn = (p1)(p2) · · · (pn),

by which notation we mean that wn is constructed in decimal by simple
concatenation of the digits of the consecutive primes. For example, the first
few wn are 2, 23, 235, 2357, 235711, . . . .

First, prove the known result that infinitely many of the wn are composite.
(Hint: Use the fact established by Littlewood, that pi(x; 3, 1) − pi(x; 3, 2) is
unbounded in either (±) direction .) Then, find an asymptotic estimate (it
can be heuristic, unproven) for the number of Smarandache–Wellin primes
not exceeding x.

Incidentally the first “nonsmall” example of a Smarandache–Wellin prime
is

w128 = 23571113171923 . . . 719 .

How many decimal digits does w128 have? Incidentally, large as this example
is, yet larger such primes (at least, probable primes!) are known [Wellin 1998],
[Weisstein 2005].

1.87. Show the easy result that if k primes each larger than k lie in
arithmetic progression, then the common difference d is divisible by every
prime not exceeding k. Find a long arithmetic progression of primes. Note
that k = 22 was the 1995 record [Pritchard et al. 1995], but recently in 2004
[Frind et al. 2004] found that

56211383760397 + k · 44546738095860

is prime for each integer k ∈ [0, 22], so the new record is 23 primes. Factor
the above difference d = 44546738095860 to verify the divisibility criterion.

Find some number j of consecutive primes in arithmetic progression. The
current record is j = 10, found by M. Toplic [Dubner et al. 1998]. The
progression is {P + 210m : m = 0, . . . , 9}, with the first member being

P = 10099697246971424763778665558796984032950932468919004\
1803603417758904341703348882159067229719.
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An interesting claim has been made with respect to this j = 10 example. Here
is the relevant quotation, from [Dubner et al. 1998]:

Although a number of people have pointed out to us that 10 + 1 = 11, we
believe that a search for an arithmetic progression of eleven consecutive
primes is far too difficult. The minimum gap between the primes is 2310
instead of 210 and the numbers involved in an optimal search would
have hundreds of digits. We need a new idea, or a trillion-fold increase
in computer speeds. So we expect the Ten Primes record to stand for a
long time to come.

1.88. [Honaker 1998] Note that 61 divides 67 · 71+1. Are there three larger
consecutive primes p < q < r such that p|qr + 1? D. Gazzoni notes in email
that there are likely at most finitely many such triples. Here is the heuristic.
It is conjectured that if p, p′ are consecutive primes then p′−p = O(ln2 p). Say
we assume only the weaker (but still unproved) assertion that p′ − p = O(pc)
for some c < 1/2. Then if p, q, r are consecutive primes with q = p + s and
r = p + t, we have st = O(p2c). But qr + 1 = (p + s)(p + t) + 1 ≡ st + 1
(mod p), so for p sufficiently large, qr + 1 ≡ 0 (mod p).

1.89. Though the converse of Theorem 1.3.1 is false, it was once wondered
whether q being a Mersenne prime implies 2q − 1 is likewise a Mersenne
prime. Demolish this restricted converse by giving a Mersenne prime q such
that 2q − 1 is composite. (You can inspect Table 1.2 to settle this, on the
assumption that the table is exhaustive for all Mersenne primes up to the
largest entry.) A related possibility, still open, is that the numbers:

c1 = 22 − 1 = 3, c2 = 2c1 − 1 = 7, c3 = 2c2 − 1 = 127,

and so on, are all primes. The extremely rapid growth, evidenced by the
fact that c5 has more than 1037 decimal digits, would seem to indicate trial
division as the only factoring recourse, yet even that humble technique may
well be impossible on conventional machines. (To underscore this skepticism
you might show that a factor of c5 is > c4, for example.)

Along such lines of aesthetic conjectures, and in relation to the “new
Mersenne conjecture” discussed in the text, J. Selfridge offers prizes of $1000
each, for resolution of the character (prime/composite) of the numbers

2B(31) − 1, 2B(61) − 1, 2B(127) − 1,

where B(p) = (2p +1)/3. Before going ahead and writing a program to attack
such Mersenne numbers, you might first ponder how huge they really are.

1.90. Here we obtain a numerical value for the Mertens constant B, from
Theorem 1.4.2. First, establish the formula

B = 1 − ln 2 +
∞∑

n=2

µ(n) ln ζ(n) + (−1)n(ζ(n) − 1)
n
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(see [Bach 1997b]). Then, noting that a certain part of the infinite sum is
essentially the Euler constant, in the sense that

γ + ln 2 − 1 =
∞∑

n=2

(−1)n ζ(n) − 1
n

,

use known methods for rapidly approximating ζ(n) (see [Borwein et al. 2000])
to obtain from this geometrically convergent series a numerical value such as

B ≈ 0.26149721284764278375542683860869585905156664826120 . . . .

Estimate how many actual primes would be required to attain the implied
accuracy for B if you were to use only the defining product formula for B
directly. Incidentally, there are other constants that also admit of rapidly
convergent expansions devoid of explicit reference to prime numbers. One of
these “easy” constants is the twin prime constant C2, as in estimate (1.6).
Another such is the Artin constant

A =
∏
p

(
1 − 1

p(p − 1)

)
≈ 0.3739558136 . . . ,

which is the conjectured, relative density of those primes admitting of 2 as
primitive root (with more general conjectures found in [Bach and Shallit
1996]). Try to resolve C2, A, or some other interesting constant such as
the singular series value in relation (1.12) to some interesting precision but
without recourse to explicit values of primes, just as we have done above for the
Mertens constant. One notable exception to all of this, however, is the Brun
constant, for which no polynomial-time evaluation algorithm is yet known. See
[Borwein et al. 2000] for a comprehensive treatment of such applications of
Riemann-zeta evaluations. See also [Lindqvist and Peetre 1997] for interesting
ways to accelerate the Mertens series.

1.91. There is a theorem of Landau (and independently, of Ramanujan)
giving the asymptotic density of numbers n that can be represented a2 + b2,
namely,

#{1 ≤ n ≤ x : r2(n) > 0} ∼ L
x√
lnx

,

where the Landau–Ramanujan constant is

L =
1√
2

∏
p≡3 (mod 4)

(
1 − 1

p2

)−1/2

= 0.764223653 . . .

One question from a computational perspective is: How does one develop
a fast algorithm for high-resolution computation of L, along the lines, say,
of Exercise 1.90? Relevant references are [Shanks and Schmid 1966] and
[Flajolet and Vardi 1996]. An interesting connection between L and the
possible transcendency of the irrational real number z =

∑
n≥0 1/2n2

is found
in [Bailey et al. 2003].

1.92. By performing appropriate computations, prove the claim that the
convexity Conjecture 1.2.3 is incompatible with the prime k-tuples Conjecture
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1.2.1. A reference is [Hensley and Richards 1973]. Remarkably, those authors
showed that on assumption of the prime k-tuples conjecture, there must exist
some y for which

π(y + 20000) − π(y) > π(20000).

What will establish incompatibility is a proof that the interval (0, 20000]
contains an “admissible” set with more than π(20000) elements. A set of
integers is admissible if for each prime p there is at least one residue class
modulo p that is not represented in the set. If a finite set S is admissible, the
prime k-tuples conjecture implies that there are infinitely many integers n such
that n+s is prime for each s ∈ S. So, the Hensley and Richards result follows
by showing that for each prime p ≤ 20000 there is a residue class ap such that
if all of the numbers congruent to ap modulo p are cast out of the interval
(0, 20000], the residual set (which is admissible) is large, larger than π(20000).
A better example is that in [Vehka 1979], who found an admissible set of 1412
elements in the interval (0, 11763], while on the other hand, π(11763) = 1409.
In his master’s thesis at Brigham Young University in 1996, N. Jarvis was
able to do this with the “20000” of the original Hensley-Richards calculation
cut down to “4930.” We still do not know the least integer y such that (0, y]
contains an admissible set with more than π(y) elements, but in [Gordon and
Rodemich 1998] it is shown that such a number y must be at least 1731.
For guidance in actual computations, there is some interesting analysis of
particular dense admissible sets in [Bressoud and Wagon 2000]. S. Wagon has
reduced the “4930” of Jarvis yet further, to “4893.” The modern record for
such bounds is that for first y occurrence, 2077 < y ≤ 3159 [Engelsma 2004].

It seems a very tough problem to convert such a large admissible set into
an actual counterexample to the convexity conjecture. If there is any hope
in actually disproving the convexity conjecture, short of proving the prime k-
tuples conjecture itself, it may lie in a direct search for long and dense clumps
of primes. But we should not underestimate computational analytic number
theory in this regard. After all, as discussed elsewhere in this book (Section
3.7.2), estimates on π(x) can be obtained, at least in principle, for very large
x. Perhaps some day it will be possible to bound below, by machine, an
appropriate difference π(x + y) − π(x), say without knowing all the individual
primes involved, to settle this fascinating compatibility issue.

1.93. Naively speaking, one can test whether p is a Wilson prime by direct
multiplication of all integers 1, . . . , p − 1, with continual reduction (mod p2)
along the way. However, there is a great deal of redundancy in this approach,
to be seen as follows. If N is even, one can invoke the identity

N ! = 2N/2 (N/2)! N !!,

where N !! denotes the product of all odd integers in [1, N − 1]. Argue that
the (about) p multiply-mods to obtain (p − 1)! can be reduced to about 3p/4
multiply-mods using the identity.
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If one invokes a more delicate factorial identity, say by considering more
equivalence classes for numbers less than N , beyond just even/odd classes,
how far can the p multiplies be reduced in this way?

1.94. Investigate how the Granville identity, valid for 1 < m < p and p
prime,

m−1∏
j=1

(
p − 1

�jp/m�

)
≡ (−1)(p−1)(m−1)/2(mp − m + 1) (mod p2),

can be used to accelerate the testing of whether p is a Wilson prime. This and
other acceleration identities are discussed in [Crandall et al. 1997].

1.95. Study the statistically expected value of ω(n), the number of distinct
prime factors of n. There are beautiful elementary arguments that reveal
statistical properties of ω(n). For example, we know from the celebrated
Erdős–Kac theorem that the expression

ω(n) − ln lnn√
ln lnn

is asymptotically Gaussian-normal distributed with zero mean and unit
variance. That is, the set of natural numbers n with the displayed statistic
not exceeding u has asymptotic density equal to 1√

2π

∫ u

−∞ e−t2/2 dt. See [Ruzsa
1999] for some of the history of this theorem.

These observations, though profound, are based on elementary arguments.
Investigate the possibility of an analytic approach, using the beautiful formal
identity

∞∑
n=1

2ω(n)

ns
=

ζ2(s)
ζ(2s)

.

Here is one amusing, instructive exercise in the analytic spirit: Prove directly
from this zeta-function identity, by considering the limit as s → 1, that there
exist infinitely many primes. What more can be gleaned about the ω function
via such analytic forays?

Beyond this, study (in any way possible!) the fascinating conjecture of
J. Selfridge that the number of distinct prime factors of a Fermat number,
that is, ω(Fn), is not a monotonic (nondecreasing) function of n. Note from
Table 1.3 that this conjecture is so far nonvacuous. (Selfridge suspects that
F14, if it ever be factored, may settle the conjecture by having a notable
paucity of factors.) This conjecture is, so far, out of reach in one sense: We
cannot factor enough Fermat numbers to thoroughly test it. On the other
hand, one might be able to provide a heuristic argument indicating in some
sense the “probability” of the truth of the Selfridge conjecture. On the face of
it, one might expect said probability to be zero, even given that each Fermat
number is roughly the square of the previous one. Indeed, the Erdős–Kac
theorem asserts that for two random integers a, b with b ≈ a2, it is roughly
an even toss-up that ω(b) ≥ ω(a).



Chapter 2

NUMBER-THEORETICAL TOOLS

In this chapter we focus specifically on those fundamental tools and associated
computational algorithms that apply to prime number and factorization
studies. Enhanced integer algorithms, including various modern refinements
of the classical ones of the present chapter, are detailed in Chapter 8.8. The
reader may wish to refer to that chapter from time to time, especially when
issues of computational complexity and optimization are paramount.

2.1 Modular arithmetic

Throughout prime-number and factorization studies the notion of modular
arithmetic is a constant reminder that one of the great inventions of mathe-
matics is to consider numbers modulo N , in so doing effectively contracting
the infinitude of integers into a finite set of residues. Many theorems on prime
numbers involve reductions modulo p, and most factorization efforts will use
residues modulo N , where N is the number to be factored.

A word is in order on nomenclature. Here and elsewhere in the book,
we denote by x mod N the least nonnegative residue x (mod N). The mod
notation without parentheses is convenient when thought of as an algorithm
step or a machine operation (more on this operator notion is said in Section
9.1.3). So, the notation xy mod N means the y-th power of x, reduced to the
interval [0, N −1] inclusive; and we allow negative values for exponents y when
x is coprime to N , so that an operation x−1 mod N yields a reduced inverse,
and so on.

2.1.1 Greatest common divisor and inverse

In this section we exhibit algorithms for one of the very oldest operations in
computational number theory, the evaluation of the greatest common divisor
function gcd (x, y). Closely related is the problem of inversion, the evaluation
of x−1 mod N , which operation yields (when it exists) the unique integer
y ∈ [1, N − 1] with xy ≡ 1 (mod N). The connection between the gcd
and inversion operations is especially evident on the basis of the following
fundamental result.

Theorem 2.1.1 (Linear relation for gcd). If x, y are integers not both 0,
then there are integers a, b with

ax + by = gcd(x, y). (2.1)
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Proof. Let g be the least positive integer in the form ax + yb, where a, b are
integers. (There is at least one positive integer in this form, to wit, x2 + y2.)
We claim that g = gcd(x, y). Clearly, any common divisor of x and y divides
g = ax + by. So gcd(x, y) divides g. Suppose g does not divide x. Then
x = tg + r, for some integer r with 0 < r < g. We then observe that
r = (1 − ta)x − tby, contradicting the definition of g. Thus, g divides x,
and similarly, g divides y. We conclude that g = gcd(x, y). �

The connection of (2.1) to inversion is immediate: If x, y are positive integers
and gcd(x, y) = 1, then we can solve ax + by = 1, whence

b mod x, a mod y

are the inverses y−1 mod x and x−1 mod y, respectively.
However, what is clearly lacking from the proof of Theorem 2.1.1 from a

computational perspective is any clue on how one might find a solution a, b to
(2.1). We investigate here the fundamental, classical methods, beginning with
the celebrated centerpiece of the classical approach: the Euclid algorithm. It
is arguably one of the very oldest computational schemes, dating back to 300
b.c., if not the oldest of all. In this algorithm and those following, we indicate
the updating of two variables x, y by

(x, y) = (f(x, y), g(x, y)),

which means that the pair (x, y) is to be replaced by the pair of evaluations
(f, g) but with the evaluations using the original (x, y) pair. In similar fashion,
longer vector relations (a, b, c, . . .) = · · · update all components on the left,
each using the original values on the right side of the equation. (This rule for
updating of vector components is discussed in the Appendix.)

Algorithm 2.1.2 (Euclid algorithm for greatest common divisor). For in-
tegers x, y with x ≥ y ≥ 0 and x > 0, this algorithm returns gcd(x, y).
1. [Euclid loop]

while(y > 0) (x, y) = (y, x mod y);
return x;

It is intriguing that this algorithm, which is as simple and elegant as can be,
is not so easy to analyze in complexity terms. Though there are still some
interesting open questions as to detailed behavior of the algorithm, the basic
complexity is given by the following theorem:

Theorem 2.1.3 (Lamé, Dixon, Heilbronn). Let x > y be integers from the
interval [1, N ]. Then the number of steps in the loop of the Euclid Algorithm
2.1.2 does not exceed⌈

ln
(
N

√
5
)

/ ln
((

1 +
√

5
)

/2
)⌉

− 2,

and the average number of loop steps (over all choices x, y) is asymptotic to

12 ln 2
π2 lnN.
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The first part of this theorem stems from an interesting connection
between Euclid’s algorithm and the theory of simple continued fractions (see
Exercise 2.4). The second part involves the measure theory of continued
fractions.

If x, y are each of order of magnitude N , and we employ the Euclid
algorithm together with, say, a classical mod operation, it can be shown that
the overall complexity of the gcd operation will then be

O
(
ln2 N

)
bit operations, essentially the square of the number of digits in an operand
(see Exercise 2.6). This complexity can be genuinely bested via modern
approaches, and not merely by using a faster mod operation, as we discuss in
our final book chapter.

The Euclid algorithm can be extended to the problem of inversion. In fact,
the appropriate extension of the Euclid algorithm will provide a complete
solution to the relation (2.1):

Algorithm 2.1.4 (Euclid’s algorithm extended, for gcd and inverse). For
integers x, y with x ≥ y ≥ 0 and x > 0, this algorithm returns an integer
triple (a, b, g) such that ax + by = g = gcd(x, y). (Thus when g = 1 and y > 0,
the residues b (mod x), a (mod y) are the inverses of y (mod x), x (mod y),
respectively.)

1. [Initialize]
(a, b, g, u, v, w) = (1, 0, x, 0, 1, y);

2. [Extended Euclid loop]
while(w > 0) {

q = �g/w�;
(a, b, g, u, v, w) = (u, v, w, a − qu, b − qv, g − qw);

}
return (a, b, g);

Because the algorithm simultaneously returns the relevant gcd and both
inverses (when the input integers are coprime and positive), it is widely
used as an integral part of practical computational packages. Interesting
computational details of this and related algorithms are given in [Cohen
2000], [Knuth 1981]. Modern enhancements are covered in Chapter 8.8
including asymptotically faster gcd algorithms, faster inverse, inverses for
special moduli, and so on. Finally, note that in Section 2.1.2 we give an “easy
inverse” method (relation (2.3)) that might be considered as a candidate in
computer implementations.

2.1.2 Powers

It is a celebrated theorem of Euler that

aϕ(m) ≡ 1 (mod m) (2.2)
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holds for any positive integer m as long as a, m are coprime. In particular, for
prime p we have

ap−1 ≡ 1 (mod p),

which is used frequently as a straightforward initial (though not absolute)
primality criterion. The point is that powering is an important operation
in prime number studies, and we are especially interested in powering with
modular reduction. Among the many applications of powering is this one: A
straightforward method for finding inverses is to note that when a−1 (mod m)
exists, we always have the equality

a−1 mod m = aϕ(m)−1 mod m, (2.3)

and this inversion method might be compared with Algorithm 2.1.4 when
machine implementation is contemplated.

It is a primary computational observation that one usually does not need
to take an n-th power of some x by literally multiplying together n symbols as
x∗x∗· · ·∗x. We next give a radically more efficient (for large powers) recursive
powering algorithm that is easily written out and also easy to understand. The
objects that we raise to powers might be integers, members of a finite field,
polynomials, or something else. We specify in the algorithm that the element
x comes only from a semigroup, namely, a setting in which x ∗ x ∗ · · · ∗ x is
defined.

Algorithm 2.1.5 (Recursive powering algorithm). Given an element x in a
semigroup and a positive integer n, the goal is to compute xn.

1. [Recursive function pow]
pow(x, n) {

if(n == 1) return x;
if(n even) return pow(x, n/2)2; // Even branch.
return x ∗ pow(x, (n − 1)/2)2; // Odd branch.

}

This algorithm is recursive and compact, but for actual implementation one
should consider the ladder methods of Section 9.3.1, which are essentially
equivalent to the present one but are more appropriate for large, array-
stored arguments. To exemplify the recursion in Algorithm 2.1.5, consider
313 (mod 15). Since n = 13, we can see that the order of operations will be

3 ∗ pow(3, 6)2 = 3 ∗
(
pow(3, 3)2

)2

= 3 ∗
((

3 ∗ pow(3, 1)2
)2
)2

.

If one desires xn mod m, then the required modular reductions are to occur
for each branch (even, odd) of the algorithm. If the modulus is m = 15,
say, casual inspection of the final power chain above shows that the answer
is 313 mod 15 = 3 ·

(
(−3)2

)2 mod 15 = 3 · 6 mod 15 = 3. The important
observation, though, is that there are three squarings and two multiplications,
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and such operation counts depend on the binary expansion of the exponent n,
with typical operation counts being dramatically less than the value of n itself.
In fact, if x, n are integers the size of m, and we are to compute xn mod m
via naive multiply/add arithmetic and Algorithm 2.1.5, then O(ln3 m) bit
operations suffice for the powering (see Exercise 2.17 and Section 9.3.1).

2.1.3 Chinese remainder theorem

The Chinese remainder theorem (CRT) is a clever, and very old, idea from
which one may infer an integer value on the basis of its residues modulo
an appropriate system of smaller moduli. The CRT was known to Sun-Zi in
the first century a.d. [Hardy and Wright 1979], [Ding et al. 1996]; in fact a
legendary ancient application is that of counting a troop of soldiers. If there
are n soldiers, and one has them line up in justified rows of 7 soldiers each,
one inspects the last row and infers n mod 7, while lining them up in rows of
11 will give n mod 11, and so on. If one does “enough” such small-modulus
operations, one can infer the exact value of n. In fact, one does not need the
small moduli to be primes; it is sufficient that the moduli be pairwise coprime.

Theorem 2.1.6 (Chinese remainder theorem (CRT)). Let m0, . . . , mr−1
be positive, pairwise coprime moduli with product M = Πr−1

i=0 mi. Let r re-
spective residues ni also be given. Then the system comprising the r relations
and inequality

n ≡ ni (mod mi), 0 ≤ n < M

has a unique solution. Furthermore, this solution is given explicitly by the least
nonnegative residue modulo M of

r−1∑
i=0

niviMi,

where Mi = M/mi, and the vi are inverses defined by viMi ≡ 1 (mod mi).

A simple example should serve to help clarify the notation. Let m0 =
3, m1 = 5, m2 = 7, for which the overall product is M = 105, and let
n0 = 2, n1 = 2, n2 = 6. We seek a solution n < 105 to

n ≡ 2 (mod 3), n ≡ 2 (mod 5), n ≡ 6 (mod 7).

We first establish the Mi, as

M0 = 35, M1 = 21, M2 = 15.

Then we compute the inverses

v0 = 2 = 35−1 mod 3, v1 = 1 = 21−1 mod 5, v2 = 1 = 15−1 mod 7.

Then we compute

n = (n0v0M0 + n1v1M1 + n2v2M2) mod M

= (140 + 42 + 90) mod 105
= 62.
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Indeed, 62 modulo 3, 5, 7, respectively, gives the required residues 2, 2, 6.
Though ancient, the CRT algorithm still finds many applications. Some

of these are discussed in Chapter 8.8 and its exercises. For the moment,
we observe that the CRT affords a certain “parallelism.” A set of separate
machines can perform arithmetic, each machine doing this with respect to
a small modulus mi, whence some final value may be reconstructed. For
example, if each of x, y has fewer than 100 digits, then a set of prime moduli
{mi} whose product is M > 10200 can be used for multiplication: The i-th
machine would find ((x mod mi) ∗ (y mod mi)) mod mi, and the final value
x ∗ y would be found via the CRT. Likewise, on one computer chip, separate
multipliers can perform the small-modulus arithmetic.

All of this means that the reconstruction problem is paramount; indeed,
the reconstruction of n tends to be the difficult phase of CRT computations.
Note, however, that if the small moduli are fixed over many computations, a
certain amount of one-time precomputation is called for. In Theorem 2.1.6,
one may compute the Mi and the inverses vi just once, expecting many future
computations with different residue sets {ni}. In fact, one may precompute
the products viMi. A computer with r parallel nodes can then reconstruct∑

niviMi in O(ln r) steps.
There are other ways to organize the CRT data, such as building up one

partial modulus at a time. One such method is the Garner algorithm [Menezes
et al. 1997], which can also be done with preconditioning.

Algorithm 2.1.7 (CRT reconstruction with preconditioning (Garner)).
Using the nomenclature of Theorem 2.1.6, we assume r ≥ 2 fixed, pairwise
coprime moduli m0, . . . , mr−1 whose product is M , and a set of given residues
{ni (mod mi)}. This algorithm returns the unique n ∈ [0, M − 1] with the given
residues. After the precomputation step, the algorithm may be reentered for future
evaluations of such n (with the {mi} remaining fixed).

1. [Precomputation]
for(1 ≤ i < r) {

µi =
∏i−1

j=0 mj ;
ci = µ−1

i mod mi;
}
M = µr−1mr−1;

2. [Reentry point for given input residues {ni}]
n = n0;
for(1 ≤ i < r) {

u = ((ni − n)ci) mod mi;
n = n + uµi; // Now n ≡ nj (mod mj) for 0 ≤ j ≤ i;

}
n = n mod M ;
return n;

This algorithm can be shown to be more efficient than a naive application
of Theorem 2.1.6 (see Exercise 2.8). Moreover, in case a fixed modulus M
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is used for repeated CRT calculations, one can perform [Precomputation] for
Algorithm 2.1.7 just once, store an appropriate set of r−1 integers, and allow
efficient reentry.

In Section 9.5.9 we describe a CRT reconstruction algorithm that not only
takes advantage of preconditioning, but of fast methods to multiply integers.

2.2 Polynomial arithmetic

Many of the algorithms for modular arithmetic have almost perfect analogues
in the polynomial arena.

2.2.1 Greatest common divisor for polynomials

We next give algorithms for polynomials analogous to the Euclid forms in
Section 2.1.1 for integer gcd and inverse. When we talk about polynomials,
the first issue is where the coefficients come from. We may be dealing with
Q[x], the polynomials with rational coefficients, or Zp[x], polynomials with
coefficients in the finite field Zp. Or from some other field. We may also be
dealing with polynomials with coefficients drawn from a ring that is not a
field, as we do when we consider Z[x] or Zn[x] with n not a prime.

Because of the ambiguity of the arena in which we are to work, perhaps
it is better to go back to first principles and begin with the more primitive
concept of divide with remainder. If we are dealing with polynomials in F [x],
where F is a field, there is a division theorem completely analogous to the
situation with ordinary integers. Namely, if f(x), g(x) are in F [x] with f not
the zero polynomial, then there are (unique) polynomials q(x), r(x) in F [x]
with

g(x) = q(x)f(x) + r(x) and either r(x) = 0 or deg r(x) < deg f(x). (2.4)

Moreover, we can use the “grammar-school” method of building up the
quotient q(x) term by term to find q(x) and r(x). Thinking about this
method, one sees that the only special property of fields that is used that
is not enjoyed by a general commutative ring is that the leading coefficient
of the divisor polynomial f(x) is invertible. So if we are in the more general
case of polynomials in R[x] where R is a commutative ring with identity, we
can perform a divide with remainder if the leading coefficient of the divisor
polynomial is a unit, that is, it has a multiplicative inverse in the ring.

For example, say we wish to divide 3x + 2 into x2 in the polynomial ring
Z10[x]. The inverse of 3 in Z10 (which can be found by Algorithm 2.1.4) is 7.
We get the quotient 7x + 2 and remainder 6.

In sum, if f(x), g(x) are in R[x], where R is a commutative ring with
identity and the leading coefficient of f is a unit in R, then there are unique
polynomials q(x), r(x) in R[x] such that (2.4) holds. We use the notation
r(x) = g(x) mod f(x). For much more on polynomial remaindering, see
Section 9.6.2.
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Though it is possible sometimes to define the gcd of two polynomials in
the more general case of R[x], in what follows we shall restrict the discussion
to the much easier case of F [x], where F is a field. In this setting the
algorithms and theory are almost entirely the same as for integers. (For a
discussion of gcd in the case where R is not necessarily a field, see Section
4.3.) We define the polynomial gcd of two polynomials, not both 0, as a
polynomial of greatest degree that divides both polynomials. Any polynomial
satisfying this definition of gcd, when multiplied by a nonzero element of the
field F , again satisfies the definition. To standardize things, we take among
all these polynomials the monic one, that is the polynomial with leading
coefficient 1, and it is this particular polynomial that is indicated when we use
the notation gcd(f(x), g(x)). Thus, gcd(f(x), g(x)) is the monic polynomial
common divisor of f(x) and g(x) of greatest degree. To render any nonzero
polynomial monic, one simply multiplies through by the inverse of the leading
coefficient.

Algorithm 2.2.1 (gcd for polynomials). For given polynomials f(x), g(x) in
F [x], not both zero, this algorithm returns d(x) = gcd(f(x), g(x)).
1. [Initialize]

Let u(x), v(x) be f(x), g(x) in some order so that either deg u(x) ≥
deg v(x) or v(x) is 0;

2. [Euclid loop]
while(v(x) = 0) (u(x), v(x)) = (v(x), u(x) mod v(x));

3. [Make monic]
Set c as the leading coefficient of u(x);
d(x) = c−1u(x);
return d(x);

Thus, for example, if we take

f(x) = 7x11 + x9 + 7x2 + 1,

g(x) = −7x7 − x5 + 7x2 + 1,

in Q[x], then the sequence in the Euclid loop is

(7x11 + x9 + 7x2 + 1, −7x7 − x5 + 7x2 + 1)
→ (−7x7 − x5 + 7x2 + 1, 7x6 + x4 + 7x2 + 1)
→ (7x6 + x4 + 7x2 + 1, 7x3 + 7x2 + x + 1)
→ (7x3 + 7x2 + x + 1, 14x2 + 2)
→ (14x2 + 2, 0),

so the final value of u(x) is 14x2+2, and the gcd d(x) is x2+ 1
7 . It is, of course,

understood that all calculations in the algorithm are to be performed in the
polynomial ring F [x]. So in the above example, if F = Z13, then d(x) = x2+2,
if F = Z7, then d(x) = 1; and if F = Z2, then the loop stops one step earlier
and d(x) = x3 + x2 + x + 1.
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Along with the polynomial gcd we shall need a polynomial inverse. In
keeping with the notion of integer inverse, we shall generate a solution to

s(x)f(x) + t(x)g(x) = d(x),

for given f, g, where d(x) = gcd(f(x), g(x)).

Algorithm 2.2.2 (Extended gcd for polynomials). Let F be a field. For
given polynomials f(x), g(x) in F [x], not both zero, with either deg f(x) ≥
deg g(x) or g(x) = 0, this algorithm returns (s(x), t(x), d(x)) in F [x] such that
d = gcd(f, g) and sg+th = d. (For ease of notation we shall drop the x argument
in what follows.)

1. [Initialize]
(s, t, d, u, v, w) = (1, 0, f, 0, 1, g);

2. [Extended Euclid loop]
while(w = 0) {

q = (d − (d mod w))/w; // q is the quotient of d ÷ w.
(s, t, d, u, v, w) = (u, v, w, s − qu, t − qv, d − qw);

}
3. [Make monic]

Set c as the leading coefficient of d;
(s, t, d) = (c−1s, c−1t, c−1d);
return (s, t, d);

If d(x) = 1 and neither of f(x), g(x) is 0, then s(x) is the inverse of f(x)
(mod g(x)) and t(x) is the inverse of g(x) (mod f(x)). It is clear that if naive
polynomial remaindering is used, as described above, then the complexity of
the algorithm is O(D2) field operations, where D is the larger of the degrees
of the input polynomials; see [Menezes et al. 1997].

2.2.2 Finite fields

Examples of infinite fields are the rational numbers Q, the real numbers
R, and the complex numbers C. In this book, however, we are primarily
concerned with finite fields. A common example: If p is prime, the field

Fp = Zp

consists of all residues 0, 1, . . . , p − 1 with arithmetic proceeding under the
usual modular rules.

Given a field F and a polynomial f(x) in F [x] of positive degree, we
may consider the quotient ring F [x]/(f(x)). The elements of F [x]/(f(x)) are
subsets of F [x] of the form {g(x) + f(x)h(x) : h(x) ∈ F [x]}; we denote
this subset by g(x) + (f(x)). It is a coset of the ideal (f(x)) with coset
representative g(x). (Actually, any polynomial in a coset can stand in as a
representative for the coset, so that g(x) + (f(x)) = G(x) + (f(x)) if and
only if G(x) ∈ g(x) + (f(x)) if and only if G(x) − g(x) = f(x)h(x) for some
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h(x) ∈ F [x] if and only if G(x) ≡ g(x) (mod f(x)). Thus, working with cosets
can be thought of as a fancy way of working with congruences.) Each coset
has a canonical representative, that is, a unique and natural choice, which is
either 0 or has degree smaller than deg f(x).

We can add and multiply cosets by doing the same with their representa-
tives:(

g1(x) + (f(x))
)

+
(
g2(x) + (f(x))

)
= g1(x) + g2(x) + (f(x)),(

g1(x) + (f(x))
)

·
(
g2(x) + (f(x))

)
= g1(x)g2(x) + (f(x)).

With these rules for addition and multiplication, F [x]/(f(x)) is a ring that
contains an isomorphic copy of the field F : An element a ∈ F is identified
with the coset a + (f(x)).

Theorem 2.2.3. If F is a field and f(x) ∈ F [x] has positive degree, then
F [x]/(f(x)) is a field if and only if f(x) is irreducible in F [x].

Via this theorem we can create new fields out of old fields. For example,
starting with Q, the field of rational numbers, consider the irreducible
polynomial x2 − 2 in Q[x]. Let us denote the coset a + bx + (f(x)), where
a, b ∈ Q, more simply by a + bx. We have the addition and multiplication
rules

(a1 + b1x) + (a2 + b2x) = (a1 + a2) + (b1 + b2)x,

(a1 + b1x) · (a2 + b2x) = (a1a2 + 2b1b2) + (a1b2 + a2b1)x.

That is, one performs ordinary addition and multiplication of polynomials,
except that the relation x2 = 2 is used for reduction. We have “created” the
field

Q
[√

2
]

=
{

a + b
√

2 : a, b ∈ Q
}

.

Let us try this idea starting from the finite field F7. Say we take f(x) =
x2 +1. A degree-2 polynomial is irreducible over a field F if and only if it has
no roots in F . A quick check shows that x2 + 1 has no roots in F7, so it is
irreducible over this field. Thus, by Theorem 2.2.3, F7[x]/(x2 + 1) is a field.
We can abbreviate elements by a + bi, where a, b ∈ F7 and i2 = −1. Our new
field has 49 elements.

More generally, if p is prime and f(x) ∈ Fp[x] is irreducible and has
degree d ≥ 1, then Fp[x]/(f(x)) is again a finite field, and it has pd elements.
Interestingly, all finite fields up to isomorphism can be constructed in this
manner.

An important difference between finite fields and fields such as Q and C
is that repeatedly adding 1 to itself in a finite field, you will eventually get 0.
In fact, the number of times must be a prime, for otherwise, one can get the
product of two nonzero elements being 0.

Definition 2.2.4. The characteristic of a field is the additive order of 1,
unless said order is infinite, in which case the characteristic is 0.
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As indicated above, the characteristic of a field, if it is positive, must be
a prime number. Fields of characteristic 2 play a special role in applications,
mainly because of the simplicity of doing arithmetic in such fields.

We collect some relevant classical results on finite fields as follows:

Theorem 2.2.5 (Basic results on finite fields).
(1) A finite field F has nonzero characteristic, which must be a prime.
(2) For a, b in a finite field F of characteristic p, (a + b)p = ap + bp.
(3) Every finite field has pk elements for some positive integer k, where p is

the characteristic.
(4) For given prime p and exponent k, there is exactly one field with pk

elements (up to isomorphism), which field we denote by Fpk .
(5) Fpk contains as subfields unique copies of Fpj for each j|k, and no other

subfields.
(6) The multiplicative group F∗

pk of nonzero elements in Fpk is cyclic; that
is, there is a single element whose powers constitute the whole group.

The multiplicative group F∗
pk is an important concept in studies of powers,

roots, and cryptography.

Definition 2.2.6. A primitive root of a field Fpk is an element whose powers
constitute all of F∗

pk . That is, the root is a generator of the cyclic group F∗
pk .

For example, in the example above where we created a field with 49 elements,
namely F72 , the element 3 + i is a primitive root.

A cyclic group with n elements has ϕ(n) generators in total, where ϕ is
the Euler totient function. Thus, a finite field Fpk has ϕ(pk − 1) primitive
roots.

One way to detect primitive roots is to use the following result.

Theorem 2.2.7 (Test for primitive root). An element g in F∗
pk is a prim-

itive root if and only if
g(pk−1)/q = 1

for every prime q dividing pk − 1.

As long as pk − 1 can be factored, this test provides an efficient means of
establishing a primitive root. A simple algorithm, then, for finding a primitive
root is this: Choose random g ∈ F∗

pk , compute powers g(pk−1)/q mod p for
successive prime factors q of pk −1, and if any one of these powers is 1, choose
another g. If g survives the chain of powers, it is a primitive root by Theorem
2.2.7.

Much of this book is concerned with arithmetic in Fp, but at times we
shall have occasion to consider higher prime-power fields. Though general
Fpk arithmetic can be complicated, it is intriguing that some algorithms can
actually enjoy improved performance when we invoke such higher fields. As
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we saw above, we can “create” the finite field Fpk by coming up with an
irreducible polynomial f(x) in Fp[x] of degree k. We thus say a little about
how one might do this.

Every element a in Fpk has the property that apk

= a, that is, a is a root
of xpk − x. In fact this polynomial splits into linear factors over Fpk with no
repeated factors. We can use this idea to see that xpk − x is the product of
all monic irreducible polynomials in Fp[x] of degrees dividing k. From this we
get a formula for the number Nk(p) of monic irreducible polynomials in Fp[x]
of exact degree k: One begins with the identity∑

d|k
dNd(p) = pk,

on which we can use Möbius inversion to get

Nk(p) =
1
k

∑
d|k

pdµ(k/d). (2.5)

Here, µ is the Möbius function discussed in Section 1.4.1. It is easy to see that
the last sum is dominated by the term d = k, so that Nk(p) is approximately
pk/k. That is, about 1 out of every k monic polynomials of degree k in Fp[x]
is irreducible. Thus a random search for one of these should be successful in
O(k) trials. But how can we recognize an irreducible polynomial? An answer
is afforded by the following result.

Theorem 2.2.8. Suppose that f(x) is a polynomial in Fp[x] of positive
degree k. The following statements are equivalent:
(1) f(x) is irreducible;

(2) gcd(f(x), xpj − x) = 1 for each j = 1, 2, . . . , �k/2�;
(3) xpk ≡ x (mod f(x)) and gcd(f(x), xpk/q − x) = 1 for each prime q|k.

This theorem, whose proof is left as Exercise 2.15, is then what is behind the
following two irreducibility tests.

Algorithm 2.2.9 (Irreducibility test 1). Given prime p and a polynomial
f(x) ∈ Fp[x] of degree k ≥ 2, this algorithm determines whether f(x) is
irreducible over Fp.

1. [Initialize]
g(x) = x;

2. [Testing loop]
for(1 ≤ i ≤ �k/2�) {

g(x) = g(x)p mod f(x); // Powering by Algorithm 2.1.5.
d(x) = gcd(f(x), g(x) − x); // Polynomial gcd by Algorithm 2.2.1.
if(d(x) = 1) return NO;

}
return YES; // f is irreducible.
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Algorithm 2.2.10 (Irreducibility test 2). Given a prime p, a polynomial
f(x) ∈ Fp[x] of degree k ≥ 2, and the distinct primes q1 > q2 > . . . > ql

which divide k, this algorithm determines whether f(x) is irreducible over Fp.

1. [Initialize]
ql+1 = 1;
g(x) = xpk/q1 mod f(x); // Powering by Algorithm 2.1.5.

2. [Testing loop]
for(1 ≤ i ≤ l) {

d(x) = gcd(f(x), g(x) − x); // Polynomial gcd by Algorithm 2.2.1.
if(d(x) = 1) return NO;
g(x) = g(x)pk/qi+1−pk/qi mod f(x); // Powering by Algorithm 2.1.5.

}
3. [Final congruence]

if(g(x) = x) return NO;
return YES; // f is irreducible.

Using the naive arithmetic subroutines of this chapter, Algorithm 2.2.9
is slower than Algorithm 2.2.10 for large values of k, given the much larger
number of gcd’s which must be computed in the former algorithm. However,
using a more sophisticated method for polynomial gcd’s, (see [von zur Gathen
and Gerhard 1999, Sec. 11.1]), the two methods are roughly comparable in
time.

Let us now recapitulate the manner of field computations. Armed with
a suitable irreducible polynomial f of degree k over Fp, one represents any
element a ∈ Fpk as

a = a0 + a1x + a2x
2 + · · · + ak−1x

k−1,

with each ai ∈ {0, . . . , p − 1}. That is, we represent a as a vector in F k
p . Note

that there are clearly pk such vectors. Addition is ordinary vector addition,
but of course the arithmetic in each coordinate is modulo p. Multiplication
is more complicated: We view it merely as multiplication of polynomials, but
not only is the coordinate arithmetic modulo p, but we also reduce high-
degree polynomials modulo f(x). That is to say, to multiply a ∗ b in Fpk , we
simply form a polynomial product a(x)b(x), doing a mod p reduction when a
coefficient during this process exceeds p−1, then taking this product mod f(x)
via polynomial mod, again reducing mod p whenever appropriate during that
process. In principle, one could just form the unrestricted product a(x)b(x),
do a mod f reduction, then take a final mod p reduction, in which case the
final result would be the same but the interior integer multiplies might run
out of control, especially if there were many polynomials being multiplied. It
is best to take a reduction modulo p at every meaningful juncture.

Here is an example for explicit construction of a field of characteristic 2,
namely F16. According to our formula (2.5), there are exactly 3 irreducible
degree-4 polynomials in F2[x], and a quick check shows that they are x4+x+1,
x4 + x3 + 1, and x4 + x3 + x2 + x + 1. Though each of these can be used to
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create F16, the first has the pleasant property that reduction of high powers
of x to lower powers is particularly simple: The mod f(x) reduction is realized
through the simple rule x4 = x + 1 (recall that we are in characteristic 2, so
that 1 = −1). We may abbreviate typical field elements a0+a1x+a2x

2+a3x
3,

where each ai ∈ {0, 1} by the binary string (a0a1a2a3). We add componentwise
modulo 2, which amounts to an “exclusive-or” operation, for example

(0111) + (1011) = (1100).

To multiply a ∗ b = (0111) ∗ (1011) we can simulate the polynomial
multiplication by doing a convolution on the coordinates, first getting
(0110001), a string of length 7. (Calling this (c0c1c2c3c4c5c6) we have cj =∑

i1+i2=j ai1bi2 , where the sum is over pairs i1, i2 of integers in {0, 1, 2, 3} with
sum j.) To get the final answer, we take any 1 in places 6, 5, 4, in this order,
and replace them via the modulo f(x) relation. In our case, the 1 in place 6
gets replaced with 1’s in places 2 and 3, and doing the exclusive-or, we get
(0101000). There are no more high-order 1’s to replace, and our product is
(0101); that is, we have

(0111) ∗ (1011) = (0101).

Though this is only a small example, all the basic notions of general field
arithmetic via polynomials are present.

2.3 Squares and roots

2.3.1 Quadratic residues

We start with some definitions.

Definition 2.3.1. For coprime integers m, a with m positive, we say that
a is a quadratic residue (mod m) if and only if the congruence

x2 ≡ a (mod m)

is solvable for integer x. If the congruence is not so solvable, a is said to be a
quadratic nonresidue (mod m).

Note that quadratic residues and nonresidues are defined only when
gcd(a, m) = 1. So, for example, 0 (mod m) is always a square but is neither
a quadratic residue nor a nonresidue. Another example is 3 (mod 9). This
residue is not a square, but it is not considered a quadratic nonresidue since
3 and 9 are not coprime. When the modulus is prime the only non-coprime
case is the 0 residue, which is one of the choices in the next definition.

Definition 2.3.2. For odd prime p, the Legendre symbol
(
a
p

)
is defined as

(
a

p

)
=

⎧⎨
⎩

0, if a ≡ 0 (mod p),
1, if a is a quadratic residue (mod p),

−1, if a is a quadratic nonresidue (mod p).



2.3 Squares and roots 97

Thus, the Legendre symbol signifies whether or not a ≡ 0 (mod p) is a square
(mod p). Closely related, but differing in some important ways, is the Jacobi
symbol:

Definition 2.3.3. For odd natural number m (whether prime or not), and
for any integer a, the Jacobi symbol

(
a
m

)
is defined in terms of the (unique)

prime factorization
m =

∏
pti

i

as (
a

m

)
=

∏(
a

pi

)ti

,

where
(

a
pi

)
are Legendre symbols, with

(
a
1

)
= 1 understood.

Note, then, that the function χ(a) =
(

a
m

)
, defined for all integers a, is a

character modulo m; see Section 1.4.3. It is important to note right off that
for composite, odd m, a Jacobi symbol

(
a
m

)
can sometimes be +1 when x2 ≡ a

(mod m) is unsolvable. An example is(
2
15

)
=

(
2
3

)(
2
5

)
= (−1)(−1) = 1,

even though 2 is not, in fact, a square modulo 15. However, if
(

a
m

)
= −1, then

a is coprime to m and the congruence x2 ≡ a (mod m) is not solvable. And(
a
m

)
= 0 if and only if gcd(a, m) > 1.
It is clear that in principle the symbol

(
a
m

)
is computable: One factors

m into primes, and then computes each underlying Legendre symbol by
exhausting all possibilities to see whether the congruence x2 ≡ a (mod p) is
solvable. What makes Legendre and Jacobi symbols so very useful, though, is
that they are indeed very easy to compute, with no factorization or primality
test necessary, and with no exhaustive search. The following theorem gives
some of the beautiful properties of Legendre and Jacobi symbols, properties
that make their evaluation a simple task, about as hard as taking a gcd.

Theorem 2.3.4 (Relations for Legendre and Jacobi symbols). Let p de-
note an odd prime, let m, n denote arbitrary positive odd integers (including
possibly primes), and let a, b denote integers. Then we have the Euler test for
quadratic residues modulo primes, namely(

a

p

)
≡ a(p−1)/2 (mod p). (2.6)

We have the multiplicative relations(
ab

m

)
=

(
a

m

)(
b

m

)
, (2.7)

(
a

mn

)
=

(
a

m

)(
a

n

)
(2.8)



98 Chapter 2 NUMBER-THEORETICAL TOOLS

and special relations (−1
m

)
= (−1)(m−1)/2, (2.9)

(
2
m

)
= (−1)(m

2−1)/8. (2.10)

Furthermore, we have the law of quadratic reciprocity for coprime m, n:

(
m

n

)(
n

m

)
= (−1)(m−1)(n−1)/4. (2.11)

Already (2.6) shows that when |a| < p, the Legendre symbol
(
a
p

)
can be

computed in O
(
ln3 p

)
bit operations using naive arithmetic and Algorithm

2.1.5; see Exercise 2.17. But we can do better, and we do not even need to
recognize primes.

Algorithm 2.3.5 (Calculation of Legendre/Jacobi symbol). Given positive
odd integer m, and integer a, this algorithm returns the Jacobi symbol

(
a
m

)
, which

for m an odd prime is also the Legendre symbol.

1. [Reduction loops]
a = a mod m;
t = 1;
while(a = 0) {

while(a even) {
a = a/2;
if(m mod 8 ∈ {3, 5}) t = −t;

}
(a, m) = (m, a); // Swap variables.
if(a ≡ m ≡ 3 (mod 4)) t = −t;
a = a mod m;

}
2. [Termination]

if(m == 1) return t;
return 0;

It is clear that this algorithm does not take materially longer than using
Algorithm 2.1.2 to find gcd(a, m), and so runs in O

(
ln2 m

)
bit operations

when |a| < m.
In various other sections of this book we make use of a celebrated

connection between the Legendre symbol and exponential sums. The study of
this connection runs deep; for the moment we state one central, useful result,
starting with the following definition:
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Definition 2.3.6. The quadratic Gauss sum G(a;m) is defined for integers
a, N , with N positive, as

G(a;N) =
N−1∑
j=0

e2πiaj2/N .

This sum is—up to conjugation perhaps—a discrete Fourier transform (DFT)
as used in various guises in Chapter 8.8. A more general form—a character
sum—is used in primality proving (Section 4.4). The central result we wish
to cite makes an important connection with the Legendre symbol:

Theorem 2.3.7 (Gauss). For odd prime p and integer a ≡ 0 (mod p),

G(a; p) =
(

a

p

)
G(1; p),

and generally, for positive integer m,

G(1; m) =
1
2
√

m(1 + i)(1 + (−i)m).

The first assertion is really very easy, the reader might consider proving it
without looking up references. The two assertions of the theorem together
allow for Fourier inversion of the sum, so that one can actually express the
Legendre symbol for a ≡ 0 (mod p) by

(
a

p

)
=

c√
p

p−1∑
j=0

e2πiaj2/p =
c√
p

p−1∑
j=0

(
j

p

)
e2πiaj/p, (2.12)

where c = 1,−i as p ≡ 1, 3 (mod 4), respectively. This shows that the
Legendre symbol is, essentially, its own discrete Fourier transform (DFT).
For practice in manipulating Gauss sums, see Exercises 1.66, 2.27, 2.28, and
9.41.

2.3.2 Square roots

Armed now with algorithms for gcd, inverse (actually the −1 power), and
positive integer powers, we turn to the issue of square roots modulo a prime.
As we shall see, the technique actually calls for raising residues to high integral
powers, and so the task is not at all like taking square roots in the real
numbers.

We have seen that for odd prime p, the solvability of a congruence

x2 ≡ a ≡ 0 (mod p)

is signified by the value of the Legendre symbol
(
a
p

)
. When

(
a
p

)
= 1, an

important problem is to find a “square root” x, of which there will be two,
one the other’s negative (mod p). We shall give two algorithms for extracting
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such square roots, both computationally efficient but raising different issues
of implementation.

The first algorithm starts from Euler’s test (2.6). If the prime p is 3 (mod 4)
and

(
a
p

)
= 1, then Euler’s test says that at ≡ 1 (mod p), where t = (p − 1)/2.

Then at+1 ≡ a (mod p), and as t + 1 is even in this case, we may take for
our square root x ≡ a(t+1)/2 (mod p). Surely, this delightfully simple solution
to the square root problem can be generalized! Yes, but it is not so easy. In
general, we may write p − 1 = 2st, with t odd. Euler’s test (2.6) guarantees
us that a2s−1t ≡ 1 (mod p), but it does not appear to say anything about
A = at (mod p).

Well, it does say something; it says that the multiplicative order of A
modulo p is a divisor of 2s−1. Suppose that d is a quadratic nonresidue modulo
p, and let D = dt mod p. Then Euler’s test (2.6) says that the multiplicative
order of D modulo p is exactly 2s, since D2s−1 ≡ −1 (mod p). The same
is true about D−1 (mod p), namely, its multiplicative order is 2s. Since the
multiplicative group Z∗

p is cyclic, it follows that A is in the cyclic subgroup
generated by D−1, and in fact, A is an even power of D−1, that is, A ≡ D−2µ

(mod p) for some integer µ with 0 ≤ µ < 2s−1. Substituting for A we have
atD2µ ≡ 1 (mod p). Then after multiplying this congruence by a, the left side
has all even exponents, and we can extract the square root of a modulo p as
a(t+1)/2Dµ (mod p).

To make this idea into an algorithm, there are two problems that must be
solved:
(1) Find a quadratic nonresidue d (mod p).
(2) Find an integer µ with A ≡ D−2µ (mod p).
It might seem that problem (1) is simple and that problem (2) is difficult, since
there are many quadratic nonresidues modulo p and we only need one of them,
any one, while for problem (2) there is a specific integer µ that we are searching
for. In some sense, these thoughts are correct. However, we know no rigorous,
deterministic way to find a quadratic nonresidue quickly. We will get around
this impasse by using a random algorithm. And though problem (2) is an
instance of the notoriously difficult discrete logarithm problem (see Chapter
5), the particular instance we have in hand here is simple. The following
algorithm is due to A. Tonelli in 1891, based on earlier work of Gauss.

Algorithm 2.3.8 (Square roots (mod p)). Given an odd prime p and an
integer a with

(
a
p

)
= 1, this algorithm returns a solution x to x2 ≡ a (mod p).

1. [Check simplest cases: p ≡ 3, 5, 7 (mod 8)]
a = a mod p;
if(p ≡ 3, 7 (mod 8)) {

x = a(p+1)/4 mod p;
return x;

}
if(p ≡ 5 (mod 8)) {
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x = a(p+3)/8 mod p;
c = x2 mod p; // Then c ≡ ±a (mod p).
if(c = a mod p) x = x2(p−1)/4 mod p;
return x;

}
2. [Case p ≡ 1 (mod 8)]

Find a random integer d ∈ [2, p − 1] with
(
d
p

)
= −1;

// Compute Jacobi symbols via Algorithm 2.3.5.
Represent p − 1 = 2st, with t odd;
A = at mod p;
D = dt mod p;
m = 0; // m will be 2µ of text discussion.
for(0 ≤ i < s){ // One may start at i = 1; see text.

if((ADm)2
s−1−i ≡ −1 (mod p)) m = m + 2i;

} // Now we have ADm ≡ 1 (mod p).
x = a(t+1)/2Dm/2 mod p;
return x;

Note the following interesting features of this algorithm. First, it turns out
that the p ≡ 1 (mod 8) branch—the hardest case—will actually handle all
the cases. (We have essentially used in the p ≡ 5 (mod 8) case that we may
choose d = 2. And in the p ≡ 3 (mod 4) cases, the exponent m is 0, so we
do not need a value of d.) Second, notice that built into the algorithm is the
check that A2s−1 ≡ 1 (mod p), which is what ensures that m is even. If this
fails, then we do not have

(
a
p

)
= 1, and so the algorithm may be amended to

leave out this requirement, with a break called for if the case i = 0 in the loop
produces the residue −1. If one is taking many square roots of residues a for
which it is unknown whether a is a quadratic residue or nonresidue, then one
may be tempted to just let Algorithm 2.3.8 decide the issue for us. However,
if nonresidues occur a positive fraction of the time, it will be faster on average
to first run Algorithm 2.3.5 to check the quadratic character of a, and thus
avoid running the more expensive Algorithm 2.3.8 on the nonresidues.

As we have mentioned, there is no known deterministic, polynomial time
algorithm for finding a quadratic nonresidue d for the prime p. However, if one
assumes the ERH, it can be shown there is a quadratic nonresidue d < 2 ln2 p;
see Theorem 1.4.5, and so an exhaustive search to this limit succeeds in finding
a quadratic nonresidue in polynomial time. Thus, on the ERH, one can find
square roots for quadratic residues modulo the prime p in deterministic,
polynomial time. It is interesting, from a theoretical standpoint, that for
a fixed, R. Schoof has a rigorously proved, deterministic, polynomial time
algorithm for square root extraction; see [Schoof 1985]. (The bit complexity
is polynomial in the length of p, but exponential in the length of a, so that
for a fixed it is correct to say that the algorithm is polynomial time.) Still,
in spite of this fascinating theoretical state of affairs, the fact that half of all
nonzero residues d (mod p) satisfy

(
d
p

)
= −1 leads to the expectation of only
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a few random attempts to find a suitable d. In fact, the expected number of
random attempts is 2.

The complexity of Algorithm 2.3.8 is dominated by the various exponen-
tiations called for, and so is O(s2 + ln t) modular operations. Assuming naive
arithmetic subroutines, this comes out to, in the worst case (when s is large),
O

(
ln4 p

)
bit operations. However, if one is applying Algorithm 2.3.8 to many

prime moduli p, it is perhaps better to consider its average case, which is just
O

(
ln3 p

)
bit operations. This is because there are very few primes p with p−1

divisible by a large power of 2.
The following algorithm is asymptotically faster than the worst case of

Algorithm 2.3.8. A beautiful application of arithmetic in the finite field Fp2 ,
the method is a 1907 discovery of M. Cipolla.

Algorithm 2.3.9 (Square roots (mod p) via Fp2 arithmetic). Given an
odd prime p and a quadratic residue a modulo p, this algorithm returns a so-
lution x to x2 ≡ a (mod p).
1. [Find a certain quadratic nonresidue]

Find a random integer t ∈ [0, p − 1] such that
(
t2−a

p

)
= −1;

// Compute Jacobi symbols via Algorithm 2.3.5.

2. [Find a square root in Fp2 = Fp(
√

t2 − a) ]
x = (t +

√
t2 − a)(p+1)/2; // Use Fp2 arithmetic.

return x;

The probability that a random value of t will be successful in Step [Find a
certain quadratic nonresidue] is (p − 1)/2p. It is not hard to show that the
element x ∈ Fp2 is actually an element of the subfield Fp of Fp2 , and that
x2 ≡ a (mod p). (In fact, the second assertion forces x to be in Fp, since a
has the same square roots in Fp as it has in the larger field Fp2 .)

A word is in order on the field arithmetic, which for this case of Fp2 is
especially simple, as might be expected on the basis of Section 2.2.2. Let
ω =

√
t2 − a. Representing this field by

Fp2 = {x + ωy : x, y ∈ Fp} = {(x, y)},

all arithmetic may proceed using the rule

(x, y) ∗ (u, v) = (x + yω)(u + vω)
= xu + yvω2 + (xv + yu)ω
= (xu + yv(t2 − a), xv + yu),

noting that ω2 = t2 − a is in Fp. Of course, we view x, y, u, v, t, a as residues
modulo p and the above expressions are always reduced to this modulus. Any
of the binary ladder powering algorithms in this book may be used for the
computation of x in step [Find a square root . . .]. An equivalent algorithm for
square roots is given in [Menezes et al. 1997], in which one finds a quadratic
nonresidue b2 − 4a, defines the polynomial f(x) = x2 − bx + a in Fp[x], and
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simply computes the desired root r = x(p+1)/2 mod f (using polynomial-mod
operations). Note finally that the special cases p ≡ 3, 5, 7 (mod 8) can also
be ferreted out of any of these algorithms, as was done in Algorithm 2.3.8, to
improve average performance.

The complexity of Algorithm 2.3.9 is O(ln3 p) bit operations (assuming
naive arithmetic), which is asymptotically better than the worst case of
Algorithm 2.3.8. However, if one is loath to implement the modified powering
ladder for the Fp2 arithmetic, the asymptotically slower algorithm will usually
serve. Incidentally, there is yet another, equivalent, approach for square
rooting by way of Lucas sequences (see Exercise 2.31).

It is very interesting to note at this juncture that there is no known fast
method of computing square roots of quadratic residues for general composite
moduli. In fact, as we shall see later, doing so is essentially equivalent to
factoring the modulus (see Exercise 6.5).

2.3.3 Finding polynomial roots

Having discussed issues of existence and calculation of square roots, we now
consider the calculation of roots of a polynomial of arbitrary degree over
a finite field. We specify the finite field as Fp, but much of what we say
generalizes to an arbitrary finite field.

Let g ∈ Fp[x] be a polynomial; that is, it is a polynomial with integer
coefficients reduced (mod p). We are looking for the roots of g in Fp, and so
we might begin by replacing g(x) with the gcd of g(x) and xp − x, since as
we have seen, the latter polynomial is the product of x − a as a runs over
all elements of Fp. If p > deg g, one should first compute xp mod g(x) via
Algorithm 2.1.5. If the gcd has degree not exceeding 2, the prior methods we
have learned settle the matter. If it has degree greater than 2, then we take a
further gcd with (x+ a)(p−1)/2 − 1 for a random a ∈ Fp. Any particular b = 0
in Fp is a root of (x + a)(p−1)/2 − 1 with probability 1/2, so that we have a
positive probability of splitting g(x) into two polynomials of smaller degree.
This suggests a recursive algorithm, which is what we describe below.

Algorithm 2.3.10 (Roots of a polynomial over Fp).
Given a nonzero polynomial g ∈ Fp[x], with p an odd prime, this algorithm returns
the set r of the roots (without multiplicity) in Fp of g. The set r is assumed global,
augmented as necessary during all recursive calls.

1. [Initial adjustments]
r = { }; // Root list starts empty.
g(x) = gcd(xp − x, g(x)); // Using Algorithm 2.2.1.
if(g(0) == 0) { // Check for 0 root.

r = r ∪ {0};
g(x) = g(x)/x;

}
2. [Call recursive procedure and return]
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r = r ∪ roots(g);
return r;

3. [Recursive function roots()]
roots(g) {

If deg(g) ≤ 2, use quadratic (or lower) formula, via Algorithm 2.3.8, or
2.3.9, to append to r all roots of g, and return;

while(h == 1 or h == g) { // Random splitting.
Choose random a ∈ [0, p − 1];
h(x) = gcd((x + a)(p−1)/2 − 1, g(x));

}
r = r ∪ roots(h) ∪ roots(g/h);
return;

}

The computation of h(x) in the random-splitting loop can be made easier
by using Algorithm 2.1.5 to first compute (x + a)(p−1)/2 mod g(x) (and of
course, the coefficients are always reduced (mod p)). It can be shown that the
probability that a random a will succeed in splitting g(x) (where deg(g) ≥ 3)
is at least about 3/4 if p is large, and is always bounded above 0. Note that
we can use the random splitting idea on degree-2 polynomials as well, and
thus we have a third square root algorithm! (If g(x) has degree 2, then the
probability that a random choice for a in Step [Recursive . . .] will split g is
at least (p − 1)/(2p).) Various implementation details of this algorithm are
discussed in [Cohen 2000]. Note that the algorithm is not actually factoring
the polynomial; for example, a polynomial f might be the product of two
irreducible polynomials, each of which is devoid of roots in Fp. For actual
polynomial factoring, there is the Berlekamp algorithm [Menezes et al. 1997],
[Cohen 2000], but many important algorithms require only the root finding
we have exhibited.

We now discuss the problem of finding roots of a polynomial to a composite
modulus. Suppose the modulus is n = ab, where a, b are coprime. If we have an
integer r with f(r) ≡ 0 (mod a) and an integer s with f(s) ≡ 0 (mod b), we
can find a root to f(x) ≡ 0 (mod ab) that “corresponds” to r and s. Namely,
if the integer t simultaneously satisfies t ≡ r (mod a) and t ≡ s (mod b),
then f(t) ≡ 0 (mod ab). And such an integer t may be found by the Chinese
remainder theorem; see Theorem 2.1.6. Thus, if the modulus n can be factored
into primes, and we can solve the case for prime power moduli, then we can
solve the general case.

To this end, we now turn our attention to solving polynomial congruences
modulo prime powers. Note that for any polynomial f(x) ∈ Z[x] and any
integer r, there is a polynomial gr(x) ∈ Z[x] with

f(x + r) = f(r) + xf ′(r) + x2gr(x). (2.13)
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This can be seen either through the Taylor expansion for f(x + r) or through
the binomial theorem in the form

(x + r)d = rd + drd−1x + x2
d∑

j=2

(
d

j

)
rd−jxj−2.

We can use Algorithm 2.3.10 to find solutions to f(x) ≡ 0 (mod p), if there are
any. The question is how we might be able to “lift” a solution to one modulo
pk for various exponents k. Suppose we have been successful in finding a root
modulo pi, say f(r) ≡ 0 (mod pi), and we wish to find a solution to f(t) ≡ 0
(mod pi+1) with t ≡ r (mod pi). We write t as r + piy, and so we wish to
solve for y. We let x = piy in (2.13). Thus

f(t) = f(r + piy) ≡ f(r) + piyf ′(r) (mod p2i).

If the integer f ′(r) is not divisible by p, then we can use the methods of
Section 2.1.1 to solve the congruence

f(r) + piyf ′(r) ≡ 0 (mod p2i),

namely by dividing through by pi (recall that f(r) is divisible by pi), finding an
inverse z for f ′(r) (mod pi), and letting y = −zf(r)p−i mod pi. Thus, we have
done more than we asked for, having instantly gone from the modulus pi to the
modulus p2i. But there was a requirement that the integer r satisfy f ′(r) ≡ 0
(mod p). In general, if f(r) ≡ f ′(r) ≡ 0 (mod p), then there may be no integer
t ≡ r (mod p) with f(t) ≡ 0 (mod p2). For example, take f(x) = x2 + 3 and
consider the prime p = 3. We have the root x = 0; that is, f(0) ≡ 0 (mod 3).
But the congruence f(x) ≡ 0 (mod 9) has no solution. For more on criteria for
when a polynomial solution lifts to higher powers of the modulus, see Section
3.5.3 in [Cohen 2000].

The method described above is known as Hensel lifting, after the German
mathematician K. Hensel. The argument essentially gives a criterion for there
to be a solution of f(x) = 0 in the “p-adic” numbers: There is a solution if
there is an integer r with f(r) ≡ 0 (mod p) and f ′(r) ≡ 0 (mod p). What
is more important for us, though, is using this idea as an algorithm to solve
polynomial congruences modulo high powers of a prime. We summarize the
above discussion in the following.

Algorithm 2.3.11 (Hensel lifting). We are given a polynomial f(x) ∈ Z[x],
a prime p, and an integer r that satisfies f(r) ≡ 0 (mod p) (perhaps supplied
by Algorithm 2.3.10) and f ′(r) ≡ 0 (mod p). This algorithm describes how one
constructs a sequence of integers r0, r1, . . . such that for each i < j, ri ≡ rj

(mod p2j

) and f(ri) ≡ 0 (mod p2i

). The description is iterative, that is, we give
r0 and show how to find ri+1 as a function of an already known ri.

1. [Initial term]
r0 = r;
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2. [Function newr() that gives ri+1 from ri]
newr(ri) {

x = f(ri)p−2i

;
z = (f ′(r))−1 mod p2i

; // Via Algorithm 2.1.4.
y = −xz mod p2i

;
ri+1 = ri + yp2i

;
return ri+1;

}

Note that for j ≥ i we have rj ≡ ri

(
mod p2i)

, so that the sequence (ri)
converges in the p-adic numbers to a root of f(x). In fact, Hensel lifting may
be regarded as a p-adic version of the Newton methods discussed in Section
9.2.2.

2.3.4 Representation by quadratic forms

We next turn to a problem important to such applications as elliptic curves
and primality testing. This is the problem of finding quadratic Diophantine
representations, for positive integer d and odd prime p, in the form

x2 + dy2 = p,

or, in studies of complex quadratic orders of discriminant D < 0, D ≡ 0, 1
(mod 4), the form [Cohen 2000]

x2 + |D|y2 = 4p.

There is a beautiful approach for these Diophantine problems. The next
two algorithms are not only elegant, they are very efficient. Incidentally, the
following algorithm was attributed usually to Cornacchia until recently, when
it became known that H. Smith had discovered it earlier, in 1885 in fact.

Algorithm 2.3.12 (Represent p as x2 + dy2: Cornacchia–Smith method).
Given an odd prime p and a positive integer d not divisible by p, this algorithm
either reports that p = x2 + dy2 has no integral solution, or returns a solution.

1. [Test for solvability]
if(
(−d

p

)
== −1) return { }; // Return empty: no solution.

2. [Initial square root]
x0 =

√
−d mod p; // Via Algorithm 2.3.8 or 2.3.9.

if(2x0 < p) x0 = p − x0; // Justify the root.

3. [Initialize Euclid chain]
(a, b) = (p, x0);
c = �√p�; // Via Algorithm 9.2.11.

4. [Euclid chain]
while(b > c) (a, b) = (b, a mod b);

5. [Final report]
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t = p − b2;
if(t ≡ 0 (mod d)) return { }; // Return empty.
if(t/d not a square) return { }; // Return empty.
return (±b,±

√
t/d); // Solution(s) found.

This completely solves the computational Diophantine problem at hand. Note
that an integer square-root finding routine (Algorithm 9.2.11) is invoked at
two junctures. The second invocation—the determination as to whether t/d is
a perfect square—can be done along the lines discussed in the text following
the Algorithm 9.2.11 description. Incidentally, the proof that Algorithm 2.3.12
works is, in words from [Cohen 2000], “a little painful.” There is an elegant
argument, due to H. Lenstra, in [Schoof 1995], and a clear explanation from
an algorist’s point of view (for d = 1) in [Bressoud and Wagon 2000, p. 283].

The second case, namely for the Diophantine equation x2 + |D|y2 = 4p,
for D < 0, can be handled in the following way [Cohen 2000]. First we observe
that if D ≡ 0 (mod 4), then x is even, whence the problem comes down to
solving (x/2)2+(|D|/4)y2 = p, which we have already done. If D ≡ 1 (mod 8),
we have x2 − y2 ≡ 4 (mod 8), and so x, y are both even, and again we defer
to the previous method. Given the above argument, one could use the next
algorithm only for D ≡ 5 (mod 8), but in fact, the following will work for
what turn out to be convenient cases D ≡ 0, 1 (mod 4):

Algorithm 2.3.13. (Represent 4p as x2 + |D|y2 (modified Cornacchia–
Smith)) Given a prime p and −4p < D < 0 with D ≡ 0, 1 (mod 4), this algorithm
either reports that no solution exists, or returns a solution (x, y).
1. [Case p = 2]

if(p == 2) {
if(D + 8 is a square) return (

√
D + 8, 1);

return { }; // Return empty: no solution.
}

2. [Test for solvability]
if(
(
D
p

)
< 1) return { }; // Return empty.

3. [Initial square root]
x0 =

√
D mod p; // Via Algorithm 2.3.8 or 2.3.9.

if(x0 ≡ D (mod 2)) x0 = p − x0; // Ensure x2
0 ≡ D (mod 4p).

4. [Initialize Euclid chain]
(a, b) = (2p, x0);
c = �2√

p�; // Via Algorithm 9.2.11.

5. [Euclid chain]
while(b > c) (a, b) = (b, a mod b);

6. [Final report]
t = 4p − b2;
if(t ≡ 0 (mod |D|)) return { }; // Return empty.
if(t/|D| not a square) return { }; // Return empty.
return (±b,±

√
t/|D|); // Found solution(s).
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Again, the algorithm either says that there is no solution, or reports the
essentially unique solution to x2 + |D|y2 = 4p.

2.4 Exercises

2.1. Prove that 16 is, modulo any odd number, an eighth power.

2.2. Show that the least common multiple lcm (a, b) satisfies

lcm (a, b) =
ab

gcd(a, b)
,

and generalize this formula for more than two arguments. Then, using the
prime number theorem (PNT), find a reasonable estimate for the lcm of all
the integers from 1 through (a large) n.

2.3. Recall that ω(n) denotes the number of distinct prime factors of n.
Prove that for any positive squarefree integer n,

#{(x, y) : x, y positive integers, lcm (x, y) = n} = 3ω(n).

2.4. Study the relation between the Euclid algorithm and simple continued
fractions, with a view to proving the Lamé theorem (the first part of Theorem
2.1.3).

2.5. Fibonacci numbers are defined u0 = 0, u1 = 1, and un+1 = un + un−1
for n ≥ 1. Prove the remarkable relation

gcd(ua, ub) = ugcd(a,b),

which shows, among many other things, that un, un+1 are coprime for n > 1,
and that if un is prime, then n is prime. Find a counterexample to the
converse (find a prime p such that up is composite). By analyzing numerically
several Fibonacci numbers, guess—then prove—a simple, general formula for
the inverse of un (mod un+1).

Fibonacci numbers appear elsewhere in this book, e.g., in Sections 1.3.3,
3.6.1 and Exercises 3.25, 3.41, 9.50.

2.6. Show that for x ≈ y ≈ N , and assuming classical divide with remainder,
the bit-complexity of the classical Euclid algorithm is O

(
ln2 N

)
. It is helpful

to observe that to find the quotient–remainder pair q, r with x = qy+r requires
O((1 + ln q) lnx) bit operations, and that the quotients are constrained in a
certain way during the Euclid loop.

2.7. Prove that Algorithm 2.1.4 works; that is, the correct gcd and inverse
pair are returned. Answer the following question: When, if ever, do the
returned a, b have to be reduced further, to a mod y and b mod x, to yield
legitimate, unique inverses?

2.8. Argue that for a naive application of Theorem 2.1.6 the mod operations
involved consume at least O

(
ln2 M

)
bit operations if arithmetic be done in
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grammar-school fashion, but only O
(
r ln2 m

)
via Algorithm 2.1.7, where m

denotes the maximum of the mi.

2.9. Write a program to effect the asymptotically fast, preconditioned CRT
Algorithm 9.5.26, and use this to multiply two numbers each of, say, 100
decimal digits, using sufficiently many small prime moduli.

2.10. Following Exercise 1.48 one can use, for CRT moduli, Mersenne
numbers having pairwise coprime exponents (the Mersenne numbers need
not themselves be prime). What computational advantages might there be
in choosing such a moduli set (see Section 9.2.3)? Is there an easy way to find
inverses (2a − 1)−1 (mod 2b − 1)?

2.11. Give the computational complexity of the “straightforward inverse”
algorithm implied by relation (2.3). Is there ever a situation when one should
use this, or use instead Algorithm 2.1.4 to obtain a−1 mod m?

2.12. Let Nk(p) be the number of monic irreducible polynomials in Fp[x]
of degree k. Using formula (2.5), show that pk/k ≥ Nk(p) > pk/k − 2pk/2/k
for every prime p and every positive integer k. Show too that we always have
Nk(p) > 0.

2.13. Does formula (2.5) generalize to give the number of irreducible
polynomials of degree k in Fpn [x]?

2.14. Show how Algorithm 2.2.2 plays a role in finite field arithmetic, namely
in the process of finding a multiplicative inverse of an element in Fpn .

2.15. Prove Theorem 2.2.8.

2.16. Show how Algorithms 2.3.8 and 2.3.9 may be appropriately generalized
to find square roots of squares in the finite field Fpn .

2.17. By considering the binary expansion of the exponent n, show that
the computational complexity of Algorithm 2.1.5 is O(lnn) operations. Argue
that if x, n are each of size m and we are to compute xn mod m, and classical
multiply-mod is used, that the overall bit complexity of this powering grows
as the cube of the number of bits in m.

2.18. Say we wish to compute a power xy mod N , with N = pq, the product
of two distinct primes. Describe an algorithm that combines a binary ladder
and Chinese remainder theorem (CRT) ideas, and that yields the desired
power more rapidly than does a standard, (mod N)-based ladder.

2.19. The “repunit” number r1031 = (101031 − 1)/9, composed of 1031
decimal ones, is known to be prime. Determine, via reciprocity, which of
7,−7 is a quadratic residue of this repunit. Then give an explicit square root
(mod r1031) of the quadratic residue.
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2.20. Using appropriate results of Theorem 2.3.4, prove that for prime p > 3,(−3
p

)
= (−1)

(p−1) mod 6
4 .

Find a similar closed form for
(5
p

)
when p = 2, 5.

2.21. Show that for prime p ≡ 1 (mod 4), the sum of the quadratic residues
in [1, p − 1] is p(p − 1)/4.

2.22. Show that if a is a nonsquare integer, then
(
a
p

)
= −1 for infinitely many

primes p. (Hint: First assume that a is positive and odd. Show that there is
an integer b such that

(
b
a

)
= −1 and b ≡ 1 (mod 4). Then any positive integer

n ≡ b (mod 4a) satisfies
(

a
n

)
= −1, and so is divisible by a prime p with(

a
p

)
= −1. Show that infinitely many primes p arise in this way. Then deal

with the cases when a is even or negative.)

2.23. Use Exercise 2.22 to show that if f(x) is an irreducible quadratic
polynomial in Z[x], then there are infinitely many primes p such that
f(x) mod p is irreducible in Zp[x]. Show that x4 + 1 is irreducible in Z[x],
but is reducible in each Zp[x]. What about cubic polynomials?

2.24. Develop an algorithm for computing the Jacobi symbol
(

a
m

)
along the

lines of the binary gcd method of Algorithm 9.4.2.

2.25. Prove: For prime p with p ≡ 3 (mod 4), given any pair of square roots
of a given x ≡ 0 (mod p), one root is itself a quadratic residue and the other
is not. (The root that is the quadratic residue is known as the principal square
root.) See Exercises 2.26 and 2.42 for applications of the principal root.

2.26. We denote by Z∗
n the multiplicative group of the elements in Zn that

are coprime to n.
(1) Suppose n is odd and has exactly k distinct prime factors. Let J denote

the set of elements x ∈ Z∗
n with the Jacobi symbol

(
x
n

)
= 1 and let S

denote the set of squares in Z∗
n. Show that J is a subgroup of Z∗

n of
ϕ(n)/2 elements, and that S is a subgroup of J .

(2) Show that squares in Z∗
n have exactly 2k square roots in Z∗

n and conclude
that #S = ϕ(n)/2k.

(3) Now suppose n is a Blum integer; that is, n = pq is a product of two
different primes p, q ≡ 3 (mod 4). (Blum integers have importance in
cryptography (see [Menezes et al. 1997] and our Section 8.2).) From parts
(1) and (2), #S = 1

2#J , so that half of J ’s elements are squares, and half
are not. From part (2), an element of S has exactly 4 square roots. Show
that exactly one of these square roots is itself in S.

(4) For a Blum integer n = pq, show that the squaring function s(x) =
x2 mod n is a permutation on the set S, and that its inverse function is

s−1(y) = y((p−1)(q−1)+4)/8 mod n.
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2.27. Using Theorem 2.3.7 prove the two equalities in relations (2.12).

2.28. Here we prove the celebrated quadratic reciprocity relation (2.11) for
two distinct odd primes p, q. Starting with Definition 2.3.6, show that G is
multiplicative; that is, if gcd(m, n) = 1, then

G(m; n)G(n; m) = G(1;mn).

(Hint: mj2/n + nk2/m is similar—in a specific sense—to (mj + nk)2/(mn).)
Infer from this and Theorem 2.3.7 the relation (now for primes p, q)(

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

These are examples par excellence of the potential power of exponential
sums; in fact, this approach is one of the more efficient ways to arrive at
reciprocity. Extend the result to obtain the formula of Theorem 2.3.4 for

(2
p

)
.

Can this approach be extended to the more general reciprocity statement (i.e.,
for coprime m, n) in Theorem 2.3.4? Incidentally, Gauss sums for nonprime
arguments m, n can be evaluated in closed form, using the techniques of
Exercise 1.66 or the methods summarized in references such as [Graham and
Kolesnik 1991].

2.29. This exercise is designed for honing one’s skills in manipulating Gauss
sums. The task is to count, among quadratic residues modulo a prime p, the
exact number of arithmetic progressions of given length. The formal count of
length-3 progressions is taken to be

A(p) = #
{

(r, s, t) :
(

r
p

)
=

(
s
p

)
=

(
t
p

)
= 1; r = s; s − r ≡ t − s (mod p)

}
.

Note we are taking 0 ≤ r, s, t ≤ p − 1, we are ignoring trivial progressions
(r, r, r), and that 0 is not a quadratic residue. So the prime p = 11, for which
the quadratic residues are {1, 3, 4, 5, 9}, enjoys a total of A(11) = 10 arithmetic
progressions of length three. (One of these is 4, 9, 3; i.e., we allow wraparound
(mod 11); and also, descenders such as 5, 4, 3 are allowed.)

First, prove that

A(p) = −p − 1
2

+
1
p

p−1∑
k=0

∑
r,s,t

e2πik(r−2s+t)/p,

where each of r, s, t runs through the quadratic residues. Then, use relations
(2.12) to prove that

A(p) =
p − 1

8

(
p − 6 − 2

(
2
p

)
−

(−1
p

))
.

Finally, derive for the exact progression count the attractive expression

A(p) = (p − 1)
⌊

p − 2
8

⌋
.
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An interesting extension to this exercise is to analyze progressions of longer
length. Another direction: How many progressions of a given length would be
expected to exist amongst a random half of all residues {1, 2, 3, . . . , p − 1}
(see Exercise 2.41)?

2.30. Prove that square-root Algorithms 2.3.8 and 2.3.9 work.

2.31. Prove that the following algorithm (certainly reminiscent of the text
Algorithm 2.3.9) works for square roots (mod p), for p an odd prime. Let x
be the quadratic residue for which we desire a square root. Define a particular
Lucas sequence (Vk) by V0 = 2, V1 = h, and for k > 1

Vk = hVk−1 − xVk−2,

where h is such that
(
h2−4x

p

)
= −1. Then compute a square root of x as

y =
1
2
V(p+1)/2 (mod p).

Note that the Lucas numbers can be computed via a binary Lucas chain; see
Algorithm 3.6.7.

2.32. Implement Algorithm 2.3.8 or 2.3.9 or some other variant to solve each
of

x2 ≡ 3615 (mod 216 + 1),

x2 ≡ 552512556430486016984082237 (mod 289 − 1).

2.33. Show how to enhance Algorithm 2.3.8 by avoiding some of the
powerings called for, perhaps by a precomputation.

2.34. Prove that a primitive root of an odd prime p is a quadratic
nonresidue.

2.35. Prove that Algorithm 2.3.12 (alternatively 2.3.13) works. As intimated
in the text, the proof is not entirely easy. It may help to first prove a special-
case algorithm, namely for finding representations p = a2 + b2 when p ≡ 1
(mod 4). Such a representation always exists and is unique.

2.36. Since we have algorithms that extract square roots modulo primes,
give an algorithm for extracting square roots (mod n), where n = pq is
the product of two explicitly given primes. (The Chinese remainder theorem
(CRT) will be useful here.) How can one extract square roots of a prime power
n = pk? How can one extract square roots modulo n if the complete prime
factorization of n is known?

Note that in ignorance of the factorization of n, square root extraction is
extremely hard—essentially equivalent to factoring itself; see Exercise 6.5.

2.37. Prove that for odd prime p, the number of roots of ax2 + bx + c ≡ 0
(mod p), where a ≡ 0 (mod p), is given by 1+

(
D
p

)
, where D = b2 − 4ac is the
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discriminant. For the case 1 +
(
D
p

)
> 0, give an algorithm for calculation of

all the roots.

2.38. Find a prime p such that the least primitive root of p exceeds the
number of binary bits in p. Find an example of such a prime p that is also
a Mersenne prime (i.e., some p = Mq = 2q − 1 whose least primitive root
exceeds q). These findings show that the least primitive root can exceed lg p.
For more exploration along these lines see Exercise 2.39.

2.5 Research problems

2.39. Implement a primitive root-finding algorithm, and study the statistical
occurrence of least primitive roots.

The study of least primitive roots is highly interesting. It is known on
the GRH that 2 is a primitive root of infinitely many primes, in fact for a
positive proportion α =

∏
(1 − 1/p(p − 1)) ≈ 0.3739558, the product running

over all primes (see Exercise 1.90). Again on the GRH, a positive proportion
whose least primitive root is not 2, has 3 as a primitive root and so on;
see [Hooley 1976]. It is conjectured that the least primitive root for prime
p is O((ln p)(ln ln p)); see [Bach 1997a]. It is known, on the GRH, that the
least primitive root for prime p is O

(
ln6 p

)
; see [Shoup 1992]. It is known

unconditionally that the least primitive root for prime p is O(p1/4+ε) for
every ε > 0, and for infinitely many primes p it exceeds c ln p ln ln ln p for
some positive constant c, the latter a result of S. Graham and C. Ringrosee.
The study of the least primitive root is not unlike the study of the least
quadratic nonresidue—in this regard see Exercise 2.41.

2.40. Investigate the use of CRT in the seemingly remote domains of integer
convolution, or fast Fourier transforms, or public-key cryptography. A good
reference is [Ding et al. 1996].

2.41. Here we explore what might be called “statistical” features of the
Legendre symbol. For odd prime p, denote by N(a, b) the number of residues
whose successive quadratic characters are (a, b); that is, we wish to count
those integers x ∈ [1, p − 2] such that((

x

p

)
,

(
x + 1

p

))
= (a, b),

with each of a, b attaining possible values ±1. Prove that

4N(a, b) =
p−2∑
x=1

(
1 + a

(
x

p

))(
1 + b

(
x + 1

p

))

and therefore that

N(a, b) =
1
4

(
p − 2 − b − ab − a

(−1
p

))
.
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Establish the corollary that the number of pairs of consecutive quadratic
residues is (p − 5)/4, (p − 3)/4, respectively, as p ≡ 1, 3 (mod 4). Using the
formula for N(a, b), prove that for every prime p the congruence

x2 + y2 ≡ −1 (mod p)

is solvable.
One satisfying aspect of the N(a, b) formula is the statistical notion that

sure enough, if the Legendre symbol is thought of as generated by a “random
coin flip,” there ought to be about p/4 occurrences of a given pair (±1,±1).

All of this makes sense: The Legendre symbol is in some sense random.
But in another sense, it is not quite so random. Let us estimate a sum:

sA,B =
∑

A≤x<B

(
x

p

)
,

which can be thought of, in some heuristic sense we suppose, as a random
walk with N = B −A steps. On the basis of remarks following Theorem 2.3.7,
show that

|sA,B | ≤ 1√
p

p−1∑
b=0

∣∣∣∣ sin(πNb/p)
sin(πb/p)

∣∣∣∣ ≤ 1√
p

p−1∑
b=0

1
| sin(πb/p)| .

Finally, arrive at the Pólya–Vinogradov inequality:

|sA,B | <
√

p ln p.

Actually, the inequality is often expressed more generally, where instead of
the Legendre symbol as character, any nonprincipal character applies. This
attractive inequality says that indeed, the “statistical fluctuation” of the
quadratic residue/nonresidue count, starting from any initial x = A, is always
bounded by a “variance factor”

√
p (times a log term). One can prove more

than this; for example, using an inequality in [Cochrane 1987] one can obtain

|sA,B | <
4
π2

√
p ln p + 0.41

√
p + 0.61,

and it is known that on the GRH, sA,B = O
(√

p ln ln p
)
; see [Davenport

1980]. In any case, we deduce that out of any N consecutive integers,
N/2 + O(p1/2 ln p) are quadratic residues (mod p). We also conclude that the
least quadratic nonresidue (mod p) is bounded above by, at worst,

√
p ln p.

Further results on this interesting inequality are discussed in [Hildebrand
1988a, 1988b].

The Pólya–Vinogradov inequality thus restricted to quadratic characters
tells us that not just any coin-flip sequence can be a Legendre-symbol
sequence. The inequality says that we cannot, for large p say, have a Legendre-
symbol sequence such as (1, 1, 1, . . . ,−1 − 1 − 1) (i.e., first half are 1’s second
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half −1’s). We cannot even build up more than an O
(√

p ln p
)

excess of one
symbol over the other. But in a truly random coin-flip game, any pattern of
1’s and −1’s is allowed; and even if you constrain such a game to have equal
numbers of 1’s and −1’s as does the Legendre-symbol game, there are still
vast numbers of possible coin-flip sequences that cannot be symbol sequences.
In some sense, however, the Pólya–Vinogradov inequality puts the Legendre
symbol sequence smack in the middle of the distribution of possible sequences:
It is what we might expect for a random sequence of coin flips. Incidentally,
in view of the coin-flip analogy, what would be the expected value of the least
quadratic nonresidue (mod p)? In this regard see Exercise 2.39. For a different
kind of constraint on presumably random quadratic residues, see the remarks
at the end of Exercise 2.29.

2.42. Here is a fascinating line of research: Using the age-old and glorious
theory of the arithmetic–geometric mean (AGM), investigate the notion of
what we might call a “discrete arithmetic–geometric mean (DAGM).” It was
a tour de force of analysis, due to Gauss, Legendre, Jacobi, to conceive of the
analytic AGM, which is the asymptotic fixed point of the elegant iteration

(a, b) �→
(

a + b

2
,
√

ab

)
,

that is, one replaces the pair (a, b) of real numbers with the new pair of
arithmetic and geometric means, respectively. The classical AGM, then, is the
real number c to which the two numbers converge; sure enough, (c, c) �→ (c, c)
so the process tends to stabilize for appropriate initial choices of a and b. This
scheme is connected with the theory of elliptic integrals, the calculation of π
to (literally) billions of decimal places, and so on [Borwein and Borwein 1987].

But consider doing this procedure not on real numbers but on residues
modulo a prime p ≡ 3 (mod 4), in which case an x (mod p) that has a square
root always has a so-called principal root (and so an unambiguous choice
of square root can be taken; see Exercise 2.25). Work out a theory of the
DAGM modulo p. Perhaps you would want to cast

√
ab as a principal root if

said root exists, but something like a different principal root, say
√

gab, for
some fixed nonresidue g when ab is a nonresidue. Interesting theoretical issues
are these: Does the DAGM have an interesting cycle structure? Is there any
relation between your DAGM and the classical, analytic AGM? If there were
any fortuitous connection between the discrete and analytic means, one might
have a new way to evaluate with high efficiency certain finite hypergeometric
series, as appear in Exercise 7.26.



Chapter 3

RECOGNIZING PRIMES AND COMPOSITES

Given a large number, how might one quickly tell whether it is prime or
composite? In this chapter we begin to answer this fundamental question.

3.1 Trial division

3.1.1 Divisibility tests

A divisibility test is a simple procedure to be applied to the decimal digits
of a number n so as to determine whether n is divisible by a particular
small number. For example, if the last digit of n is even, so is n. (In fact,
nonmathematicians sometimes take this criterion as the definition of being
even, rather than being divisible by two.) Similarly, if the last digit is 0 or 5,
then n is a multiple of 5.

The simple nature of the divisibility tests for 2 and 5 are, of course, due
to 2 and 5 being factors of the base 10 of our numeration system. Digital
divisibility tests for other divisors get more complicated. Probably the next
most well-known test is divisibility by 3 or 9: The sum of the digits of n is
congruent to n (mod 9), so by adding up digits themselves and dividing by 3
or 9 respectively reveals divisibility by 3 or 9 for the original n. This follows
from the fact that 10 is one more than 9; if we happened to write numbers
in base 12, for example, then a number would be congruent (mod 11) to the
sum of its base-12 “digits.”

In general, divisibility tests based on digits get more and more complicated
as the multiplicative order of the base modulo the test divisor grows. For
example, the order of 10 (mod 11) is 2, so there is a simple divisibility test
for 11: The alternating sum of the digits of n is congruent to n (mod 11). For
7, the order of 10 is 6, and there is no such neat and tidy divisibility test,
though there are messy ones.

From a computational point of view, there is little difference between a
special divisibility test for the prime p and dividing by p to get the quotient
and the remainder. And with dividing there are no special formulae or rules
peculiar to the trial divisor p. So when working on a computer, or even for
extensive hand calculations, trial division by various primes p is simpler and
just as efficient as using various divisibility tests.
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3.1.2 Trial division

Trial division is the method of sequentially trying test divisors into a number
n so as to partially or completely factor n. We start with the first prime, the
number 2, and keep dividing n by 2 until it does not go, and then we try the
next prime, 3, on the remaining unfactored portion, and so on. If we reach a
trial divisor that is greater than the square root of the unfactored portion, we
may stop, since the unfactored portion is prime.

Here is an example. We are given the number n = 7399. We trial divide
by 2, 3, and 5 and find that they are not factors. The next choice is 7. It
is a factor; the quotient is 1057. We next try 7 again, and find that again it
goes, the quotient being 151. We try 7 one more time, but it is not a factor
of 151. The next trial is 11, and it is not a factor. The next trial is 13, but
this exceeds the square root of 151, so we find that 151 is prime. The prime
factorization of 7399 is 72 · 151.

It is not necessary that the trial divisors all be primes, for if a composite
trial divisor d is attempted, where all the prime factors of d have previously
been factored out of n, then it will simply be the case that d is not a factor
when it is tried. So though we waste a little time, we are not led astray in
finding the prime factorization.

Let us consider the example n = 492. We trial divide by 2 and find that
it is a divisor, the quotient being 246. We divide by 2 again and find that
the quotient is 123. We divide by 2 and find that it does not go. We divide
by 3, getting the quotient 41. We divide by 3, 4, 5 and 6 and find they do
not go. The next trial is 7, which is greater than

√
41, so we have the prime

factorization 492 = 22 · 3 · 41.
Now let us consider the neighboring number n = 491. We trial divide by

2, 3, and so on up through 22 and find that none are divisors. The next trial
is 23, and 232 > 491, so we have shown that 491 is prime.

To speed things up somewhat, one may exploit the fact that after 2, the
primes are odd. So 2 and the odd numbers may be used as trial divisors. With
n = 491, such a procedure would have stopped us from trial dividing by the
even numbers from 4 to 22. Here is a short description of trial division by 2
and the odd integers greater than 2.

Algorithm 3.1.1 (Trial division). We are given an integer n > 1. This
algorithm produces the multiset F of the primes that divide n. (A “multiset”
is a set where elements may be repeated; that is, a set with multiplicities.)

1. [Divide by 2]
F = { }; // The empty multiset.
N = n;
while(2|N) {

N = N/2;
F = F ∪ {2};

}
2. [Main division loop]
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d = 3;
while(d2 ≤ N) {

while(d|N) {
N = N/d;
F = F ∪ {d};

}
d = d + 2;

}
if(N == 1) return F ;
return F ∪ {N};

After 3, primes are either 1 or 5 (mod 6), and one may step through the
sequence of numbers that are 1 or 5 (mod 6) by alternately adding 2 and 4 to
the latest number. This is a special case of a “wheel,” which is a finite sequence
of addition instructions that may be repeated indefinitely. For example, after
5, all primes may be found in one of 8 residue classes (mod 30), and a wheel
that traverses these classes (beginning from 7) is

4, 2, 4, 2, 4, 6, 2, 6.

Wheels grow more complicated at a rapid rate. For example, to have a wheel
that traverses the numbers that are coprime to all the primes below 30, one
needs to have a sequence of 1021870080 numbers. And in comparison with
the simple 2, 4 wheel based on just the two primes 2 and 3, we save only little
more than 50% of the trial divisions. (Specifically, about 52.6% of all numbers
coprime to 2 and 3 have a prime factor less than 30.) It is a bit ridiculous
to use such an ungainly wheel. If one is concerned with wasting time because
of trial division by composites, it is much easier and more efficient to first
prepare a list of the primes that one will be using for the trial division. In the
next section we shall see efficient ways to prepare this list.

3.1.3 Practical considerations

It is perfectly reasonable to use trial division as a primality test when n is
not too large. Of course, “too large” is a subjective quality; such judgment
depends on the speed of the computing equipment and how much time you are
willing to allow a computer to run. It also makes a difference whether there is
just the occasional number you are interested in, as opposed to the possibility
of calling trial division repeatedly as a subroutine in another algorithm. On a
modern workstation, and very roughly speaking, numbers that can be proved
prime via trial division in one minute do not exceed 13 decimal digits. In one
day of current workstation time, perhaps a 19-digit number can be resolved.
(Although these sorts of rules of thumb scale, naturally, according to machine
performance in any given era.)

Trial division may also be used as an efficient means of obtaining a partial
factorization n = FR as discussed above. In fact, for every fixed trial division
bound B ≥ 2, at least one quarter of all numbers have a divisor F that is
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greater than B and composed solely of primes not exceeding B; see Exercise
3.4.

Trial division is a simple and effective way to recognize smooth numbers,
or numbers without large prime factors, see Definition 1.4.8.

It is sometimes useful to have a “smoothness test,” where for some
parameter B, one wishes to know whether a given number n is B-smooth,
that is, n has no prime factor exceeding B. Trial division up to B not only
tells us whether n is B-smooth, it also provides us with the prime factorization
of the largest B-smooth divisor of n.

The emphasis in this chapter is on recognizing primes and composites,
and not on factoring. So we leave a further discussion of smoothness tests to
a later time.

3.1.4 Theoretical considerations

Suppose we wish to use trial division to completely factor a number n into
primes. What is the worst case running time? This is easy, for the worst case is
when n is prime and we must try as potential divisors the numbers up to

√
n.

If we are using just primes as trial divisors, the number of divisions is about
2
√

n/ lnn. If we use 2 and the odd numbers as trial divisors, the number of
divisions is about 1

2

√
n. If we use a wheel as discussed above, the constant 1

2
is replaced by a smaller constant.

So this is the running time for trial division as a primality test. What is its
complexity as an algorithm to obtain the complete factorization of n when n is
composite? The worst case is still about

√
n, for just consider the numbers that

are the double of a prime. We can also ask for the average case complexity for
factoring composites. Again, it is almost

√
n, since the average is dominated

by those composites that have a very large prime factor. But such numbers are
rare. It may be interesting to throw out the 50% worst numbers and compute
the average running time for trial division to completely factor the remaining
numbers. This turns out to be nc, where c = 1/(2

√
e) ≈ 0.30327; see Exercise

3.5.
As we shall see later in this chapter and in the next chapter, the problem

of recognizing primes is much easier than the general case of factorization. In
particular, we have much better ways than trial division to recognize primes.
Thus, if one uses trial division as a factorization method, one should augment
it with a faster primality test whenever a new unfactored portion of n is
discovered, so that the last bit of trial division may be skipped when the
last part turns out to be prime. So augmenting trial division, the time to
completely factor a composite n essentially is the square root of the second
largest prime factor of n.

Again the average is dominated by a sparse set of numbers, in this case
those numbers that are the product of two primes of the same order of
magnitude; the average being about

√
n. But now throwing out the 50% worst

numbers gives a smaller estimate for the average of the remaining numbers.
It is nc, where c ≈ 0.23044.
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3.2 Sieving

Sieving can be a highly efficient means of determining primality and factoring
when one is interested in the results for every number in a large, regularly
spaced set of integers. On average, the number of arithmetic operations spent
per number in the set can be very small, essentially bounded.

3.2.1 Sieving to recognize primes

Most readers are likely to be familiar with the sieve of Eratosthenes. In its
most common form it is a device for finding the primes up to some number
N . Start with an array of N − 1 “ones,” corresponding to the numbers from
2 to N . The first one corresponds to “2,” so the ones in locations 4, 6, 8,
and so on, are all changed to zeros. The next one is in the position “3,” and
we read this as an instruction to change any ones in locations 6, 9, 12, and
so on, into zeros. (Entries that are already zeros in these locations are left
unchanged.) We continue in this fashion. If the next entry one corresponds
to “p,” we change to zero any entry one at locations 2p, 3p, 4p, and so on.
However, if p is so large that p2 > N , we may stop this process. This exit
point can be readily detected by noticing that when we attempt to sieve by p
there are no changes of ones to zeros to be made. At this point the one entries
in the list correspond to the primes not exceeding N , while the zero entries
correspond to the composites.

In passing through the list 2p, 3p, 4p, and so on, one starts from the initial
number p and sequentially adds p until we arrive at a number exceeding N .
Thus the arithmetic operations in the sieve are all additions. The number of
steps in the sieve of Eratosthenes is proportional to

∑
p≤N N/p, where p runs

over primes. But ∑
p≤N

N

p
= N ln lnN + O(N); (3.1)

see Theorem 427 in [Hardy and Wright 1979]. Thus, the number of steps
needed per number up to N is proportional to ln lnN . It should be noted
that ln lnN , though it does go to infinity, does so very slowly. For example,
ln lnN < 10 for all N ≤ 109565.

The biggest computer limitation on sieves is the enormous space they
can consume. Sometimes it is necessary to segment the array from 2 to N .
However, if the length of a segment drops below

√
N , the efficiency of the sieve

of Eratosthenes begins to deteriorate. The time it takes to sieve a segment of
length M with the primes up to

√
N is proportional to

M ln lnN + π
(√

N
)

+ O(M),

where π(x) denotes the number of primes up to x. Since π
(√

N
)

∼
2
√

N/ lnN , by the prime number theorem, we see that this term can be
much larger than the “main term” M ln lnN when M is small. In fact, it is an
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unsolved problem to come up with a method of finding all the primes in the
interval

[
N, N + N1/4

]
that is appreciably faster than individually examining

each number. This problem is specified in Exercise 3.46.

3.2.2 Eratosthenes pseudocode

We now give practical pseudocode for implementing the ordinary Eratosthenes
sieve to find primes in an interval.

Algorithm 3.2.1 (Practical Eratosthenes sieve). This algorithm finds all
primes in an interval (L, R) by establishing Boolean primality bits for successive
runs of B odd numbers. We assume L, R even, with R > L, B |R − L and
L > P = �

√
R�. We also assume the availability of a table of the π(P ) primes

pk ≤ P .

1. [Initialize the offsets]
for(k ∈ [2, π(P )]) qk =

(
− 1

2 (L + 1 + pk)
)

mod pk;

2. [Process blocks]
T = L;
while(T < R) {

for(j ∈ [0, B − 1]) bj = 1;
for(k ∈ [2, π(P )]) {

for(j = qk; j < B; j = j + pk) bj = 0;
qk = (qk − B) mod pk;

}
for(j ∈ [0, B − 1]) {

if(bj == 1) report T +2j +1; // Output the prime p = T +2j +1.
}
T = T + 2B;

}

Note that this algorithm can be used either to find the primes in (L, R), or
just to count said primes precisely, though more sophisticated prime counting
methods are covered in Section 3.7. By use of a wheel, see Section 3.1, the
basic sieve Algorithm 3.2.1 may be somewhat enhanced (see Exercise 3.6).

3.2.3 Sieving to construct a factor table

By a very small change, the sieve of Eratosthenes can be enhanced so that it
not only identifies the primes up to N , but also gives the least prime factor
of each composite up to N . This is done as follows. Instead of changing “one”
to “zero” when the prime p hits a location, you change any ones to p, where
entries that have already been changed into smaller primes are left unchanged.

The time for this sieve is the same as for the basic sieve of Eratosthenes,
though more space is required.

A factor table can be used to get the complete prime factorization of
numbers in it. For example, by the entry 12033 one would see 3, meaning that
3 is the least prime factor of 12033. Dividing 3 into 12033, we get 4011, and
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this number’s entry is also 3. Dividing by 3 again, we get 1337, whose entry
is 7. Dividing by 7, we get 191, whose entry is 1. Thus 191 is prime and we
have the prime factorization

12033 = 32 · 7 · 191.

Factor tables predate, by far, the computer era. Extensive hand-computed
factor tables were indispensable to researchers doing numerical work in
number theory for many decades prior to the advent of electronic calculating
engines.

3.2.4 Sieving to construct complete factorizations

Again, at the cost of somewhat more space, but very little more time, one
may adapt the sieve of Eratosthenes so that next to entry m is the complete
prime factorization of m. One does this by appending the prime p to lists at
locations p, 2p, 3p, . . . , p�N/p�. One also needs to sieve with the powers pa of
primes p ≤

√
N , where the power pa does not exceed N . At each multiple of

pa another copy of the prime p is appended. To avoid sieving with the primes
in the interval

(√
N, N

]
, one can divide to complete the factorization.

For example, say N = 20000; let us follow what happens to the entry
m = 12033. Sieving by 3, we change the 1 at location 12033 to 3. Sieving by
9, we change the 3 at location 12033 to 3, 3. Sieving by 7, we change the entry
to 3, 3, 7. At the end of sieving (which includes sieving with all primes up to
139 and higher powers of these primes up to 20000), we return to each location
in the sieve and multiply the list there. At the location 12033, we multiply
3 · 3 · 7, getting 63. Dividing 63 into 12033, the quotient is 191, which is also
put on the list. So the final list for 12033 is 3, 3, 7, 191, giving the complete
prime factorization of 12033.

3.2.5 Sieving to recognize smooth numbers

Using the sieve of Eratosthenes to get complete factorizations may be
simplified and turned into a device to recognize all of the B-smooth numbers
(see Definition 1.4.8) in [2, N ]. We suppose that 2 ≤ B ≤

√
N . Perform the

factorization sieve as in the above subsection, but with two simplifications: (1)
Do not sieve with any pa where p exceeds B, and (2) if the product of the list
at a location is not equal to that location number, then do not bother dividing
to get the quotient. The B-smooth numbers are precisely those at locations
that are equal to the product of the primes in the list at that location.

To simplify slightly, we might multiply a running product at each location
by p whenever pa hits there. There is no need to keep the lists around if we
are interested only in picking out the B-smooth numbers. At the end of the
sieve, those locations whose location numbers are equal to the entry in the
location are the B-smooth numbers.

For example, say B = 10 and N = 20000. The entry corresponding to
12033 starts as 1, and gets changed sequentially to 3, to 9, and finally to
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63. Thus 12033 is not 10-smooth. However, the entry at 12000 gets changed
sequentially to 2, 4, 8, 16, 32, 96, 480, 2400, and finally 12000. Thus 12000 is
10-smooth.

One important way of speeding this sieve is to do the arithmetic at each
location in the sieve with logarithms. Doing exact arithmetic with logarithms
involves infinite precision, but there is no need to be exact. For example, say we
use the closest integer to the base-2 logarithm. For 12000 this is 14. We also use
the approximations lg 2 ≈ 1 (this one being exact), lg 3 ≈ 2, lg 5 ≈ 2, lg 7 ≈ 3.
The entry now at location 12000 gets changed sequentially to 1, 2, 3, 4, 5, 7,
9, 11, 13. This is close enough to the target 14 for us to recognize that 12000 is
smooth. In general, if we are searching for B-smooth numbers, then an error
smaller than lg B is of no consequence.

One should see the great advantage of working with approximate
logarithms, as above. First, the numbers one deals with are very small. Second,
the arithmetic necessary is addition, an operation that is much faster to
perform on most computers than multiplication or division. Also note that
the logarithm function moves very slowly for large arguments, so that all
nearby locations in the sieve have essentially the same target. For example,
above we had 14 the target for 12000. This same number is used as the target
for all locations between 213.5 and 214.5, namely, all integers between 11586
and 23170.

We shall find later an important application for this kind of sieve in
factorization algorithms. And, as discussed in Section 6.4, sieving for smooth
numbers is also crucial in some discrete logarithm algorithms. In these settings
we are not so concerned with doing a perfect job sieving, but rather just
recognizing most B-smooth numbers without falsely reporting too many
numbers that are not B-smooth. This is a liberating thought that allows
further speed-ups in sieving. The time spent sieving with a prime p in the
sieve is proportional to the product of the length of the sieve and 1/p. In
particular, small primes are the most time-consuming. But their logarithms
contribute very little to the sum, and so one might agree to forgo sieving
with these small primes, allowing a little more error in the sieve. In the above
example, say we forgo sieving with the moduli 2, 3, 4, 5. We will sieve by
higher powers of 2, 3, and 5, as well as all powers of 7, to recognize our 10-
smooth numbers. Then the running sum in location 12000 is 3, 4, 5, 9, 11.
This total is close enough to 14 to cause a report, and the number 12000 is
not overlooked. But we were able to avoid the most costly part of the sieve to
find it.

3.2.6 Sieving a polynomial

Suppose f(x) is a polynomial with integer coefficients. Consider the numbers
f(1), f(2), . . . , f(N). Say we wish to find the prime numbers in this list, or to
prepare a factor table for the list, or to find the B-smooth numbers in this
list. All of these tasks can easily be accomplished with a sieve. In fact, we have
already seen a special case of this for the polynomial f(x) = 2x + 1, when we
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noticed that it was essentially sufficient to sieve just the odd numbers up to
N when searching for primes.

To sieve the sequence f(1), f(2), . . . , f(N), we initialize with ones an array
corresponding to the numbers 1, 2, . . . , N . An important observation is that
if p is prime and a satisfies f(a) ≡ 0 (mod p), then f(a + kp) ≡ 0 (mod p)
for every integer k. Of course, there may be as many as degf such solutions
a, and hence just as many distinct arithmetic progressions {a + kp} for each
sieving prime p.

Let us illustrate with the polynomial f(x) = x2 + 1. We wish to find the
primes of the form x2 +1 for x an integer, 1 ≤ x ≤ N . For each prime p ≤ N ,
solve the congruence x2 + 1 ≡ 0 (mod p) (see Section 2.3.2). When p ≡ 1
(mod 4), there are two solutions, when p ≡ 3 (mod 4), there are no solutions,
and when p = 2 there is exactly one solution. For each prime p and solution
a (that is, a2 + 1 ≡ 0 (mod p) and 1 ≤ a < p), we sieve the residue class a
(mod p) up to N , changing any ones to zeros. However, the very first place
a may correspond to the prime p itself, which may easily be detected by the
criterion a <

√
p, or by computing a2+1 and seeing whether it is p. Of course,

if p = a2 + 1, we should leave the entry at this location as a 1.
Again, this sieve works because a2 + 1 ≡ 0 (mod p) if and only if

(a + kp)2 + 1 ≡ 0 (mod p) for every integer k (and we only need the values of
k such that 1 ≤ a + kp ≤ N).

An important difference with the ordinary sieve of Eratosthenes is how far
one must go to detect the primes. The general principle is that one must sieve
with the primes up to the square root of the largest number in the sequence
f(1), f(2), . . . , f(N). (We assume here that these values are all positive.) In
the case of x2 + 1 this means that we must sieve with all the primes up to N ,
rather than stopping at

√
N as with the ordinary sieve of Eratosthenes.

The time it takes to sieve x2 + 1 for primes for x running up to N is,
after finding the solutions to the congruences x2 + 1 ≡ 0 (mod p), about
the same as the ordinary sieve of Eratosthenes. This may seem untrue, since
there are now many primes for which we must sieve two residue classes, and
we must consider all of the primes up to N , not just

√
N . The reply to the

first objection is that yes, this is correct, but there are also many primes for
which we sieve no residue classes at all. On the second objection, the key here
is that the sum of the reciprocals of all of the primes between

√
N and N is

bounded as N grows (it is asymptotically equal to ln 2), so the extra sieving
time is only O(N). That is, what we are asserting is that not only do we have

∑
p≤√

N

1
p

= ln lnN + O(1),

we also have
1
2

+ 2
∑

p≤N, p≡1 (mod 4)

1
p

= ln lnN + O(1)

(see Chapter 7 in [Davenport 1980]).
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It is important to be able to sieve the consecutive values of a polynomial
for B-smooth numbers, as in Section 3.2.5. All of the ideas of that section
port most naturally to the ideas of this section.

3.2.7 Theoretical considerations

The complexity N ln lnN of the sieve of Eratosthenes may be reduced
somewhat by several clever arguments. The following algorithm is based
on ideas of Mairson and Pritchard (see [Pritchard 1981]). It requires only
O(N/ ln lnN) steps, where each step is either for bookkeeping or an addition
with integers at most N . (Note that an explicit pseudocode display for a
rudimentary Eratosthenes sieve appears in Section 3.2.2.)

Algorithm 3.2.2 (Fancy Eratosthenes sieve). We are given a number N ≥
4. This algorithm finds the set of primes in [1, N ]. Let pl denote the l-th prime,
let Ml = p1p2 · · · pl, and let Sl denote the set of numbers in [1, N ] that are
coprime to Ml. Note that if pm+1 >

√
N , then the set of primes in [1, N ] is

(Sm \ {1}) ∪ {p1, p2, . . . , pm}. The algorithm recursively finds Sk, Sk+1, . . . , Sm

starting from a moderately sized initial value k and ending with m = π(
√

N).
1. [Setup]

Set k as the integer with Mk ≤ N/ lnN < Mk+1;
m = π(

√
N);

Use the ordinary sieve of Eratosthenes (Algorithm 3.2.1) to find the primes
p1, p2, . . . , pk and to find the set of integers in [1, Mk] coprime to Mk;

2. [Roll wheel]
Roll the Mk “wheel” (see Section 3.1) to find the set Sk;
S = Sk;

3. [Find gaps]
for(l ∈ [k + 1, m]) {

p = pl = the least member of S that exceeds 1;
// At this point, S = Sl−1.

Find the set G of gaps between consecutive members of S ∩ [1, N/p];
// Each number that is a gap is counted only once in G.

Find the set pG = {pg : g ∈ G};
// Use “repeated doubling method” (see Algorithm 2.1.5).

4. [Find special set]
Find the set pS ∩ [1, N ] = {ps : ps ≤ N, s ∈ S} as follows: If s and

s′ are consecutive members of S with s′p ≤ N and sp has already
been computed, then ps′ = ps + p(s′ − s);
// Note that s′ − s is a member of G and the number p(s′ − s)

has already been computed in Step [Find gaps]. So ps′ may be
computed via a subtraction (to find s′ − s), a look-up (to find
p(s′ −s)) and an addition. (Since the least member of S is 1, the
first value of ps is p itself and does not need any computation.)

5. [Find next set S]
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S = S \ (pS ∩ [1, N ]); // Now S = Sl.
l = l + 1;

}
6. [Return the set of primes in [1, N ]]

return (S \ {1}) ∪ {p1, p2, . . . , pm};

Each set Sl consists of the numbers in [1, N ] that are coprime to p1, p2, . . . , pl.
Thus the first member after 1 is the (l + 1)-th prime, pl+1. Let us count
the number of operations in Algorithm 3.2.2. The number of operations for
Step [Setup] is O((N/ lnN)

∑
i≤k 1/pi) = O(N ln lnN/ lnN). (In fact, the

expression ln lnN may be replaced with ln ln lnN , but it is not necessary for
the argument.) For Step [Roll wheel], the number of operations is #Sk ≤
�N/Mk�ϕ(Mk) = O(Nϕ(Mk)/Mk), where ϕ is Euler’s function. The fraction
ϕ(Mk)/Mk is exactly equal to the product of the numbers 1 − 1/pi for
i = 1 up to k. By the Mertens Theorem 1.4.2, this product is asymptotically
e−γ/ ln pk. Further, from the prime number theorem, we have that pk is
asymptotically equal to lnN . Thus the number of operations for Step [Roll
wheel] is O(N/ ln lnN).

It remains to count the number of operations for steps [Find gaps] and
[Find special set]. Suppose S = Sl−1, and let Gl = G. The number of members
of S ∩ [1, N/pl] is O(N/(pl ln pl−1)), by Mertens. Thus, the total number of
steps to find all sets Gl is bounded by a constant times

m∑
l=k+1

N/(pl ln pl−1) = O(N/ ln pk) = O(N/ ln lnN).

The number of additions required to compute gpl for g in Gl by the repeated
doubling method is O(ln g) = O(lnN). The sum of all of the values of g in Gl

is at most N/pl, so that the number of members of Gl is O
(√

N/pl

)
. Thus

the total number of additions in Step [Find gaps] is bounded by a constant
times

m∑
l=k+1

√
N

pl
lnN ≤

�√
N�∑

i=2

√
N

i
lnN ≤

∫ √
N

1

√
N

t
lnN dt = 2N3/4 lnN.

We cannot be so crude in our estimation of the number of operations in Step
[Find special set]. Each of these operations is the simple bookkeeping step
of deleting a member of a set. Since no entry is deleted more than once, it
suffices to count the total number of deletions in all iterations of Step [Find
special set]. But this total number of deletions is just the size of the set Sk

less the number of primes in
[√

N, N
]
. This is bounded by #Sk, which we

have already estimated to be O(N/ ln lnN).



128 Chapter 3 RECOGNIZING PRIMES AND COMPOSITES

3.3 Recognizing smooth numbers

A very important subroutine in many number-theoretic algorithms involves
identifying the smooth numbers in a given list of numbers. We have many
methods for recognizing these smooth numbers, since any factorization
algorithm will do. However, some factorization algorithms, such as trial
division, find the smaller prime factors of the number being factored before
finding the larger prime factors. Such a method could presumably reject a
number for not being y-smooth before completely factoring it. Factorization
methods with this property include trial division, the Pollard rho method, and
the Lenstra elliptic curve method, the latter two methods being discussed later
in the book. Used as smoothness tests, these three factorization methods have
the following rough complexities: Trial division takes y1+o(1) operations per
number examined, the rho method takes y1/2+o(1) operations, and the elliptic
curve method takes about exp((2 ln y ln ln y)1/2) = yo(1) operations. Here an
“operation” is an arithmetic step with numbers the size of the specific number
being examined. (It should be pointed out that the complexity estimates for
both the rho method and the elliptic curve method are heuristic.)

Sometimes we can use a sieve to recognize smooth numbers, and when we
can, it is very fast. For example, if we have a string of consecutive integers
or more generally a string of consecutive values of a polynomial with integer
coefficients (and with low degree), and if this string has length L ≥ y, with
maximal member M , then the time to examine every single one of the L
numbers for y-smoothness is about L ln lnM ln ln y, or about ln lnM ln ln y
bit operations per number. (The factor ln lnM arises from using approximate
logarithms, as discussed in Section 3.2.5.) In fact, sieving is so fast that the
run time is dominated more by retrieving numbers from memory than by
doing actual computations.

In this section we shall discuss an important new method of D. Bernstein
(see [Bernstein 2004d]), which can recognize the smooth numbers in any set
of at least y numbers, and whose amortized time per number examined is
almost as fast as sieving: It is (ln2 y lnM)1+o(1) bit operations per number,
if the numbers are at most M . To achieve this complexity, though, one must
use sophisticated subroutines for large-integer arithmetic, such as the fast
Fourier transform or equivalent convolution techniqes (see our Chapter 8.8
and [Bernstein 2004e]).

We shall illustrate the Bernstein method with the smoothness bound y set
at 20, and with the set of numbers being examined being 1001, 1002, . . . , 1008.
(It is not important that the numbers be consecutive, it is just easier to
keep track of them for the illustration.) A moment’s inspection shows the 20-
smooth numbers in the list to be the first and last, namely 1001 and 1008.
The algorithm not only tells us this, it gives the largest 20-smooth divisor for
each number in the list.

The plan of the Bernstein algorithm, as applied to this example, is first
to find the product of all of the primes up to 20, namely 9699690, and then
reduce this product modulo each of the eight numbers on our list. Say x is on
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our list and 9699690 mod x = r. Then r = ab, where a = gcd(9699690, x) and
gcd(b, x) = 1. If the highest exponent on any prime in the prime factorization
of x is bounded above by 2e, then gcd(r2e

mod x, x) is the 20-smooth part
of x. So in our case, we can take e = 4, since 224

> 1008. Let us see what
happens for the number x = 1008. First, we have r = 714. Next we take
7142i

mod 1008 for i = 1, 2, 3, 4, getting 756, 0, 0, 0. Of course, we ought to
be smart enough to stop when we get the first 0, since this already implies
that 1008 is 20-smooth. If we apply this idea to x = 1004, we get r = 46, and
the requisite powers are 108, 620, 872, 356. We take gcd(356, 1004) and find
it to be 4. Surely this must be the long way around! But as we shall see, the
method scales beautifully. Further, we shall see that it is not interesting to
focus on any one number, but on all numbers together.

We form the product 9699690 of the primes up to 20 via a “product tree;”
see [Bernstein 2004e]. This is just the binary tree as so:

�������

9699690
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�

��6
���2

���3

�
�

��35
���5

���7

�������46189
�

�
��143

�
�

��323
���17

���19
���11

���13

Product tree for P = {2, 3, 5, 7, 11, 13, 17, 19}

We start at the leaves, multiplying ourselves through the binary tree to the
root, whose label is the product P = 9699690 of all of the leaves.

We wish to find each residue P mod x as x varies over the numbers we are
examining for smoothness. If we do this separately for each x, since P is so
large, the process will take too long. Instead, we first multiply all the numbers
x together! We do this as with the primes, with a product tree. However, we
never need to form a product that is larger than P ; say we simply indicate such
large products with an asterisk. Let us consider the product tree T formed
from the numbers 1001, 1002, . . . , 1008:
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� ∗
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�
��1003002
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������� ∗
�
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�
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��1015056
���1007

���1008
���1005

���1006

Product tree T for X = {1001, 1002, . . . , 1008}



130 Chapter 3 RECOGNIZING PRIMES AND COMPOSITES

Next we reduce the number P modulo every label in T by creating
a “remainder tree” (see [Bernstein 2004e]). In general, a remainder tree
P mod T for a given integer P and a given product tree T is the corresponding
tree in which each label in T being replaced by its remainder when it is divided
into P . This relabeling is achieved by replacing the label R at the root of T
with P mod R, and then working toward the leaves, each entry is replaced with
the remainder after dividing this entry into the new label of its parent. We
illustrate with the product tree T formed from 1001, . . . , 1008 and the number
P = 9699690 found in our first product tree. We may evidently convert each
asterisk in T to P .

�������

9699690

� 9699690�
�

��672672
���0

���330

�
�

��636582
���680

���46

�������9699690
�

�
��600420

�
�

��564186
���266

���714
���435

���844

Remainder tree P mod T

For each x that we are examining for smoothness, the corresponding leaf
value in the remainder tree is P mod x. Take this residue, sequentially square
modulo x the requisite number of times, and at last take the gcd of the final
result with x. A value of 0 signifies that x is smooth over the primes in P ,
and a nonzero value is itself the largest divisor of x that is smooth over the
primes in P . Here is pseudocode for this beautiful algorithm.

Algorithm 3.3.1 (Batch smoothness test (Bernstein)). We are given a fi-
nite set X of positive integers and a finite set P of primes. For each x ∈ X , this
algorithm returns the largest divisor of x composed of primes from P.

1. [Compute product trees]
Compute the product tree for P;
Set P as the product of the members of P;

// We find P at the root of the product tree for P.
Compute the product tree T for X , but only for products at most P ;

2. [Compute remainder tree]
Compute the remainder tree P mod T ; // Notation described in text.

3. [Find smooth parts]
Set e as the least positive integer with max X ≤ 22e

;
for(x ∈ X ){

Find P mod x in the remainder tree P mod T ;
// No additional mod calculation is necessary.

r = P mod x;
s = r2e

mod x; // Compute s by sequential squaring and reducing.
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g = gcd(s, x);
return “the largest divisor of x composed of primes from P is g”;

}

The Bernstein Algorithm 3.3.1 is an important addition to the repertoire
of computational number theory. It can profitably be used to speed up various
other algorithms where smoothness is desired. One example arises in the
step [Factor orders] of the Atkin–Morain primality test (Algorithm 7.6.3).
Algorithm 3.3.1 can even be useful in situations in which sieving is completely
appropriate, such as in the quadratic sieve and number field sieve factoring
algorithms (see Chapter 6). Indeed, in these algorithms, the yield rate of
smooth numbers can be so small, it is advantageous to sieve only partially
(forget about small primes in the factor base, which involve the most memory
retrievals), tune the sieve to report candidates with a large smooth divisor,
and then run Algorithm 3.3.1 on the much smaller, but still large, reported
set. This idea of removing small primes from a sieve can be found already in
[Pomerance 1985], but with Algorithm 3.3.1 it can be used more aggressively.

3.4 Pseudoprimes

Suppose we have a theorem, “If n is prime, then S is true about n,” where “S ”
is some easily checkable arithmetic statement. If we are presented with a large
number n, and we wish to decide whether n is prime or composite, we may
very well try out the arithmetic statement S and see whether it actually holds
for n. If the statement fails, we have proved the theorem that n is composite.
If the statement holds, however, it may be that n is prime, and it also may
be that n is composite. So we have the notion of S-pseudoprime, which is a
composite integer for which S holds.

One example might be the theorem, If n is prime, then n is 2 or n is
odd. Certainly this arithmetic property is easily checked for any given input
n. However, as one can readily see, this test is not very strong evidence of
primality, since there are many more pseudoprimes around for this test than
there are genuine primes. Thus, for the concept of “pseudoprime” to be useful,
it will have to be the case that there are, in some appropriate sense, few of
them.

3.4.1 Fermat pseudoprimes

The fact that the residue ab (mod n) may be rapidly computed (see Algorithm
2.1.5) is fundamental to many algorithms in number theory. Not least of these
is the exploitation of Fermat’s little theorem as a means to distinguish between
primes and composites.

Theorem 3.4.1 (Fermat’s little theorem). If n is prime, then for any
integer a, we have

an ≡ a (mod n). (3.2)
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Proofs of Fermat’s little theorem may be found in any elementary number
theory text. One particularly easy proof uses induction on a and the binomial
theorem to expand (a + 1)n.

When a is coprime to n we may divide both sides of (3.2) by a to obtain

an−1 ≡ 1 (mod n). (3.3)

Thus, (3.3) holds whenever n is prime and n does not divide a.
We say that a composite number n is a (Fermat) pseudoprime if (3.2)

holds. For example, n = 91 is a pseudoprime base 3, since 91 is composite
and 391 ≡ 3 (mod 91). Similarly, 341 is a pseudoprime base 2. The base a = 1
is uninteresting, since every composite number is a pseudoprime base 1. We
suppose now that a ≥ 2.

Theorem 3.4.2. For each fixed integer a ≥ 2, the number of Fermat
pseudoprimes base a that are less than or equal to x is o(π(x)) as x → ∞.
That is, Fermat pseudoprimes are rare compared with primes.

For pseudoprimes defined via the congruence (3.3), this theorem was first
proved in [Erdős 1950]. For the possibly larger class of pseudoprimes defined
via (3.2), the theorem was first proved in [Li 1997].

Theorem 3.4.2 tells us that using the Fermat congruence to distinguish
between primes and composites is potentially very useful. However, this was
known as a practical matter long before the Erdős proof.

Note that odd numbers n satisfy (3.3) for a = n−1, so that the congruence
does not say very much about n in this case. If (3.3) holds for a pair n, a, where
1 < a < n−1, we say that n is a probable prime base a. Thus, if n is a prime,
then it is a probable prime base a for every integer a with 1 < a < n − 1.
Theorem 3.4.2 asserts that for a fixed choice of a, most probable primes base
a are actually primes. We thus have a simple test to distinguish between
members of a set that contains a sparse set of composite numbers and all of
the primes exceeding a+1, and members of the set of the remaining composite
numbers exceeding a + 1.

Algorithm 3.4.3 (Probable prime test). We are given an integer n > 3 and
an integer a with 2 ≤ a ≤ n − 2. This algorithm returns either “n is a probable
prime base a” or “n is composite.”

1. [Compute power residue]
b = an−1 mod n; // Use Algorithm 2.1.5.

2. [Return decision]
if(b == 1) return “n is a probable prime base a”;
return “n is composite”;

We have seen that with respect to a fixed base a, pseudoprimes (that
is, probable primes that are composite) are sparsely distributed. However,
paucity notwithstanding, there are infinitely many.
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Theorem 3.4.4. For each integer a ≥ 2 there are infinitely many Fermat
pseudoprimes base a.

Proof. We shall show that if p is any odd prime not dividing a2 − 1, then
n =

(
a2p − 1

)
/
(
a2 − 1

)
is a pseudoprime base a. For example, if a = 2 and

p = 5, then this formula gives n = 341. First note that

n =
ap − 1
a − 1

· ap + 1
a + 1

,

so that n is composite. Using (3.2) for the prime p we get upon squaring both
sides that a2p ≡ a2 (mod p). So p divides a2p − a2. Since p does not divide
a2 − 1, by hypothesis, and since n − 1 =

(
a2p − a2

)
/
(
a2 − 1

)
, we conclude

that p divides n−1. We can conclude a second fact about n−1 as well: Using
the identity

n − 1 ≡ a2p−2 + a2p−4 + · · · + a2,

we see that n − 1 is the sum of an even number of terms of the same parity,
so n − 1 must be even. So far, we have learned that both 2 and p are divisors
of n − 1, so that 2p must likewise be a divisor. Then a2p − 1 is a divisor of
an−1 −1. But a2p −1 is a multiple of n, so that (3.3) holds, as does (3.2). �

3.4.2 Carmichael numbers

In search of a simple and quick method of distinguishing prime numbers from
composite numbers, we might consider combining Fermat tests for various
bases a. For example, though 341 is a pseudoprime base 2, it is not a
pseudoprime base 3. And 91 is a base-3, but not a base-2 pseudoprime. Perhaps
there are no composites that are simultaneously pseudoprimes base 2 and 3,
or if such composites exist, perhaps there is some finite set of bases such that
there are no pseudoprimes to all the bases in the set. It would be nice if this
were true, since then it would be a simple computational matter to test for
primes.

However, the number 561 = 3 · 11 · 17 is not only a Fermat pseudoprime
to both bases 2 and 3, it is a pseudoprime to every base a. It may be a shock
that such numbers exist, but indeed they do. They were first discovered by
R. Carmichael in 1910, and it is after him that we name them.

Definition 3.4.5. A composite integer n for which an ≡ a (mod n) for
every integer a is a Carmichael number.

It is easy to recognize a Carmichael number from its prime factorization.

Theorem 3.4.6 (Korselt criterion). An integer n is a Carmichael number
if and only if n is positive, composite, squarefree, and for each prime p dividing
n we have p − 1 dividing n − 1.

Remark. A. Korselt stated this criterion for Carmichael numbers in 1899,
eleven years before Carmichael came up with the first example. Perhaps
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Korselt felt sure that no examples could possibly exist, and developed the
criterion as a first step toward proving this.

Proof. First, suppose n is a Carmichael number. Then n is composite. Let p
be a prime factor of n. From pn ≡ p (mod n), we see that p2 does not divide
n. Thus, n is squarefree. Let a be a primitive root modulo p. Since an ≡ a
(mod n), we have an ≡ a (mod p), from which we see that an−1 ≡ 1 (mod p).
But a (mod p) has order p − 1, so that p − 1 divides n − 1.

Now, conversely, assume that n is composite, squarefree, and for each
prime p dividing n, we have p−1 dividing n−1. We are to show that an ≡ a
(mod n) for every integer a. Since n is squarefree, it suffices to show that
an ≡ a (mod p) for every integer a and for each prime p dividing n. So suppose
that p|n and a is an integer. If a is not divisible by p, we have ap−1 ≡ 1 (mod p)
(by (3.3)), and since p − 1 divides n − 1, we have an−1 ≡ 1 (mod p). Thus,
an ≡ a (mod p). But this congruence clearly holds when a is divisible by p,
so it holds for all a. This completes the proof of the theorem. �

Are there infinitely many Carmichael numbers? Again, unfortunately for
primality testing, the answer is yes. This was shown in [Alford et al. 1994a].
P. Erdős had given a heuristic argument in 1956 that not only are there
infinitely many Carmichael numbers, but they are not as rare as one might
expect. That is, if C(x) denotes the number of Carmichael numbers up to the
bound x, then Erdős conjectured that for each ε > 0, there is a number x0(ε)
such that C(x) > x1−ε for all x ≥ x0(ε). The proof of Alford, Granville, and
Pomerance starts from the Erdős heuristic and adds some new ingredients.

Theorem 3.4.7. (Alford, Granville, Pomerance). There are infinitely many
Carmichael numbers. In particular, for x sufficiently large, the number C(x)
of Carmichael numbers not exceeding x satisfies C(x) > x2/7.

The proof is beyond the scope of this book; it may be found in [Alford et al.
1994a].

The “sufficiently large” in Theorem 3.4.7 has not been calculated, but
probably it is the 96th Carmichael number, 8719309. From calculations in
[Pinch 1993] it seems likely that C(x) > x1/3 for all x ≥ 1015. Already at
1015, there are 105212 Carmichael numbers. Though Erdős has conjectured
that C(x) > x1−ε for x ≥ x0(ε), we know no numerical value of x with
C(x) > x1/2.

Is there a “Carmichael number theorem,” which like the prime number
theorem would give an asymptotic formula for C(x)? So far there is not even
a conjecture for what this formula may be. However, there is a somewhat
weaker conjecture.

Conjecture 3.4.1 (Erdős, Pomerance). The number C(x) of Carmichael
numbers not exceeding x satisfies

C(x) = x1−(1+o(1)) ln ln ln x/ ln ln x

as x → ∞.
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An identical formula is conjectured for P2(x), the number of base-2
pseudoprimes up to x. It has been proved, see [Pomerance 1981], that both

C(x) < x1−ln ln ln x/ ln ln x,

P2(x) < x1−ln ln ln x/(2 ln ln x),

for all sufficiently large values of x.

3.5 Probable primes and witnesses

The concept of Fermat pseudoprime, developed in the previous section, is
a good one, since it is easy to check and for each base a > 1 there are
few pseudoprimes compared with primes (Theorem 3.4.2). However, there are
composites, the Carmichael numbers, for which (3.2) is useless as a means of
recognizing them as composite. As we have seen, there are infinitely many
Carmichael numbers. There are also infinitely many Carmichael numbers
that have no small prime factor (see [Alford et al. 1994b]), so that for these
numbers, even the slightly stronger test (3.3) is computationally poor.

We would ideally like an easy test for which there are no pseudoprimes.
Failing this, we would like a family of tests, such that each composite is
not a pseudoprime for a fixed, positive fraction of the tests in the family.
The Fermat family does not meet this goal, since there are infinitely many
Carmichael numbers. However, a slightly different version of Fermat’s little
theorem (Theorem 3.4.1) does meet this goal.

Theorem 3.5.1. Suppose that n is an odd prime and n − 1 = 2st, where t
is odd. If a is not divisible by n then{

either at ≡ 1 (mod n)
or a2it ≡ −1 (mod n) for some i with 0 ≤ i ≤ s − 1.

(3.4)

The proof of Theorem 3.5.1 uses only Fermat’s little theorem in the form (3.3)
and the fact that for n an odd prime, the only solutions to x2 ≡ 1 (mod n) in
Zn are x ≡ ±1 (mod n). We leave the details to the reader.

In analogy to probable primes, we can now define a strong probable prime
base a. This is an odd integer n > 3 for which (3.4) holds for a, where
1 < a < n − 1. Since every strong probable prime base a is automatically a
probable prime base a, and since every prime greater than a + 1 is a strong
probable prime base a, the only difference between the two concepts is that
possibly fewer composites pass the strong probable prime test.

Algorithm 3.5.2 (Strong probable prime test). We are given an odd num-
ber n > 3, represented as n = 1+2st, with t odd. We are also given an integer a
with 1 < a < n − 1. This algorithm returns either “n is a strong probable prime
base a” or “n is composite.”

1. [Odd part of n − 1]
b = at mod n; // Use Algorithm 2.1.5.
if(b == 1 or b == n − 1) return “n is a strong probable prime base a”;
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2. [Power of 2 in n − 1]
for(j ∈ [1, s − 1]) { // j is a dummy counter.

b = b2 mod n;
if(b == n − 1) return “n is a strong probable prime base a”;

}
return “n is composite”;

This test was first suggested in [Artjuhov 1966/67], and a decade later,
J. Selfridge rediscovered the test and popularized it.

We now consider the possibility of showing that an odd number n is
composite by showing that (3.4) fails for a particular number a. For example,
we saw in the previous section that 341 is pseudoprime base 2. But (3.4) does
not hold for n = 341 and a = 2. Indeed, we have 340 = 22 · 85, 285 ≡ 32
(mod 341), and 2170 ≡ 1 (mod 341). In fact, we see that 32 is a nontrivial
square root of 1 (mod 341).

Now consider the pair n = 91 and a = 10. We have 90 = 21 · 45 and
1045 ≡ −1 (mod 91). So (3.4) holds.

Definition 3.5.3. We say that n is a strong pseudoprime base a if n is an
odd composite, n − 1 = 2st, with t odd, and (3.4) holds.

Thus, 341 is not a strong pseudoprime base 2, while 91 is a strong pseudoprime
base 10. J. Selfridge proposed using Theorem 3.5.1 as a pseudoprime test in
the early 1970s, and it was he who coined the term “strong pseudoprime.” It
is clear that if n is a strong pseudoprime base a, then n is a pseudoprime base
a. The example with n = 341 and a = 2 shows that the converse is false.

For an odd composite integer n we shall let

S(n) = {a (mod n) : n is a strong pseudoprime base a}, (3.5)

and let S(n) = #S(n). The following theorem was proved independently in
[Monier 1980] and [Rabin 1980].

Theorem 3.5.4. For each odd composite integer n > 9 we have S(n) ≤
1
4ϕ(n).

Recall that ϕ(n) is Euler’s function evaluated at n. It is the number of
integers in [1, n] coprime to n; that is, the order of the group Z∗

n. If we
know the prime factorization of n, it is easy to compute ϕ(n): We have
ϕ(n) = n

∏
p|n(1 − 1/p), where p runs over the prime factors of n.

Before we prove Theorem 3.5.4, we first indicate why it is a significant
result. If we have an odd number n and we wish to determine whether it
is prime or composite, we might try verifying (3.4) for some number a with
1 < a < n − 1. If (3.4) fails, then we have proved that n is composite. Such
a number a might be said to be a witness for the compositeness of n. In fact,
we make a formal definition.

Definition 3.5.5. If n is an odd composite number and a is an integer in
[1, n − 1] for which (3.4) fails, we say that a is a witness for n. Thus, for
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an odd composite number n, a witness is a base for which n is not a strong
pseudoprime.

A witness for n is thus the key to a short proof that n is composite.
Theorem 3.5.4 implies that at least 3/4 of all integers in [1, n − 1] are

witnesses for n, when n is an odd composite number. Since one can perform a
strong pseudoprime test very rapidly, it is easy to decide whether a particular
number a is a witness for n. All said, it would seem that it is quite an easy task
to produce witnesses for odd composite numbers. Indeed, it is, if one uses a
probabilistic algorithm. The following is often referred to as “the Miller–Rabin
test,”, though as one can readily see, it is Algorithm 3.5.2 done with a random
choice of the base a. (The original test in [Miller 1976] was somewhat more
complicated and was a deterministic, ERH-based test. It was M. Rabin, see
[Rabin 1976, 1980], who suggested a probabilistic algorithm as below.)

Algorithm 3.5.6 (Random compositeness test). We are given an odd num-
ber n > 3. This probabilistic algorithm attempts to find a witness for n and thus
prove that n is composite. If a is a witness, (a, YES) is returned; otherwise, (a,
NO) is returned.

1. [Choose possible witness]
Choose random integer a ∈ [2, n − 2];
Via Algorithm 3.5.2 decide whether n is a strong probable prime base a;

2. [Declaration]
if(n is a strong probable prime base a) return (a, NO);
return (a, YES);

One can see from Theorem 3.5.4 that if n > 9 is an odd composite, then the
probability that Algorithm 3.5.6 fails to produce a witness for n is < 1/4. No
one is stopping us from using Algorithm 3.5.6 repeatedly. The probability that
we fail to find a witness for an odd composite number n with k (independent)
iterations of Algorithm 3.5.6 is < 1/4k. So clearly we can make this probability
vanishingly small by choosing k large.

Algorithm 3.5.6 is a very effective method for recognizing composite
numbers. But what does it do if we try it on an odd prime? Of course it
will fail to produce a witness, since Theorem 3.5.1 asserts that primes have
no witnesses.

Suppose n is a large odd number and we don’t know whether n is prime
or composite. Say we try 20 iterations of Algorithm 3.5.6 and fail each time
to produce a witness. What should be concluded? Actually, nothing at all
can be concluded concerning whether n is prime or composite. Of course,
it is reasonable to strongly conjecture that n is prime. The probability that
20 iterations of Algorithm 3.5.6 fail to produce a witness for a given odd
composite is less than 4−20, which is less than one chance in a trillion. So yes,
n is most likely prime. But it has not been proved prime and in fact might
not be.
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The reader should consult Chapter 4 for strategies on proving prime those
numbers we strongly suspect to be prime. However, for practical applications,
one may be perfectly happy to use a number that is almost certainly prime, but
has not actually been proved to be prime. It is with this mindset that people
refer to Algorithm 3.5.6 as a “primality test.” It is perhaps more accurate to
refer to a number produced by such a test as an “industrial-grade prime,” to
use a phrase of H. Cohen.

The following algorithm may be used for the generation of random
numbers that are likely to be prime.

Algorithm 3.5.7 (“Industrial-grade prime” generation). We are given an
integer k ≥ 3 and an integer T ≥ 1. This probabilistic algorithm produces a
random k-bit number (that is, a number in the interval

[
2k−1, 2k

)
) that has not

been recognized as composite by T iterations of Algorithm 3.5.6.

1. [Choose candidate]
Choose a random odd integer n in the interval

(
2k−1, 2k

)
;

2. [Perform strong probable prime tests]
for(1 ≤ i ≤ T ) { // i is a dummy counter.

Via Algorithm 3.5.6 attempt to find a witness for n;
if(a witness is found for n) goto [Choose candidate];

}
return n; // n is an “industrial-grade prime.”

An interesting question is this: What is the probability that a number
produced by Algorithm 3.5.7 is composite? Let this probability be denoted
by P (k, T ). One might think that Theorem 3.5.4 immediately speaks to
this question, and that we have P (k, T ) ≤ 4−T . However, the reasoning is
fallacious. Suppose k = 500, T = 1. We know from the prime number theorem
(Theorem 1.1.4) that the probability that a random odd 500-bit number is
prime is about 1 chance in 173. Since it is evidently more likely that one
will witness an event with probability 1/4 occurring before an event with
probability 1/173, it may seem that there are much better than even odds
that Algorithm 3.5.7 will produce composites. In fact, though, Theorem 3.5.4
is a worst-case estimate, and for most odd composite numbers the fraction of
witnesses is much larger than 3/4. It is shown in [Burthe 1996] that indeed
we do have P (k, T ) ≤ 4−T .

If k is large, one gets good results even with T = 1 in Algorithm 3.5.7. It
is shown in [Damg̊ard et al. 1993] that P (k, 1) < k242−√

k. For specific large
values of k the paper has even better results, for example, P (500, 1) < 4−28.
Thus, if a randomly chosen odd 500-bit number passes just one iteration of a
random strong probable prime test, the number is composite with vanishingly
small probability, and may be safely accepted as a “prime” in all but the most
sensitive practical applications.

Before proving Theorem 3.5.4 we first establish some lemmas.
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Lemma 3.5.8. Say n is an odd composite with n − 1 = 2st, t odd. Let ν(n)
denote the largest integer such that 2ν(n) divides p−1 for each prime p dividing
n. If n is a strong pseudoprime base a, then a2ν(n)−1t ≡ ±1 (mod n).

Proof. If at ≡ 1 (mod n), it is clear that the conclusion of the lemma holds.
Suppose we have a2it ≡ −1 (mod n) and let p be a prime factor of n. Then
a2it ≡ −1 (mod p). If k is the order of a (mod p) (that is, k is the least
positive integer with ak ≡ 1 (mod p)), then k divides 2i+1t, but k does not
divide 2it. Thus the exact power of 2 in the prime factorization of k must be
2i+1. But also k divides p − 1, so that 2i+1|p − 1. Since this holds for each
prime p dividing n, we have i + 1 ≤ ν(n). Thus, a2ν(n)−1t ≡ 1 (mod n) or −1
(mod n) depending on whether i + 1 < ν(n) or i + 1 = ν(n). �

For the next lemma, let

S(n) =
{

a (mod n) : a2ν(n)−1t ≡ ±1 (mod n)
}

, S(n) = #S(n). (3.6)

Lemma 3.5.9. Recall the notation in Lemma 3.5.8 and (3.6). Let ω(n) be
the number of different prime factors of n. We have

S(n) = 2 · 2(ν(n)−1)ω(n)
∏
p|n

gcd(t, p − 1).

Proof. Let m = 2ν(n)−1t. Suppose that the prime factorization of n is
pj1
1 pj2

2 · · · pjk

k , where k = ω(n). We have that am ≡ 1 (mod n) if and only if
am ≡ 1 (mod pji

i ) for i = 1, 2, . . . , k. For an odd prime p and positive integer
j, the group Z∗

pj of reduced residues modulo pj is cyclic of order pj−1(p − 1);
that is, there is a primitive root modulo pj . (This theorem is mentioned in
Section 1.4.3 and can be found in most books on elementary number theory.
Compare, too, to Theorem 2.2.5.) Thus, the number of solutions a (mod pji

i )
to am ≡ 1 (mod pji

i ) is

gcd(m, pji−1
i (pi − 1)) = gcd(m, pi − 1) = 2ν(n)−1 · gcd(t, pi − 1).

(Note that the first equality follows from the fact that m divides n − 1, so is
not divisible by pi.) We conclude, via the Chinese remainder theorem, that
the number of solutions a (mod n) to am ≡ 1 (mod n) is

k∏
i=1

(
2ν(n)−1 · gcd(t, pi − 1)

)
= 2(ν(n)−1)ω(n)

∏
p|n

gcd(t, p − 1).

To complete the proof we must show that there are exactly as many
solutions to the congruence am ≡ −1 (mod n). Note that am ≡ −1 (mod pji

i )
if and only if a2m ≡ 1 (mod pji

i ) and am ≡ 1 (mod pji

i ). Since 2ν(n) divides
pi − 1 it follows as above that the number of solutions to am ≡ −1 (mod pji

i )
is

2ν(n) · gcd(t, pi − 1) − 2ν(n)−1 · gcd(t, pi − 1) = 2ν(n)−1 · gcd(t, pi − 1).



140 Chapter 3 RECOGNIZING PRIMES AND COMPOSITES

Thus there are just as many solutions to am ≡ 1 (mod n) as there are to
am ≡ −1 (mod n), and the lemma is proved. �

Proof of Theorem 3.5.4. From Lemma 3.5.8 and (3.6), it will suffice to show
that S(n)/ϕ(n) ≤ 1/4 whenever n is an odd composite that is greater than 9.
From Lemma 3.5.9, we have

ϕ(n)
S(n)

=
1
2

∏
pa‖n

pa−1 p − 1
2ν(n)−1 gcd(t, p − 1)

,

where the notation pa‖n means that pa is the exact power of the prime p
in the prime factorization of n. Each factor (p − 1)/(2ν(n)−1 gcd(t, p − 1)) is
an even integer, so that ϕ(n)/S(n) is an integer. In addition, if ω(n) ≥ 3, it
follows that ϕ(n)/S(n) ≥ 4. If ω(n) = 2 and n is not squarefree, the product
of the various pa−1 is at least 3, so that ϕ(n)/S(n) ≥ 6.

Now suppose n = pq, where p < q are primes. If 2ν(n)+1|q − 1, then
2ν(n)−1 gcd(t, q − 1) ≤ (q − 1)/4 and ϕ(n)/S(n) ≥ 4. We may suppose then
that 2ν(n)‖q − 1. Note that n − 1 ≡ p − 1 (mod q − 1), so that q − 1 does not
divide n − 1. This implies there is an odd prime dividing q − 1 to a higher
power than it divides n − 1; that is, 2ν(n)−1 gcd(t, q − 1) ≤ (q − 1)/6. We
conclude in this case that ϕ(n)/S(n) ≥ 6.

Finally, suppose that n = pa, where a ≥ 2. Then ϕ(n)/S(n) = pa−1, so
that ϕ(n)/S(n) ≥ 5, except when pa = 9. �

3.5.1 The least witness for n

We have seen in Theorem 3.5.4 that an odd composite number n has at least
3n/4 witnesses in the interval [1, n − 1]. Let W (n) denote the least of the
witnesses for n. Then W (n) ≥ 2. In fact, for almost all odd composites, we
have W (n) = 2. This is an immediate consequence of Theorem 3.4.2. The
following theorem shows that W (n) ≥ 3 for infinitely many odd composite
numbers n.

Theorem 3.5.10. If p is a prime larger than 5, then n = (4p + 1)/5 is a
strong pseudoprime base 2, so that W (n) ≥ 3.

Proof. We first show that n is a composite integer. Since 4p ≡ (−1)p ≡ −1
(mod 5), we see that n is an integer. That n is composite follows from the
identity

4p + 1 = (2p − 2(p+1)/2 + 1)(2p + 2(p+1)/2 + 1).

Note that 22p ≡ −1 (mod n), so that if m is odd, we have 22pm ≡ −1 (mod n).
But n − 1 = 22t, where t is odd and a multiple of p, the latter following from
Fermat’s little theorem (Theorem 3.4.1). Thus, 22t ≡ −1 (mod n), so that n
is a strong pseudoprime base 2. �

It is natural to ask whether W (n) can be arbitrarily large. In fact, this
question is crucial. If there is a number B that is not too large such that every
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odd composite number n has W (n) ≤ B, then the whole subject of testing
primality becomes trivial. One would just try each number a ≤ B and if (3.4)
holds for each such a, then n is prime. Unfortunately, there is no such number
B. The following result is shown in [Alford et al. 1994b].

Theorem 3.5.11. There are infinitely many odd composite numbers n with

W (n) > (lnn)1/(3 ln ln ln n).

In fact, the number of such composite numbers n up to x is at least

x1/(35 ln ln ln x)

when x is sufficiently large.

Failing a universal bound B, perhaps there is a slowly growing function of
n which is always greater than W (n). Based on [Miller 1976], the following
result is proved in [Bach 1985].

Theorem 3.5.12. On the ERH, W (n) < 2 ln2 n for all odd composite
numbers n.

Proof. Let n be an odd composite. Exercise 3.19 says that W (n) < ln2 n if
n is divisible by the square of a prime, and this result is not conditional
on any unproved hypotheses. We thus may assume that n is squarefree.
Suppose p is a prime divisor of n with p − 1 = 2s′

t′, t′ odd. Then the same
considerations that were used in the proof of Lemma 3.5.8 imply that if (3.4)
holds, then (a/p) = −1 if and only if a2s′−1t ≡ −1 (mod n). Since n is odd,
composite, and squarefree, it must be that n is divisible by two different odd
primes, say p1, p2. Let pi − 1 = 2siti, ti odd, for i = 1, 2, with s1 ≤ s2.
Let χ1(m) = (m/p1p2), χ2(m) = (m/p2), so that χ1 is a character to the
modulus p1p2 and χ2 is a character to the modulus p2. First, consider the
case s1 = s2. Under the assumption of the extended Riemann hypothesis,
Theorem 1.4.5 says that there is a positive number m < 2 ln2(p1p2) ≤ 2 ln2 n
with χ1(m) = 1. Then χ1(m) = 0 or −1. If χ1(m) = 0, then m is divisible by
p1 or p2, which implies that m is a witness. Suppose χ1(m) = −1, so that either
(m/p1) = 1, (m/p2) = −1 or vice versa. Without loss of generality, assume the
first holds. Then, as noted above, if (3.4) holds then m2s2−1t ≡ −1 (mod n),
which in turn implies that (m/p1) = −1, since s1 = s2. This contradiction
shows that m is a witness for n. Now assume that s1 < s2. Again, Theorem
1.4.5 implies that there is a natural number m < 2 ln2 p2 < 2 ln2 n with
(m/p2) = χ2(m) = 1. If (m/p2) = 0, then m is divisible by p2 and is a witness.
If (m/p2) = −1, then as above, m is not a witness implies m2s2−1t ≡ −1
(mod n). Then Lemma 3.5.8 implies that 2s2 |p1 − 1, so that s2 ≤ s1, a
contradiction. Thus, m is a witness for n, and the proof is complete. �

We might ask what can be proved unconditionally. It is obvious that
W (n) ≤ n1/2, since the least prime factor of an odd composite number n
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is a witness for n. In [Burthe 1997] it is shown that W (n) ≤ nc+o(1) as
n → ∞ through the odd composites, where c = 1/(6

√
e). Heath-Brown

(see [Balasubramanian and Nagaraj 1997]) has recently shown this with
c = 1/10.82.

We close this section with the Miller primality test. It is based on
Theorem 3.5.12 and shows that if the extended Riemann hypothesis holds,
then primality can be decided in deterministic polynomial time.

Algorithm 3.5.13 (Miller primality test). We are given an odd number n >
1. This algorithm attempts to decide whether n is prime (YES) or composite (NO).
If NO is returned, then n is definitely composite. If YES is returned, n is either
prime or the extended Riemann hypothesis is false.

1. [Witness bound]
W = min{

⌊
2 ln2 n

⌋
, n − 1};

2. [Strong probable prime tests]
for(2 ≤ a ≤ W ) {

Decide via Algorithm 3.5.2 whether n is a strong probable prime base a;
if(n is not a strong probable prime base a) return NO;

}
return YES;

3.6 Lucas pseudoprimes

We may generalize many of the ideas of the past two sections to incorporate
finite fields. Traditionally the concept of Lucas pseudoprimes has been cast
in the language of binary recurrent sequences. It is profitable to view this
pseudoprime construct using the language of finite fields, not just to be
fashionable, but because the ideas then seem less ad hoc, and one can
generalize easily to higher order fields.

3.6.1 Fibonacci and Lucas pseudoprimes

The sequence 0, 1, 1, 2, 3, 5, . . . of Fibonacci numbers, say uj is the j-th one
starting with j = 0, has an interesting rule for the appearance of prime factors.

Theorem 3.6.1. If n is prime, then

un−εn ≡ 0 (mod n), (3.7)

where εn = 1 when n ≡ ±1 (mod 5), εn = −1 when n ≡ ±2 (mod 5), and
εn = 0 when n ≡ 0 (mod 5).

Remark. The reader should recognize the function εn. It is the Legendre
symbol

(
n
5

)
; see Definition 2.3.2.

Definition 3.6.2. We say that a composite number n is a Fibonacci
pseudoprime if (3.7) holds.

For example, the smallest Fibonacci pseudoprime coprime to 10 is 323.
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The Fibonacci pseudoprime test is not just a curiosity. As we shall see
below, it can be implemented on very large numbers. In fact, it takes only
about twice as long to run a Fibonacci pseudoprime test as a conventional
pseudoprime test. And for those composites that are ±2 (mod 5) it is, when
combined with the ordinary base-2 pseudoprime test, very effective. In fact, we
know no number n ≡ ±2 (mod 5) that is simultaneously a base-2 pseudoprime
and a Fibonacci pseudoprime; see Exercise 3.41.

In proving Theorem 3.6.1 it turns out that with no extra work we
can establish a more general result. The Fibonacci sequence satisfies the
recurrence uj = uj−1 +uj−2, with recurrence polynomial x2 −x− 1. We shall
consider the more general case of binary recurrent sequences with polynomial
f(x) = x2 −ax+ b, where a, b are integers with ∆ = a2 −4b not a square. Let

Uj = Uj(a, b) =
xj − (a − x)j

x − (a − x)
(mod f(x)),

Vj = Vj(a, b) = xj + (a − x)j (mod f(x)), (3.8)

where the notation means that we take the remainder in Z[x] upon division by
f(x). The sequences (Uj), (Vj) both satisfy the recurrence for the polynomial
x2 − ax + b, namely,

Uj = aUj−1 − bUj−2, Vj = aVj−1 − bVj−2,

and from (3.8) we may read off the initial values

U0 = 0, U1 = 1, V0 = 2, V1 = a.

If it was not already evident from (3.8), it is now clear that (Uj), (Vj) are
integer sequences.

In analogy to Theorem 3.6.1 we have the following result. In fact, we can
read off Theorem 3.6.1 as the special case corresponding to a = 1, b = −1.

Theorem 3.6.3. Let a, b,∆ be as above and define the sequences (Uj), (Vj)
via (3.8). If p is a prime with gcd(p, 2b∆) = 1, then

Up−(∆
p) ≡ 0 (mod p). (3.9)

Note that for ∆ = 5 and p odd,
(5
p

)
=

(
p
5

)
, so the remark following Theorem

3.6.1 is justified. Since the Jacobi symbol
(∆

n

)
(see Definition 2.3.3) is equal

to the Legendre symbol when n is an odd prime, we may turn Theorem 3.6.3
into a pseudoprime test.

Definition 3.6.4. We say that a composite number n with gcd(n, 2b∆) = 1
is a Lucas pseudoprime with respect to x2 − ax + b if Un−(∆

n) ≡ 0 (mod n).

Since the sequence (Uj) is constructed by reducing polynomials modulo
x2 − ax + b, and since Theorem 3.6.3 and Definition 3.6.4 refer to this
sequence reduced modulo n, we are really dealing with objects in the ring
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R = Zn[x]/(x2 − ax + b). To somewhat demystify this concept, we explicitly
list a complete set of coset representatives:

{i + jx : i, j are integers with 0 ≤ i, j ≤ n − 1}.

We add coset representatives as vectors (mod n), and we multiply them via
x2 = ax − b. Thus, we have

(i1 + j1x) + (i2 + j2x) = i3 + j3x

(i1 + j1x)(i2 + j2x) = i4 + j4x,

where

i3 = i1 + i2 (mod n), j3 = j1 + j2 (mod n),
i4 = i1i2 − bj1j2 (mod n), j4 = i1j2 + i2j1 + aj1j2 (mod n).

We now prove Theorem 3.6.3. Suppose p is an odd prime with
(∆

p

)
= −1.

Then ∆ is not a square in Zp, so that the polynomial x2 − ax + b, which
has discriminant ∆, is irreducible over Zp. Thus, R = Zp[x]/(x2 − ax + b) is
isomorphic to the finite field Fp2 with p2 elements. The subfield Zp (= Fp) is
recognized as those coset representatives i + jx with j = 0.

In Fp2 the function σ that takes an element to its p-th power (known
as the Frobenius automorphism) has the following pleasant properties, which
are easily derived from the binomial theorem and Fermat’s little theorem (see
(3.2)): σ(u + v) = σ(u) + σ(v), σ(uv) = σ(u)σ(v), and σ(u) = u if and only if
u is in the subfield Zp.

We have created the field Fp2 so as to provide roots for x2 −ax+ b, which
were lacking in Zp. Which coset representatives i + jx are the roots? They
are x itself, and a − x (= a + (p − 1)x). Since x and a − x are not in Zp and
σ must permute the roots of f(x) = x2 − ax + b, we have

in the case
(∆

p

)
= −1 :

{
xp ≡ a − x (mod (f(x), p)),
(a − x)p ≡ x (mod (f(x), p)).

(3.10)

Then xp+1 − (a − x)p+1 ≡ x(a − x) − (a − x)x ≡ 0 (mod (f(x), p)), so that
(3.8) implies Up+1 ≡ 0 (mod p).

The proof of (3.9) in the case where p is a prime with
(∆

p

)
= 1 is easier.

In this case we have that x2 − ax + b has two roots in Zp, so that the ring
R = Zp[x]/(x2−ax+b) is not a finite field. Rather, it is isomorphic to Zp×Zp,
and every element to the p-th power is itself. Thus,

in the case
(∆

p

)
= 1 :

{
xp ≡ x (mod (f(x), p)),
(a − x)p ≡ a − x (mod (f(x), p)).

(3.11)

Note, too, that our assumption that gcd(p, b) = 1 implies that x and a−x are
invertible in R, since x(a − x) ≡ b (mod f(x)). Hence xp−1 = (a − x)p−1 = 1
in R. Thus, (3.8) implies Up−1 ≡ 0 (mod p). This concludes the proof of
Theorem 3.6.3.
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Because of Exercise 3.26, it is convenient to rule out the polynomial
x2 − x + 1 when dealing with Lucas pseudoprimes. A similar problem occurs
with x2 + x + 1, and we rule out this polynomial, too. No other polynomials
with nonsquare discriminants are ruled out, though. (Only x2 ± x + 1 are
monic, irreducible over the rationals, and have their roots also being roots
of 1.)

3.6.2 Grantham’s Frobenius test

The key role of the Frobenius automorphism (raising to the p-th power) in
the Lucas test has been put in center stage in a new test of J. Grantham.
It allows for an arbitrary polynomial in the place of x2 − ax + b, but even
in the case of quadratic polynomials, it is stronger than the Lucas test. One
of the advantages of Grantham’s approach is that it cuts the tie to recurrent
sequences. We describe below his test for quadratic polynomials. A little is said
about the general test in Section 3.6.5. For more on Frobenius pseudoprimes
see [Grantham 2001].

The argument that establishes Theorem 3.6.3 also establishes on the way
(3.10) and (3.11). But Theorem 3.6.3 only extracts part of the information
from these congruences. The Frobenius test maintains their full strength.

Definition 3.6.5. Let a, b be integers with ∆ = a2−4b not a square. We say
that a composite number n with gcd(n, 2b∆) = 1 is a Frobenius pseudoprime
with respect to f(x) = x2 − ax + b if

xn ≡
{

a − x (mod (f(x), n)), if
(∆

n

)
= −1,

x (mod (f(x), n)), if
(∆

n

)
= 1.

(3.12)

At first glance it may seem that we are still throwing away half of (3.10) and
(3.11), but we are not; see Exercise 3.27.

It is easy to give a criterion for a Frobenius pseudoprime with respect to
a quadratic polynomial, in terms of the Lucas sequences (Um), (Vm).

Theorem 3.6.6. Let a, b be integers with ∆ = a2 − 4b not a square and
let n be a composite number with gcd(n, 2b∆) = 1. Then n is a Frobenius
pseudoprime with respect to x2 − ax + b if and only if

Un−(∆
n) ≡ 0 (mod n) and Vn−(∆

n) ≡
{

2b, when
(∆

n

)
= −1

2, when
(∆

n

)
= 1.

Proof. Let f(x) = x2 − ax + b. We use the identity

2xm ≡ (2x − a)Um + Vm (mod (f(x), n)),

which is self-evident from (3.8). Then the congruences in the theorem lead to
xn+1 ≡ b (mod (f(x), n)) in the case

(∆
n

)
= −1 and xn−1 ≡ 1 (mod (f(x), n))

in the case
(∆

n

)
= 1. The latter case immediately gives xn ≡ x (mod (f(x), n)),
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and the former, via x(a − x) ≡ b (mod (f(x), n)), leads to xn ≡ a − x
(mod (f(x), n)). Thus, n is a Frobenius pseudoprime with respect to f(x).

Now suppose n is a Frobenius pseudoprime with respect to f(x). Exercise
3.27 shows that n is a Lucas pseudoprime with respect to f(x), namely
that Un−(∆

n) ≡ 0 (mod n). Thus, from the identity above, 2xn−(∆
n) ≡

Vn−(∆
n) (mod (f(x), n)). Suppose

(∆
n

)
= −1. Then xn+1 ≡ (a − x)x ≡ b

(mod (f(x), n)), so that Vn+1 ≡ 2b (mod n). Finally, suppose
(∆

n

)
= 1. Then

since x is invertible modulo (f(x), n), we have xn−1 ≡ 1 (mod (f(x), n)),
which gives Vn−1 ≡ 2 (mod n). �

The first Frobenius pseudoprime n with respect to x2 − x − 1 is 4181 (the
nineteenth Fibonacci number), and the first with

(5
n

)
= −1 is 5777. We thus

see that not every Lucas pseudoprime is a Frobenius pseudoprime, that is, the
Frobenius test is more stringent. In fact, the Frobenius pseudoprime test can
be very effective. For example, for x2 + 5x + 5 we don’t know any examples
at all of a Frobenius pseudoprime n with

(5
n

)
= −1, though such numbers are

conjectured to exist; see Exercise 3.42.

3.6.3 Implementing the Lucas and quadratic Frobenius tests

It turns out that we can implement the Lucas test in about twice the time
of an ordinary pseudoprime test, and we can implement the Frobenius test in
about three times the time of an ordinary pseudoprime test. However, if we
approach these tests naively, the running time is somewhat more than just
claimed. To achieve the factors two and three mentioned, a little cleverness is
required.

As before, we let a, b be integers with ∆ = a2 − 4b not a square, and
we define the sequences (Uj), (Vj) as in (3.8). We first remark that it is
easy to deal solely with the sequence (Vj). If we have Vm and Vm+1, we may
immediately recover Um via the identity

Um = ∆−1(2Vm+1 − aVm). (3.13)

We next remark that it is easy to compute Vm for large m from earlier values
using the following simple rule: If 0 ≤ j ≤ k, then

Vj+k = VjVk − bjVk−j . (3.14)

Suppose now that b = 1. We record the formula (3.14) in the special cases
k = j and k = j + 1:

V2j = V 2
j − 2, V2j+1 = VjVj+1 − a (in the case b = 1). (3.15)

Thus, if we have the residues Vj (mod n), Vj+1 (mod n), then we may
compute, via (3.15), either the pair V2j (mod n), V2j+1 (mod n) or the pair
V2j+1 (mod n), V2j+2 (mod n), with each choice taking 2 multiplications
modulo n and an addition modulo n. Starting from V0, V1 we can recursively
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use (3.15) to arrive at any pair Vm, Vm+1. For example, say m is 97. We travel
from 0, 1 to 97, 98 as follows:

0, 1 → 1, 2 → 3, 4 → 6, 7 → 12, 13 → 24, 25 → 48, 49 → 97, 98.

There are two types of moves, one that sends the pair a, a + 1 to 2a, 2a + 1
and one that sends it to 2a+1, 2a+2. An easy way to find which sequence of
moves to make is to start from the target pair m, m + 1 and work backwards.
Another easy way is to write m in binary and read the binary digits from
most significant bit to least significant bit. A zero signifies the first type of
move and a one signifies the second. So in binary, 97 is 1100001, and we see
above after the initial 0,1 that we have two moves of the second type, followed
by four moves of the first type, followed by a move of the second type.

Such a chain is called a binary Lucas chain. For more on this subject,
see [Montgomery 1992b] and [Bleichenbacher 1996]. Here is our pseudocode
summarizing the above ideas:

Algorithm 3.6.7 (Lucas chain). For a sequence x0, x1, . . . with a rule for
computing x2j from xj and a rule for computing x2j+1 from xj , xj+1, this
algorithm computes the pair (xn, xn+1) for a given positive integer n. We have n
in binary as (n0, n1, . . . , nB−1) with nB−1 being the high-order bit. We write the
rules as follows: x2j = xj ∗ xj and x2j+1 = xj ◦ xj+1. At each step in the for()
loop in the algorithm we have u = xj , v = xj+1 for some nonnegative integer j.

1. [Initialization]
(u, v) = (x0, x1);

2. [Loop]
for(B > j ≥ 0) {

if(nj == 1) (u, v) = (u ◦ v, v ∗ v);
else (u, v) = (u ∗ u, u ◦ v);

}
return (u, v); // Returning (xn, xn+1).

Let us see how we might relax the condition b = 1; that is, we are back in the
general case of x2 − ax + b. If a = cd, b = d2 we can use the identity

Vm(cd, d2) = dmV (c, 1)

to quickly return to the case b = 1. More generally, if b is a square, say b = d2

and gcd(n, b) = 1, we have

Vm(a, d2) ≡ dmVm(ad−1, 1) (mod n),

where d−1 is a multiplicative inverse of d modulo n. So again we have returned
to the case b = 1. In the completely general case that b is not necessarily a
square, we note that if we run through the Vm sequence at double time, it is
as if we were running through a new Vj sequence. In fact,

V2m(a, b) = Vm(a2 − 2b, b2),
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and the “b” number for the second sequence is a square! Thus, if gcd(n, b) = 1
and we let A be an integer with A ≡ b−1V2(a, b) ≡ a2b−1 − 2 (mod n), then
we have

V2m(a, b) ≡ bmVm(A, 1) (mod n). (3.16)

Similarly, we have

U2m(a, b) ≡ abm−1Um(A, 1) (mod n),

so that using (3.13) (with A, 1 for a, b, so that “∆” in (3.13) is A2 − 4), we
have

U2m(a, b) ≡ (a∆)−1bm+1(2Vm+1(A, 1) − AVm(A, 1)
)

(mod n). (3.17)

We may use the above method of binary Lucas chains to efficiently
compute the pair Vm(A, 1) (mod n), Vm+1(A, 1) (mod n), where n is a number
coprime to b and we view A as an integer modulo n. Thus, via (3.16), (3.17),
we may find V2m(a, b), U2m(a, b) (mod n). And from these, with 2m = n−

(∆
n

)
,

we may see whether n is a Lucas pseudoprime or Frobenius pseudoprime with
respect to x2 − ax + b.

We summarize these notions in the following theorem.

Theorem 3.6.8. Suppose that a, b,∆, A are as above and that n is a
composite number coprime to 2ab∆. Then n is a Lucas pseudoprime with
respect to x2 − ax + b if and only if

AV 1
2 (n−(∆

n))(A, 1) ≡ 2V 1
2 (n−(∆

n))+1(A, 1) (mod n). (3.18)

Moreover, n is a Frobenius pseudoprime with respect to x2 −ax+b if and only
if the above holds and also

b(n−1)/2V 1
2 (n−(∆

n))(A, 1) ≡ 2 (mod n). (3.19)

As we have seen above, for m = 1
2

(
n −

(∆
n

))
, the pair Vm(A, 1), Vm+1(A, 1)

may be computed modulo n using fewer than 2 lg n multiplications mod n and
lg n additions mod n. Half of the multiplications mod n are squarings mod n.
A Fermat test also involves lg n squarings mod n, and up to lg n additional
multiplications mod n, if we use Algorithm 2.1.5 for the binary ladder. We
conclude from (3.18) that the time to do a Lucas test is at most twice the
time to do a Fermat test. To apply (3.19) we must also compute b(n−1)/2

(mod n), so we conclude that the time to do a Frobenius test (for a quadratic
polynomial) is at most three times the time to do a Fermat test.

As with the Fermat test and the strong Fermat test, we apply the Lucas
test and the Frobenius test to numbers n that are not known to be prime
or composite. Following is pseudocode for these tests along the lines of this
section.

Algorithm 3.6.9 (Lucas probable prime test).
We are given integers n, a, b,∆, with ∆ = a2 − 4b, ∆ not a square, n > 1,
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gcd(n, 2ab∆) = 1. This algorithm returns “n is a Lucas probable prime with
parameters a, b” if either n is prime or n is a Lucas pseudoprime with respect to
x2 − ax + b. Otherwise, it returns “n is composite.”

1. [Auxiliary parameters]
A = a2b−1 − 2 mod n;
m =

(
n −

(∆
n

))
/2;

2. [Binary Lucas chain]
Using Algorithm 3.6.7 calculate the last two terms of the sequence

(V0, V1, . . . , Vm, Vm+1), with initial values (V0, V1) = (2, A) and specific
rules V2j = V 2

j − 2 mod n and V2j+1 = VjVj+1 − A mod n;

3. [Declaration]
if(AVm ≡ 2Vm+1 (mod n)) return “n is a Lucas probable prime with

parameters a, b”;
return “n is composite”;

The algorithm for the Frobenius probable prime test is the same except that
Step [Declaration] is changed to

3’. [Lucas test]
if(AVm ≡ 2Vm+1) return “n is composite”;

and a new step is added:

4. [Frobenius test]
B = b(n−1)/2 mod n;
if(BVm ≡ 2 (mod n)) return “n is a Frobenius probable prime with

parameters a, b”;
return “n is composite”;

3.6.4 Theoretical considerations and stronger tests

If x2 − ax + b is irreducible over Z and is not x2 ± x + 1, then the Lucas
pseudoprimes with respect to x2 − ax + b are rare compared with the primes
(see Exercise 3.26 for why we exclude x2 ±x+1). This result is in [Baillie and
Wagstaff 1980]. The best result in this direction is in [Gordon and Pomerance
1991]. Since the Frobenius pseudoprimes with respect to x2 − ax + b are a
subset of the Lucas pseudoprimes with respect to this polynomial, they are if
anything rarer still.

It has been proved that for each irreducible polynomial x2 − ax + b there
are infinitely many Lucas pseudoprimes, and in fact, infinitely many Frobenius
pseudoprimes. This was done in the case of Fibonacci pseudoprimes in [Lehmer
1964], in the general case for Lucas pseudoprimes in [Erdős et al. 1988], and
in the case of Frobenius pseudoprimes in [Grantham 2001]. Grantham’s proof
on the infinitude of Frobenius pseudoprimes works only in the case

(∆
n

)
= 1.

There are some specific quadratics, for example, the polynomial x2 −x−1 for
the Fibonacci recurrence, for which we know that there are infinitely many
Frobenius pseudoprimes with

(∆
n

)
= −1 (see [Parberry 1970] and [Rotkiewicz



150 Chapter 3 RECOGNIZING PRIMES AND COMPOSITES

1973]). Recently, Rotkiewicz proved that for any x2 −ax+ b with ∆ = a2 −4b
not a square, there are infinitely many Lucas pseudoprimes n with

(∆
n

)
= −1.

In analogy to strong pseudoprimes (see Section 3.5), we may have strong
Lucas pseudoprimes and strong Frobenius pseudoprimes. Suppose n is an odd
prime not dividing b∆. In the ring R = Zn[x]/(f(x)) it is possible (in the case(∆

n

)
= 1) to have z2 = 1 and z = ±1. For example, take f(x) = x2 − x − 1,

n = 11, z = 3+5x. However, if (x(a−x)−1)2m = 1, then a simple calculation
(see Exercise 3.30) shows that we must have (x(a − x)−1)m = ±1. We have
from (3.10) and (3.11) that (x(a − x)−1)n−(∆

n) = 1 in R. Thus, if we write
n −

(∆
n

)
= 2st, where t is odd, then

either (x(a − x)−1)t ≡ 1 (mod (f(x), n))

or (x(a − x)−1)2
it ≡ −1 (mod (f(x), n)) for some i, 0 ≤ i ≤ s − 1.

This then implies that

either Ut ≡ 0 (mod n)
or V2it ≡ 0 (mod n) for some i, 0 ≤ i ≤ s − 1.

If this last statement holds for an odd composite number n coprime to b∆,
we say that n is a strong Lucas pseudoprime with respect to x2 − ax + b. It is
easy to see that every strong Lucas pseudoprime with respect to x2 − ax + b
is also a Lucas pseudoprime with respect to this polynomial.

In [Grantham 2001] a strong Frobenius pseudoprime test is developed,
not only for quadratic polynomials, but for all polynomials. We describe the
quadratic case for

(∆
n

)
= −1. Say n2 − 1 = 2ST , where n is an odd prime not

dividing b∆ and where
(∆

n

)
= −1. From (3.10) and (3.11), we have xn2−1 ≡ 1

(mod n), so that

either xT ≡ 1 (mod n)

or x2iT ≡ −1 (mod n) for some i, 0 ≤ i ≤ S − 1.

If this holds for a Frobenius pseudoprime n with respect to x2 − ax + b,
we say that n is a strong Frobenius pseudoprime with respect to x2 − ax + b.
(That is, the above congruence does not appear to imply that n is a Frobenius
pseudoprime, so this condition is put into the definition of a strong Frobenius
pseudoprime.) It is shown in [Grantham 1998] that a strong Frobenius
pseudoprime n with respect to x2 − ax + b, with

(∆
n

)
= −1, is also a strong

Lucas pseudoprime with respect to this polynomial.
As with the ordinary Lucas test, the strong Lucas test may be

accomplished in time bounded by the cost of two ordinary pseudoprime
tests. It is shown in [Grantham 1998] that the strong Frobenius test may
be accomplished in time bounded by the cost of three ordinary pseudoprime
tests. The interest in strong Frobenius pseudoprimes comes from the following
result from [Grantham 1998]:
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Theorem 3.6.10. Suppose n is a composite number that is not a square
and not divisible by any prime up to 50000. Then n is a strong Frobenius
pseudoprime with respect to at most 1/7710 of all polynomials x2 − ax + b,
where a, b run over the integers in [1, n] with

(
a2−4b

n

)
= −1 and

(
b
n

)
= 1.

This result should be contrasted with the Monier–Rabin theorem
(Theorem 3.5.4). If one does three random strong pseudoprime tests, that
result implies that a composite number will fail to be recognized as such at
most 1/64 of the time. Using Theorem 3.6.10, in about the same time, one has
a test that recognizes composites with failure at most 1/7710 of the time. A
recent test in [Zhang 2002] should be mentioned in this context. It combines
a strong probable prime test and a Lucas test, giving a result that is superior
to the quadratic Frobenius test in all but a thin set of cases.

3.6.5 The general Frobenius test

In the last few sections we have discussed Grantham’s Frobenius test for
quadratic polynomials. Here we briefly describe how the idea generalizes to
arbitrary monic polynomials in Z[x].

Let f(x) be a monic polynomial in Z[x] with degree d ≥ 1. We do not
necessarily assume that f(x) is irreducible. Suppose p is an odd prime that
does not divide the discriminant, disc(f), of f(x). (The discriminant of a
monic polynomial f(x) of degree d may be computed as (−1)d(d−1)/2 times
the resultant of f(x) and its derivative. This resultant is the determinant of
the (2d−1)×(2d−1) matrix whose i, j entry is the coefficient of xj−i in f(x) for
i = 1, . . . , d−1 and is the coefficient of xj−(i−d+1) in f ′(x) for i = d, . . . , 2d−1,
where if the power of x does not actually appear, the matrix entry is 0.) Since
disc(f) = 0 if and only if f(x) has no repeated irreducible factors of positive
degree, the hypothesis that p does not divide disc(f) automatically implies
that f has no repeated factors.

By reducing its coefficients modulo p, we may consider f(x) in Fp[x].
To avoid confusion, we shall denote this polynomial by f(x). Consider the
polynomials F1(x), F2(x), . . . , Fd(x) in Fp[x] defined by

F1(x) = gcd(xp − x, f(x)),

F2(x) = gcd(xp2 − x, f(x)/F1(x)),
...

Fd(x) = gcd(xpd − x, f(x)/(F1(x) · · ·Fd−1(x))).

Then the following assertions hold:
(1) i divides deg(Fi(x)) for i = 1, . . . , d,
(2) Fi(x) divides Fi(xp) for i = 1, . . . , d,
(3) for

S =
∑

i even

1
i

deg(Fi(x)),
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we have

(−1)S =
(

disc(f)
p

)
.

Assertion (1) follows, since Fi(x) is precisely the product of the degree-i
irreducible factors of f(x), so its degree is a multiple of i. Assertion (2) holds
for all polynomials in Fp[x]. Assertion (3) is a little trickier to see. The idea is
to consider the Galois group for the polynomial f(x) over Fp. The Frobenius
automorphism (which sends elements of the splitting field of f(x) to their
p-th powers) of course permutes the roots of f(x) in the splitting field. It acts
as a cyclic permutation of the roots of each irreducible factor, and hence the
sign of the whole permutation is given by −1 to the number of even-degree
irreducible factors. That is, the sign of the Frobenius automorphism is exactly
(−1)S . However, it follows from basic Galois theory that the Galois group of
a polynomial with distinct roots consists solely of even permutations of the
roots if and only if the discriminant of the polynomial is a square. Hence
the sign of the Frobenius automorphism is identical to the Legendre symbol(disc(f)

p

)
, which then establishes the third assertion.

The idea of Grantham is that the above assertions can actually be
numerically checked and done so easily, even if we are not sure that p is prime.
If one of the three assertions does not hold, then p is revealed as composite.
This, then, is the core of the Frobenius test. One says that n is a Frobenius
pseudoprime with respect to the polynomial f(x) if n is composite, yet the
test does not reveal this.

For many more details, the reader is referred to [Grantham 1998, 2001].

3.7 Counting primes

The prime number theorem (Theorem 1.1.4) predicts approximately the value
of π(x), the number of primes p with p ≤ x. It is interesting to compare these
predictions with actual values, as we did in Section 1.1.5. The computation of

π
(
1021) = 21127269486018731928

was certainly not performed by having a computer actually count each and
every prime up to 1021. There are far too many of them. So how then was the
task actually accomplished? We give in the next sections two different ways to
approach the interesting problem of prime counting, a combinatorial method
and an analytic method.

3.7.1 Combinatorial method

We shall study here an elegant combinatorial method due to Lagarias, Miller,
and Odlyzko, with roots in the work of Meissel and Lehmer; see [Lagarias et
al. 1985], [Deléglise and Rivat 1996]. The method allows the calculation of
π(x) in bit complexity O

(
x2/3+ε

)
, using O

(
x1/3+ε

)
bits of space (memory).
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Label the consecutive primes p1, p2, p3, . . ., where p1 = 2, p2 = 3, p3 = 5,
etc. Let

φ(x, y) = #{1 ≤ n ≤ x : each prime dividing n is greater than y}.

Thus φ(x, pa) is the number of integers left unmarked in the sieve of
Eratosthenes, applied to the interval [1, x], after sieving with p1, p2, . . . , pa.
Since sieving up to

√
x leaves only the number 1 and the primes in (

√
x, x],

we have
π(x) − π

(√
x
)

+ 1 = φ
(
x,

√
x
)
.

One could easily use this idea to compute π(x), the time taking O(x ln lnx)
operations and, if the sieve is segmented, taking O

(
x1/2 lnx

)
space. (We shall

begin suppressing lnx and ln lnx factors for simplicity, sweeping them under a
rather large rug of O(xε). It will be clear that each xε could be replaced, with
a little more work, with a small power of logarithm and/or double logarithm.)

A key thought is that the sieve not only allows us to count the primes, it
also identifies them. If it is only the count we are after, then perhaps we can
be speedier.

We shall partition the numbers counted by φ(x, y) by the number of prime
factors they have, counted with multiplicity. Let

φk(x, y) = #{n ≤ x : n has exactly k prime factors, each exceeding y}.

Thus, if x ≥ 1, φ0(x, y) is 1, φ1(x, y) is the number of primes in (y, x], φ2(x, y)
is the number of numbers pq ≤ x where p, q are primes with y < p ≤ q, and
so on. We evidently have

φ(x, y) = φ0(x, y) + φ1(x, y) + φ2(x, y) + · · · .

Further, note that φk(x, y) = 0 if yk ≥ x. Thus,

φ
(
x, x1/3

)
= 1 + π(x) − π

(
x1/3

)
+ φ2

(
x, x1/3

)
. (3.20)

One then can find π(x) if one can compute φ
(
x, x1/3

)
, φ2

(
x, x1/3

)
and

π
(
x1/3

)
.

The computation of π
(
x1/3

)
can be accomplished, of course, using the

Eratosthenes sieve and nothing fancy. The next easiest ingredient in (3.20)
is the computation of φ2

(
x, x1/3

)
, which we now describe. This quantity is

found via the identity

φ2(x, x1/3) =
(

π(x1/3)
2

)
−

(
π(x1/2)

2

)
+

∑
x1/3<p≤x1/2

π(x/p), (3.21)

where in the sum the letter p runs over primes. To see why (3.21) holds, we
begin by noting that φ2

(
x, x1/3

)
is the number of pairs of primes p, q with

x1/3 < p ≤ q and pq ≤ x. Then p ≤ x1/2. For each fixed p, the prime q is
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allowed to run over the interval [p, x/p], and so the number of choices for q is
π(x/p) − π(p) + 1. Thus,

φ2(x, x1/3) =
∑

x1/3<p≤x1/2

(π(x/p) − π(p) + 1)

=
∑

x1/3<p≤x1/2

π(x/p) −
∑

x1/3<p≤x1/2

(π(p) − 1).

The last sum is

∑
π(x1/3)<j≤π(x1/2)

(j − 1) =
π(x1/2)∑

j=1

(j − 1) −
π(x1/3)∑

j=1

(j − 1)

=
(

π(x1/2)
2

)
−

(
π(x1/3)

2

)
,

which proves (3.21).
To use (3.21) to compute φ2

(
x, x1/3

)
we shall compute π

(
x1/3

)
, π

(
x1/2

)
,

and the sum of the π(x/p). We have already computed π
(
x1/3

)
. The

computation of π
(
x1/2

)
can again be done using the simple Eratosthenes

sieve, except that the sieve is segmented into blocks of size about x1/3 to
preserve the space bound for the algorithm. Note that in the sum of π(x/p)
in (3.21), each x/p < x2/3. Thus a simple sieve of Eratosthenes can likewise
compute the sum of π(x/p) in total time O

(
x2/3+ε

)
. We do this within the

space allotment of O
(
x1/3+ε

)
as follows. Let N ≈ x1/3 be a convenient number

for segmenting the sieve, that is, we look at intervals of length N , beginning
at x1/2. Assuming that we have already computed π(z), we use a sieve (with
stored primes less than x1/3) in the interval [z, z +N) to compute the various
π(x/p) for x/p landing in the interval, and we compute π(z + N) to be used
in computations for the next interval. The various π(x/p)’s computed are
put into a running sum, and not stored individually. To find which p have x/p
landing in the interval, we have to apply a second sieve, namely to the interval
(x/(z + N), x/z], which lies in

(
x1/3, x1/2

]
. The length of this interval is less

than N so that space is not an issue, and the sieve may be accomplished using
a stored list of primes not exceeding x1/4 in time O

(
x1/3+ε

)
. When z is large,

the intervals (x/(z + N), x/z] become very short, and some time savings may
be made (without altering the overall complexity), by sieving an interval of
length N in this range, storing the results, and using these for several different
intervals in the upper range.

To compute π(x) with (3.20) we are left with the computation of
φ
(
x, x1/3

)
. At first glance, this would appear to take about x steps, since it

counts the number of uncanceled elements in the sieve of Eratosthenes applied
to [1, x] with the primes up to x1/3. The idea is to reduce the calculation of
φ
(
x, x1/3

)
to that of many smaller problems. We begin with the recurrence

φ(y, pb) = φ(y, pb−1) − φ(y/pb, pb−1), (3.22)
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for b ≥ 2. We leave the simple proof for Exercise 3.33. Since φ(y, 2) =
�(y + 1)/2�, we can continue to use (3.22) to eventually come down to
expressions φ(y, 2) for various choices of y. For example,

φ(1000, 7) = φ(1000, 5) − φ(142, 5)
= φ(1000, 3) − φ(200, 3) − φ(142, 3) + φ(28, 3)
= φ(1000, 2) − φ(333, 2) − φ(200, 2) + φ(66, 2)

− φ(142, 2) + φ(47, 2) + φ(28, 2) − φ(9, 2)
= 500 − 167 − 100 + 33 − 71 + 24 + 14 − 5
= 228.

Using this scheme, we may express any φ(x, pa) as a sum of 2a−1 terms. In
fact, this bottom-line expression is merely the inclusion–exclusion principle
applied to the divisors of p2p3 · · · pa, the product of the first a−1 odd primes.
We have

φ(x, pa) =
∑

n|p2p3···pa

µ(n)φ(x/n, 2) =
∑

n|p2p3···pa

µ(n)
⌊

x/n + 1
2

⌋
,

where µ is the Möbius function see Section 1.4.1.
For a = π(x1/3), clearly 2a−1 terms is too many, and we would have been

better off just sieving to x. However, we do not have to consider any n in the
sum with n > x, since then φ(x/n, 2) = 0. This “truncation rule” reduces
the number of terms to O(x), which is starting to be competitive with merely
sieving. By fiddling with this idea, we can reduce the O-constant to a fairly
small number. Since 2 · 3 · 5 · 7 · 11 = 2310, by computing a table of values
of φ(x, 11) for x = 0, 1, . . . , 2309, one can quickly compute any φ(x, 11): It is
ϕ(2310) �x/2310� + φ(x mod 2310, 11), where ϕ is the Euler totient function.
By halting the recurrence (3.22) whenever a b value drops to 11 or a y/pb

value drops below 1, we get

φ(x, pa) =
∑

n|p6p7···pa

n≤x

µ(n)φ(x/n, 11).

If a = π
(
x1/3

)
, the number of terms in this sum is asymptotic to cx with

c = ρ(3)ζ(2)−1 ∏5
i=1 pi/(pi +1), where ρ is the Dickman function (see Section

1.4.5), and ζ is the Riemann zeta function (so that ζ(2) = 6/π2). This
expression for c captures the facts that n has no prime factors exceeding x1/3,
n is squarefree, and n has no prime factor below 12. Using ρ(3) ≈ 0.0486, we
get that c ≈ 0.00987. By reducing a to π

(
x1/4

)
(and agreeing to compute

φ3
(
x, x1/4

)
in addition to φ2

(
x, x1/4

)
), we reduce the constant c to an

expression where ρ(4) ≈ 0.00491 replaces ρ(3), so that c ≈ 0.000998. These
machinations amount, in essence, to the method of Meissel, as improved by
Lehmer, see [Lagarias et al. 1985].
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However, our present goal is to reduce the bit complexity to O
(
x2/3+ε

)
.

We do this by using a different truncation rule. Namely, we stop using the
recurrence (3.22) at any point φ(y, pb) where either

(1) pb = 2 and y ≥ x2/3, or
(2) y < x2/3.

Here, y corresponds to some number x/n where n|p2p3 · · · pa. The number
of type-1 terms clearly does not exceed x1/3, since such terms correspond to
values n < x1/3. To count the number of type-2 terms, note that a “parent”
of φ(x/n, pb) in the hierarchy is either the term φ(x/n, pb+1) or the term
φ(x/(n/pb+1), pb+1). The latter case occurs only when pb+1 is the least prime
factor of n and n/pb+1 ≤ x1/3, and the former case never occurs, since it
would already have been subjected to a type-2 truncation. Thus, the number
of type-2 terms is at most the number of pairs m, pb, where m ≤ x1/3 and pb

is smaller than the least prime factor of m. This count is at most x1/3π(x1/3),
so the number of type-2 terms is less than x2/3.

For an integer m > 1, let

Pmin(m) = the least prime factor of m.

We thus have using the above truncation rule that

φ(x, pa) =
∑

m|p2p3···pa

m≤x1/3

µ(m)
⌊

x/m + 1
2

⌋
(3.23)

−
∑

m|p2p3···pa

1<m≤x1/3

µ(m)
∑

pb+1<Pmin(m)
pb+1m>x1/3

φ

(
x

mpb+1
, pb

)
.

We apply (3.23) with a = π(x1/3). The first sum in (3.23), corresponding to
type-1 terms, is easy to compute. With a sieve, prepare a table T of the odd
squarefree numbers m ≤ x1/3, together with their least prime factor (which
will be of use in the double sum), and the value µ(m). (Each sieve location
corresponds to an odd number not exceeding x1/3 and starts with the number
1. The first time a location gets hit by a prime, we record this prime as the
least prime factor of the number corresponding to the sieve location. Every
time a prime hits at a location, we multiply the entry at the location by −1.
We do this for all primes not exceeding x1/6 and then mark remaining entries
with the number they correspond to, and change the entry to −1. Finally, we
sieve with the squares of primes p2 for p ≤ x1/6, and any location that gets hit
gets its entry changed to 0. At the end, the numbers with nonzero entries are
the squarefree numbers, the entry is µ of the number, and the prime recorded
there is the least prime factor of the number.) The time and space to prepare
table T is O(x1/3+ε), and with it we may compute the first sum in (3.23) in
time O(x1/3+ε).
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The heart of the argument is the calculation of the double sum in (3.23).
We first describe how to compute this sum using O

(
x2/3+ε

)
space and time,

and later show how segmentation can cut down the space to O(x1/3+ε).
Prepare a table T ′ of triples µ(m), �x/(mpb+1)� , b, where m runs over
numbers greater than 1 in the table T previously computed, and b runs over
numbers such that pb+1 < Pmin(m) and mpb+1 > x1/3. Note that all of the
numbers �x/(mpb+1)� are less than x2/3. Sieve the interval

[
1, x2/3

]
with the

primes not exceeding x1/3. At stage b we have sieved with p1, p2, . . . , pb, and
thus we can read off φ(y, b) for any y ≤ x2/3. We are interested in the values
y = �x/(mpb+1)�.

However, just knowing which numbers are coprime to p1p2 · · · pb is not the
same as knowing how many there are up to y, which requires an additional
computation. Doing this for each b would increase the bit complexity to
O

(
x1+ε

)
. This problem is solved via a binary data structure. For i =

0, 1, . . . , �lg n�, consider the intervals

Ii,j =
(
(j − 1)2i, j2i

]
for j a positive integer and Ii,j ⊂

[
1, x2/3

]
. The total number of these intervals

is O
(
x2/3

)
. For each of the intervals Ii,j , let

A(i, j, b) = #{n ∈ Ii,j : gcd(n, p1p2 . . . pb) = 1}.

The plan is to compute all of the numbers A(i, j, b) for a fixed b. Once these
are computed, we may use the binary representation of �x/(mpb+1)� and add
up the appropriate choices of A(i, j, b) to compute φ(�x/(mpb+1)� , pb).

So, we now show how the numbers A(i, j, b) are to be computed from the
previous values A(i, j, b − 1) (where the initial values A(i, j, 0) are set equal
to 2i). Note that in the case i = 0, the interval I0,j contains only the integer
j, so that A(0, j, b) is 1 if j is coprime to p1p2 · · · pb, and is 0 otherwise. For
integers l ≤ x/pb, we update the numbers A(i, j, b) corresponding to intervals
Ii,j containing lpb. The number of such intervals for a given lpb is O(lnx). If
A(0, j, b−1) = 0, where j = lpb, then no update is necessary in any interval. If
A(0, j, b − 1) = 1, where again j = lpb, we set each relevant A(i, j, b) equal to
A(i, j, b−1)−1. The total number of updates is O

(
x2/3(lnx)/pb

)
, so summing

for pb ≤ x1/3, an estimate O
(
x2/3+ε

)
accrues.

The space for the above argument is O(x2/3+ε). To reduce it to O(x1/3+ε),
we let k be the integer with x1/3 ≤ 2k < 2x1/3, and then we segment the
interval

[
1, x2/3

]
in blocks of size 2k, where perhaps the last block is short, or

we go a little beyond x2/3. The r-th block is
(
(r − 1)2k, r2k

]
, namely, it is the

interval Ir,k. When we reach it, we have stored the numbers φ
(
(r − 1)2k, pb

)
for all b ≤ π

(
x1/3

)
from the prior block. We next use the table T computed

earlier to find the triples µ(m), �x/(mpb+1)� , b where �x/(mpb+1)� is in the
r-th block. The intervals Ii,j fit neatly in the r-th block for i ≤ k, and we
do not need to consider larger values of i. Everything proceeds as before, and
we compute each relevant φ(x/(mpb+1), pb) where �x/(mpb+1)� is in the r-th



158 Chapter 3 RECOGNIZING PRIMES AND COMPOSITES

block, and we also compute φ(r2k, pb) for each b, so as to use these for the
next block. The computed values of φ(x/(mpb+1), pb) are not stored, but are
multiplied by µ(m) and added into a running sum that represents the second
term on the right of (3.23). The time and space required to do these tasks
for all pb ≤ x1/3 in the r-th block is O(x1/3+ε). The values of φ

(
r2k, pb

)
are written over the prior values φ((r − 1)2k, pb), so the total space used is
O

(
x1/3+ε

)
. The total number of blocks does not exceed x1/3, so the total time

used in this computation is O
(
x2/3+ε

)
, as advertised.

There are various ideas for speeding up this algorithm in practice, see
[Lagarias et al. 1985] and [Deléglise and Rivat 1996].

3.7.2 Analytic method

Here we describe an analytic method, highly efficient in principle, for counting
primes. The idea is that in [Lagarias and Odlyzko 1987], with recent extensions
that we shall investigate. The idea is to exploit the fact that the Riemann zeta
function embodies in some sense the properties of primes. A certain formal
manipulation of the Euler product relation (1.18) goes like so. Start by taking
the logarithm

ln ζ(s) = ln
∏
p∈P

(1 − p−s)−1 = −
∑
p∈P

ln(1 − p−s),

and then introduce a logarithmic series

ln ζ(s) =
∑
p∈P

∞∑
m=1

1
mpsm

, (3.24)

where all manipulations are valid (and the double sum can be interchanged
if need be) for Re(s) > 1, with the caveat that ln ζ is to be interpreted as
a continuously changing argument. (By modern convention, one starts with
the positive real ln ζ(2) and tracks the logarithm as the angle argument of ζ,
along a contour that moves vertically to 2 + i Im(s) then over to s.)

In order to use relation (3.24) to count primes, we define a function
reminiscent of—but not quite the same as—the prime-counting function π(x).
In particular, we consider a sum over prime powers not exceeding x, namely

π∗(x) =
∑

p∈P, m>0

θ(x − pm)
m

, (3.25)

where θ(z) is the Heaviside function, equal to 1, 1/2, 0, respectively, as its
argument z is positive, zero, negative. The introduction of θ means that the
sum involves only prime powers pm not exceeding x, but that whenever the
real x actually equals a power pm, the summand is 1/(2m). The next step is
to invoke the Perron formula, which says that for nonnegative real x, positive
integer n, and a choice of contour C = {s : Re(s) = σ}, with fixed σ > 0 and
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t = Im(s) ranging, we have

1
2πi

∫
C

(x

n

)s ds

s
= θ(x − n). (3.26)

It follows immediately from these observations that for a given contour (but
now with σ > 1 so as to avoid any ln ζ singularity) we have:

π∗(x) =
1

2πi

∫
C

xs ln ζ(s)
ds

s
. (3.27)

This last formula provides analytic means for evaluation of π(x), because if x
is not a prime power, say, we have from relation (3.25) the identity:

π∗(x) = π(x) +
1
2
π
(
x1/2

)
+

1
3
π
(
x1/3

)
+ · · · ,

which series terminates as soon as the term π
(
x1/n

)
/n has 2n > x.

It is evident that π(x) may be, in principle at least, computed from
a contour integral (3.27), and relatively easy side calculations of π

(
x1/n

)
starting with π (

√
x). One could also simply apply the contour integral relation

recursively, since the leading term of π∗(x) − π(x) is π∗ (x1/2
)
/2, and so on.

There is another alternative for extracting π if we can compute π∗, namely
by way of an inversion formula (again for x not a prime power)

π(x) =
∞∑

n=1

µ(n)
n

π∗
(
x1/n

)
.

This analytic approach thus comes down to numerical integration, yet
such integration is the problematic stage. First of all, one has to evaluate ζ
with sufficient accuracy. Second, one needs a rigorous bound on the extent to
which the integral is to be taken along the contour. Let us address the latter
problem first. Say we have in hand a sharp computational scheme for ζ itself,
and we take x = 100, σ = 3/2. Numerical integration reveals that for sample
integration limits T ∈ {10, 30, 50, 70, 90}, respective values are

π∗(100) ≈ Re
1003/2

π

∫ T

0

100it

3/2 + it
ln ζ(3/2 + it) dt

≈ 30.14, 29.72, 27.89, 29.13, 28.3,

which values exhibit poor convergence of the contour integral: The true value
of π∗(100) can be computed directly, by hand, to be 428/15 ≈ 28.533 . . . .
Furthermore, on inspection the value as a function of integration limit T is
rather chaotic in the way it hovers around the true value, and rigorous error
bounds are, as might be expected, nontrivial to achieve (see Exercise 3.37).

The suggestions in [Lagarias and Odlyzko 1987] address, and in principle
repair, the above drawbacks of the analytic approach. As for evaluation of ζ
itself, the Riemann–Siegel formula is often recommended for maximum speed;
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in fact, whenever s has a formidably large imaginary part t, said formula
has been the exclusive historical workhorse (although there has been some
modern work on interesting variants to Riemann–Siegel, as we touch upon
at the end of Exercise 1.61). What is more, there is a scheme found in
[Odlyzko and Schönhage 1988] for a kind of “parallel” evaluation of ζ(s)
values, along, say, a progression of imaginary ordinates of the argument s.
This sort of simultaneous evaluation is just what is needed for numerical
integration. For a modern compendium including variants on the Riemann–
Siegel formula and other computational approaches, see [Borwein et al. 2000]
and references therein. In [Crandall 1998] can be found various fast algorithms
for simultaneous evaluation at various argument sets. The essential idea
for acceleration of ζ computations is to use FFT, polynomial evaluation,
or Newton-method techniques to achieve simultaneous evaluations of ζ(s)
for a given set of s values. In the present book we have provided enough
instruction—via Exercise 1.61—for one at least to get started on single
evaluations of ζ(s + it) that require only O

(
t1/2+ε

)
bit operations.

As for the problem of poor convergence of contour integrals, the clever
ploy is to invoke a smooth (one might say “adiabatic”) turn-off function that
renders a (modified) contour integral more convergent. The phenomenon is
akin to that of reduced spectral bandwidth for smoother functions in Fourier
analysis. The Lagarias–Odlyzko identity of interest is (henceforth we shall
assume that x is not a prime power)

π∗(x) =
1

2πi

∫
C

F (s, x) ln ζ(s)
ds

s
+

∑
p∈P, m>0

θ(x − pm) − c(pm, x)
m

, (3.28)

where c, F form a Mellin-transform pair:

c(u, x) =
1

2πi

∫
C

F (s, x)u−s ds,

F (s, x) =
∫ ∞

0
c(u, x)us−1 du.

To understand the import of this scheme, take the turn-off function c(u, x)
to be θ(x − u). Then F (s, x) = xs/s, the final sum in (3.28) is zero, and we
recover the original analytic representation (3.27) for π∗. Now, however, let
us contemplate the class of continuous turn-off functions c(u, x) that stay at
1 over the interval u ∈ [0, x − y), decay smoothly (to zero) over u ∈ (x − y, x],
and vanish for all u > x. For optimization of computational efficiency, y will
eventually be chosen to be of order

√
x. In fact, we can combine various of

the above relations to write

π(x) =
1

2πi

∫
C

F (s, x) ln ζ(s)
ds

s
(3.29)

−
∑

p∈P m>1

θ(x − pm)
m

+
∑

p∈P, m>0

θ(x − pm) − c(pm, x)
m

.
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Indeed, the last summation is rather easy, since it has just O (
√

x) terms. The
next-to-last summation, which just records the difference between π(x) and
π∗(x), also has just O (

√
x) terms.

Let us posit a specific smooth decay, i.e., for u ∈ (x − y, x] we define

c(u, x) = 3
(x − u)2

y2 − 2
(x − u)3

y3 .

Observe that c(x − y, x) = 1 and c(x, x) = 0, as required for continuous c
functions in the stated class. Mellin transformation of c gives

y3

6
F (s, x) = (3.30)

−2xs+3 + (s + 3)xs+2y + (x − y)s(2x3 + (s − 3)x2y − 2sxy2 + (s + 1)y3)
s(s + 1)(s + 2)(s + 3)

.

This expression, though rather unwieldy, allows us to count primes more
efficiently. For one thing, the denominator of the second fraction is O(t4),
which is encouraging. As an example, performing numerical integration as in
relation (3.29) with the choices x = 100, y = 10, we find for the same trial set
of integration limits T ∈ {10, 30, 50, 70, 90} the results

π(100) ≈ 25.3, 26.1, 25.27, 24.9398, 24.9942,

which are quite satisfactory, since π(100) = 25. (Note, however, that there is
still some chaotic behavior until T be sufficiently large.) It should be pointed
out that Lagarias and Odlyzko suggest a much more general, parameterized
form for the Mellin pair c, F , and indicate how to optimize the parameters.
Their complexity result is that one can either compute π(x) with bit operation
count O

(
x1/2+ε

)
and storage space of O

(
x1/4+ε

)
bits, or on the notion of

limited memory one may replace the powers with 3/5 + ε, ε, respectively.
As of this writing, there has been no practical result of the analytic method

on a par with the greatest successes of the aforementioned combinatorial
methods. However, this impasse apparently comes down to just a matter of
calendar time. In fact, [Galway 1998] has reported that values of π(10n) for
n = 13, and perhaps 14, are attainable for a certain turn-off function c and
(only) standard, double-precision floating-point arithmetic for the numerical
integration. Perhaps 100-bit or higher precision will be necessary to press the
analytic method on toward modern limits, say x ≈ 1021 or more; the required
precision depends on detailed error estimates for the contour integral. The
Galway functions are a clever choice of Mellin pair, and work out to be more
efficient than the turn-off functions that lead to F of the type (3.30). Take

c(u, x) =
1
2
erfc

(
ln u

x

2a(x)

)
,

where erfc is the standard error function:

erfc(z) =
2√
π

∫ ∞

z

e−t2 dt
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and a is chosen later for efficiency. This c function turns off smoothly at u ∼ x,
but at a rate tunable by choice of a. The Mellin companion works out nicely
to be

F (s) =
xs

s
es2a(x)2 . (3.31)

For s = σ+it the wonderful (for computational purposes) decay in F is e−t2a2
.

Now numerical experiments are even more satisfactory. Sure enough, we can
use relation (3.29) to yield, for x = 1000, decay function a(x) = (2x)−1/2,
σ = 3/2, and integration limits T ∈ {20, 40, 60, 80, 100, 120}, the successive
values

π(1000) ≈ 170.6, 169.5, 170.1, 167.75, 167.97, 167.998,

in excellent agreement with the exact value π(1000) = 168; and furthermore,
during such a run the chaotic manner of convergence is, qualitatively speaking,
not so manifest.

Incidentally, though we have used properties of ζ(s) to the right of the
critical strip, there are ways to count primes using properties within the strip;
see Exercise 3.50.

3.8 Exercises

3.1. In the spirit of the opening observations to the present chapter, denote
by SB(n) the sum of the base-B digits of n. Interesting phenomena accrue for
specific B, such as B = 7. Find the smallest prime p such that S7(p) is itself
composite. (The magnitude of this prime might surprise you!) Then, find all
possible composite values of S7(p) for the primes p < 16000000 (there are very
few such values!). Here are two natural questions, the answers to which are
unknown to the authors: Given a base B, are there infinitely many primes p
with SB(p) prime? (composite?) Obviously, the answer is “yes” for at least
one of these questions!

3.2. Sometimes other fields of thought can feed back into the theory of prime
numbers. Let us look at a beautiful gem in [Golomb 1956] that uses clever
combinatorics—and even some “visual” highlights—to prove Fermat’s little
Theorem 3.4.1.

For a given prime p you are to build necklaces having p beads. In any one
necklace the beads can be chosen from n possible different colors, but you
have the constraint that no necklace can be all one color.
(1) Prove: For necklaces laid out first as linear strings (i.e., not yet

circularized) there are np − n possible such strings.
(2) Prove: When the necklace strings are all circularized, the number of

distinguishable necklaces is (np − n)/p.
(3) Prove Fermat’s little theorem, that np ≡ n (mod p).
(4) Where have you used that p is prime?
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3.3. Prove that if n > 1 and gcd(an − a, n) = 1 for some integer a, then not
only is n composite, it is not a prime power.

3.4. For each number B ≥ 2, let dB be the asymptotic density of the integers
that have a divisor exceeding B with said divisor composed solely of primes
not exceeding B. That is, if N(x, B) denotes the number of positive integers up
to x that have such a divisor, then we are defining dB = limx→∞ N(x, B)/x.
(1) Show that

dB = 1 −
∏
p≤B

(
1 − 1

p

)
·

B∑
m=1

1
m

,

where the product is over primes.
(2) Find the smallest value of B with dB > d7.
(3) Using the Mertens Theorem 1.4.2 show that limB→∞ dB = 1 − e−γ ≈

0.43854, where γ is the Euler constant.
(4) It is shown in [Rosser and Schoenfeld 1962] that if x ≥ 285, then

eγ lnx
∏

p≤x(1 − 1/p) is between 1 − 1/(2 ln2 x) and 1 + 1/(2 ln2 x). Use
this to show that 0.25 ≤ dB < e−γ for all B ≥ 2.

3.5. Let c be a real number and consider the set of those integers n
whose largest prime factor does not exceed nc. Let c be such that the
asymptotic density of this set is 1/2. Show that c = 1/(2

√
e). A pleasantly

interdisciplinary reference is [Knuth and Trabb Pardo 1976].
Now, consider the set of those integers n whose second-largest prime factor

(if there is one) does not exceed nc. Let c be such that the asymptotic density
of this set is 1/2. Show that c is the solution to the equation

I(c) =
∫ 1/2

c

ln(1 − u) − lnu

u
du =

1
2
,

and solve this numerically for c. An interesting modern approach for the
numerics is to show, first, that this integral is given exactly by

I(c) =
1
12

(
−π2 + 6 ln2 c + 12Li2(c)

)
,

in which the standard polylogarithm Li2(c) = c/12 + c2/22 + c3/32 + · · ·
appears. Second, using any of the modern packages that know how to
evaluate Li2 to high precision, implement a Newton-method solver, in this
way circumventing the need for numerical integration per se. You ought to be
able to obtain, for example,

c ≈ 0.2304366013159997457147108570060465575080754 . . . ,

presumed correct to the implied precision.
Another intriguing direction: Work out a fast algorithm—having a value

of c as input—for counting the integers n ∈ [1, x] whose second-largest prime
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factor exceeds nc (when there are less than two prime factors let us simply
not count that n). For the high-precision c value given above, there are 548
such n ∈ [1, 1000], whereas the theory predicts 500. Give the count for some
much higher value of x.

3.6. Rewrite the basic Eratosthenes sieve Algorithm 3.2.1 with improve-
ments. For example, reduce memory requirements (and increase speed) by
observing that any prime p > 3 satisfies p ± 1 (mod 6); or use a modulus
greater than 6 in this fashion.

3.7. Use the Korselt criterion, Theorem 3.4.6, to find by hand or machine
some explicit Carmichael numbers.

3.8. Prove that every composite Fermat number Fn = 22n

+ 1 is a
Fermat pseudoprime base 2. Can a composite Fermat number be a Fermat
pseudoprime base 3? (The authors know of no example, nor do they know a
proof that this cannot occur.)

3.9. This exercise is an exploration of rough mental estimates pertaining
to the statistics attendant on certain pseudoprime calculations. The great
computationalist/theorist team of D. Lehmer and spouse E. Lehmer together
pioneered in the mid-20th century the notion of primality tests (and a great
many other things) via hand-workable calculating machinery. For example,
they proved the primality of such numbers as the repunit (1023 − 1)/9 with
a mechanical calculator at home, they once explained, working a little every
day over many months. They would trade off doing the dishes vs. working on
the primality crunching. Later, of course, the Lehmers were able to handle
much larger numbers via electronic computing machinery.

Now, the exercise is, comment on the statistics inherent in D. Lehmer’s
(1969) answer to a student’s question, “Professor Lehmer, have you in all
your lifetime researches into primes ever been tripped up by a pseudoprime
you had thought was prime (a composite that passed the base-2 Fermat
test)?” to which Lehmer’s response was as terse as can be: “Just once.” So
the question is, does “just once” make statistical sense? How dense are the
base-2 pseudoprimes in the region of 10n? Presumably, too, one would not
be fooled, say, by those base-2 pseudoprimes that are divisible by 3, so revise
the question to those base-2 pseudoprimes not divisible by any “small” prime
factors. A reference on this kind of question is [Damg̊ard et al. 1993].

3.10. Note that applying the formula in the proof of Theorem 3.4.4 with
a = 2, the first legal choice for p is 5, and as noted, the formula in the proof
gives n = 341, the first pseudoprime base 2. Applying it with a = 3, the first
legal choice for p is 3, and the formula gives n = 91, the first pseudoprime
base 3. Show that this pattern breaks down for larger values of a and, in fact,
never holds again.

3.11. Show that if n is a Carmichael number, then n is odd and has at least
three prime factors.
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3.12. Show that a composite number n is a Carmichael number if and only
if an−1 ≡ 1 (mod n) for all integers a coprime to n.

3.13. [Beeger] Show that if p is a prime, then there are at most finitely many
Carmichael numbers with second largest prime factor p.

3.14. For any positive integer n let

F(n) =
{
a (mod n) : an−1 ≡ 1 (mod n)

}
.

(1) Show that F(n) is a subgroup of Z∗
n, the full group of reduced residues

modulo n, and that it is a proper subgroup if and only if n is a composite
that is not a Carmichael number.

(2) [Monier, Baillie–Wagstaff] Let F (n) = #F(n). Show that

F (n) =
∏
p|n

gcd(p − 1, n − 1).

(3) Let F0(n) denote the number of residues a (mod n) such that an ≡ a
(mod n). Find a formula, as in (2) above, for F0(n). Show that if
F0(n) < n, then F0(n) ≤ 2

3n. Show that if n = 6 and F0(n) < n, then
F0(n) ≤ 3

5n. (It is not known whether there are infinitely many numbers
n with F0(n) = 3

5n, nor is it known whether there is some ε > 0 such that
there are infinitely many n with εn < F0(n) < n.)

We remark that it is known that if h(n) is any function that tends to infinity,
then the set of numbers n with F (n) < lnh(n) n has asymptotic density 1
[Erdős and Pomerance 1986].

3.15. [Monier] In the notation of Lemmas 3.5.8 and 3.5.9 and with S(n)
given in (3.5), show that

S(n) =
(

1 +
2ν(n)ω(n) − 1

2ω(n) − 1

)∏
p|n

gcd(t, p − 1).

3.16. [Haglund] Let n be an odd composite. Show that S(n) is the subgroup
of Z∗

n generated by S(n).

3.17. [Gerlach] Let n be an odd composite. Show that S(n) = S(n) if and
only if n is a prime power or n is divisible by a prime that is 3 (mod 4).
Conclude that the set of odd composite numbers n for which S(n) is not a
subgroup of Z∗

n is infinite, but has asymptotic density zero. (See Exercises
1.10, 1.91, and 5.16.)

3.18. Say you have an odd number n and an integer a not divisible by n
such that n is a pseudoprime base a, but n is not a strong pseudoprime base
a. Describe an algorithm that with these numbers as inputs gives a nontrivial
factorization of n in polynomial time.
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3.19. [Lenstra, Granville] Show that if an odd number n be divisible by the
square of some prime, then W (n), the least witness for n, is less than ln2 n.
(Hint: Use (1.45).) This exercise is re-visited in Exercise 4.28.

3.20. Describe a probabilistic algorithm that gives nontrivial factorizations
of Carmichael numbers in expected polynomial time.

3.21. We say that an odd composite number n is an Euler pseudoprime base
a if a is coprime to n and

a(n−1)/2 ≡
(

a

n

)
(mod n), (3.32)

where
(

a
n

)
is the Jacobi symbol (see Definition 2.3.3). Euler’s criterion (see

Theorem 2.3.4) asserts that odd primes n satisfy (3.32). Show that if n is a
strong pseudoprime base a, then n is an Euler pseudoprime base a, and that
if n is an Euler pseudoprime base a, then n is a pseudoprime base a.

3.22. [Lehmer, Solovay–Strassen] Let n be an odd composite. Show that
the set of residues a (mod n) for which n is an Euler pseudoprime is a proper
subgroup of Z∗

n. Conclude that the number of such bases a is at most ϕ(n)/2.

3.23. Along the lines of Algorithm 3.5.6 develop a probabilistic compos-
iteness test using Exercise 3.22. (This test is often referred to as the Solo-
vay–Strassen primality test.) Using Exercise 3.21 show that this algorithm is
majorized by Algorithm 3.5.6.

3.24. [Lenstra, Robinson] Show that if n is odd and if there exists an integer
b with b(n−1)/2 ≡ −1 (mod n), then any integer a with a(n−1)/2 ≡ ±1 (mod n)
also satisfies a(n−1)/2 ≡

(
a
n

)
(mod n). Using this and Exercise 3.22, show that

if n is an odd composite and a(n−1)/2 ≡ ±1 (mod n) for all a coprime to n,
then in fact a(n−1)/2 ≡ 1 (mod n) for all a coprime to n. Such a number must
be a Carmichael number; see Exercise 3.12. (It follows from the proof of the
infinitude of the set of Carmichael numbers that there are infinitely many odd
composite numbers n such that a(n−1)/2 ≡ ±1 (mod n) for all a coprime to
n. The first example is Ramanujan’s “taxicab” number, 1729.)

3.25. Show that there are seven Fibonacci pseudoprimes smaller than 323.

3.26. Show that every composite number coprime to 6 is a Lucas
pseudoprime with respect to x2 − x + 1.

3.27. Show that if (3.12) holds, then so does

(a − x)n ≡
{

x (mod (f(x), n)), if
(∆

n

)
= −1,

a − x (mod (f(x), n)), if
(∆

n

)
= 1.

In particular, conclude that a Frobenius pseudoprime with respect to f(x) =
x2 − ax + b is also a Lucas pseudoprime with respect to f(x).
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3.28. Show that the definition of Frobenius pseudoprime in Section 3.6.5 for
a polynomial f(x) = x2 − ax + b reduces to the definition in Section 3.6.2.

3.29. Show that if a, n are positive integers with n odd and coprime to
a, then n is a Fermat pseudoprime base a if and only if n is a Frobenius
pseudoprime with respect to the polynomial f(x) = x − a.

3.30. Let a, b be integers with ∆ = a2−4b not a square, let f(x) = x2−ax+b,
let n be an odd prime not dividing b∆, and let R = Zn[x]/(f(x)). Show that
if (x(a − x)−1)2m = 1 in R, then (x(a − x)−1)m = ±1 in R.

3.31. Show that a Frobenius pseudoprime with respect to x2 −ax+ b is also
an Euler pseudoprime (see Exercise 3.21) with respect to b.

3.32. Prove that the various identities in Section 3.6.3 are correct.

3.33. Prove that the recurrence (3.22) is valid.

3.34. Show that if a = π
(
x1/3

)
, then the number of terms in the double

sum in (3.23) is O
(
x2/3/ ln2 x

)
.

3.35. Show that with M computers where M < x1/3, each with the capacity
for O

(
x1/3+ε

)
space, the prime-counting algorithm of Section 3.7 may be

speeded up by a factor M .

3.36. Show that instead of using analytic relation (3.27) to get the modified
count π∗(x), one could, if desired, use the “prime-zeta” function

P(s) =
∑
p∈P

1
ps

in place of ln ζ within the integral, whence the result on the left-hand side
of (3.27) is, for noninteger x, the π function itself. Then show that this
observation is not entirely vacuous, and might even be practical, by deriving
the relation

P(s) =
∞∑

n=1

µ(n)
n

ln ζ(ns),

for Re s > 1, and describing quantitatively the relative ease with which one
can calculate ζ(ns) for large integers n.

3.37. By establishing theoretical bounds on the magnitude of the real part
of the integral ∫ ∞

T

eitα

β + it
dt,

where T, α, β are positive reals, determine a bound on that portion of the
integral in relation (3.27) that comes from Im(s) > T . Describe, then, how
large T must be for π∗(x) to be calculated to within some ±ε of the true
value. See Exercises 3.38, 3.39 involving the analogous estimates for much
more efficient prime-counting methods.
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3.38. Consider a specific choice for the Lagarias–Odlyzko turn-off function
c(u, x), namely, a straight-line connection between the 1, 0 values. Specifically,
for y =

√
x, define c = 1, (x − u)/y, 0 as u ≤ x − y, u ∈ (x − y, x], u > x,

respectively. Show that the Mellin companion function is

F (s, x) =
1
y

xs+1 − (x − y)s+1

s(s + 1)
.

Now derive a bound, as in Exercise 3.37, on proper values of T such that π(x)
will be calculated correctly on the basis of

π∗(x) ≈ Re
∫ T

0
F (s, x) ln ζ(s) dt.

Calculate numerically some correct values of π(x) using this particular turn-off
function c.

3.39. In regard to the Galway functions of which F is defined by (3.31), make
rigorous the notion that even though the Riemann zeta function somehow
embodies, if you will, “all the secrets of the primes,” we need to know ζ only
to an imaginary height of “about” x1/2 to count all primes not exceeding x.

3.40. Using integration by parts, show that the F defined by (3.31) is indeed
the Mellin transform of the given c.

3.9 Research problems

3.41. Find a number n ≡ ±2 (mod 5) that is simultaneously a base-
2 pseudoprime and a Fibonacci pseudoprime. Pomerance, Selfridge, and
Wagstaff offer $620 for the first example. (The prime factorization must also
be supplied.) The prize money comes from the three, but not equally: Selfridge
offers $500, Wagstaff offers $100 and Pomerance offers $20. However, they also
agree to pay $620, with Pomerance and Selfridge reversing their roles, for a
proof that no such number n exists.

3.42. Find a composite number n, together with its prime factorization, that
is a Frobenius pseudoprime for x2+5x+5 and satisfies

(5
n

)
= −1. J. Grantham

has offered a prize of $6.20 for the first example.

3.43. Consider the least witness function W (n) defined for odd composite
numbers n. It is relatively easy to see that W (n) is never a power; prove this.
Are there any other forbidden numbers in the range of W (n)? If some n exists
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with W (n) = k, let nk denote the smallest such n. We have

n2 = 9 n12 > 1016

n3 = 2047 n13 = 2152302898747
n5 = 1373653 n14 = 1478868544880821
n6 = 134670080641 n17 = 3474749660383
n7 = 25326001 n19 = 4498414682539051

n10 = 307768373641 n23 = 341550071728321.

n11 = 3215031751

(These values were computed by D. Bleichenbacher, also see [Jaeschke 1993],
[Zhang and Tang 2003], and Exercise 4.34.) S. Li has shown that W (n) = 12
for

n = 1502401849747176241,

so we know that n12 exists. Find n12 and extend the above table. Using
Bleichenbacher’s computations, we know that any other value of nk that exists
must exceed 1016.

3.44. Study, as a possible alternative to the simple trial-division Algorithm
3.1.1, the notion of taking (perhaps extravagant) gcd operations with the N
to be factored. For example, you could compute a factorial of some B and
take gcd(B!, N), hoping for a factor. Describe how to make such an algorithm
complete, with the full prime factorizations resulting. This completion task is
nontrivial: For example, one must take note that a factor k2 of N with k < B
might not be extracted from a single factorial.

Then there are complexity issues. Should one instead multiply together
sets of consecutive primes, i.e., partial “primorials” (see Exercise 1.6), to form
numbers {Bi}, and then test various gcd(Bi, N)?

3.45. Let f(N) be a worst-case bound on the time it takes to decide
primality on any particular number between N and N + N1/4. By sieving
first with the primes below N1/4 we are left with the numbers in the interval[
N, N + N1/4

]
that have no prime factor up to N1/4. The number of these

remaining numbers is O(N1/4/ lnN). Thus one can find all the primes in the
interval in a time bound of O(N1/4f(N)/ lnN) + O(N1/4 ln lnN). Is there a
way of doing this either in time o(N1/4f(N)/ lnN) or in time O(N1/4 ln lnN)?

3.46. The ordinary sieve of Eratosthenes, as discussed above, may be
segmented, so that but for the final list of primes collected, the space required
along the way is O(N1/2). And this can be accomplished without sacrificing
on the time bound of O(N ln lnN) bit operations. Can one prepare a table of
primes up to N in o(N) bit operations, and use only O(N1/2) space along the
way? Algorithm 3.2.2 meets the time bound goal, but not the space bound.
(The paper [Atkin and Bernstein 2004] nearly solves this problem.)

3.47. Along the lines of the formalism of Section 3.7.2, derive an integral
condition on x,∆ and involving the Riemann ζ function such that there exist
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no primes in the interval [x, x+∆]. Describe how such a criterion could be used
for given x,∆ to show numerically, but rigorously, whether or not primes exist
in such an interval. Of course, any new theoretical inroads into the analysis of
these “gaps” would be spectacular.

3.48. Suppose T is a probabilistic test that takes composite numbers n and,
with probability p(n), provides a proof of compositeness for n. (For prime
inputs, the test T reports only that it has not succeeded in finding a proof of
compositeness.) Is there such a test T that has p(n) → 1 as n runs to infinity
through the composite numbers, and such that the time to run T on n is no
longer than doing k pseudoprime tests on n, for some fixed k?

3.49. For a positive integer n coprime to 12 and squarefree, define K(n)
depending on n mod 12 according to one of the following equations:

K(n) = #{(u, v) : u > v > 0; n = u2 + v2}, for n ≡ 1, 5 (mod 12),
K(n) = #{(u, v) : u > 0, v > 0; n = 3u2 + v2}, for n ≡ 7 (mod 12),
K(n) = #{(u, v) : u > v > 0; n = 3u2 − v2}, for n ≡ 11 (mod 12).

Then it is a theorem in [Atkin and Bernstein 2004] that n is prime if and only
if K(n) is odd. First, prove this theorem using perhaps the fact (or related
facts) that the number of representations of (any) positive n as a sum of two
squares is

r2(n) = 4
∑

d|n, d odd

(−1)(d−1)/2,

where we count all n = u2 + v2 including negative u or v representations; e.g.
one has as a check the value r2(25) = 12.

A research question is this: Using the Atkin–Bernstein theorem can one
fashion an efficient sieve for primes in an interval, by assessing the parity of
K for many n at once? (See [Galway 2000].)

Another question is, can one fashion an efficient sieve (or even a primality
test) using alternative descriptions of r2(n), for example by invoking various
connections with the Riemann zeta function? See [Titchmarsh 1986] for a
relevant formula connecting r2 with ζ.

Yet another research question runs like so: Just how hard is it to
“count up” all lattice points (in the three implied lattice regions) within a
given “radius”

√
n, and look for representation numbers K(n) as numerical

discontinuities at certain radii. This technique may seem on the face of it to
belong in some class of brute-force methods, but there are efficient formulae—
arising in analyses for the celebrated Gauss circle problem (how many lattice
points lie inside a given radius?)—that provide exact counts of points in
surprisingly rapid fashion. In this regard, show an alternative lattice theorem,
that if n ≡ 1 (mod 4) is squarefree, then n is prime if and only if r2(n) = 8. A
simple starting experiment that shows n = 13 to be prime by lattice counting,
via analytic Bessel formulae, can be found in [Crandall 1994b, p. 68].
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3.50. The closing theme of the chapter, analytic prime-counting, involves
the Riemann zeta function in a certain way. Pursuant to Exercise 1.60,
consider the following research path, whereby we use information about the
zeta function within, rather than to the right of, the critical strip.

Start with the Riemann–von Mangoldt formula, closely reminiscent of
(1.23) and involving the π∗ function in (3.25):

π∗(x) = li0(x) −
∑

ρ

li0(xρ) − ln 2 +
∫ ∞

x

dt

t(t2 − 1) ln t
,

observing the computational cautions of Exercise 1.36 such as the need to
employ Ei for reliable results. The zeros ρ here are the Riemann critical zeros,
and one may replace the sum with twice a sum over real parts.

The research problem then is: Find a computationally rapid algorithm
to estimate π(x) extremely accurately using a collection of Riemann critical
zeros. It is known that with a few zeros, say, one may actually compute π(x)
as the integer-valued staircase that it is, at least up to some x depending
on how many zeros are employed. A hard extension to this problem is
then: Given x, how far does one have to go up the critical line with ρ
values to compute a numerical approximation—call it πa(x)—in order to have
π(n) = �πa(n + 1/2)� hold exactly for every integer n ∈ [2, x]? We certainly
expect on theoretical grounds that one must need at least O(

√
x) values of ρ,

but the idea here is to have an analytically precise function πa(x) for a given
range on x.

References on the use of Riemann critical zeros for prime-counting are
[Riesel and Göhl 1970] and [Borwein et al. 2000].



Chapter 4

PRIMALITY PROVING

In Chapter 3 we discussed probabilistic methods for quickly recognizing
composite numbers. If a number is not declared composite by such a test,
it is either prime, or we have been unlucky in our attempt to prove the
number composite. Since we do not expect to witness inordinate strings of
bad luck, after a while we become convinced that the number is prime. We
do not, however, have a proof; rather, we have a conjecture substantiated by
numerical experiments. This chapter is devoted to the topic of how one might
actually prove that a number is prime. Note that primality proving via elliptic
curves is discussed in Section 7.6.

4.1 The n − 1 test

Small numbers can be tested for primality by trial division, but for larger
numbers there are better methods (1012 is a possible size threshold, but
this depends on the specific computing machinery used). One of these
better methods is based on the same theorem as the simplest of all of
the pseudoprimality tests, namely, Fermat’s little theorem (Theorem 3.4.1).
Known as the n − 1 test, the method somewhat surprisingly suggests that we
try our hand at factoring not n, but n − 1.

4.1.1 The Lucas theorem and Pepin test

We begin with an idea of E. Lucas, from 1876.

Theorem 4.1.1 (Lucas theorem). If a, n are integers with n > 1, and

an−1 ≡ 1 (mod n), but a(n−1)/q ≡ 1 (mod n) for every prime q|n − 1, (4.1)

then n is prime.

Proof. The first condition in (4.1) implies that the order of a in Z∗
n is a

divisor of n − 1, while the second condition implies that the order of a is not
a proper divisor of n−1; that is, it is equal to n−1. But the order of a is also
a divisor of ϕ(n), by the Euler theorem (see (2.2)), so n − 1 ≤ ϕ(n). But if
n is composite and has the prime factor p, then both p and n are integers in
{1, 2, . . . , n} that are not coprime to n, so from the definition of Euler’s totient
function ϕ(n), we have ϕ(n) ≤ n− 2. This is incompatible with n− 1 ≤ ϕ(n),
so it must be the case that n is prime. �
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Remark. The version of Theorem 4.1.1 above is due to Lehmer. Lucas had
such a result where q runs through all of the proper divisors of n − 1.

The hypothesis (4.1) of the Lucas theorem is not vacuous for prime numbers;
such a number a is called a primitive root, and all primes have them. That is,
if n is prime, the multiplicative group Z∗

n is cyclic; see Theorem 2.2.5. In fact,
each prime n > 200560490131 has more than n/(2 ln lnn) primitive roots in
{1, 2, . . . , n−1}; see Exercise 4.1. (Note: The prime 200560490131 is 1 greater
than the product of the first 11 primes.)

A consequence is that if n > 200560490131 is prime, it is easy to find
a number satisfying (4.1) via a probabilistic algorithm. Just choose random
integers a in the range 1 ≤ a ≤ n − 1 until a successful one is found. The
expected number of trials is less than 2 ln ln n.

Though we know no deterministic polynomial-time algorithm for finding a
primitive root for a prime, the principal hindrance in implementing the Lucas
theorem as a primality test is not the search for a primitive root a, but rather
finding the complete prime factorization of n−1. As we know, factorization is
hard in practice for many numbers. But it is not hard for every number. For
example, consider a search for primes that are 1 more than a power of 2. As
seen in Theorem 1.3.4, such a prime must be of the form Fk = 22k

+1. Numbers
in this sequence are called Fermat numbers after Fermat, who thought they
were all prime.

In 1877, Pepin gave a criterion similar to the following for the primality
of a Fermat number.

Theorem 4.1.2 (Pepin test). For k ≥ 1, the number Fk = 22k

+1 is prime
if and only if 3(Fk−1)/2 ≡ −1 (mod Fk).

Proof. Suppose the congruence holds. Then (4.1) holds with n = Fk, a = 3,
so Fk is prime by the Lucas Theorem 4.1.1. Conversely, assume Fk is prime.
Since 2k is even, it follows that 22k ≡ 1 (mod 3), so that Fk ≡ 2 (mod 3). But
also Fk ≡ 1 (mod 4), so the Legendre symbol

( 3
Fk

)
is −1, that is, 3 is not a

square (mod Fk). The congruence in the theorem thus follows from Euler’s
criterion (2.6). �

Actually, Pepin gave his test with the number 5 in place of the number 3 (and
with k ≥ 2). It was noticed by Proth and Lucas that one can use 3. In this
regard, see [Williams 1998] and Exercise 4.5.

As of this writing, the largest Fk for which the Pepin test has been used
is F24. As discussed in Section 1.3.2, this number is composite, and in fact,
so is every other Fermat number beyond F4 for which the character (prime or
composite) has been resolved.

4.1.2 Partial factorization

Since the hardest step, in general, in implementing the Lucas Theorem 4.1.1
as a primality test is coming up with the complete prime factorization of n−1,
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one might wonder whether any use can be made of a partial factorization of
n − 1. In particular, say

n − 1 = FR, and the complete prime factorization of F is known. (4.2)

If F is fairly large as a function of n, we may fashion a primality proof for n
along the lines of (4.1), if indeed n happens to be prime. Our first result on
these lines allows us to deduce information on the prime factorization of n.

Theorem 4.1.3 (Pocklington). Suppose (4.2) holds and a is such that

an−1 ≡ 1 (mod n) and gcd(a(n−1)/q − 1, n) = 1 for each prime q|F. (4.3)

Then every prime factor of n is congruent to 1 (mod F ).

Proof. Let p be a prime factor of n. From the first part of (4.3) we have that
the order of aR in Z∗

p is a divisor of (n − 1)/R = F . From the second part
of (4.3) it is not a proper divisor of F , so is equal to F . Hence F divides the
order of Z∗

p, which is p − 1. �

Corollary 4.1.4. If (4.2) and (4.3) hold and F ≥ √
n, then n is prime.

Proof. Theorem 4.1.3 implies that each prime factor of n is congruent to 1
(mod F ), and so each prime factor of n exceeds F . But F ≥ √

n, so each
prime factor of n exceeds

√
n, so n must be prime. �

The next result allows a still smaller value of F .

Theorem 4.1.5 (Brillhart, Lehmer, and Selfridge). Suppose (4.2) and
(4.3) both hold and suppose that n1/3 ≤ F < n1/2. Consider the base F
representation of n, namely n = c2F

2 + c1F + 1, where c1, c2 are integers in
[0, F − 1]. Then n is prime if and only if c2

1 − 4c2 is not a square.

Proof. Since n ≡ 1 (mod F ), it follows that the base-F “units” digit of n
is 1. Thus n has its base-F representation in the form c2F

2 + c1F + 1, as
claimed. Suppose n is composite. From Theorem 4.1.3, all the prime factors
of n are congruent to 1 (mod F ), so must exceed n1/3. We conclude that n
has exactly two prime factors:

n = pq, p = aF + 1, q = bF + 1, a ≤ b.

We thus have

c2F
2 + c1F + 1 = n = (aF + 1)(bF + 1) = abF 2 + (a + b)F + 1.

Our goal is to show that we must have c2 = ab and c1 = a + b, for then it will
follow that c2

1 − 4c2 is a square.
First note that F 3 ≥ n > abF 2, so that ab ≤ F − 1. It follows that either

a+b ≤ F −1 or a = 1, b = F −1. In the latter case, n = (F +1)((F −1)F +1) =
F 3 + 1, contradicting F ≥ n1/3. Hence both ab and a + b are positive integers
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smaller than F . From the uniqueness of the base-F representation of a number
it follows that c2 = ab and c1 = a + b as claimed.

Now suppose, conversely, that c2
1 − 4c2 is a square, say u2. Then

n =
(

c1 + u

2
F + 1

)(
c1 − u

2
F + 1

)
.

The two fractions are both integers, since c1 ≡ u (mod 2). It remains to note
that this factorization is nontrivial, since c2 > 0 implies |u| < c1. Thus, n is
composite. �

To apply Theorem 4.1.5 as a primality test one should have a fast method
of verifying whether the integer c2

1 − 4c2 in the theorem is a square. This is
afforded by Algorithm 9.2.11.

The next result allows F to be even smaller.

Theorem 4.1.6 (Konyagin and Pomerance). Suppose that n ≥ 214, both
(4.2) and (4.3) hold, and n3/10 ≤ F < n1/3. Say the base-F expansion of n is
c3F

3 + c2F
2 + c1F + 1, and let c4 = c3F + c2. Then n is prime if and only if

the following conditions hold:
(1) (c1 + tF )2 + 4t − 4c4 is not a square for t = 0, 1, 2, 3, 4, 5.
(2) Let u/v be the continued fraction convergent to c1/F such that v is

maximal subject to v < F 2/
√

n. If d = �c4v/F + 1/2�, then the
polynomial vx3 + (uF − c1v)x2 + (c4v − dF + u)x − d ∈ Z[x] has no
integral root a such that aF + 1 is a nontrivial factor of n.

Proof. Since every prime factor of n is congruent to 1 (mod F ) (by Theorem
4.1.3), we have that n is composite if and only if there are positive integers
a1 ≤ a2 with n = (a1F + 1)(a2F + 1). Suppose n is composite and (1) and
(2) hold. We begin by establishing some identities and inequalities. We have

n = c4F
2 + c1F + 1 = a1a2F

2 + (a1 + a2)F + 1,

and there is some integer t ≥ 0 with

a1a2 = c4 − t, a1 + a2 = c1 + tF. (4.4)

Since (1) holds, we have t ≥ 6. Thus

a2 ≥ a1 + a2

2
≥ c1 + 6F

2
≥ 3F

and
a1 <

n

a2F 2 ≤ n

3F 3 . (4.5)

We have from (4.4) that

t ≤ a1 + a2

F
≤ a1a2 + 1

F
<

c4

F
<

n

F 3 . (4.6)
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Also, (4.4) implies that

a1c1 + a1tF = a2
1 + c4 − t. (4.7)

With the notation of condition (2), we have from (4.7) that

a1u + a1tv − c4v

F
= a1v

(u

v
− c1

F

)
+ (a1c1 + a1tF )

v

F
− c4v

F

= a1v
(u

v
− c1

F

)
+ (a2

1 + c4 − t)
v

F
− c4v

F

= a1v
(u

v
− c1

F

)
+ (a2

1 − t)
v

F
. (4.8)

Note that (4.5), (4.6), and t ≥ 6 imply that

|a2
1 − t| < max{a2

1, t} ≤ max
{

1
9

( n

F 3

)2
,

n

F 3

}
≤ 1

6

( n

F 3

)2
. (4.9)

First suppose that u/v = c1/F . Then (4.8) and (4.9) imply that

∣∣∣a1u + a1tv − c4v

F

∣∣∣ = |a2
1 − t| v

F
<

1
6

( n

F 3

)2 v

F
<

n2

6F 7 · F 2
√

n
=

n3/2

6F 5 ≤ 1
6
.

(4.10)
If u/v = c1/F , let u′/v′ be the next continued fraction convergent to c1/F
after u/v, so that

v <
F 2
√

n
≤ v′,

∣∣∣u
v

− c1

F

∣∣∣ ≤ 1
vv′ ≤

√
n

vF 2 .

Thus, from (4.5), (4.8), and the calculation in (4.10),

∣∣∣a1u + a1tv − c4v

F

∣∣∣ ≤ a1v

√
n

vF 2 +
1
6

<
n3/2

3F 5 +
1
6

≤ 1
2
.

Let d = a1u + a1tv, so that |d − c4v/F | < 1/2, which implies that d =
�c4v/F + 1/2�. Multiplying (4.7) by a1v, we have

va3
1 − c1va2

1 − a2
1tvF − a1tv + c4a1v = 0,

and using −a1tv = ua1 − d, we get

va3
1 + (uF − c1v)a2

1 + (c4v − dF + u)a1 − d = 0.

Hence (2) does not hold after all, which proves that if n is composite, then
either (1) or (2) does not hold.

Now suppose n is prime. If t ∈ {0, 1, 2, 3, 4, 5} and (c1+tF )2−4c4+4t = u2,
with u integral, then

n = (c4 − t)F 2 + (c1 + tF )F + 1

=
(

c1 + tF + u

2
F + 1

)(
c1 + tF − u

2
F + 1

)
.



178 Chapter 4 PRIMALITY PROVING

Since n is prime, this must be a trivial factorization of n, that is,

c1 + tF − |u| = 0,

which implies c4 = t. But c4 ≥ F ≥ n3/10 ≥ 2143/10 > 5 ≥ t, a contradiction.
So if (1) fails, n must be composite. It is obvious that if n is prime, then (2)
holds. �

As with Theorem 4.1.5, if Theorem 4.1.6 is to be used as a primality
test, one should use Algorithm 9.2.11 as a subroutine to recognize squares. In
addition, one should use Newton’s method or a divide and conquer strategy
to search for integral roots of the cubic polynomial in condition (2) of the
theorem. We next embody Theorems 4.1.3-4.1.6 in one algorithm.

Algorithm 4.1.7 (The n − 1 test). Suppose we have an integer n ≥ 214 and
that (4.2) holds with F ≥ n3/10. This probabilistic algorithm attempts to decide
whether n is prime (YES) or composite (NO).

1. [Pocklington test]
Choose random a ∈ [2, n − 2];
if(an−1 ≡ 1 (mod n)) return NO; // n is composite.
for(prime q|F ) {

g = gcd
(
(a(n−1)/q mod n) − 1, n

)
;

if(1 < g < n) return NO;
if(g == n) goto [Pocklington test]

} // Exhausting the ‘for’ loop means relation (4.3) holds.

2. [First magnitude test]
if(F ≥ n1/2) return YES;

3. [Second magnitude test]
if(n1/3 ≤ F < n1/2) {

Cast n in base F : n = c2F
2 + c1F + 1;

if(c2
1 − 4c2 not a square) return YES;

return NO;
}

4. [Third magnitude test]
if(n3/10 ≤ F < n1/3) {

If conditions (1) and (2) of Theorem 4.1.6 hold, return YES;
return NO;

}

Though Algorithm 4.1.7 is probabilistic, any returned value YES (n is prime)
or NO (n is composite) is a rigorous declaration. We remark that the various
powerings a(n−1)/q mod n and the powering an−1 mod n in Step [Pocklington
test] might be better organized so as to reduce the effort spent, as in
Algorithm 2.2.10.
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4.1.3 Succinct certificates

The goal in primality testing is to quickly find a short proof of primality for
prime inputs p. But how do we know that a short proof exists? Any search
will necessarily be in vain if p does not have a short primality proof. We now
show that every prime p has a short proof of primality, or what V. Pratt has
called a “succinct certificate.”

In fact, there is always a short proof that is based on the Lucas Theorem
4.1.1. This might appear obvious, for once you have somehow found the
complete prime factorization of p − 1 and the primitive root a, the conditions
(4.1) may be quickly verified.

However, for the proof to be complete, one needs a demonstration that we
indeed have the complete factorization of p − 1; that is, that the numbers q
appearing in (4.1) really are prime. This suggests an iteration of the method,
but then arises the possibility that there may be a proliferation of cases. The
heart of the proof is to show in the worst case, not too much proliferation can
occur.

It is convenient to make a small, and quite practical, modification in the
Lucas Theorem 4.1.1. The idea is to treat the prime q = 2 differently from
the other primes q dividing p − 1. In fact, we know what a(p−1)/2 should be
congruent to (mod p) if it is not 1, namely −1. And if a(p−1)/2 ≡ −1 (mod p),
we do not need to check that ap−1 ≡ 1 (mod p). Further, if q is an odd prime
factor of p − 1, let m = a(p−1)/2q. If mq ≡ −1 (mod p) and m2 ≡ 1 (mod p),
then m ≡ −1 (mod p) (regardless of whether p is prime or composite). Thus,
to show that a(p−1)/q ≡ 1 (mod p) it suffices to show a(p−1)/2q ≡ −1 (mod p).
Thus we have the following result.

Theorem 4.1.8. Suppose p > 1 is an odd integer and{
a(p−1)/2 ≡ −1 (mod p),
a(p−1)/2q ≡ −1 (mod p) for every odd prime q|p − 1.

(4.11)

Then p is prime. Conversely, if p is an odd prime, then every primitive root
a of p satisfies conditions (4.11).

We now describe what might be called a “Lucas tree.” It is a rooted tree
with odd primes at the vertices, p at the root (level 0), and for each positive
level k, a prime r at level k is connected to a prime q at level k −1 if and only
if r|q − 1. For example, here is the Lucas tree for p = 1279:

�

�
��

1279 level 0

�3 level 1

�
���71
�

���5 level 2

�
���7
�

���3 level 3
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Let M(p) be the number of modular multiplications (with integers not
exceeding p) needed to prove p prime using Theorem 4.1.8 to traverse the
Lucas tree for p, and using binary addition chains for the exponentiations
(see Algorithm 2.1.5).

For example, consider p = 1279:

31278/2 ≡ −1 (mod 1279), 31278/6 ≡ 775 (mod 1279),
31278/142 ≡ 498 (mod 1279),

22/2 ≡ −1 (mod 3),
770/2 ≡ −1 (mod 71), 770/10 ≡ 14 (mod 71),

770/14 ≡ 51 (mod 71),
24/2 ≡ −1 (mod 5),
36/2 ≡ −1 (mod 7), 36/6 ≡ 3 (mod 7),
22/2 ≡ −1 (mod 3).

If we use the binary addition chain for each exponentiation, we have the
following number of modular multiplications:

1278/2 : 16
1278/6 : 11

1278/142 : 4
2/2 : 0

70/2 : 7
70/10 : 4
70/14 : 3

4/2 : 1
6/2 : 2
6/6 : 0
2/2 : 0.

Thus, using binary addition chains we have 48 modular multiplications, so
M(1279) = 48.

The following result is essentially due to [Pratt 1975]:

Theorem 4.1.9. For every odd prime p, M(p) < 2 lg2 p.

Proof. Let N(p) be the number of (not necessarily distinct) odd primes in
the Lucas tree for p. We first show that N(p) < lg p. This is true for p = 3.
Suppose it is true for every odd prime less than p. If p − 1 is a power of 2,
then N(p) = 1 < lg p. If p − 1 has the odd prime factors q1, . . . , qk, then, by
the induction hypothesis,

N(p) = 1+
k∑

i=1

N(qi) < 1+
k∑

i=1

lg qi = 1+lg(q1 · · · qk) ≤ 1+lg
(

p − 1
2

)
< lg p.
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So N(p) < lg p always holds.
If r is one of the odd primes appearing in the Lucas tree for p, and r < p,

then there is some other prime q also appearing in the Lucas tree with r|q − 1
and q ≤ p. We have to show at one point that for some a, a(q−1)/2r ≡ −1
(mod q), and, at another point, that for some b, b(r−1)/2 ≡ −1 (mod r). Note
that the number of modular multiplications in the binary addition chain for
m does not exceed 2 lg m. Thus, the number of modular multiplications in the
above two calculations does not exceed

2 lg
(

q − 1
2r

)
+ 2 lg

(
r − 1

2

)
< 2 lg q − 4 < 2 lg p.

We conclude that

M(p) < 2 lg
(

p − 1
2

)
+ (N(p) − 1)2 lg p < 2 lg p + (lg p − 1)2 lg p = 2 lg2 p.

This completes the proof. �

By using more efficient addition chains we may reduce the coefficient 2. We
do not know whether there is some c > 0 such that for infinitely many primes
p, the Lucas tree proof of primality for p actually requires at least c lg2 p
modular multiplications. We also do not know whether there are infinitely
many primes p with M(p) = o(lg2 p). It is known, however, that via Theorem
7.6.1 (see [Pomerance 1987a]), there exists in principle some primality proof
for every prime p using only O(lg p) modular multiplications. As with the
Lucas tree proof, existence is comforting to know, but the rub is in finding
such a short proof.

4.2 The n + 1 test

The principal difficulty in applying the n − 1 test of the previous section to
prove n prime is in finding a sufficiently large completely factored divisor of
n−1. For some values of n, this is no problem, such as with Fermat numbers,
for which we have the Pepin test. For other classes of numbers, such as the
Mersenne numbers Mp = 2p − 1, the prime factorization of 1 more than the
number is readily apparent. Can we use this information in a primality test?
Indeed, we can.

4.2.1 The Lucas–Lehmer test

With a, b ∈ Z, let

f(x) = x2 − ax + b, ∆ = a2 − 4b. (4.12)

We reintroduce the Lucas sequences (Uk), (Vk), already discussed in Section
3.6.1:

Uk =
xk − (a − x)k

x − (a − x)
(mod f(x)), Vk = xk + (a − x)k (mod f(x)). (4.13)
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Recall that the polynomials Uk, Vk do not have positive degree; that is, they
are integers.

Definition 4.2.1. With the above notation, if n is a positive integer with
gcd(n, 2b∆) = 1, the rank of appearance of n, denoted by rf (n), is the least
positive integer r with Ur ≡ 0 (mod n).

This concept sometimes goes by the name “rank of apparition,” but according
to Ribenboim, this is due to a mistranslation of the French apparition. There
is nothing ghostly about the rank of appearance!

It is apparent from the definition (4.13) that (Uk) is a “divisibility
sequence,” that is, if k|j then Uk|Uj . (We allow the possibility that Uk =
Uj = 0.) It follows that if gcd(n, 2b∆) = 1, then Uj ≡ 0 (mod n) if and only if
j ≡ 0 (mod rf (n)). On the basis of Theorem 3.6.3 we thus have the following
result:

Theorem 4.2.2. With f,∆ as in (4.12) and p a prime not dividing 2b∆,
we have rf (p)|p −

(∆
p

)
.

(Recall the Legendre symbol
( ·
p

)
from Definition 2.3.2.)

In analogy to Theorem 4.1.3, we have the following result:

Theorem 4.2.3 (Morrison). Let f,∆ be as in (4.12) and let n be a positive
integer with gcd(n, 2b) = 1,

(∆
n

)
= −1. If F is a divisor of n + 1 and

Un+1 ≡ 0 (mod n), gcd(U(n+1)/q, n) = 1 for every prime q|F, (4.14)

then every prime p dividing n satisfies p ≡
(∆

p

)
(mod F ). In particular, if

F >
√

n + 1 and (4.14) holds, then n is prime.

(Recall the Jacobi symbol
( ·
n

)
from Definition 2.3.3.)

Proof. Let p be a prime factor of n. Then (4.14) implies that F divides rf (p).
So, by Theorem 4.2.2, p ≡

(∆
p

)
(mod F ). If, in addition, we have F >

√
n+1,

then every prime factor p of n has p ≥ F − 1 >
√

n, so n is prime. �

If Theorem 4.2.3 is to be used in a primality test, we will need to find an
appropriate f in (4.12). As with Algorithm 4.1.7 where a is chosen at random,
we may choose a, b in (4.12) at random. When we start with a prime n, the
expected number of choices until a successful pair is found is not large, as the
following result indicates.

Theorem 4.2.4. Let p be an odd prime and let N be the number of pairs
a, b ∈ {0, 1, . . . , p − 1} such that if f,∆ are given as in (4.12), then

(∆
p

)
= −1

and rf (p) = p + 1. Then N = 1
2 (p − 1)ϕ(p + 1).

We leave the proof as Exercise 4.12. A consequence of Theorem 4.2.4 is that
if n is an odd prime and if a, b are chosen randomly in {0, 1, . . . , n − 1} with
not both 0, then the expected number of choices until one is found where the
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f in (4.12) satisfies rf (n) = n+1 is 2(n+1)/ϕ(n+1). If n > 892271479, then
this expected number of choices is less than 4 ln ln n; see Exercise 4.16.

It is also possible to describe a primality test using the V sequence in
(4.13).

Theorem 4.2.5. Let f,∆ be as in (4.12) and let n be a positive integer with
gcd(n, 2b) = 1 and

(∆
n

)
= −1. If F is an even divisor of n + 1 and

VF/2 ≡ 0 (mod n), gcd(VF/2q, n) = 1 for every odd prime q|F, (4.15)

then every prime p dividing n satisfies p ≡
(∆

p

)
(mod F ). In particular, if

F >
√

n + 1, then n is prime.

Proof. Suppose p is an odd prime that divides both Um, Vm. Then (4.13)
implies xm ≡ (a − x)m (mod (f(x), p)) and xm ≡ −(a − x)m (mod f(x), p),
so that xm ≡ 0 (mod (f(x), p)). Then bm ≡ (x(a − x))m ≡ 0 (mod (f(x), p));
that is, p divides b. Since n is coprime to 2b, and since U2m = UmVm, we have

gcd(U2m, n) = gcd(Um, n) · gcd(Vm, n).

Thus, the first condition in (4.15) implies UF ≡ 0 (mod n) and gcd(UF/2, n) =
1. Now suppose q is an odd prime factor of F . We have UF/q = UF/2qVF/2q

coprime to n. Indeed, UF/2q divides UF/2, so that gcd(UF/2q, n) = 1, and so
with the second condition in (4.15) we have that gcd(UF/q, n) = 1. Thus,
rf (p) = F , and as in the proof of Theorem 4.2.3, this is sufficient for the
conclusion. �

Just as the n − 1 is particularly well suited for Fermat numbers, the n + 1
test is especially speedy for Mersenne numbers.

Theorem 4.2.6 (Lucas–Lehmer test for Mersenne primes). Consider the
sequence (vk) for k = 0, 1, . . . , recursively defined by v0 = 4 and vk+1 = v2

k−2.
Let p be an odd prime. Then Mp = 2p − 1 is prime if and only if vp−2 ≡ 0
(mod Mp).

Proof. Let f(x) = x2 − 4x + 1, so that ∆ = 12. Since Mp ≡ 3 (mod 4)
and Mp ≡ 1 (mod 3), we see that

( ∆
Mp

)
= −1. We apply Theorem 4.2.5 with

F = 2p−1 = (Mp + 1)/2. The conditions (4.15) reduce to the single condition
V2p−2 ≡ 0 (mod Mp). But

V2m ≡ x2m+(4−x)2m = (xm+(4−x)m)2−2xm(4−x)m ≡ V 2
m−2 (mod f(x)),

since x(4 − x) ≡ 1 (mod f(x)); see (3.15). Also, V1 = 4. Thus, V2k = vk, and
it follows from Theorem 4.2.5 that if vp−2 ≡ 0 (mod Mp), then Mp is prime.

Suppose, conversely, that M = Mp is prime. Since
(∆
M

)
= −1,

Z[x]/(f(x), M) is isomorphic to the finite field FM2 . Thus, raising to the M
power is an automorphism and xM ≡ 4 − x (mod (f(x), M)); see the proof of
Theorem 3.6.3. We compute (x − 1)M+1 two ways. First, since (x − 1)2 ≡ 2x
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(mod (f(x), M)) and by the Euler criterion we have 2(M−1)/2 ≡ (2/M) = 1
(mod M), so

(x − 1)M+1 ≡ (2x)(M+1)/2 = 2 · 2(M−1)/2x(M+1)/2

≡ 2x(M+1)/2 (mod (f(x), M)).

Next,

(x − 1)M+1 = (x − 1)(x − 1)M ≡ (x − 1)(xM − 1) ≡ (x − 1)(3 − x)
≡ −2 (mod (f(x), M)).

Thus, x(M+1)/2 ≡ −1 (mod (f(x), M)); that is, x2p−1 ≡ −1 (mod (f(x), M)).
Using our automorphism, we also have (4 − x)2

p−1 ≡ −1 (mod (f(x), M)), so
that U2p−1 ≡ 0 (mod M). If U2p−2 ≡ 0 (mod M), then x2p−2 ≡ (4 − x)2

p−2

(mod (f(x), M)), so that

−1 ≡ x2p−1 ≡ x2p−2
(4−x)2

p−2 ≡ (x(4−x))2
p−2 ≡ 12p−2 ≡ 1 (mod (f(x), M)),

a contradiction. Since U2p−1 = U2p−2V2p−2 , we have V2p−2 ≡ 0 (mod M). But
we have seen that V2p−2 = vp−2, so the proof is complete. �

Algorithm 4.2.7 (Lucas–Lehmer test for Mersenne primes). We are given
an odd prime p. This algorithm decides whether 2p−1 is prime (YES) or composite
(NO).

1. [Initialize]
v = 4;

2. [Compute Lucas–Lehmer sequence]
for(k ∈ [1, p − 2]) v = (v2 − 2) mod (2p − 1); // k is a dummy counter.

3. [Check residue]
if(v == 0) return YES; // 2p − 1 definitely prime.
return NO; // 2p − 1 definitely composite.

The celebrated Lucas–Lehmer test for Mersenne primes has achieved some
notable successes, as mentioned in Chapter 1 and in the discussion surrounding
Algorithm 9.5.19. Not only is the test breathtakingly simple, there are ways
to perform with high efficiency the p−2 repeated squarings in Step [Compute
Lucas–Lehmer sequence].

4.2.2 An improved n + 1 test, and a combined n2 − 1 test

As with the n − 1 test, which is useful only in the case that we have a large,
fully factored divisor of n − 1, the principal hurdle in implementing the n + 1
test for most numbers is coming up with a large, fully factored divisor of
n + 1. In this section we shall improve Theorem 4.2.3 to get a result similar
to Theorem 4.1.5. That is, we shall only require the fully factored divisor of
n + 1 to exceed the cube root. (Using the ideas in Theorem 4.1.6, this can be
improved to the 3/10 root.) Then we shall show how fully factored divisors
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of both n − 1 and n + 1, that is, a fully factored divisor of n2 − 1, may be
combined into one test.

Theorem 4.2.8. Suppose f,∆ are as in (4.12) and n is a positive integer
with gcd(n, 2b) = 1 and

(∆
n

)
= −1. Suppose n + 1 = FR with F > n1/3 + 1

and (4.14) holds. Write R in base F , so that R = r1F + r0, 0 ≤ ri ≤ F − 1.
Then n is prime if and only if neither x2 +r0x−r1 nor x2 +(r0 −F )x−r1 −1
has a positive integral root.

Note that in the case R < F we have r1 = 0, and so neither quadratic can
have positive integral roots. Thus, Theorem 4.2.8 contains the final assertion
of Theorem 4.2.3.

Proof. Theorem 4.2.3 implies that all prime factors p of n satisfy p ≡
(∆

p

)
(mod F ). So, if n is composite, it must be the product pq of just two prime
factors. Indeed, if n has 3 or more prime factors, n exceeds (F − 1)3, a
contradiction. Since −1 =

(∆
n

)
=

(∆
p

)(∆
q

)
, we have, say,

(∆
p

)
= 1,

(∆
q

)
= −1.

Thus, there are positive integers c, d with p = cF + 1, q = dF − 1. Since both
(F 2 + 1)(F − 1) > n, (F + 1)(F 2 − 1) > n, we have 1 ≤ c, d ≤ F − 1. Note
that

r1F + r0 = R =
n + 1

F
= cdF + d − c,

so that d − c ≡ r0 (mod F ). It follows that d = c + r0 or d = c + r0 − F , that
is, d = c + r0 − iF for i = 0 or 1. Thus,

r1F + r0 = c(c + r0 − iF )F + r0 − iF,

so that r1 = c(c + r0 − iF ) − i, which implies that

c2 + (r0 − iF )c − r1 − i = 0.

But then x2 +(r0 − iF )x−r1 − i has a positive integral root for one of i = 0, 1.
This proves one direction.

Suppose now that x2 +(r0 − iF )x− r1 − i has a positive integral root c for
one of i = 0, 1. Undoing the above algebra we see that cF +1 is a divisor of n.
But n ≡ −1 (mod F ), so n is composite, since the hypotheses imply F > 2.
�

We can improve the n + 1 test further, requiring only F ≥ n3/10. The
proof is completely analogous to Theorem 4.1.6, and we leave said proof as
Exercise 4.15.

Theorem 4.2.9. Suppose n ≥ 214 and the hypotheses of Theorem 4.2.8
hold, except that n3/10 ≤ F ≤ n1/3 + 1. Say the base-F expansion of n + 1 is
c3F

3 + c2F
2 + c1F , and let c4 = c3F + c2. Then n is prime if and only if the

following conditions hold:
(1) (c1 + tF )2 − 4t + 4c4 is not a square for t integral, |t| ≤ 5,
(2) with u/v the continued fraction convergent to c1/F such that v is

maximal subject to v < F 2/
√

n and with d = �c4v/F + 1/2�, the
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polynomial vx3 − (uF − c1v)x2 − (c4v − dF + u)x + d has no integral
root a such that aF + 1 is a nontrivial factor of n, and the polynomial
vx3 + (uF − c1v)x2 − (c4v + dF + u)x + d has no integral root b such
that bF − 1 is a nontrivial factor of n.

The next result allows one to combine partial factorizations of both n − 1
and n + 1 in attempting to prove n prime.

Theorem 4.2.10 (Brillhart, Lehmer, and Selfridge). Suppose that n is a
positive integer, F1|n−1, and that (4.3) holds for some integer a1 and F = F1.
Suppose, too, that f,∆ are as in (4.12), gcd(n, 2b) = 1,

(∆
n

)
= −1, F2|n + 1,

and that (4.14) holds for F = F2. Let F be the least common multiple of
F1, F2. Then each prime factor of n is congruent to either 1 or n (mod F ).
In particular, if F >

√
n and n mod F is not a nontrivial factor of n, then n

is prime.

Note that if F1, F2 are both even, then F = 1
2F1F2, otherwise F = F1F2.

Proof. Let p be a prime factor of n. Theorem 4.1.3 implies p ≡ 1 (mod F1),
while Theorem 4.2.3 implies that p ≡

(∆
p

)
(mod F2). If

(∆
p

)
= 1, then p ≡ 1

(mod F ), and if
(∆

p

)
= −1, then p ≡ n (mod F ). The last assertion of the

theorem is then immediate. �

4.2.3 Divisors in residue classes

What if in Theorem 4.2.10 we have F < n1/2? The theorem would be useful
if we had a quick way to search for prime factors of n that are either 1 or
n (mod F ). The following algorithm in [Lenstra 1984] provides such a quick
method when F/n1/3 is not too small.

Algorithm 4.2.11 (Divisors in residue classes). We are given positive inte-
gers n, r, s with r < s < n and gcd(r, s) = 1. This algorithm creates a list of all
divisors of n that are congruent to r (mod s).
1. [Initialize]

r∗ = r−1 mod s;
r′ = nr∗ mod s;
(a0, a1) = (s, r′r∗ mod s);
(b0, b1) = (0, 1);
(c0, c1) = (0, (nr∗ − ra1)/s mod s);

2. [Euclidean chains]
Develop the Euclidean sequences (ai), (qi), where ai = ai−2 − qiai−1 and

0 ≤ ai < ai−1 for i even, 0 < ai ≤ ai−1 for i odd, terminating at
at = 0 with t even;

Develop the sequences (bi), (ci) for i = 0, 1, . . . , t with the rules bi =
bi−2 − qibi−1, ci = ci−2 − qici−1;

3. [Loop]
for(0 ≤ i ≤ t) {
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For each integer c ≡ ci (mod s) with |c| < s if i is even, 2aibi < c <
aibi + n/s2 if i is odd, attempt to solve the following system for
x, y:

xai + ybi = c, (xs + r)(ys + r′) = n; (4.16)

If a nonnegative integral solution (x, y) is found, report xs + r as a
divisor of n that is also ≡ r (mod s);

}

The theoretical justification for this algorithm is as follows:

Theorem 4.2.12 (Lenstra). Algorithm 4.2.11 creates the list of all divisors
of n that are congruent to r (mod s). Moreover, if s ≥ n1/3, then the running
time is O(lnn) arithmetic operations on integers of size O(n) and O(lnn)
evaluations of the integer part of square root for arguments of size O(n7).

Proof. We first note some simple properties of the sequences (ai), (bi). We
have

ai > 0 for 0 ≤ i < t, at = 0. (4.17)

In addition, we have

bi+1ai − ai+1bi = (−1)is for 0 ≤ i < t. (4.18)

Indeed, the relation (4.18) holds for i = 0. If 0 < i < t and the relation holds
for i − 1, then

bi+1ai − ai+1bi = (bi−1 − qi+1bi)ai − (ai−1 − qi+1ai)bi

= bi−1ai − ai−1bi

= (−1)is.

Thus (4.18) follows from induction.
Finally, note that we have

b0 = 0, bi < 0 for i even, and i = 0, bi > 0 for i odd. (4.19)

Indeed, (4.19) holds for i = 0, 1, and from bi = bi−2 − qibi−1 and qi > 0, we
see that it holds for the general i if it holds for i − 1, i − 2. Thus (4.19) holds
via induction.

Suppose now that xs + r is a divisor of n with x ≥ 0. We must show that
the algorithm discovers it. There is an integer y ≥ 0 with n = (xs+r)(ys+r′).
We have

xai + ybi ≡ ci (mod s) for 0 ≤ i ≤ t. (4.20)

Indeed, (4.20) holds trivially for i = 0, it holds for i = 1 because of
n = (xs + r)(ys + r′) and the definition of c1, and it holds for larger values of
i from the inductive definitions of the sequences (ai), (bi), (ci).

It thus suffices to show that there is some even value of i with |xai+ybi| < s
or there is some odd value of i with 2aibi < xai + ybi < aibi + n/s2. For
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if so, xai + ybi will be one of the numbers c computed in Step [Loop] of
Algorithm 4.2.11, because of (4.20). Thus, Step [Loop] will successfully retrieve
the numbers x, y.

We have xa0 + yb0 = xa0 ≥ 0 and xat + ybt = ybt ≤ 0, so there is some
even index i with

xai + ybi ≥ 0, xai+2 + ybi+2 ≤ 0.

If one of these quantities is less than s in absolute value, we are done, so
assume that the first quantity is ≥ s and the second is ≤ −s. Then from
(4.17), (4.18), (4.19),

xai ≥ xai + ybi ≥ s = bi+1ai − ai+1bi ≥ bi+1ai,

from which we conclude that x ≥ bi+1. We also have

ybi+2 ≤ xai+2 + ybi+2 ≤ −s = bi+2ai+1 − ai+2bi+1 < bi+2ai+1,

so that y > ai+1. Therefore,

xai+1 + ybi+1 > 2ai+1bi+1,

and from (x − bi+1)(y − ai+1) > 0, we have

xai+1 + ybi+1 ≤ xy + ai+1bi+1 < ai+1bi+1 +
n

s2 .

This completes the proof of correctness.
The running-time assertion follows from Theorem 2.1.3 and Algorithm

2.1.4. These results imply that the calculation of r∗ is within our time bound
and that t = O(lnn). Moreover, if s ≥ n1/3, then for each i there are at most 2
values of c for which the system (4.16) must be solved. Solving such a system
involves O(1) arithmetic operations and a square root extraction, as we shall
see. Thus, there are a total of O(lnn) arithmetic operations and square root
extractions.

It remains to estimate the size of the integers for which we need to compute
the integer part of the square root. Note that x, y are solutions to the system
(4.16) if and only if u = ai(xs + r), v = bi(ys + r′) are roots of the quadratic
polynomial

T 2 − (cs + air + bir
′)T + aibin.

For this polynomial to have integral roots it is necessary and sufficient that

∆ = (cs + air + bir
′)2 − 4aibi

be a square. We now show that ∆ = O(s7) = O(n7). Let B = max{|bi|}. We
shall show that B < s5/2. Then, since c, ai, r, r

′ are all bounded in absolute
value by 2s, it follows that ∆ = O(s7). (To see that |c| < 2s, note that |c| < s
if i is even; and if i is odd, for the interval (2aibi, aibi + n/s2) to have any
integers in it, then 0 < aibi < n/s2 ≤ s.)
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To see the bound on B note that

|bi| = |bi−2| + qi|bi−1| for i = 2, . . . , t,

so that

B = |bt| <

t∏
i=2

(1 + qi) < 2t
t∏

i=2

qi.

But ai−2 ≥ qiai−1 for i = 2, . . . , t, so that

s = a0 ≥
t∏

i=2

qi.

We conclude that B < 2ts. From Theorem 2.1.3 we have that t < ln s/ ln((1+√
5)/2), so that 2t < s3/2. Our estimate and the theorem follow. �

Remark. The integer square roots that are performed in the algorithm may
be done via Algorithm 9.2.11. If s < n1/3, Algorithm 4.2.11 still works, but
the number of square root steps is then O(n1/3s−1 lnn).

Note that if F in Theorem 4.2.10 is such that F/n1/3 is not very small,
we can use that theorem and Algorithm 4.2.11 as a speedy primality test. In
general, we can use Algorithm 4.2.11 in a primality test if we have learned
that each prime factor of n is congruent to ri (mod s) for some i ∈ [1, k],
where each gcd(ri, s) = 1, 0 < ri < s, and s ≥ n1/3. Then with k calls to
Algorithm 4.2.11 we will either find a nontrivial factor of n, or failing this,
prove that n is prime. However, if s ≥ √

n, there is no need to use Algorithm
4.2.11. Indeed, if none of the integers ri are proper factors of n, then every
prime dividing n exceeds

√
n, so n is prime.

One can use a result in [Coppersmith 1997] (also [Coppersmith et al. 2004])
to improve on Algorithm 4.2.11 and find all divisors of n that are congruent to
r (mod s) when r, s are coprime and s > n1/4+ε. The Coppersmith paper uses
the fast lattice basis reduction method of A. Lenstra, H. Lenstra and L. Lovasz.
This lattice basis reduction method is often useful in practice, and it may
well be that Coppersmith’s algorithm is practical. In fact, Howgrave-Graham
informs us that it is indeed practical for moduli s > n0.29, say. Theoretically,
the method is deterministic and runs in polynomial time, but this running
time depends on the choice of ε; the smaller the ε, the higher the running
time. An interesting primality proof was effected in late 2004 with this hybrid
method: J. Renze reports that the 37511th Fibonacci number, which has 7839
digits, is prime. Regarding prime Fibonacci numbers, also see Excercise 4.37.

It remains an open question whether an efficient algorithm can be found
that finds divisors of n that are congruent to r (mod s) when s is about n1/4

or smaller.
Here is another attractive open question. Let D(n, s, r) denote the number

of divisors of n that are congruent to r (mod s). Given α > 0, is D(n, s, r)
bounded as n, s, r range over all triples with gcd(r, s) = 1 and s ≥ nα? This
is known for every α > 1/4, but it is open for α = 1/4; see [Lenstra 1984].
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4.3 The finite field primality test

This section is primarily theoretical and is not intended to supply a practical
primality test. The algorithm described has a favorable complexity estimate,
but there are other, more complicated algorithms that majorize it in practice.
Some of these algorithms are discussed in the next section.

The preceding sections, and in particular Theorem 4.2.10 and Algorithm
4.2.11, show that if we have a completely factored divisor F of n2 − 1 with
F ≥ n1/3, then we can efficiently decide, with a rigorous proof, whether n is
prime or composite. As an aside: If F1 = gcd(F, n−1) and F2 = gcd(F, n+1),
then lcm (F1, F2) ≥ 1

2F , so that the “F” of Theorem 4.2.10 is at least 1
2n1/3.

In this section we shall discuss a method in [Lenstra 1985] that works if we
have a fully factored divisor F of nI − 1 for some positive integer I and that
is efficient if F ≥ n1/3 and I is not too large.

Before we describe the algorithm, we discuss a subroutine that will be
used. If n > 1 is an integer, consider the ring Zn[x] of polynomials in the
variable x with coefficients being integer residues modulo n. An ideal of Zn[x]
is a nonempty subset closed under addition and closed under multiplication
by all elements of Zn[x]. For example, if f, g ∈ Zn[x], the set of all af with
a ∈ Zn[x] is an ideal, and so is the set of all af +bg with a, b ∈ Zn[x]. The first
example is of a principal ideal (with generator f). The second example may or
may not be principal. For example, say n = 15, f(x) = 3x+1, g(x) = x2 +4x.
Then the ideal generated by f and g is all of Z15[x], and so is principally
generated by 1. (To see that 1 is in the ideal, note that f2 − 9g = 1.)

Definition 4.3.1. We shall say that f, g ∈ Zn[x] are coprime if the ideal
they generate is all of Zn[x]; that is, there are a, b ∈ Zn[x] with af + bg = 1.

It is not so hard to prove that every ideal in Zn[x] is principally generated
if and only if n is prime (see Exercise 4.19). The following algorithm, which is
merely a dressed-up version of the Euclid algorithm (Algorithm 2.2.1), either
finds a monic principal generator for the ideal generated by two members
f, g ∈ Zn[x], or gives a nontrivial factorization of n. If the principal ideal
generated by h ∈ Zn[x] is the same ideal as that generated by f and g and if
h is monic, we write h = gcd(f, g). Thus f, g are coprime in Zn[x] if and only
if gcd(f, g) = 1.

Algorithm 4.3.2 (Finding principal generator). We are given an integer
n > 1 and f, g ∈ Zn[x], with g monic. This algorithm produces either a nontrivial
factorization of n, or a monic element h ∈ Zn[x] such that h = gcd(f, g); that is,
the ideal generated by f and g is equal to the ideal generated by h. We assume
that either f = 0 or deg f ≤ deg g.

1. [Zero polynomial check]
if(f == 0) return g;

2. [Euclid step]
Set c equal the leading coefficient of f ;
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Attempt to find c∗ ≡ c−1 (mod n) by Algorithm 2.1.4, but if this attempt
produces a nontrivial factorization of n, then return this factorization;

f = c∗f ; // Multiplication is modulo n; the polynomial f is now monic.
r = g mod f ; // Divide with remainder is possible since f is monic.
(f, g) = (r, f);
goto [Zero polynomial check];

The next theorem is the basis of the finite field primality test.

Theorem 4.3.3 (Lenstra). Suppose that n, I, F are positive integers with
n > 1 and F |nI − 1. Suppose f, g ∈ Zn[x] are such that

(1) gnI−1 − 1 is a multiple of f in Zn[x],

(2) g(nI−1)/q − 1 and f are coprime in Zn[x] for all primes q|F ,

(3) each of the I elementary symmetric polynomials in g, gn, . . . , gnI−1
is

congruent (mod f) to an element of Zn.
Then for each prime factor p of n there is some integer j ∈ [0, I − 1] with
p ≡ nj (mod F ).

We remark that if we show that the hypotheses of Theorem 4.3.3 hold and if
we also show that n has no proper divisors in the residue classes nj (mod F )
for j = 0, 1, . . . , I − 1, then we have proved that n is prime. This idea will be
developed shortly.

Proof. Let p be a prime factor of n. Thinking of f now in Zp[x], let f1 ∈ Zp[x]
be an irreducible factor, so that Zp[x]/(f1) = K is a finite field extension of
Zp. Let ḡ be the image of g in K. The hypotheses (1), (2) imply that ḡnI−1 = 1
and ḡ(nI−1)/q = 1 for all primes q|F . So the order of ḡ in K∗ (the multiplicative
group of the finite field K) is a multiple of F . Hypothesis (3) implies that the
polynomial h(T ) = (T − ḡ)(T − ḡn) · · · (T − ḡnI−1

) ∈ K[T ] is actually in Zp[T ].
Now, for any polynomial in Zp[T ], if α is a root, so is αp. Thus h(ḡp) = 0.
But we have the factorization of h(T ), and we see that the only roots are
ḡ, ḡn, . . . , ḡnI−1

, so that we must have ḡp ≡ ḡnj

for some j = 0, 1, . . . , I − 1.
Since the order of ḡ is a multiple of F , we have p ≡ nj (mod F ). �

A number of questions naturally present themselves: If n is prime, will f, g
as described in Theorem 4.3.3 exist? If f, g exist, is it easy to find examples?
Can (1), (2), (3) in Theorem 4.3.3 be verified quickly?

The first question is easy. If n is prime, then any polynomial f ∈ Zn[x]
that is irreducible with deg f = I, and any polynomial g ∈ Zn[x] that is not
a multiple of f will together satisfy (1) and (3). Indeed, if f is irreducible of
degree I, then K = Zn[x]/(f) will be a finite field of order nI , and so (1)
just expresses the Lagrange theorem (a group element raised to the order of
the group is the group identity) for the multiplicative group K∗. To see (3)
note that the Galois group of K is generated by the Frobenius automorphism:
raising to the n-th power. That is, the Galois group consists of the I functions
from K to K, where the j-th function takes α ∈ K and sends it to αnj

for
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j = 0, 1, . . . , I−1. Each of these functions fixes an expression that is symmetric
in g, gn, . . . , gnI−1

, so such an expression must be in the fixed field Zn. This
is the assertion of (3).

It is not true that every choice for g with g ≡ 0 (mod f) satisfies (2). But
the group K∗ is cyclic, and any cyclic generator satisfies (2). Moreover, there
are quite a few cyclic generators, so a random search for g should not take long
to find one. In particular, if g is chosen randomly as a nonzero polynomial in
Zn[x] of degree less than I, then the probability that g satisfies (2) is at least
ϕ(nI − 1)/(nI − 1) (given that n is prime and f is irreducible of degree I), so
the expected number of choices before a valid g is found is O(ln ln(nI)).

But what of f? Are there irreducible polynomials in Zn[x] of degree I, can
we quickly recognize one when we have it, and can we find one quickly? Yes,
yes, yes. In fact (2.5) shows that not only are there irreducible polynomials
of degree I, but that there are plenty of them, so that a random degree I
polynomial has about a 1 in I chance of being irreducible. See Exercise 2.12
in this regard. Further, Algorithm 2.2.9 or 2.2.10 provides an efficient way to
test whether a polynomial is irreducible.

We now embody the above thoughts in the following explicit algorithm:

Algorithm 4.3.4 (Finite field primality test). We are given positive inte-
gers n, I, F with F |nI − 1, F ≥ n1/2 and we are given the complete prime
factorization of F . This probabilistic algorithm decides whether n is prime or
composite, returning “n is prime” in the former case and “n is composite” in the
latter case.

1. [Find irreducible polynomial of degree I]
Via Algorithm 2.2.9 or 2.2.10, and using Algorithm 4.3.2 for the gcd steps,

attempt to find a random monic polynomial f in Zn[x] of degree I that
is irreducible if n is prime. That is, continue testing random polynomials
until the irreducibility test used either returns YES, or its gcd step finds a
nontrivial factorization of n. In the latter case, return “n is composite”;

// The polynomial f is irreducible if n is prime.

2. [Find primitive element]
Choose g ∈ Zn[x] at random with g monic, deg g < I;
if(1 = gnI−1 mod f) return “n is composite”;
for(prime q|F ) {

Attempt to compute gcd(g(nI−1)/q − 1, f) via Algorithm 4.3.2, but if
a nontrivial factorization of n is found in this attempt, return “n is
composite”;

if(gcd(g(nI−1)/q − 1, f) = 1) goto [Find primitive element];
}

3. [Symmetric expressions check]
Form the polynomial (T − g)(T − gn) · · · (T − gnI−1

) = T I + cI−1T
I−1 +

. . . + c0 in Zn[x, T ]/(f(x));
// The coefficients cj are in Zn[x] and are reduced modulo f .

for(0 ≤ j < I) if(deg cj > 0) return “n is composite”;
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4. [Divisor search]
for(1 ≤ j < I) {

If nj mod F is a proper factor of n, return “n is composite”;
}
return “n is prime”;

If n is prime, the expected number of arithmetic operations, with integers the
size of n, for Algorithm 4.3.4 to declare n prime is O(Ic + lnc n) for some
positive constant c. (We make no assertion on the expected running time for
composite inputs.)

Given a prime n, the question remains of how one is supposed to come up
with the numbers I, F . The criteria are as follows: that F is supposed to be
large, namely, F ≥ n1/2, we are supposed to know the prime factorization of
F , and F |nI − 1, with I not very large (since otherwise, the algorithm will
not be very fast). For some numbers n we can choose I = 1 or 2; this was the
subject of earlier sections in this chapter. It is clear as well that one might be
content with merely F ≥ n1/3 if one were prepared to use Algorithm 4.2.11 as
a subroutine in Step [Divisor search] to find all of the proper factors of n that
are ≡ nj (mod F ) for some j with 1 ≤ j < I. So let us assume that Algorithm
4.3.4 is so amended. The question remains for the general case whether we
can find I, F that fit the above criteria.

An interesting observation is that we can pick up some small primes in
nI − 1 with very little work. For example, suppose I = 12. Then nI − 1 is a
multiple of 65520 = 24 · 32 · 5 · 7 · 13, provided that n is coprime to 65520. In
general, if q is a prime power that is coprime to n and ϕ(q)|I, then q|nI − 1.
This is just an assertion of the Euler theorem; see (2.2). (If q is a power of
2 higher than 4, then we need only 1

2ϕ(q)|I.) Can such “cheap” divisors of
nI − 1 amount to much? Indeed they can. For example, say I = 7! = 5040.
Then if n is not divisible by any prime up to 2521, then n5040 − 1 is divisible
by

15321986788854443284662612735663611380010431225771200 =
26 · 33 · 52 · 72 · 11 · 13 · 17 · 19 · 29 · 31 · 37 · 41 · 43 · 61 · 71 · 73·

113 · 127 · 181 · 211 · 241 · 281 · 337 · 421 · 631 · 1009 · 2521.

So I = 5040 can be used in Algorithm 4.3.4 for primes n up to 3.5 ·10156 (and
exceeding 2521).

From the above example with I = 5040 one might expect that in general
a choice of I with enough “cheap” factors in nI − 1 is a fairly small function
of n. Indeed, we have the following theorem, which appeared in [Adleman et
al. 1983]. The proof uses some deep tools in analytic number theory.

Theorem 4.3.5. Let I(x) be the least positive squarefree integer I such that
the product of the primes p with p − 1|I exceeds x. Then there is a number c
such that I(x) < (lnx)c ln ln ln x for all x > 16.
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The reason for assuming x > 16 is to ensure that the triple-logarithm is
positive. It is not necessary in the results so far that I be squarefree, but
because of an algorithm in the next section, this condition is included in the
above result.

Corollary 4.3.6. There is a positive number c′ such that the expected
running time for Algorithm 4.3.4 to declare a prime input n to be prime is
less than (lnn)c′ ln ln ln n.

Since the triple log function grows so slowly, this running-time bound is
“almost” lnO(1) n, and so is “almost” polynomial time.

4.4 Gauss and Jacobi sums

In 1983, Adleman, Pomerance, and Rumely [Adleman et al. 1983] published a
primality test with the running-time bound of (lnn)c ln ln ln n for prime inputs
n and some positive constant c. The proof rested on Theorem 4.3.5 and on
arithmetic properties of Jacobi sums. Two versions of the test were presented,
a somewhat simpler and more practical version that was probabilistic, and a
deterministic test. Both versions had the same complexity estimate. As with
some of the other algorithms in this chapter, a declaration of primality in the
probabilistic APR test definitely implies that the number is prime. The only
thing in doubt is a prediction of the running time.

Shortly afterwards, there were two types of developments. In one direction,
more practical versions of the test were found, and in the other, less practical,
but simpler versions of the test were found. In the next section we shall discuss
one of the second variety, the deterministic Gauss sums test of H. Lenstra
[Lenstra 1981].

4.4.1 Gauss sums test

In Section 2.3.1 we introduced Gauss sums for quadratic characters. Here we
consider Gauss sums for arbitrary Dirichlet characters. If q is a prime with
primitive root g and if ζ is a complex number with ζq−1 = 1, then we can
“construct” a character χ to the modulus q via χ(gk) = ζk for every integer
k (and of course, χ(m) = 0 if m is a multiple of q). (See Section 1.4.3 for a
discussion of characters.) We may also “construct” the Gauss sum τ(χ). With
the notation ζn = e2πi/n (which is a primitive n-th root of 1), we define

τ(χ) =
q−1∑
m=1

χ(m)ζm
q =

q−1∑
k=1

χ(gk)ζgk

q =
q−1∑
k=1

ζkζgk

q .

As a character mod q, the order of χ is a divisor of q − 1. Suppose p is
a prime factor of q − 1 and we wish the order of χ to be exactly p. We may
concretely construct such a character χp,q as follows. Suppose g = gq is the
least positive primitive root for q, and let χp,q(gk

q ) = ζk
p for every integer k.

As in the above paragraph, we have thus defined a character mod q since
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ζq−1
p = 1. And, as χp,q(m)p = 1 for every nonzero residue m mod q, and

χp,q(gq) = 1, it follows that χp,q has order p. Let

G(p, q) = τ(χp,q) =
q−1∑
m=1

χp,q(m)ζm
q =

q−1∑
k=1

ζk
p ζ

gk
q

q =
q−1∑
k=1

ζk mod p
p ζ

gk
q mod q

q .

(That this definition in the case p = 2 is equivalent to that in Definition 2.3.6
is the subject of Exercise 4.20.)

We are interested in the Gauss sums G(p, q) for their arithmetic properties,
though it may not be clear what a sum of lots of complex numbers has to do
with arithmetic! The Gauss sum G(p, q) is an element of the ring Z[ζp, ζq].
Elements of the ring can be expressed uniquely as sums

∑p−2
j=0

∑q−2
k=0 aj,kζj

pζk
q

where each aj,k ∈ Z. We thus can say what it means for two elements
of Z[ζp, ζq] to be congruent modulo n; namely, the corresponding integer
coefficients are congruent modulo n. Also note that if α is in Z[ζp, ζq], then
so is its complex conjugate α.

It is very important in actual ring computations to treat ζp, ζq symbol-
ically. As with Lucas sequences, where we work symbolically with the roots
of quadratic polynomials, we treat ζp, ζq as symbols x, y, say, which obey the
rules

xp−1 + xp−2 + · · · + 1 = 0, yq−1 + yq−2 + · · · + 1 = 0.

In particular, one may avoid complex-floating-point methods.
We begin with a well-known result about Gauss sums.

Lemma 4.4.1. If p, q are primes with p | q − 1, then G(p, q)G(p, q) = q.

Proof. Let χ = χp,q. We have

G(p, q)G(p, q) =
q−1∑

m1=1

q−1∑
m2=1

χ(m1)χ(m2)ζm1−m2
q .

Let m−1
2 denote a multiplicative inverse of m2 modulo q, so that χ(m2) =

χ(m−1
2 ). Note that if m1m

−1
2 ≡ a (mod q), then χ(m1)χ(m2) = χ(a) and

m1 − m2 ≡ (a − 1)m2 (mod q). Thus,

G(p, q)G(p, q) =
q−1∑
a=1

χ(a)
q−1∑
m=1

ζ(a−1)m
q .

The inner sum is q − 1 in the case a = 1 and is −1 in the cases a > 1. Thus,

G(p, q)G(p, q) = q − 1 −
q−1∑
a=2

χ(a) = q −
q−1∑
a=1

χ(a).

Finally, by (1.28), this last sum is 0, which proves the lemma. �
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The next result begins to show a possible relevance of Gauss sums to
primality testing. It may be viewed as an analogue to Fermat’s little theorem.

Lemma 4.4.2. Suppose p, q, n are primes with p|q − 1 and gcd(pq, n) = 1.
Then

G(p, q)np−1−1 ≡ χp,q(n) (mod n).

Proof. Let χ = χp,q. Since n is prime, the multinomial theorem implies that

G(p, q)np−1
=

(
q−1∑
m=1

χ(m)ζm
q

)np−1

≡
q−1∑
m=1

χ(m)np−1
ζmnp−1

q (mod n).

By Fermat’s little theorem, np−1 ≡ 1 (mod p), so that χ(m)np−1
= χ(m).

Letting n−1 denote a multiplicative inverse of n modulo q, we have
q−1∑
m=1

χ(m)np−1
ζmnp−1

q =
q−1∑
m=1

χ(m)ζmnp−1

q =
q−1∑
m=1

χ(n−(p−1))χ(mnp−1)ζmnp−1

q

= χ(n)
q−1∑
m=1

χ(mnp−1)ζmnp−1

q = χ(n)G(p, q),

where the next to last equality uses that χ(np) = χ(n)p = 1 and the last
equality follows from the fact that mnp−1 traverses a reduced residue system
(mod q) as m does this. Thus,

G(p, q)np−1 ≡ χ(n)G(p, q) (mod n).

Let q−1 be a multiplicative inverse of q modulo n and multiply this last display
by q−1G(p, q). Lemma 4.4.1 then gives the desired result. �

The next lemma allows one to replace a congruence with an equality, in
some cases.

Lemma 4.4.3. If m, n are natural numbers with m not divisible by n and
ζj
m ≡ ζk

m (mod n), then ζj
m = ζk

m.

Proof. By multiplying the congruence by ζ−k
m , we may assume the given

congruence is ζj
m ≡ 1 (mod n). Note that

∏m−1
l=1 (x − ζl

m) = (xm − 1)/(x − 1),
so that

∏m−1
l=1 (1−ζl

m) = m. Thus no factor in this last product is zero modulo
n, which proves the result. �

Definition 4.4.4. Suppose p, q are distinct primes. If α ∈ Z[ζp, ζq] \ {0},
where α =

∑p−2
i=0

∑q−2
k=0 aikζi

pζ
k
q , denote by c(α) the greatest common divisor

of the coefficients aik. Further, let c(0) = 0.

We are now ready to describe the deterministic Gauss sums primality test.

Algorithm 4.4.5 (Gauss sums primality test). We are given an integer n >
1. This deterministic algorithm decides whether n is prime or composite, returning
“n is prime” or “n is composite” in the appropriate case.
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1. [Initialize]
I = −2;

2. [Preparation]
I = I + 4;
Find the prime factors of I by trial division, but if I is not squarefree, goto

[Preparation];
Set F equal to the product of the primes q with q − 1|I, but if F 2 ≤ n

goto [Preparation]; // Now I, F are squarefree, and F >
√

n.
If n is a prime factor of IF , return “n is prime”;
If gcd(n, IF ) > 1, return “n is composite”;
for(prime q|F ) find the least positive primitive root gq for q;

3. [Probable-prime computation]
for(prime p|I) factor np−1 − 1 = pspup where p does not divide up;
for(primes p, q with p|I, q|F, p|q − 1) {

Find the first positive integer w(p, q) ≤ sp with

G(p, q)pw(p,q)up ≡ ζj
p (mod n) for some integer j,

but if no such number w(p, q) is found, return “n is composite”;
} // Compute symbolically in the ring Z[ζp, ζq] (see text).

4. [Maximal order search]
for(prime p|I) set w(p) equal to the maximum of w(p, q) over all primes

q|F with p|q − 1, and set q0(p) equal to the least such prime q with
w(p) = w(p, q);

for(primes p, q with p|I, q|F, p|q − 1) find an integer l(p, q) ∈ [0, p − 1]
with G(p, q)pw(p)up ≡ ζ

l(p,q)
p (mod n);

5. [Coprime check]
for(primes p with p|I) {

H = G(p, q0(p))pw(p)−1up mod n;
for(0 ≤ j ≤ p − 1) {

if(gcd
(
n, c(H − ζj

p)
)

> 1) return “n is composite”;
} // Notation as in Definition 4.4.4.

}
6. [Divisor search]

l(2) = 0;
for(odd prime q|F ) use the Chinese remainder theorem (see Theorem 2.1.6)

to construct an integer l(q) with

l(q) ≡ l(p, q) (mod p) for each prime p|q − 1;

Use the Chinese remainder theorem to construct an integer l with

l ≡ gl(q)
q (mod q) for each prime q|F ;

for(1 ≤ j < I) if lj mod F is a nontrivial factor of n, return “n is
composite”;

return “n is prime”;
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Remark. We may omit the condition F ≥ √
n and use Algorithm 4.2.11 for

the divisor search. The algorithm will remain fast if F ≥ n1/3.

Theorem 4.4.6. Algorithm 4.4.5 correctly identifies prime and composite
inputs. The running time is bounded by (lnn)c ln ln ln n for some positive
constant c.

Proof. We first note that a declaration of prime or composite in Step
[Preparation] is certainly correct. That a declaration of composite in Step
[Probable-prime computation] is correct follows from Lemma 4.4.2. If the gcd
calculation in Step [Coprime check] is not 1, it reveals a proper factor of n,
so it is correct to declare n composite. It is obvious that a declaration of
composite is correct in step [Divisor search], so what remains to be shown is
that composite numbers which have survived the prior steps must be factored
in Step [Divisor search] and so declared composite there.

Suppose n is composite with least prime factor r, and suppose n has
survived steps 1–4. We first show that

pw(p)|rp−1 − 1 for each prime p|I. (4.21)

This is clear if w(p) = 1, so assume w(p) ≥ 2. Suppose some l(p, q) = 0. Then
by Lemma 4.4.3

G(p, q)pw(p)up ≡ ζl(p,q)
p ≡ 1 (mod n),

so the same is true (mod r), using Lemma 4.4.3. Let h be the multiplicative
order of G(p, q) modulo r, so that pw(p)+1|h. But Lemma 4.4.2 implies that
h|p(rp−1 − 1), so that pw(p)|rp−1 − 1, as claimed. So suppose that each
l(p, q) = 0. Then from the calculation in Step [Coprime check] we have

G(p, q0)pw(p)up ≡ 1 (mod r), G(p, q0)pw(p)−1up ≡ ζj
p (mod r)

for all j. Again with h the multiplicative order of G(p, q0) modulo r, we have
pw(p)|h. Also, G(p, q0)m ≡ ζj

p (mod r) for some integers m, j implies that
ζj
p = 1. Lemma 4.4.2 then implies that G(p, q0)rp−1−1 ≡ 1 (mod r) so that

h|rp−1 − 1 and pw(p)|h. This completes the proof of (4.21).
For each prime p|I, (4.21) implies there are integers ap, bp with

rp−1 − 1
pw(p)up

=
ap

bp
, bp ≡ 1 (mod p). (4.22)

Let a be such that a ≡ ap (mod p) for each prime p|I. We now show that

r ≡ la (mod F ), (4.23)

from which our assertion about Step [Divisor search] follows. Indeed, since
F ≥ √

n ≥ r and F = r, we have r equal to the least positive residue of la

(mod F ), so that the proper factor r of n will be discovered in Step [Divisor
search].
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Note that the definition of χp,q and of l imply that

G(p, q)pw(p)up ≡ ζl(p,q)
p = ζl(q)

p = χp,q(gl(q)
q ) = χp,q(l) (mod r)

for every pair of primes p, q with q|F, p|q − 1. Thus, from (4.22) and Lemma
4.4.2,

χp,q(r) = χp,q(r)bp ≡ G(p, q)(r
p−1−1)bp = G(p, q)pw(p)upap

≡ χp,q(l)ap = χp,q(la) (mod r),

and so by Lemma 4.4.3 we have

χp,q(r) = χp,q(la).

The product of the characters χp,q for p prime, p|I and p|q − 1, is a character
χq of order

∏
p|q−1 p = q − 1, as q − 1|I and I is squarefree. But a character

mod q of order q − 1 is one-to-one on Zq (see Exercise 4.24), so as

χq(r) =
∏

p|q−1

χp,q(r) =
∏

p|q−1

χp,q(la) = χq(la),

we have r ≡ la (mod q). As this holds for each prime q|F and F is squarefree, it
follows that (4.23) holds. This completes the proof of correctness of Algorithm
4.4.5.

It is clear that the running time is bounded by a fixed power of I, so the
running time assertion follows immediately from Theorem 4.3.5. �

With some extra work one can extend the Gauss sums primality test to the
case where I is not assumed squarefree. This extra degree of freedom allows
for a speedier test. In addition, there are speed-ups that use randomness, thus
eschewing the deterministic aspect of the test. For a reasonably fast version
of the Gauss sums primality test, one might consult the new paper [Schoof
2004].

4.4.2 Jacobi sums test

We have just mentioned some ways that the Gauss sums test can be improved
in practice, but the principal way is to not use Gauss sums! Rather, as with
the original test of Adleman, Pomerance and Rumely, Jacobi sums are used.
The Gauss sums G(p, q) are in the ring Z[ζp, ζq]. Doing arithmetic in this ring
modulo n requires dealing with vectors with (p − 1)(q − 1) coordinates, with
each coordinate being a residue modulo n. It is likely in practice that we can
take the primes p to be very small, say less than lnn. But the primes q can
be somewhat larger, as large as (lnn)c ln ln ln n. The Jacobi sums J(p, q) that
we shall presently introduce lie in the much smaller ring Z[ζp], and so doing
arithmetic with them is much speedier.

Recall the character χp,q from Section 4.4.1, where p, q are primes with
p|q − 1. We shall suppose that p is an odd prime. Let b = b(p) be the least



200 Chapter 4 PRIMALITY PROVING

positive integer with (b + 1)p ≡ bp + 1 (mod p2). (As shown in [Crandall et
al. 1997] we may take b = 2 for every prime p up to 1012 except p = 1093 and
p = 3511, for which we may take b = 3. It is probably true that b(p) = 2 or 3
for every prime p. We certainly have b(p) < ln2 p; see Exercise 3.19.)

We now define a Jacobi sum J(p, q). This is

J(p, q) =
q−2∑
m=1

χp,q

(
mb(m − 1)

)
.

The connection to the supposed primality of n is made with the following
more general result. Suppose n is an odd prime not divisible by p. Let f be
the multiplicative order of n in Z∗

p. Then the ideal (n) in Z[ζp] factors into
(p−1)/f prime ideals N1,N2, . . . ,N(p−1)/f each with norm nf . If α is in Z[ζp]
but not in Nj , then there is some integer aj with α(nf −1)/p ≡ ζ

aj
p (mod Nj).

The Jacobi sums test tries this congruence with α = J(p, q) for the same
pairs p, q (with p > 2) that appear in the Gauss sums test. To implement this,
one also needs to find the ideals Nj . This is accomplished by factoring the
polynomial xp−1 + xp−2 + · · · + 1 modulo n into h1(x)h2(x) · · ·h(p−1)/f (x),
where each hj(x) is irreducible of degree f . Then we can take for Nj the
ideal generated by n and hj(ζp). These calculations can be attempted even
if we don’t know that n is prime, and if they should fail, then n is declared
composite.

For a complete description of the test, the reader is referred to [Adleman
et al. 1983]. For a practical version and other improvements see [Bosma and
van der Hulst 1990].

4.5 The primality test of Agrawal, Kayal, and Saxena
(AKS test)

In August 2002, M. Agrawal, N. Kayal, and N. Saxena announced a
spectacular new development, a deterministic, polynomial-time primality test.
This is now known as the AKS test. We have seen in Algorithm 3.5.13 that
such a test exists on the assumption of the extended Riemann hypothesis.
Further, in Algorithm 3.5.6 (the “Miller–Rabin test”), we have a random
algorithm that expects to prove that composite inputs are composite in
polynomial time. We had known a random algorithm that expects to prove
that prime inputs are prime in polynomial time; this is the Adleman–Huang
test, which will be briefly described in Section 7.6. Finally, as we just saw in
Theorem 4.4.6, Algorithm 4.4.5 is a fully proved, deterministic primality test
that runs within the “almost polynomial” time bound (lnn)c ln ln ln n. We say
“almost polynomial” because the exponent ln ln lnn grows so very slowly that
for practical purposes it might be considered bounded. (A humorous way of
putting this: Though we have proved that ln ln lnn tends to infinity with n,
we have never observed it doing so!)

The new test is not just sensational because it finally settles the theoretical
issue of primality testing after researchers were so close in so many ways,
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it is remarkable in that the test itself is quite simple. And further, two of
the authors, Kayal and Saxena, had worked on this problem for their senior
project, having just received their bachelor’s degrees three months before the
announcement. A short time later, after suggestions from various quarters,
Agrawal, Kayal, and Saxena came out with an even simpler version of the
test. These two versions may be found in [Agrawal et al. 2002], [Agrawal et al.
2004].

In this section we shall present the second version of the Agrawal–Kayal–
Saxena algorithm, as well as some more recent developments. As of this
writing, it remains to be seen whether the AKS test will be useful in proving
large numbers prime. The quartic time test at the end of the section stands
the best chance.

4.5.1 Primality testing with roots of unity

If n is prime, then
g(x)n ≡ g(xn) (mod n),

for any polynomial g(x) ∈ Z[x]. In particular,

(x + a)n ≡ xn + a (mod n) (4.24)

for any a ∈ Z. Further, if (4.24) holds for just one value of a with gcd(a, n) = 1,
then n must be prime; see Exercise 4.25. That is, (4.24) is an if-and-only-if
primality criterion. The trouble is that we know no speedy way of verifying
(4.24) even for the simple case a = 1; there are just too many terms on the
left side of the congruence.

If f(x) ∈ Z[x] is an arbitrary monic polynomial, then (4.24) implies that

(x + a)n ≡ xn + a (mod f(x), n) (4.25)

for every integer a. So, if n is prime, then (4.25) holds for every integer a
and every integer monic polynomial f(x). Further, it should be possible to
rapidly check (4.25) if deg f(x) is not too large. As an example, take a = 1
and f(x) = x − 1. Then (4.25) is equivalent to

2n ≡ 2 (mod n),

the Fermat congruence to the base 2. However, as we have seen, while this
congruence is necessary for the primality of n, it is not sufficient. So, by
introducing the modulus f(x) we gain speed, but perhaps lose our primality
criterion.

But (4.25) allows more generality; we are not required to take f(x) of
degree 1. For example, we might take f(x) = xr − 1 for some smallish
number r, and so be implicitly dealing with the r-th roots of unity. Essentially,
all that needs to be done is to choose r appropriately (but bounded by a
polylogarithmic expression in n), and to verify (4.25) for every a up to a
certain point (again bounded by a polylogarithmic expression in n).

The new primality test is so simple and straightforward that we cannot
resist stating it first as pseudocode, discussing the details only afterward.
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Algorithm 4.5.1 (Agrawal–Kayal–Saxena (AKS) primality test). We are
given an integer n ≥ 2. This deterministic algorithm decides whether n is prime
or composite.

1. [Power test]
If n is a square or higher power, return “n is composite”;

2. [Setup]
Find the least integer r with the order of n in Z∗

r exceeding lg2 n;
If n has a proper factor in [2,

√
ϕ(r) lg n], return “n is composite”;

// ϕ is Euler’s function.

3. [Binomial congruences]
for(1 ≤ a ≤

√
ϕ(r) lg n) {

if((x + a)n ≡ xn + a (mod xr − 1, n)) return “n is composite”;
}
Return “n is prime”;

Square testing in Step [Power test] may be done by Algorithm 9.2.11,
and higher-power testing may be done by a similar Newton iteration, cf.
Exercise 4.11. Note that one has only to test that n is in the form ab for
b ≤ lg n. (Note too that from Exercise 4.28, Step [Power test] may actually be
skipped entirely!) The integer r in Step [Setup] may be found by sequential
search over the integers exceeding lg2 n. In this search, if a value of r is found
for which 1 < gcd(r, n) < n, one has of course proved n composite, and the
algorithm might be modified to reflect this. With such a modification, one
need subsequently search for a proper factor of n only in the interval [2, lg2 n],
rather than [2,

√
ϕ(r) lg n], since the search for r would itself recognize those

n with a proper factor in (lg2 n, r], and r >
√

ϕ(r) lg n. Since Step [Setup]
involves a search for small divisors of n, it may occur that all possibilities up
to

√
n are accounted for, and so n is proved prime. In this case, of course, one

need not continue to Step [Binomial congruences], but this event can occur
only for fairly small values of n. See the end of Section 4.5.4 for more notes
on AKS implementation.

We shall return to the issue of the size of r when we discuss the complexity
of the algorithm, but first we will discuss why the algorithm is correct.
Algorithm 4.5.1 is based principally on the following beautiful criterion.

Theorem 4.5.2 (Agrawal, Kayal, Saxena). Suppose n is an integer with
n ≥ 2, r is a positive integer coprime to n such that the order of n in Z∗

r

is larger than lg2 n, and

(x + a)n ≡ xn + a (mod xr − 1, n) (4.26)

holds for each integer a with 0 ≤ a ≤
√

ϕ(r) lg n. If n has a prime factor
p >

√
ϕ(r) lg n, then n = pm for some positive integer m. In particular, if n

has no prime factors in [1,
√

ϕ(r) lg n] and n is not a proper power, then n is
prime.
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Proof. We may assume that n has a prime factor p >
√

ϕ(r) lg n. Let

G = {g(x) ∈ Zp[x] : g(x)n ≡ g(xn) (mod xr − 1)}.

It follows from (4.26) that, for each integer a with 0 ≤ a ≤
√

ϕ(r) lg n,
the polynomial x + a is in G. Since G is closed under multiplication, every
monomial expression ∏

0≤a≤
√

ϕ(r) lg n

(x + a)εa ,

where each εa is a nonnegative integer, is in G. Note too that since p >√
ϕ(r) lg n, these polynomials are all distinct and nonzero in Zp[x], so that G

has many members. We shall make good use of this observation shortly.
We now show that G is a union of residue classes modulo xr − 1. That is,

if g1(x) ∈ G, g2(x) ∈ Zp[x], and g2(x) ≡ g1(x) (mod xr − 1), then g2(x) ∈ G.
Indeed, by replacing each x with xn, we have g1(xn) ≡ g2(xn) (mod xnr − 1),
and since xr − 1 divides xnr − 1, this congruence holds modulo xr − 1 as well.
Thus,

g2(x)n ≡ g1(x)n ≡ g1(xn) ≡ g2(xn) (mod xr − 1),

so that g2(x) ∈ G as claimed. Summarizing:

• The set G is closed under multiplication, each monomial x + a is in G for
0 ≤ a ≤

√
ϕ(r) lg n, and G is a union of residue classes modulo xr − 1.

Let

J = {j ∈ Z : j > 0, g(x)j ≡ g(xj) (mod xr − 1) for each g(x) ∈ G}.

By the definition of G, we have n ∈ J , and trivially 1 ∈ J . We also have p ∈ J .
Indeed, for every polynomial g(x) ∈ Zp[x] we have g(x)p = g(xp), so certainly
this relation holds modulo xr − 1 for every g ∈ G. It is easy to see that J
is closed under multiplication. Indeed, let j1, j2 ∈ J and g(x) ∈ G. We have
g(x)j1 ∈ G, since G is closed under multiplication, and since g(x)j1 ≡ g(xj1)
(mod xr −1), it follows by the preceding paragraph that g(xj1) ∈ G. So, since
j2 ∈ J ,

g(x)j1j2 ≡ g(xj1)j2 ≡ g((xj2)j1) = g(xj1j2) (mod xr − 1),

and so j1j2 ∈ J . Thus J also has many members. Summarizing:

• The set J contains 1, n, p and is closed under multiplication.

Let K be the splitting field for xr − 1 over the finite field Fp. Thus, K
is a finite field of characteristic p and is the smallest one that contains all of
the r-th roots of unity. In particular, let ζ ∈ K be a primitive r-th root of
1, and let h(x) ∈ Fp[x] be the minimum polynomial for ζ, so that h(x) is an
irreducible factor of xr − 1. Thus, K = Fp(ζ) ∼= Fp[x]/(h(x)). The degree k
of h(x) is the multiplicative order of p in Z∗

r , but we will not be needing this
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fact. The key fact that we will need is that K is the homomorphic image of
the ring Zp[x]/(xr − 1) where the coset representing x is sent to ζ. Indeed, all
that is used for this observation is that h(x)|xr − 1. Let G denote the image
of G under this homomorphism. Thus,

G = {γ ∈ K : γ = g(ζ) for some g(x) ∈ G}.

Note that if g(x) ∈ G and j ∈ J , then g(ζ)j = g(ζj).
Let d denote the order of the subgroup of Z∗

r generated by n and p. Let

Gd = {g(x) ∈ G : g(x) = 0 or deg g(x) < d}.

Since d ≤ ϕ(r) < r, the members of Gd are all distinct modulo xr−1. We show
that our homomorphism to K is one-to-one when restricted to Gd. Indeed, say
g1(x), g2(x) ∈ Gd and g1(ζ) = g2(ζ). We claim that this forces g1(x) = g2(x).
If j = napb, where a, b are nonnegative integers, then j ∈ J , so that

g1(ζj) = g1(ζ)j = g2(ζ)j = g2(ζj).

This equation holds for d distinct values of j modulo r. But the powers ζj

are distinct if the exponents j are distinct modulo r, since ζ is a primitive
r-th root of 1. Thus, the polynomial g1(x)−g2(x) has at least d distinct roots
in K. But a polynomial cannot have more roots in a field than its degree,
and since g1(x), g2(x) are in Gd, it must be that g1(x) = g2(x) as claimed.
Summarizing:

• Distinct polynomials in Gd correspond to distinct members of G.

We apply this principle to the polynomials

g(x) = 0 or g(x) =
∏

0≤a≤√
d lg n

(x + a)εa ,

where now each εa is 0 or 1. Since d ≤ ϕ(r), we have seen that each g(x) is
in G. Further, since d > lg2 n it follows that

√
d lg n < d, so that as long as

we do not choose all of the exponents εa as 1, we will have each g(x) in Gd.
Hence there are at least

1 + (2
√
d lg n�+1 − 1) > 2

√
d lg n = n

√
d

members of Gd, and so there are also more than n
√

d members of G.
Summarizing:

• We have #G ≥ #Gd > n
√

d.

Recall that K ∼= Fp[x]/(h(x)), where h(x) is an irreducible polynomial in
Fp[x]. Denote the degree of h(x) by k. Thus, K ∼= Fpk , so it follows that if
j, j0 are positive integers with j ≡ j0 (mod pk −1), and β ∈ K, then βj = βj0 .
Let

J ′ = {j ∈ Z : j > 0, j ≡ j0 (mod pk − 1) for some j0 ∈ J}.
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If j ≡ j0 (mod pk − 1) with j0 ∈ J , and g(x) ∈ G, then g(ζ)j =
g(ζ)j0 = g(ζj0) = g(ζj). Also, since J is closed under multiplication, so
is J ′. Additionally, since npk−1 ≡ n/p (mod pk − 1), we have n/p ∈ J ′.
Summarizing:

• The set J ′ is closed under multiplication, it contains 1, p, n/p, and for each
j ∈ J ′, g(x) ∈ G, we have g(ζ)j = g(ζj).

Consider the integers pa(n/p)b, where a, b are integers in [0,
√

d]. Since
p, n/p are in the order-d subgroup of Z∗

r generated by p and n, and since
there are more than d choices for the ordered pair (a, b), there must be two
different choices (a1, b1), (a2, b2) with j1 := pa1(n/p)b1 and j2 := pa2(n/p)b2

congruent modulo r. Thus, ζj1 = ζj2 , and since j1, j2 ∈ J ′, we have

g(ζ)j1 = g(ζj1) = g(ζj2) = g(ζ)j2 for all g(x) ∈ G.

That is, γj1 = γj2 for all elements γ ∈ G. But we have seen that G has more
than n

√
d elements, and since j1, j2 ≤ p

√
d(n/p)

√
d = n

√
d, the polynomial

xj1 −xj2 has too many roots in K for it not to be the 0-polynomial. Thus, we
must have j1 = j2; that is, pa1(n/p)b1 = pa2(n/p)b2 . Hence,

nb1−b2 = pb1−b2−a1+a2 ,

and since the pairs (a1, b1), (a2, b2) are distinct, we have b1 = b2. By unique
factorization in Z we thus have that n is a power of p. �

The preceding proof uses some ideas in the lecture notes [Agrawal 2003].
The correctness of Algorithm 4.5.1 follows immediately from Theorem

4.5.2; see Exercise 4.26.

4.5.2 The complexity of Algorithm 4.5.1

The time to check one of the congruences

(x + a)n ≡ xn + a (mod xr − 1, n)

in Step [Binomial congruences] of Algorithm 4.5.1 is polynomial in r and lnn.
It is thus crucial to show that r itself is polynomial in lnn. That this is so
follows from the following theorem.

Theorem 4.5.3. Given an integer n ≥ 3, let r be the least integer with the
order of n in Z∗

r exceeding lg2 n. Then r ≤ lg5 n.

Proof. Let r0 be the least prime number that does not divide

N := n(n − 1)(n2 − 1) · · ·
(
n
lg2 n� − 1

)
.

Then r0 is the least prime number such that order of n in Z∗
r0

exceeds lg2 n,
so that r ≤ r0. It follows from inequality (3.16) in [Rosser and Schoenfeld
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1962] that the product of the primes in [1, x] exceeds 2x when x ≥ 41. More
simply, and more strongly, the Chebyshev-type estimate of Exercise 1.28 gives∏

p≤x p > 2x when x ≥ 31. Now the product of the primes dividing N is at
most N , and

N < n1+1+2+···+
lg2 n� = n
1
2 
lg2 n�2+ 1

2 
lg2 n�+1 < nlg4 n = 2lg5 n.

Hence there is a prime r0 ≤ lg5 n with r0 not dividing N when lg5 n ≥ 31.
This last inequality holds when n ≥ 4. However, for n = 3 the least r in the
theorem is 5, so the theorem holds in this case as well. �

So, the proof is complete that the deterministic Algorithm 4.5.1 decides
whether n is prime or composite in polynomial time. But as soon as one
problem is solved, new ones naturally arise. Among these: Exactly how fast
is Algorithm 4.5.1? Can we do better? Is it practical?

First, we analyze Algorithm 4.5.1 using only elementary, naive subroutines.
The bit complexity to check just one of the congruences in Step [Binomial
congruences] is O(r2 ln3 n). Thus the time to check all of them is bounded
by O(r2.5 ln4 n). Using r = O(ln5 n) from Theorem 4.5.3, we get a total bit
complexity for the congruences of O(ln16.5 n). It is easy to see that the other
steps of the algorithm are bounded by smaller expressions, so we have our
first O-estimate for the complexity of the algorithm, namely O(ln16.5 n).

Sometimes elementary and naive is the best road to take. But for
large numbers and high-degree polynomials, the methods of Chapter 8.8
are indicated. To obtain (x + a)n modulo xr − 1 and modulo n, we may
employ a power ladder (of O(lnn) steps) with internal modular polynomial
multiplies of degree less than r, and with coefficients always smaller than
n. Thus the dominant calculation—that for (x + a)n—comes down to
O((lnn)(r ln r)M(lnn)) bit operations, where M(b) is the bit complexity
for multiplying two integers of b bits each (see, for example, the discussion
following Algorithm 9.6.1). So, with fast algorithms, the time for one of the
congruences in Step [Binomial congruences] is reduced to Õ(r ln2 n). (The
notation Õ(f(n)) implies an upper bound of the form c1f(n)(ln f(n))c2 , and
is sometimes called “soft O notation.” Thus, if g(n) = Õ(f(n)), where f(n)
tends to infinity, then g(n) = O(f(n)1+ε) for each fixed ε > 0.) We conclude
that the total bit complexity for the congruences, and the entire algorithm, is
Õ(r1.5 ln3 n) = Õ(ln10.5 n).

It is clear that with a better upper bound for r than afforded by
Theorem 4.5.3, we will have a better estimate for the bit complexity of
Algorithm 4.5.1. For example, using Exercise 4.29, we have that the bit
complexity of the algorithm is Õ(ln6 n) when n ≡ ±3 (mod 8). Since it
seems very unlikely that one could ever verify one of the congruences in
Step [Binomial congruences] in significantly fewer than r ln2 n bit operations,
it would seem that r1.5 ln3 n is likely as a lower bound for the order
of magnitude of the bit complexity of the entire algorithm (though not
necessarily a lower bound for perhaps some other primality test). And since
the algorithm forces us to choose r > lg2 n, it would seem then that we



4.5 The primality test of Agrawal, Kayal, and Saxena (AKS test) 207

cannot do better than Õ(ln6 n) for the total running time. Note too that from
Exercise 4.30, this total running time is indeed bounded by Õ(ln6 n) for almost
all primes n. (For most composite numbers n, the running time is less.)

But in our never-ending quest for the best possible algorithm, we ask
whether Õ(ln6 n) can be achieved for all numbers n. It seems as if this should
be the case; that is, it seems as if we should be able to choose r = Õ(ln2 n)
always. Such a result follows independently from strong forms of two different
conjectures. One of these is the Artin conjecture asserting that if n is neither
−1 nor a square (which is certainly an allowable hypothesis for us), then there
are infinitely many primes r with n a primitive root for r. Any such prime r
with r > 1 + lg2 n may be used in Algorithm 4.5.1, and it seems reasonable
to assume that there is always such a prime smaller than 2 lg2 n (for n > 2).
It is interesting that in [Hooley 1976] there is a proof of the Artin conjecture
assuming the GRH (see the comments in Exercise 2.39), and it may be that
this proof can be strengthened to show that there is good value for r < 2 lg2 n;
see Exercise 4.38. But if we are willing to assume the GRH, we might as well
merely assume the ERH and use Theorem 3.5.13, and so obtain a deterministic
primality test with bit complexity Õ(ln4 n).

In addition to the Artin conjecture, we also have a conjecture on Sophie
Germain primes. Recall that these are primes q with r = 2q + 1 also prime. If
there are not only infinitely many of them (which is not known), but they are
fairly frequent, then there should be such a prime q > lg2 n with q = Õ(ln2 n)
and r = 2q + 1 not dividing n ± 1; see [Agrawal et al. 2004]. Such a value for
r is valid in Algorithm 4.5.1. Indeed, it would suffice if the order of n modulo
r is either q or 2q. But otherwise, its order is 1 or 2, and we have stipulated
that r does not divide n ± 1. These conjectures strengthen our view that the
complexity of Algorithm 4.5.1 should be Õ(ln6 n).

Using a deep theorem in [Fouvry 1985], one can show that r may be chosen
with r = O(ln3 n); see [Agrawal et al. 2004]. Thus, the total bit complexity
for the algorithm is Õ(ln7.5 n). This is nice, but there is a drawback to using
Fouvry’s theorem. The proof is not only difficult, it is ineffective. This means
that from the proof there is no way to present a numerically explicit upper
bound for the number of bit operations. This ineffectivity is due to the use of
a theorem of Siegel; we have already seen the consequences of Siegel’s theorem
in Theorem 1.4.6, and we will see it again in our discussion of class numbers
of quadratic forms.

So using Fouvry’s result, we get close to the natural limit of Õ(ln6 n), but
not quite there, and the time estimate is ineffective. In the next subsection
we shall discuss how these defects may be removed.

4.5.3 Primality testing with Gaussian periods

In Theorem 4.5.2 we are concerned with the polynomial xr−1. In the following
result from [Lenstra and Pomerance 2005] we move toward a more general
polynomial f(x).
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Theorem 4.5.4. Suppose n is an integer with n ≥ 2, f(x) is a monic
polynomial in Zn[x] of degree d, where d > lg2 n,

f(xn) ≡ 0 (mod f(x)), xnd ≡ x (mod f(x)), (4.27)

and

xnd/q − x and f(x) are coprime for all primes q dividing d. (4.28)

Suppose too that
(x + a)n ≡ xn + a (mod f(x)) (4.29)

for each integer a with 0 ≤ a ≤
√

d lg n. Then if n is divisible by a prime
p >

√
d lg n, then n = pm for some positive integer m.

The notion of two polynomials being coprime in Zn[x] was discussed in
Definition 4.3.1. Note that reduction modulo n for polynomial coefficients is
assumed, since the polynomials in Theorem 4.5.4 are assumed to be in Zn[x].

Proof. We largely follow the proof of Theorem 4.5.2. Let p be a prime factor
of n that exceeds

√
d lg n. As before, but with f(x) in place of xr −1, we define

G = {g(x) ∈ Zp[x] : g(x)n ≡ g(xn) (mod f(x))}.

And as before, but this time by assumption (4.27), we have f(x)|f(xn) in
Zp[x]. Thus, G is closed under multiplication and is a union of residue classes
modulo f(x). Thus, our proof that

J = {j ∈ Z : j > 0, g(x)j ≡ g(xj) (mod f(x)) for all g(x) ∈ G}

is closed under multiplication is also as before. Let h(x) be an irreducible
factor of f(x) when considered modulo p, and denote by ζ a root of h(x) in
the splitting field K of h(x) over Fp. Then the finite field K = Fp(ζ) is the
homomorphic image of the ring Zp[x]/(f(x)), where the coset representing x
is sent to ζ. By (4.28), x is coprime to f(x) in Zp[x], so that ζ = 0 in K. Let
r be the multiplicative order of ζ. By (4.28) we must have ζnd/q = ζ for each
prime q|d, so that ζnd/q−1 = 1 for these q’s. Also, by (4.27) and the fact that
ζ is nonzero in K, we have ζnd−1 = 1. Thus, the order of n in Z∗

r is exactly d.
In the argument for Theorem 4.5.2 we had d equal to the order of the

subgroup generated by n and p in Z∗
r , while now it is just the order of

the subgroup generated by n. However, in our present context, the two
subgroups are the same; that is, p ≡ ni (mod r) for some nonnegative integer
i. We see this as follows. First note that clearly we have f(x) ∈ G, since
f(xn) ≡ 0 ≡ f(x)n (mod f(x)). Thus, f(ζ)j = f(ζj) for all j ∈ J . But
f(ζ) = 0, so that each ζj is a root of f in K. Now ζ has order r and f has
degree d, so that the number of residue classes occupied by j mod r for j ∈ J
is at most d; indeed, f cannot have more roots in the finite field K than its
degree. However, the powers of n already occupy d residue classes modulo r,
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so every other member of J , in particular p, is congruent modulo r to some
power of n. (The reader might note the similarity of this argument to Theorem
4.3.3.)

In the proof of Theorem 4.5.2 we have x + a ∈ G for each integer a with
0 ≤ a ≤

√
ϕ(r) lg n, but all that we used is that this condition holds for

0 ≤ a ≤
√

d lg n. We certainly have this latter condition currently. So now
everything matches up, and the proof may be concluded in exactly the same
way as in Theorem 4.5.2. �

The preceding proof used some ideas in the nice survey paper [Granville
2004a].

With Theorem 4.5.2 we were constrained by the fact that while we
conjectured that there are suitable values of r that are fairly close to lg2 n, all
that we could prove was that r ≤ lg5 n (Theorem 4.5.3), though by ineffective
methods this upper bound for r could be brought down to O(ln3 n). But with
Theorem 4.5.4 we are liberated from just looking at polynomials of the form
xr − 1. We now have the complete freedom of looking at any and all monic
polynomials f(x), as long as the degree exceeds lg2 n and (4.27) and (4.28) are
satisfied. Note that if n is prime, then by Theorem 2.2.8, a polynomial f(x)
satisfies (4.27) and (4.28) if and only if f(x) is irreducible in Zn[x]. And it
is easy to show that there are plenty of monic irreducible polynomials of any
given degree (see (2.5) and Exercise 2.12). So why not just let d = �lg2 n�+1,
choose a polynomial of degree d that would be irreducible if n were prime,
and be done with it?

Unfortunately, things are not so easy. Irreducible polynomial construction
over Fp, where p is prime, can be done in expected polynomial time by the
random algorithm of just choosing arbitrary polynomials of the desired degree
and testing them. This is exactly the approach of Algorithm 4.3.4. But what
if one wants a deterministic algorithm? Already in the case of degree 2 we
have a known hard problem, since finding an irreducible quadratic in Fp[x] is
equivalent to finding a quadratic nonresidue modulo p. Assuming the ERH,
we know how to do this in deterministic polynomial time (using Theorem
1.4.5), but we know no unconditional polynomial-time method. In [Adleman
and Lenstra 1986] it is shown how to deterministically find an irreducible
polynomial of any given degree in time polynomial in ln p and the degree,
again assuming the ERH. They also consider an unconditional version of
their theorem in which they allow a small “error.” That is, if the target
degree is d, they find unconditionally and in time polynomial in lnp and d an
irreducible polynomial modulo p of degree D, where d ≤ D = O(d ln p). In the
paper [Lenstra and Pomerance 2005] this last result is improved to finding an
irreducible polynomial modulo p with degree in [d, 4d], once p is sufficiently
large (the bound is computable in principle), and assuming d > (ln p)1.84.
(If one does not insist on effectivity, the lower bound for d may be relaxed
somewhat.) Further, the number of bit operations to find such a polynomial
is bounded by Õ(d8/5 lnn) (the notation Õ being introduced in the preceding
subsection).
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Say we take d = �lg2 n�+1 and run this last algorithm on a large number
n. If n is prime, then the algorithm will produce an irreducible polynomial
with degree in [d, 4d]. If n is composite, either the algorithm will produce a
polynomial with degree in [d, 4d] and for which (4.27) and (4.28) both hold,
or the algorithm will crash. In this latter case, the number n will have been
proved composite. Finally, if the algorithm succeeds in finding a polynomial
for which (4.27) and (4.28) hold, then one can proceed to check (4.29) for the
requisite values of a, taking time Õ(d3/2 ln3 n) = Õ(ln6 n), and so deciding
within this time bound whether n is prime or composite.

So the polynomial construction from [Lenstra and Pomerance 2005] plus
Theorem 4.5.4 gives a deterministic primality test for n with bit operation
count bounded by Õ(ln6 n). This polynomial construction method is too
complicated to be completely described in this book, but we would like to
present some of the essential elements. As with many ideas in our subject, the
story begins with Gauss.

While still a teenager, Gauss described a set of natural numbers n for
which a regular n-gon is constructible with a Euclidean straight-edge and
compass, and conjectured that his set was exhaustive (and he was right, as
proved by P. Wantzel in 1836). The set of Gauss is precisely the integers n ≥ 3
for which ϕ(n) is a power of 2 (also see the discussion in Section 1.3.2). We
are interested here not so much in this beautiful theorem itself, but rather
its proof. Key to the argument are what are now called Gaussian periods.
Suppose r is a prime number, and let ζr = e2πi/r, so that ζr is a primitive
r-th root of 1. Let d be a positive divisor of r − 1 and let

S = {1 ≤ j ≤ r : j(r−1)/d ≡ 1 (mod r)}
be the subgroup of d-th powers modulo r. We define the Gaussian period

ηr,d =
∑
j∈S

ζj
r .

Thus, ηr,d is a sum of some of the r-th roots of 1. It has the property
that Q(ηr,d) is the (unique) subfield of Q(ζr) of degree d over Q. In fact,
ηr,d is the trace of ζr to this subfield. We are especially interested in the
minimal polynomial fr,d for ηr,d over Q. This polynomial is monic with integer
coefficients, it has degree d, and it is irreducible over Q. We may explicitly
exhibit the polynomial fr,d as follows. Let w be a residue modulo r such that
the order of w(r−1)/d is d. For example, any primitive root w modulo r has
this property, but there are many other examples as well. Then the cosets
S, wS, . . . , wd−1S are disjoint and cover Z∗

r . The conjugates of ηr,d over Q are
the various sums

∑
j∈wiS ζj

r , and we have

fr,d(x) =
d−1∏
i=0

(
x −

∑
j∈wiS

ζj
r

)
.

As a monic polynomial of degree d in Z[x], when reduced modulo a prime
p, fr,d remains a polynomial of degree d. But is it irreducible in Zp[x]? Not
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necessarily. However, the following result gives a criterion that ensures that
fr,d remains irreducible when reduced modulo p.

Lemma 4.5.5 (Kummer). If r is a prime, d is a positive divisor of r − 1,
and p is a prime with the order of p(r−1)/d modulo r equal to d, then fr,d(x)
remains irreducible when considered in Fp[x].

A proof of this result using that ηr,d and its conjugates form an integral basis
of the ring of integers in Q(ηr,d) may be found in [Adleman and Lenstra 1986].
We present a different proof using Gauss sums.

Proof. Consider the splitting field K of (xr − 1)(xd − 1) over Fp, which
may be viewed as the homomorphic image of Z[ζr, ζd], where ζr = e2πi/r and
ζd = e2πi/d. Let ζ be the image of ζr in K and let ω be the image of ζd.
Further, let η =

∑
j∈S ζj be the image of ηr,d. Assuming that the order of

p(r−1)/d modulo r is d, we are to show that η has degree d over Fp (since we
have fr,d(η) = 0 and fr,d has degree d, so that if η has degree d, then fr,d

must be irreducible over Fp). We apply the Frobenius p-th-power map to η;
if this is done i times, we have ηpi

. We are to show that the least positive k

with ηpk

= η is k = d. For each k we have

ηpk

=
∑
j∈S

ζpkj =
∑

j∈pkS

ζj ,

so that ηpd

= η, since pd ∈ S. Thus, the least positive k with ηpk

= η is a
divisor of d. Our goal is to show that k = d, so we may assume that d > 1.

Let χ be a Dirichlet character modulo r of order d; specifically, let
χ(ad) = 1 for any nonzero residue a modulo r and let χ(p) = ζd. (Since
the order of p(r−1)/d modulo r is assumed to be d, we have completely defined
χ.) We consider the Gauss sum

τ(χ) =
r−1∑
j=1

χ(j)ζj
r .

Note that the proof of Lemma 4.4.1 gives that |τ(χ)|2 = r, see Exercise 4.21,
so that the image of τ(χ) in K is not zero. We reorganize the Gauss sum,
getting that

τ(χ) =
d−1∑
i=0

∑
j∈piS

χ(j)ζj
r =

d−1∑
i=0

χ(p)i
∑

j∈piS

ζj
r .

Thus, τ(χ) is a “twisted” sum over the complex roots of fr,d(x). We take this
equation over to K, noting that

∑
j∈piS ζj = ηpi

. But ηpi1 = ηpi2 whenever
i1 ≡ i2 (mod k), so the image of τ(χ) in K is

d−1∑
i=0

ωi
∑

j∈piS

ζj =
d−1∑
i=0

ωiηpi

=
k−1∑
m=0

ηpm
d/k−1∑

l=0

ωm+kl =
k−1∑
m=0

ηpm

ωm

d/k−1∑
l=0

ωkl.
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But if k < d, the last inner sum is 0, so that the image of τ(χ) in K is 0, a
contradiction. Thus, k = d and the proof is complete. �

In Exercise 4.31, the converse of Lemma 4.5.5 is discussed.
Now suppose that we have various pairs ri, di where each ri is prime and

di|ri − 1, for i = 1, . . . , k. Let η be the product of the various Gaussian
periods ηri,di and let f be its minimal polynomial over Q. If the numbers
di are pairwise coprime, then the degree of f is the product d1 · · · dk. And
it is not too hard to see that if p is a prime not equal to any ri, then f is
irreducible modulo p if the order of p(ri−1)/di in Z∗

ri
is di for i = 1, . . . , k;

see Exercise 4.32. This then may be considered some sort of a “machine”
for producing irreducible polynomials modulo p. That this “machine” can hit
close to a desired degree follows from the following result from [Lenstra and
Pomerance 2005].

Theorem 4.5.6. There is a number B, computable in principle, such that if
n is an integer with n > B and d is an integer with d > (lnn)1.84, then there
is a squarefree number D in the interval [d, 4d] such that each prime factor q
of D satisfies (1) q < d3/11 and (2) there is a prime r < d6/11 with r ≡ 1
(mod q) such that r does not divide n and n is not a q-th power modulo r.

Note that since q is prime, saying that n is not a q-th power modulo r is
equivalent to saying that n(r−1)/q has order q modulo r.

Armed with Theorem 4.5.6, we may confidently search for a number
D with the stated properties, which search is easy to perform. Since the
computable bound B has not yet been computed, one may not be sure that
such a D will exist in [d, 4d] for a given number n, but a sequential search
starting at d will eventually turn up a suitable number D that is O(d), with
this O-constant also being computable in principle. Once D is found, one can
use the Gaussian period “machine” to create a polynomial f of degree D that
would be irreducible if n were prime.

Thus, taking the approach of Theorem 4.5.4 and the use of Gaussian
periods to construct suitable polynomials, one can construct a deterministic
primality test with (effective) running time bounded by Õ(ln6 n) bit
operations. We have presented some of the key ideas. The proof in particular
of Theorem 4.5.6 is fairly complicated and beyond the scope of this book.
For details see [Lenstra and Pomerance 2005]. Finally, we point out that the
Lenstra–Pomerance version of the Agrawal–Kayal–Saxena primality test as
discussed in this subsection provides no practical advantage over Algorithm
4.5.1, since in practice one should always find a small r so that that algorithm
is not too onerous. (It is in actually proving that this is the case that we delved
into the method of this subsection.) Now that we have opened the door on
the practical considerations of the new primality test, we can leave behind the
issue of determinism and perhaps even rigorous algorithmic analysis, and ask
whether the new ideas can indeed help us in proofs for large primes. We take
up this issue next.
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4.5.4 A quartic time primality test

Since the most time-consuming step of Algorithm 4.5.1 is the checking of the
congruence (x + a)n ≡ xn + a (mod xr − 1, n) for so many values of a, this
area would be a good place to look for improvements. In Theorem 4.5.4 we
had the improvement of replacing xr − 1 with a polynomial f(x) of possibly
smaller degree. Another idea is to get binomial congruences verified “for free.”
In the following theorem, we replace xr − 1 with xr − b for a suitable integer
b, and we need only verify one binomial congruence.

Theorem 4.5.7. Let n, r, b be integers with n > 1, r|n − 1, r > lg2 n,
bn−1 ≡ 1 (mod n), and gcd(b(n−1)/q − 1, n) = 1 for each prime q|r. If

(x − 1)n ≡ xn − 1 (mod xr − b, n), (4.30)

then n is a prime or prime power.

Proof. Let p|n be prime and set A = b(n−1)/r mod p. Then A has order r in
Z∗

p, so that in particular, r|p−1 (see Pocklington’s Theorem 4.1.3). Note that

xn = x · xn−1 = x(xr)(n−1)/r ≡ Ax (mod xr − b, p). (4.31)

Thus, by our hypothesis,

(x − 1)n ≡ xn − 1 ≡ Ax − 1 (mod xr − b, p).

Also note that if f(x) ≡ g(x) (mod xr − b, p), then f(Aix) ≡ g(Aix)
(mod xr − b, p) for any integer i, since (Aix)r − b ≡ xr − b (mod p). Thus,
taking f(x) = (x − 1)n and g(x) = Ax − 1, we have

(x − 1)n2 ≡ (Ax − 1)n ≡ A2x − 1 (mod xr − b, p),

and more generally by induction, we get

(x − 1)nj ≡ Ajx − 1 (mod xr − b, p) (4.32)

for every nonnegative integer j.
Note that if c is an integer and cr ≡ 1 (mod p), then c ≡ Ak (mod p) for

some integer k; indeed, all that is used for this observation is that p is prime
and A has order r modulo p. So, we have

xp = x · xp−1 = x(xr)(p−1)/r ≡ b(p−1)/rx ≡ Akx (mod xr − b, p)

for some integer k. Thus, since (Ak)p ≡ Ak (mod p), we have by induction
that

xpi ≡ Aikx (mod xr − b, p) (4.33)

for every nonnegative integer i. We have f(x)pi

= f(xpi

) for every f(x) ∈
Zp[x], so that by (4.32) and (4.33), we have

(x − 1)pinj ≡ (Ajx − 1)pi ≡ Ajxpi − 1 ≡ Aj+ikx − 1 (mod xr − b, p)
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for all nonnegative integers i, j. Thus for such i, j,

(x − 1)pi(n/p)j ≡ Aj(1−k)+ikx − 1 (mod xr − b, p), (4.34)

since both sides have the same pj-th power (mod xr − b, p), and raising to
the pj-th power is one-to-one in Zp[x]/(xr − b). This last assertion follows
because raising to the p-th power is one-to-one in any Zp[x]/(f(x)) where
f(x) does not have any repeated irreducible factors modulo p, noting that
since gcd(xr − b, rxr−1) = 1 in Zp[x], the polynomial xr − b indeed does not
have any repeated factors.

Note that x − 1 is a unit in Zp[x]/(xr − b). Indeed, in Zp[x], we have
gcd(x − 1, xr − b) = gcd(x − 1, 1 − b) = 1, provided that p does not divide
b − 1. But since A = b(n−1)/r modulo p has order r > lg2 n ≥ 1, we do indeed
have p not dividing b − 1. Let E denote the multiplicative order of x − 1 in
Zp[x]/(xr − b). Note that

E ≥ 2r − 1,

since the polynomials ∏
j∈S

(Ajx − 1),

where S runs over the proper subsets of {0, 1, . . . , r −1}, are not only distinct
in Zp[x]/(xr − b), but each is a power of x − 1, by (4.32).

Consider integers i, j with 0 ≤ i, j ≤ √
r. It must be that there are two

distinct pairs (i1, j1), (i2, j2) with

j1(1 − k) + i1k ≡ j2(1 − k) + i2k (mod r),

so that if u1 = pi1(n/p)j1 , u2 = pi2(n/p)j2 , then

(x−1)u1 ≡ Aj1(1−k)+i1kx−1 ≡ Aj2(1−k)+i2kx−1 ≡ (x−1)u2 (mod xr − b, p).

Hence
u1 ≡ u2 (mod E).

But u1, u2 ∈ [1, n
√

r] and E > 2r − 1 > n
√

r − 1, the last inequality holding
by our hypothesis that r > lg2 n. Thus, u1 = u2, and as we saw in the proof
of Theorem 4.5.2, this immediately leads to n being a power of p. �

This theorem may be essentially found in [Bernstein 2003] and (indepen-
dently) [Mihăilescu and Avanzi 2003]. It was originally proved in the case of
r a power of 2 by Berrizbeitia and in the case of r a prime or prime power by
Cheng.

Note that using fast polynomial and integer arithmetic, the congruence
(4.30) can be checked in Õ(r ln2 n) bit operations, the notation Õ having been
introduced in Section 4.5.2. So if r can be chosen such that r = O(ln2 n), we
thus would have the basis for a primality test of complexity Õ(ln4 n). There
are two problems with this. First, not every prime n has a divisor r of n − 1
with lg2 n < r = O(ln2 n); in fact, it can be shown that for most primes n,
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the number n − 1 does not have such a divisor r. Second, even if we do have
such a number r, there is a problem of what to choose for b. Surely, if n is
prime, then there are many numbers b that will work. Indeed, just choose b
as a primitive root for n, and there are other choices as well. So, it would be
easy to find a choice for b by a random search, but we still do not know how
to solve a problem like this in deterministic polynomial time without some
extra assumption such as the ERH.

So let us throw in the towel for now on the issue of determinism. If n − 1
has a divisor r with lg2 n < r = O(ln2 n), and if n is prime, we can use a fast
random method to find a suitable choice for b, show that n is not a proper
power, and then use Theorem 4.5.7 as a basis of a primality proof for n that
runs in Õ(ln4 n) bit operations. In fact, Bernstein has tried exactly this test
and has used it to prove prime a number with 1000 bits. This is not exactly
competitive with our experience with the Jacobi sums test and with elliptic
curve primality proving, but it is beginning to be an option.

Let us look at the more serious problem, namely, what is to be done if
n − 1 does not have a divisor r > lg2 n that is not too large. In [Berrizbeitia
2002] it is shown how to quickly prove primality for n if n + 1 is divisible by
a power of 2 of size about lg2 n. The reader may note a parallel, for in some
sense, this chapter has come full circle. We have faced the limitations of the
n−1 test, which led us to the n+1 test, and eventually to the finite field test,
where we look for a suitable divisor of nd − 1 for some relatively small integer
d. Note that it follows from Theorem 4.3.5 with x = lg2 n that if n > 16 (so
that lg2 n > 16), then there is an integer d < (2 ln lnn)c ln ln ln(ln2 n) such that
nd − 1 has a divisor r > lg2 n and such that each prime factor of r is one
more than a divisor of d. Hence by peeling off some of these prime factors of
r if necessary, we may assume that lg2 n < r ≤ (d + 1) lg2 n. In the following
result we need r slightly larger, namely, r > d2 lg2 n, but essentially we have
the same thing; namely there is some d bounded by (ln lnn)O(ln ln ln ln n) such
that nd −1 has a divisor r with d2 lg2 n < r ≤ (d+1)d2 lg2 n. The next result,
which is from [Bernstein 2003] and [Mihăilescu and Avanzi 2003], allows us
to craft a speedy primality criterion given such auxiliary numbers r, d.

Theorem 4.5.8. Suppose n, r, d are integers with n > 1, r|nd − 1, r >
d2 lg2 n. Suppose too that f(t) is a monic polynomial in Zn[t] of degree d,
set R as the ring Zn[t]/(f(t)), and suppose that b = b(t) ∈ R is such that
bnd−1 = 1 and b(nd−1)/q − 1 is a unit in R for each prime q|r. If

(x − 1)nd ≡ xnd − 1 (mod xr − b)

in R[x], then n is either a prime or prime power.

The proof of Theorem 4.5.8 is very similar to that of Theorem 4.5.7, so
we will give only a sketch. Let p be a prime factor of n and let h(t) be an
irreducible factor of f(t) modulo p. Set K as the finite field Zp[t]/(h(t)), so
that K is a homomorphic image of the ring R. Set N = nd and P = pdeg h,
so that P | pd | N . We identify b with its image in K and set A = b(N−1)/r,
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so that A has order r by our hypothesis. Then, there is some integer k such
that for all nonnegative integers j, i,

(x − 1)Nj ≡ Ajx − 1 (mod xr − b), (x − 1)P i ≡ Aikx − x (mod xr − b),

where we view these as polynomials in K[x]. This follows in exactly the same
way as in the proof of Theorem 4.5.7, and further we get that

(x − 1)P i(N/P )j ≡ Aik+j(1−k)x − 1 (mod xr − b).

If E is the order of x − 1 in K[x]/(xr − b), then E ≥ 2r − 1 by the same
argument as before. But again as before, there are different pairs of integers
i1, j1 and i2, j2 with Ul := P il(N/P )jl ∈ [1, N

√
r] for l = 1, 2 and U1 ≡ U2

(mod E). This forces U1 = U2, and so n is a power of p (since N is a power
of n and P is a power of p).

The reader is invited to observe the remarkable similarity of Theorem 4.3.3
to Theorem 4.5.8, where I, F, g of the former theorem correspond to d, r, b,
respectively, in the latter.

We may use Theorem 4.5.8 as the basis of a fast random algorithm that
is expected to supply primes with proofs that they are primes:

Algorithm 4.5.9 (Quartic-time variant of AKS test). We are given an in-
teger n > 1. This random algorithm attempts to decide whether n is prime or
composite, and it decides this issue correctly whenever it terminates.

1. [Setup]
If n is a square or higher power, return “n is composite”;
Find a pair r, d of positive integers with rd2 minimal such that r|nd − 1

and d2 lg2 n < r ≤ (d + 1)d2 lg2 n;
Choose random monic polynomials f(t) ∈ Zn[t] of degree d until either

n is declared composite or f(t) is found with tn
d ≡ t (mod f(t)) and

tn
d/q − t is coprime to f(t) for each prime q|d;

Choose random polynomials b(t) ∈ Zn[t] of degree smaller than d until
either n is declared composite or b(t) is found with b(t)nd−1 ≡ 1
(mod f(t)) and b(t)(n

d−1)/q − 1 is coprime to f(t) for each prime q|r.
2. [Binomial congruence]

If (x − 1)nd ≡ xnd − 1 (mod xr − b(t), f(t), n) return “n is composite”;
Return “n is prime”;

Some comments are in order. The search for d, r may proceed determin-
istically, with Theorem 4.3.5 ensuring quick success as discussed above. The
first random search asks for a polynomial f(t) with several properties. Using
Algorithm 4.3.2 to attempt to prove coprimality may result in a proof that n
is composite if n is indeed composite. If n is prime, then Algorithm 4.3.2 will
not declare n composite, and we will be successful in finding a polynomial
f with the desired properties as soon as we choose an irreducible one; see
Algorithm 2.2.10. Assuming that n is prime and f(t) is irreducible modulo n,
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the ring Zn[t]/(f(t)) is a finite field, and the search for b(t) will be successful
as soon as a primitive generator for the multiplicative group of this finite field
is found, and perhaps even sooner. Again, if n is composite, Algorithm 4.3.2
may discover this fact.

If n is prime, the expected running time for each item in Step [Setup] is
dominated by the single computation in Step [Binomial congruence], with time
bound estimated as Õ(rd2 ln2 n). With d bounded by (ln lnn)O(ln ln ln ln n), the
total expected complexity is (ln n)4(ln lnn)O(ln ln ln ln n). This expression is not
quite Õ(ln4 n), but it is of the form (lnn)4+o(1). For this reason, Bernstein
refers to the algorithm as running in “essentially” quartic time.

If one is interested in the practical use of the Agrawal–Kayal–Saxena circle
of ideas for primality testing, at present one should start with Algorithm 4.5.9.
And since the most favorable case of this algorithm is the case d = 1, it might
be best to concentrate first on this case to see whether competitive numbers
can be proved prime.

The reader contemplating an AKS implementation might find the
following remarks useful. Whether one attempts an implementation of the
original AKS Algorithm 4.5.1 or one of the more recent variants, various of
our book algorithms may be of interest. For example, binary-segmentation
multiply, Algorithm 9.6.1, is a good candidate for computing products of
polynomials with modulus, in transforming such a product to a single, large-
integer multiply. There is also the possibility of entirely parallel evaluations of
the key polynomial powers for some variants of AKS. The reference [Crandall
and Papadopoulos 2003] gives an implementor’s perspective, with most of the
notions therein applicable to all AKS variants. In that treatment an empirical
rule of thumb is established for the straightforward Algorithm 4.5.1: One
may—using the right fast algorithms—prove primality of a prime p in roughly

T (p) ≈ 1000 ln6 p

CPU operations, over the range of resolvable p. This is a real-world empirical
result that concurs with complexity estimates of the text. Thus for example,
the Mersenne prime p = 231−1 requires about 1011 operations (and so perhaps
a minute on a modern PC) with this simplest AKS approach. Note that
the operation complexity T rises nearly two orders of magnitude when the
bits in p are doubled. Beyond this benchmark for the easiest AKS variant,
implementation considerations appear in [Bernstein 2003], whereby one gets
down to the aforementioned “essentially” quartic time, and this allows primes
of several hundred decimal digits to be resolvable in a day or so.

4.6 Exercises

4.1. Show that for n prime, n > 200560490131, the number of primitive
roots modulo n is greater than (n − 1)/(2 ln lnn). The following plan may be
helpful:
(1) The number of primitive roots modulo n is ϕ(n − 1).
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(2) If the product P of all the primes p ≤ T is such that P ≥ m, then

ϕ(m)
m

≥
∏
p≤T

(
1 − 1

p

)
.

Use ideas such as this to show the inequality for 200560490131 < n <
5.6 · 1012.

(3) Complete the proof using the following estimate in [Rosser and Schoenfeld
1962]:

m

ϕ(m)
< eγ ln lnm +

2.5
ln lnm

for m > 223092870.

4.2. Suppose (4.1) is replaced with “for each prime q|n−1 there is an integer
aq such that an−1

q ≡ 1 (mod n) and a
(n−1)/q
q ≡ 1 (mod n).” Show that n must

be prime.

4.3. Suppose we are given a prime n and the complete prime factorization
of n−1, and we try to use Exercise 4.2 to prove n prime by choosing numbers
aq at random. That is, we choose numbers a at random from [1, n − 1], run
through the primes q|n − 1 and check off those for which a can be used as aq

in Exercise 4.2. After all primes q|n− 1 are checked off, the proof of primality
for n is complete. Show that there is a number c, independent of n, such that
the expected number of random a’s chosen does not exceed c.

4.4. Suppose elements b1, b2, . . . are chosen independently and uniformly at
random from the multiplicative group Z∗

n. Let g(n) be the expected value for
the least number g such that the subgroup generated by b1, . . . , bg is equal to
Z∗

n. In the spirit of Exercise 4.3 show that g(n) < 3 for all primes n. What
can be said in general when n is not assumed to be prime?

4.5. Show that the Pepin test works with 5 instead of 3 for Fermat numbers
larger than 5.

4.6. In 1999 a group of investigators (R. Crandall, E. Mayer, J. Papadopou-
los) performed—and checked—a Pepin squaring chain for the twenty-fourth
Fermat number F24. The number is composite. This could be called the deep-
est verified calculation ever performed prior to 2000 a.d. for a 1-bit (i.e.,
prime/composite) answer [Crandall et al. 1999]. (More recently, C. Percival
has determined the quadrillionth bit of π’s binary expansion to be 0; said cal-
culation was somewhat more extensive than the F24 resolution.) F24 can also
be said to be the current largest “genuine Fermat composite” (an Fn proven
composite yet enjoying no known explicit proper factors). See Exercise 1.82
for more on the notion of genuine composites.

As of this writing, F33 is the smallest Fermat number of unknown
character. Estimate how many total operations modulo F33 will be required
for the Pepin test. How will this compare with the total number of machine
operations performed for all purposes, worldwide, prior to 2000 a.d.? By
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what calendar year could F33 be resolved via the Pepin test? Note, in this
connection, the itemized remarks pursuant to Table 1.3.

Analyze and discuss these issues:
(1) The possibility of parallelizing the Pepin squaring (nobody knows how to

parallelize the squaring chain overall in an efficient manner, but indeed one
can parallelize within one squaring operation by establishing each element
of a convolution by way of parallel machinery and the CRT).

(2) The problem of proving the character of Fn is what the final Pepin residue
says it is. This is an issue because, of course, a machine can sustain
either cosmic-ray glitches (hardware) or bugs (software) that ruin the
proof. Incidentally, hardware glitches do happen; after all, any computing
machine, physics tells us, lives in an entropy bath; error probabilities are
patently nonzero. As for checking software bugs, it is important to have
different code on different machines that are supposed to be checking each
other—one does not even want the same programmer responsible for all
machines!

On this latter issue, consider the “wavefront” method, in which one, fastest
available machine performs Pepin squaring, this continual squaring thought of
as a wavefront, with other computations lagging behind in the following way.
Using the wavefront machine’s already deposited Pepin residues, a collection
of (slower, say) machines verify the results of Pepin squarings at various
intermediate junctures along the full Pepin squaring chain. For example,
the fast, wavefront machine might deposit the millionth, two millionth, three
millionth, and four millionth squares of 3; i.e., deposit powers

321000000
, 322000000

, 323000000
, 324000000

all modulo Fn, and each of the slow machines would grab a unique one of
these residues, square it just one million times, and expect to find precisely
the deterministic result (the next deposited power).

4.7. Prove the following theorems of Suyama (see [Williams 1998]):
(1) Suppose k is an odd number and N = k2n +1 divides the Fermat number

Fm. Prove that if N < (3 · 2m+2 + 1)2, then N is prime.
(2) Suppose the Fermat number Fm is factored as FR, where we have the

complete prime factorization of F , and R is the remaining unfactored
portion. But perhaps R is prime and the factorization is complete. If
R is composite, the following test often reveals this fact. Let r1 =
3Fm−1 mod Fm and r2 = 3F−1 mod Fm. If r1 ≡ r2 (mod R) then R is
composite. (This result is useful, since it replaces most of the mod R
arithmetic with mod Fm arithmetic. The divisions by Fm are especially
simple, as exemplified in Algorithm 9.2.13.)

4.8. Reminiscent of the Suyama results of Exercise 4.7 is the following
scheme that has actually been used for some cofactors of large Fermat numbers
[Crandall et al. 1999]. Say that Fn has been subjected to a Pepin test, and we
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have in hand the final Pepin residue, namely,

r = 3(Fn−1)/2 mod Fn.

Say that someone discovers a factor f of Fn, so that we can write

Fn = fG.

Prove that if we assign
x = 3f−1 mod Fn,

then
gcd(r2 − x, G) = 1

implies that the cofactor G is neither a prime nor a prime power. As in Exercise
4.7, the relatively fast (mod Fn) operation is the reason why we interpose said
operation prior to the implicit (mod G) operation in the gcd. All of this shows
the importance of carefully squirreling away one’s Pepin residues, to be used
again in some future season!

4.9. There is an interesting way to find, rigorously, fairly large primes of the
Proth form p = k2n+1. Prove this theorem of Suyama [Williams 1998], that if
a p of this form divides some Fermat number Fm, and if k2n−m−2 < 9·2m+2+6,
then p is prime.

4.10. Prove the following theorem of Proth: If n > 1, 2k|n−1, 2k >
√

n, and
a(n−1)/2 ≡ −1 (mod n) for some integer a, then n is prime.

4.11. In the algorithm based on Theorem 4.1.6, one is asked for the integral
roots (if any) of a cubic polynomial with integer coefficients. As an initial
foray, show how to do this efficiently using a Newton method or a divide-
and-conquer strategy. Note the simple Algorithm 9.2.11 for design guidance.
Consider the feasibility of rapidly solving even higher-order polynomials for
possible integer roots.

A hint is in order for the simpler case of polynomials xk −a. To generalize
Algorithm 9.2.11 for finding integer k-th roots, say �N1/k�, consider

In Step [Initialize], replace B(N)/2 → B(N)/k;
In Step [Perform Newton iteration], make the iteration

y = �((k − 1)x + �N/xk−1�)/k�,

or some similar such reduction formula.

4.12. Prove Theorem 4.2.4.

4.13. If the partial factorization (4.2) is found by trial division on n − 1
up to the bound B, then we have the additional information that R’s prime
factors are all > B. Show that if a satisfies (4.3) and also gcd(aF − 1, n) = 1,
then every prime factor of n exceeds BF . In particular, if BF ≥ n1/2, then n
is prime.
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4.14. Suppose that in addition to the hypotheses of Theorem 4.2.10 we
know that all of the prime factors of R1R2 exceed B, where n − 1 = F1R1,
n+1 = F2R2. Also suppose there is an integer a1 such that an−1

1 ≡ 1 (mod n),
gcd(aF1

1 − 1, n) = 1, and there are f,∆ as in (4.12) with gcd(n, 2b) = 1,(∆
n

)
= −1, Un+1 ≡ 0 (mod n), gcd(UF2 , n) = 1. Let F denote the least

common multiple of F1, F2. Show that if the residue n mod F is not a proper
factor of n and BF >

√
n, then n is prime.

4.15. Prove Theorem 4.2.9.

4.16. By the methods of Exercise 4.1 show the following: If n > 892271479
is prime, let N denote the expected number of choices of random pairs
a, b ∈ {0, 1, . . . , n − 1}, not both 0, until with f given in (4.12), we have
rf (n) = n + 1. Then N < 4 ln lnn.

4.17. Prove that n = 700001 is prime, first using a factorization of n − 1,
and then again using a factorization of n + 1.

4.18. Show how the algorithm of Coppersmith that is mentioned near the
end of Section 4.2.3 can be used to improve the n − 1 test, the n + 1 test, the
combined n2 − 1 test, the finite field primality test, and the Gauss sums test.

4.19. Show that every ideal in Zn[x] is principally generated (that is, is the
set of multiples of one polynomial) if and only if n is prime.

4.20. Let q be an odd prime. With the notation of Section 4.4.1 and
Definition 2.3.6 show that for integer m not divisible by q, we have χ2,q(m) =(
m
q

)
and that G(2, q) = G(1, q).

4.21. Let q be an odd prime and let χ be a non-principal character modulo
q. Generalize the proof of Lemma 4.4.1 to show that |τ(χ)|2 = q. That is,
Lemma 4.4.1 is for a character with prime modulus and prime order, while
this exercise asks for a generalization to any character with prime modulus
as long as its order exceeds 1. Even more generally, show that |τ(χ)|2 = q for
any primitive character χ of modulus q, regardless of whether q is prime.

4.22. Suppose that n survives steps [Preparation] and [Probable-prime
computation] of Algorithm 4.4.5, and for each prime p|I we either have
w(p) = 1 or some l(p, q) = 0. Show that Step [Coprime check] may be skipped.
Show too in this case that l in Step [Divisor search] may be taken as n, so that
the Chinese remainder theorem calculations in that step also may be skipped.

4.23. With the notation of Definition 4.4.4, show that if α is a unit in the
ring Zn[ζp, ζq], then gcd(n, c(α)) = 1. Show that the converse is false.

4.24. If q is a prime and χ is a character mod q of order q − 1, show that χ
is one-to-one on the residue classes modulo q. Show the converse as well.

4.25. For n an integer at least 2, show that the polynomials (x + 1)n and
xn + 1 are equal in the ring Zn[x] if and only if n is prime. More generally,
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show that if gcd(a, n) = 1, then (x + a)n = xn + a in Zn[x] if and only if n is
prime.

4.26. Using Theorem 4.5.2 prove that Algorithm 4.5.1 correctly decides
whether n is prime or composite.

4.27. Show that the set G in the proof of Theorem 4.5.2 is the union of {0}
and a cyclic multiplicative group.

4.28. By the same method as in Exercise 3.19, show that if an ≡ a (mod n)
for each positive integer a smaller than ln2 n, then n is squarefree. Further
show that the AKS congruence (x+a)n ≡ xn +a (mod xr −1, n) implies that
(a + 1)n ≡ a + 1 (mod n). Conclude that the hypotheses of Theorem 4.5.2
imply that if n is divisible by a prime larger than

√
ϕ(r) lg n, then n is equal

to this prime. Use this to establish a shorter version of Algorithm 4.5.1, where
Step [Power test] may be skipped entirely.

4.29. Show that if n ≡ ±3 (mod 8), then the value of r in Step [Setup] in
Algorithm 4.5.1 is bounded above by 8 lg2 n. Hint: Show that if r2 is the least
power of 2 with the order of n in Z∗

r2
exceeding lg2 n, then r2 < 8 lg2 n.

4.30. Using an appropriate generalization of the idea suggested in Exercise
4.29, and Theorem 1.4.7, show that the value of r in Step [Setup] in Algorithm
4.5.1 is bounded above by lg2 n lg lg n for all but possibly o(π(x)) primes n ≤ x.
Conclude that Algorithm 4.5.1 runs in time Õ(ln6 n) for almost all primes n,
in the sense that the number of exceptional primes n ≤ x is o(π(x)).

4.31. Prove the converse of Lemma 4.5.5; that is, assuming that r, p are
unequal primes, d|r − 1 and fr,d(x) is irreducible modulo p, prove that the
order of p(r−1)/d modulo r is d.

4.32. Suppose that r1, r2, . . . , rk are primes and that d1, d2, . . . , dk are
positive and pairwise coprime, with di|ri − 1 for each i. Let f(x) be the
minimal polynomial for ηr1,d1ηr2,d2 . . . ηrk,dk

over Q. Show that for primes p
unequal to each ri, f(x) is irreducible modulo p if and only if the order of
each p(ri−1)/di modulo ri is di.

4.33. In the text we only sketched the proof of Theorem 4.5.8. Give a
complete proof.

4.7 Research problems

4.34. Design a practical algorithm that rigorously determines primality of
an arbitrary integer n ∈ [2, . . . , x] for as large an x as possible, but carry out
the design along the following lines.

Use a probabilistic primality test but create a (hopefully minuscule) table
of exceptions. Or use a small combination of simple tests that has no exceptions
up to the bound x. For example, in [Jaeschke 1993] it is shown that no
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composite below 341550071728321 simultaneously passes the strong probable
prime test (Algorithm 3.5.2) for the prime bases below 20.

4.35. By consideration of the Diophantine equation

nk − 4m = 1,

prove that no Fermat number can be a power nk, k > 1. That much is known.
But unresolved to this day is this: Must a Fermat number be squarefree? Show
too that no Mersenne number Mn, with n a positive integer, is a nontrivial
power.

4.36. Recall the function M(p) defined in Section 4.1.3 as the number of
multiplications needed to prove p prime by traversing the Lucas tree for p.
Prove or disprove: For all primes p, M(p) = O(lg p).

4.37. (Broadhurst). The Fibonacci series (un) as defined in Exercise 2.5
yields, for certain n, some impressive primes. Work out an efficient primality-
testing scheme for Fibonacci numbers, perhaps using publicly available
provers.

Incidentally, according to D. Broadhurst all indices are rigorously resolved,
in regard to the primality question on un, for all n through n = 35999
inclusive (and, yes, u35999 is prime). Furthermore, u81839 is known to be prime,
yet calculations are still needed to resolve two suspected (probable) primes,
namely the un for n ∈ {50833, 104911}, and therefore to resolve the primality
question through n = 104911.

4.38. Given a positive nonsquare integer n, show that there is a prime r
with 1 + lg2 n < r = O(ln2 n) such that n is a primitive root for r. If you
are prepared to assume the GRH, the discussion in [Hooley 1976] on Artin’s
conjecture may be of help.

4.39. We have seen in Exercise 4.28 that the power test may be omitted
from Algorithm 4.5.1. May we also omit the power test in Algorithm 4.5.9?
Do the hypotheses of Theorem 4.5.6 imply that n is squarefree?
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EXPONENTIAL FACTORING ALGORITHMS

For almost all of the multicentury history of factoring, the only algorithms
available were exponential, namely, the running time was, in the worst case,
a fixed positive power of the number being factored. But in the early 1970s,
subexponential factoring algorithms began to come “on line.” These methods,
discussed in the next chapter, have their running time to factor n bounded
by an expression of the form no(1). One might wonder, then, why the current
chapter exists in this book. We have several reasons for including it.
(1) An exponential factoring algorithm is often the algorithm of choice for

small inputs. In particular, in some subexponential methods, smallish
auxiliary numbers are factored in a subroutine, and such a subroutine
might invoke an exponential factoring method.

(2) In some cases, an exponential algorithm is a direct ancestor of a
subexponential algorithm. For example, the subexponential elliptic curve
method grew out of the exponential p−1 method. One might think of the
exponential algorithms as possible raw material for future developments,
much as various wild strains of agricultural cash crops are valued for their
possible future contributions to the plant gene pool.

(3) It is still the case that the fastest, rigorously analyzed, deterministic
factoring algorithm is exponential.

(4) Some factoring algorithms, both exponential and subexponential, are
the basis for analogous algorithms for discrete logarithm computations.
For some groups the only discrete logarithm algorithms we have are
exponential.

(5) Many of the exponential algorithms are pure delights.
We hope then that the reader is convinced that this chapter is worth it!

5.1 Squares

An old strategy to factor a number is to express it as the difference of two
nonconsecutive squares. Let us now expand on this theme.

5.1.1 Fermat method

If one can write n in the form a2 − b2, where a, b are nonnegative integers,
then one can immediately factor n as (a + b)(a − b). If a − b > 1, then the
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factorization is nontrivial. Further, every factorization of every odd number
n arises in this way. Indeed, if n is odd and n = uv, where u, v are positive
integers, then n = a2 − b2 with a = 1

2 (u + v) and b = 1
2 |u − v|.

For odd numbers n that are the product of two nearby integers, it is easy to
find a valid choice for a, b and so to factor n. For example, consider n = 8051.
The first square above n is 8100 = 902, and the difference to n is 49 = 72. So
8051 = (90 + 7)(90 − 7) = 97 · 83.

To formalize this as an algorithm, we take trial values of the number a
from the sequence

⌈√
n
⌉
,
⌈√

n
⌉

+ 1, . . . and check whether a2−n is a square. If
it is, say b2, then we have n = a2−b2 = (a+b)(a−b). For n odd and composite,
this procedure must terminate with a nontrivial factorization before we reach
a = �(n + 9)/6�. The worst case occurs when n = 3p with p prime, in which
case the only choice for a that gives a nontrivial factorization is (n+9)/6 (and
the corresponding b is (n − 9)/6).

Algorithm 5.1.1 (Fermat method). We are given an odd integer n > 1.
This algorithm either produces a nontrivial divisor of n or proves n prime.

1. [Main loop]
for

(
�√n� ≤ a ≤ (n + 9)/6

)
{

// Next, apply Algorithm 9.2.11.
if
(
b =

√
a2 − n is an integer

)
return a − b;

}
return “n is prime”;

It is evident that in the worst case, Algorithm 5.1.1 is much more tedious than
trial division. But the worst cases for Algorithm 5.1.1 are actually the easiest
cases for trial division, and vice versa, so one might try to combine the two
methods.

There are various tricks that can be used to speed up the Fermat method.
For example, via congruences it may be discerned that various residue classes
for a make it impossible for a2 −n to be a square. As an illustration, if n ≡ 1
(mod 4), then a cannot be even, or if n ≡ 2 (mod 3), then a must be a multiple
of 3.

In addition, a multiplier might be used. As we have seen, if n is the product
of two nearby integers, then Algorithm 5.1.1 finds this factorization quickly.
Even if n does not have this product property, it may be possible for kn to
be a product of two nearby integers, and gcd(kn, n) may be taken to obtain
the factorization of n. For example, take n = 2581. Algorithm 5.1.1 has us
start with a = 51 and does not terminate until the ninth choice, a = 59,
where we find that 592 − 2581 = 900 = 302 and 2581 = 89 · 29. (Noticing that
n ≡ 1 (mod 4), n ≡ 1 (mod 3), we know that a is odd and not a multiple of
3, so 59 would be the third choice if we used this information.) But if we try
Algorithm 5.1.1 on 3n = 7743, we terminate on the first choice for a, namely
a = 88, giving b = 1. Thus 3n = 89 · 87, and note that 89 = gcd(89, n),
29 = gcd(87, n).
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5.1.2 Lehman method

But how do we know to try the multiplier 3 in the above example? The
following method of R. Lehman formalizes the search for a multiplier.

Algorithm 5.1.2 (Lehman method). We are given an integer n > 21. This
algorithm either provides a nontrivial factor of n or proves n prime.

1. [Trial division]
Check whether n has a nontrivial divisor d ≤ n1/3, and if so, return d;

2. [Loop]
for

(
1 ≤ k ≤

⌈
n1/3

⌉)
{

for
(
�2

√
kn� ≤ a ≤ �2

√
kn + n1/6/(4

√
k)�

)
{

if
(
b =

√
a2 − 4kn is an integer

)
return gcd(a + b, n);

// Via Algorithm 9.2.11.
}

}
return “n is prime”;

Assuming that this algorithm is correct, it is easy to estimate the running
time. Step [Trial division] takes O(n1/3) operations, and if Step [Loop] is
performed, it takes at most

�n1/3�∑
k=1

(
n1/6

4
√

k
+ 1

)
= O(n1/3)

calls to Algorithm 9.2.11, each call taking O(ln lnn) operations. Thus, in all,
Algorithm 5.1.2 takes in the worst case O(n1/3 ln lnn) arithmetic operations
with integers the size of n. We now establish the integrity of the Lehman
method.

Theorem 5.1.3. The Lehman method (Algorithm 5.1.2) is correct.

Proof. We may assume that n is not factored in Step [Trial division]. If n
is not prime, then it is the product of 2 primes both bigger than n1/3. That
is, n = pq, where p, q are primes and n1/3 < p ≤ q. We claim that there is
a value of k ≤

⌈
n1/3

⌉
such that k has the factorization uv, with u, v positive

integers, and

|uq − vp| < n1/3.

Indeed, by a standard result (see [Hardy and Wright 1979, Theorem 36]), for
any bound B > 1, there are positive integers u, v with v ≤ B and |u

v − p
q | < 1

vB .
We apply this with B = n1/6

√
q/p. Then

|uq − vp| <
q

n1/6
√

q/p
= n1/3.
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It remains to show that k = uv ≤
⌈
n1/3

⌉
. Since u

v < p
q + 1

vB and v ≤ B, we
have

k = uv =
u

v
v2 <

p

q
v2 +

v

B
≤ p

q
· q

p
n1/3 + 1 = n1/3 + 1,

so the claim is proved.
With k, u, v as above, let a = uq + vp, b = |uq − vp|. Then 4kn = a2 − b2.

We show that 2
√

kn ≤ a < 2
√

kn + n1/6

4
√

k
. Since uq · vp = kn, we have

a = uq + vp ≥ 2
√

kn. Set a = 2
√

kn + E. Then

4kn + 4E
√

kn ≤
(
2
√

kn + E
)2

= a2 = 4kn + b2 < 4kn + n2/3,

so that 4E
√

kn < n2/3, and E < n1/6

4
√

k
as claimed.

Finally, we show that if a, b are returned in Step [Loop], then gcd(a+ b, n)
is a nontrivial factor of n. Since n divides (a + b)(a − b), it suffices to show
that a + b < n. But

a + b < 2
√

kn +
n1/6

4
√

k
+ n1/3 < 2

√
(n1/3 + 1)n +

n1/6

4
√

n1/3 + 1
+ n1/3 < n,

the last inequality holding for n ≥ 21. �

There are various ways to speed up the Lehman method, such as first
trying values for k that have many divisors. We refer the reader to [Lehman
1974] for details.

5.1.3 Factor sieves

In the Fermat method we search for integers a such that a2 − n is a square.
One path that has been followed is to try to make use of the many values of
a for which a2 − n is not a square. For example, suppose a2 − n = 17. Does
this tell us anything useful about n? Indeed, it does. If p is a prime factor
of n, then a2 ≡ 17 (mod p), so that if p = 17, then p is forced to lie in one
of the residue classes ±1,±2,±4,±8 (mod 17). That is, half of all the primes
are ruled out as possible divisors of n in one fell swoop. With other values of
a we similarly can rule out other residue classes for prime factors of n. It is
then a hope that we can gain so much information about the residue classes
that prime factors of n must lie in, that these primes are then completely
determined and perhaps easily found.

The trouble with this kind of argument is the exponential growth in its
complexity. Suppose we try this argument for k values of a, giving us k moduli
m1, m2, · · · , mk, and for each we learn that prime factors p of n must lie in
certain residue classes. For the sake of the argument, suppose the mi’s are
different primes, and we have 1

2 (mi − 1) possible residue classes (mod mi)
for the prime factors of n. Then modulo the product M = m1m2 · · ·mk, we
have 2−k(m1 − 1)(m2 − 1) . . . (mk − 1) = 2−kϕ(M) possible residue classes
(mod M). On the one hand, this number is small, but on the other, it is large!
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That is, the probability that a random prime p is in one of these residue classes
is 2−k, so if k is large, this should greatly reduce the possibilities and pinpoint
p. But we know no fast way of finding the small solutions that simultaneously
satisfy all the required congruences, since listing the 2−kϕ(M) solutions to
find the small ones is a prohibitive calculation. Early computational efforts at
solving this problem involved ingenious apparatus with bicycle chains, cards,
and photoelectric cells. There are also modern special purpose computers that
have been built to solve this kind of problem. For much more on this approach,
see [Williams and Shallit 1993].

5.2 Monte Carlo methods

There are several interesting heuristic methods that use certain deterministic
sequences that are analyzed as if they were random sequences. Though the
sequences may have a random seed, they are not truly random; we nevertheless
refer to them as Monte Carlo methods. The methods in this section are all
principally due to J. Pollard.

5.2.1 Pollard rho method for factoring

In 1975, J. Pollard introduced a most novel factorization algorithm, [Pollard
1975]. Consider a random function f from S to S, where S = {0, 1, . . . , l−1}.
Let s ∈ S be a random element, and consider the sequence

s, f(s), f(f(s)), . . . .

Since f takes values in a finite set, it is clear that the sequence must eventually
repeat a term, and then become cyclic. We might diagram this behavior with
the letter ρ, indicating a precyclic part with the tail of the ρ, and the cyclic
part with the oval of the ρ. How long do we expect the tail to be, and how
long do we expect the cycle to be?

It should be immediately clear that the birthday paradox from elementary
probability theory is involved here, and we expect the length of the tail and
the oval together to be of order

√
l. But why is this of interest in factoring?

Suppose p is a prime, and we let S = {0, 1, . . . , p − 1}. Let us specify a
particular function f from S to S, namely f(x) = x2 + 1 mod p. So if this
function is “random enough,” then we will expect that the sequence (f (i)(s)),
i = 0, 1, . . ., of iterates starting from a random s ∈ S begins repeating before
O(

√
p) steps. That is, we expect there to be 0 ≤ j < k = O(

√
p) steps with

f (j)(s) = f (k)(s).
Now suppose we are trying to factor a number n, and p is the least prime

factor of n. Since we do not yet know what p is, we cannot compute the
sequence in the above paragraph. However, we can compute values of the
function F defined as F (x) = x2+1 mod n. Clearly, f(x) = F (x) mod p. Thus,
F (j)(s) ≡ F (k)(s) (mod p). That is, gcd

(
F (j)(s) − F (k)(s), n

)
is divisible by

p. With any luck, this gcd is not equal to n itself, so that we have a nontrivial
divisor of n.
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There is one further ingredient in the Pollard rho method. We surely
should not be expected to search over all pairs j, k with 0 ≤ j < k and
to compute gcd(F (j)(s) − F (k)(s), n) for each pair. This could easily take
longer than a trial division search for the prime factor p, since if we search
up to B, there are about 1

2B2 pairs j, k. And we do not expect to be
successful until B is of order

√
p. So we need another way to search over

pairs other than to examine all of them. This is afforded by a fabulous
expedient, the Floyd cycle-finding method. Let l = k − j, so that for any
m ≥ j, F (m)(s) ≡ F (m+l)(s) ≡ F (m+2l)(s) ≡ . . . (mod p). Consider this for
m = l �j/l�, the first multiple of l that exceeds j. Then F (m)(s) ≡ F (2m)(s)
(mod p), and m ≤ k = O(

√
p).

So the basic idea of the Pollard rho method is to compute the sequence
gcd(F (i)(s) − F (2i)(s), n) for i = 1, 2, . . ., and this should terminate with a
nontrivial factorization of n in O(

√
p) steps, where p is the least prime factor

of n.

Algorithm 5.2.1 (Pollard rho factorization method). We are given a com-
posite number n. This algorithm attempts to find a nontrivial factor of n.

1. [Choose seeds]
Choose random a ∈ [1, n − 3];
Choose random s ∈ [0, n − 1];
U = V = s;
Define function F (x) = (x2 + a) mod n;

2. [Factor search]
U = F (U);
V = F (V );
V = F (V ); // F (V ) intentionally invoked twice.
g = gcd(U − V, n);
if(g == 1) goto [Factor search];

3. [Bad seed]
if(g == n) goto [Choose seeds];

4. [Success]
return g; // Nontrivial factor found.

A pleasant feature of the Pollard rho method is that very little space is
required: Only the number n that is being factored and the current values of
U, V need be kept in memory.

The main loop, Step [Factor search], involves 3 modular multiplications
(actually squarings) and a gcd computation. In fact, with the cost of one
extra modular multiplication, one may put off the gcd calculation so that it
is performed only rarely. Namely, the numbers U − V may be accumulated
(multiplied all together) modulo n for k iterations, and then the gcd of this
modular product is taken with n. So if k is 100, say, the amortized cost of
performing a gcd is made negligible, so that one generic loop consists of 3
modular squarings and one modular multiplication.
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It is certainly possible for the gcd at Step [Bad seed] to be n itself, and the
chance for this is enhanced if one uses the above idea to put off performing
gcd’s. However, this defect can be mitigated by storing the values U, V at the
last gcd. If the next gcd is n, one can return to the stored values U, V and
proceed one step at a time, performing a gcd at each step.

There are actually many choices for the function F (x). The key criterion is
that the iterates of F modulo p should not have long ρ’s, or as [Guy 1976] calls
them, “epacts.” The epact of a prime p with respect to a function F from Zp to
Zp is the largest k for which there is an s with F (0)(s), F (1)(s), . . . , F (k)(s) all
distinct. (Actually we have taken some liberty with this definition, originally
Guy defined it as the number of iterates to discover the factor p.)

So a poor choice for a function F (x) is ax + b, since the epact for a prime
p is the multiplicative order of a modulo p (when a ≡ 1 (mod p)), usually a
large divisor of p − 1. (When a ≡ 1 (mod p) and b ≡ 0 (mod p), the epact is
p.)

Even among quadratic functions x2 + b there can be poor choices, for
example b = 0. Another less evident, but nevertheless poor, choice is x2 −2. If
x can be represented as y + y−1 modulo p, then the k-th iterate is y2k

+ y−2k

modulo p.
It is not known whether the epact of x2+1 for p is a suitably slow-growing

function of p, but Guy conjectures it is O
(√

p ln p
)
.

If we happen to know some information about the prime factors p of n, it
may pay to use higher-degree polynomials. For example, since all prime factors
of the Fermat number Fk are congruent to 1 (mod 2k+2) when k ≥ 2 (see
Theorem 1.3.5), one might use x2k+2

+ 1 for the function F when attempting
to factor Fk by the Pollard rho method. One might expect the epact for
a prime factor p of Fk to be smaller than that of x2 + 1 by a factor of
about

√
2k+1. To see this consider the following probabilistic model. (Note

that a more refined probabilistic model that agrees somewhat better with the
available data is given in [Brent and Pollard 1981]. Also see Exercise 5.2.)
Iterating x2 + 1 might be thought of as a random walk through the set of
squares plus 1, a set of size (p − 1)/2, while using x2k+2

+ 1 we walk through
the 2k+2 powers plus 1, a set of size (p − 1)/2k+2. The birthday paradox says
we should expect a repeat in about c

√
m steps in a random walk through a

set of size m, so we see the improved factor of
√

2k+1. However, there is a
penalty to using x2k+2

+1, since a typical loop now involves 3(k +2) modular
squarings and one modular multiplication. For large k the benefit is evident.
In this connection see Exercise 5.24. Such acceleration was used successfully
in [Brent and Pollard 1981] to factor F8, historically the most spectacular
factorization achieved with the Pollard rho method. The work of Brent and
Pollard also discusses a somewhat faster cycle-finding method, which is to save
certain iterate values and comparing future ones with those, as an alternative
to the Floyd cycle-finding method.
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5.2.2 Pollard rho method for discrete logarithms

Pollard has also suggested a rho method for discrete logarithm computations,
but it does not involve iterating x2 + 1, or any simple polynomial for that
matter, [Pollard 1978]. If we are given a finite cyclic group G and a generator
g of G, the discrete logarithm problem for G is to express given elements of
G in the form gl, where l is an integer. The rho method can be used for any
group for which it is possible to perform the group operation and for which we
can assign numerical labels to the group elements. However, we shall discuss
it for the specific group Z∗

p of nonzero residues modulo p, where p is a prime
greater than 3.

We view the elements of Z∗
p as integers in {1, 2, . . . , p − 1}. Let g be a

generator and let t be an arbitrary element. Our goal is to find an integer l
such that gl = t; that is, t = gl mod p. Since the order of g is p−1, it is really
a residue class modulo (p − 1) that we are searching for, not a specific integer
l, though of course, we might request the least nonnegative value.

Consider a sequence of pairs (ai, bi) of integers modulo (p − 1) and a
sequence (xi) of integers modulo p such that xi = taigbi mod p, and we begin
with the initial values a0 = b0 = 0, x0 = 1. The rule for getting the i + 1
terms from the i terms is as follows:

(ai+1, bi+1) =

⎧⎨
⎩

((ai + 1) mod (p − 1), bi), if 0 < xi < 1
3p,

(2ai mod (p − 1), 2bi mod (p − 1)), if 1
3p < xi < 2

3p,
(ai, (bi + 1) mod (p − 1)), if 2

3p < xi < p,

and so

xi+1 =

⎧⎨
⎩

txi mod p, if 0 < xi < 1
3p,

x2
i mod p, if 1

3p < xi < 2
3p,

gxi mod p, if 2
3p < xi < p.

Since which third of the interval [0, p] an element is in has seemingly
nothing to do with the group Z∗

p, one may think of the sequence (xi) as
“random,” and so it may be that there are numbers j, k with j < k = O(

√
p)

with xj = xk. If we can find such a pair j, k, then we have taj gbj = takgbk , so
that if l is the discrete logarithm of t, we have

(aj − ak)l ≡ bk − bj (mod (p − 1)).

If aj − ak is coprime to p − 1, this congruence may be solved for the discrete
logarithm l. If the gcd of aj − ak with p − 1 is d > 1, then we may solve for
l modulo (p − 1)/d, say l ≡ l0 (mod (p − 1)/d). Then l = l0 + m(p − 1)/d for
some m = 0, 1, . . . , d − 1, so if d is small, these various possibilities may be
checked.

As with the rho method for factoring, we use the Floyd cycle-finding
algorithm. Thus, at the i-th stage of the algorithm we have at hand both
xi, ai, bi and x2i, a2i, b2i. If xi = x2i, then we have our cycle match. If not,
we go to the (i + 1)-th stage, computing xi+1, ai+1, bi+1 from xi, ai, bi and
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computing x2i+2, a2i+2, b2i+2 from x2i, a2i, b2i. The principal work is in the
calculation of the (xi) and (x2i) sequences, requiring 3 modular multiplications
to travel from the i-th stage to the (i + 1)-th stage. As with the Pollard rho
method for factoring, space requirements are minimal.

[Teske 1998] describes a somewhat more complicated version of the rho
method for discrete logs, with 20 branches for the iterating function at each
point, rather than the 3 described above. Numerical experiments indicate that
her random walk gives about a 20% improvement.

The rho method for discrete logarithms can be easily distributed to many
processors, as described in connection with the lambda method below.

5.2.3 Pollard lambda method for discrete logarithms

In the same paper where the rho method for discrete logarithms is described,
[Pollard 1978] also suggests a “lambda” method, so called because the “λ”
shape evokes the image of two paths converging on one path. The idea is
to take a walk from t, the group element whose discrete logarithm we are
searching for, and another from T , an element whose discrete logarithm we
know. If the two walks coincide, we can figure the discrete logarithm of t.
Pollard views the steps in a walk as jumps of a kangaroo, and so the algorithm
is sometimes referred to as the “kangaroo method.” When we know that the
discrete logarithm for which we are searching lies in a known short interval, the
kangaroo method can be adapted to profit from this knowledge: We employ
kangaroos with shorter strides.

One tremendous feature of the lambda method is that it is relatively
easy to distribute the work over many computers. Each node in the network
participating in the calculation chooses a random number r and begins a
pseudorandom walk starting from tr, where t is the group element whose
discrete logarithm we are searching for. Each node uses the same easily
computed pseudorandom function f : G → S, where S is a relatively small
set of integers whose mean value is comparable to the size of the group G.
The powers gs for s ∈ S are precomputed. Then the “walk” starting at tr is

w0 = tr, w1 = w0g
f(w0), w2 = w1g

f(w1), . . . .

If another node, choosing r′ initially and walking through the sequence
w′

0, w
′
1, w

′
2, . . ., has a “collision” with the sequence w0, w1, w2, . . ., that is,

w′
i = wj for some i, j, then

tr
′
gf(w′

0)+f(w′
1)+···+f(w′

i−1) = trgf(w0)+f(w1)+···+f(wj−1).

So if t = gl, then

(r′ − r)l ≡
j−1∑
µ=0

f(wµ) −
i−1∑
ν=0

f(w′
ν) (mod n),

where n is the order of the group.
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The usual case where this method is applied is when the order n is prime,
so as long as the various random numbers r chosen at the start by each node
are all distinct modulo n, then the above congruence can be easily solved for
the discrete logarithm l. (This is true unless we have the misfortune that the
collision occurs on one of the nodes; that is, r = r′. However, if the number of
nodes is large, an internodal collision is much more likely than an intranodal
collision.)

It is also possible to use the pseudorandom function discussed in Section
5.2.2 in connection with the lambda method. In this case all collisions are
useful: A collision occurring on one particular walk with itself can also be used
to compute our discrete logarithm. That is, in this collision event, the lambda
method has turned itself into the rho method. However, if one already knows
that the discrete logarithm that one is searching for is in a small interval, the
above method can be used, and the time spent should be about the square
root of the interval length. However, the mean value of the set of integers in
S needs to be smaller, so that the kangaroos are hopping only through the
appropriate interval.

A central computer needs to keep track of all the sequences on all the
nodes so that collisions may be detected. By the birthday paradox, we expect
a collision when the number of terms of all the sequences is O(

√
n). It is clear

that as described, this method has a formidable memory requirement for the
central computer. The following idea, described in [van Oorschot and Wiener
1999] (and attributed to J.-J. Quisquater and J.-P. Delescaille, who in turn
acknowledge R. Rivest) greatly mitigates the memory requirement, and so
renders the method practical for large problems. It is to consider so-called
distinguished points. We presume that the group elements are represented
by integers (or perhaps tuples of integers). A particular field of length k of
binary digits will be all zero about 1/2k of the time. A random walk should
pass through such a distinguished point about every 2k steps on average.
If two random walks ever collide, they will coincide thereafter, and both
will hit the next distinguished point together. So the idea is to send only
distinguished points to the central computer, which cuts the rather substantial
space requirement down by a factor of 2−k.

A notable success is the March 1998 calculation of a discrete logarithm
in an elliptic-curve group whose order is a 97-bit prime n; see [Escott et al.
1998]. A group of 588 people in 16 countries used about 1200 computers over
53 days to complete the task. Roughly 2 · 1014 elliptic-curve group additions
were performed, with the number of distinguished points discovered being
186364. (The value of k in the definition of distinguished point was 30, so
only about one out of each billion sequence steps was reported to the main
computer.) In 2002, an elliptic-curve discrete logarithm (EDL) extraction was
completed with a 109-bit (= 33-decimal-digit) prime; see the remarks following
Algorithm 8.1.8.

For discrete logarithms in the multiplicative group of a finite field we
have subexponential methods (see Section 6.4), with significantly larger cases
being handled. The current record for discrete logarithms over Fp is a 2001
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calculation, by A. Joux and R. Lercier, where p is the 120-decimal-digit prime
�10119π� + 207819. They actually found two discrete logs in this field for the
generator 2, namely the DL for t = �10119e� and the DL for t + 1. Their
method was based on the number field sieve.

More recent advances in the world of parallel-rho methods include a
cryptographic-DL treatment [van Oorschot and Wiener 1999] and an attempt
at parallelization of actual Pollard-rho factoring (not DL) [Crandall 1999d].
In this latter regard, see Exercises 5.24 and 5.25. For some recent advances in
the DL version of the rho method, see [Pollard 2000] and [Teske 2001]. There
is also a very accessible review article on the general DL problem [Odlyzko
2000].

5.3 Baby-steps, giant-steps

Suppose G = 〈g〉 is a cyclic group of order not exceeding n, and suppose t ∈ G.
We wish to find an integer l such that gl = t. We may restrict our search for l
to the interval [0, n − 1]. Write l in base b, where b = �√n�. Then l = l0 + l1b,
where 0 ≤ l0, l1 ≤ b − 1. Note that gl1b = tg−l0 = thl0 , where h = g−1.
Thus, we can search for l0, l1 by computing the lists

{
g0, gb, . . . , g(b−1)b

}
and

{
th0, th1, . . . , thb−1

}
and sorting them. Once they are sorted, one passes

through one of the lists, finding where each element belongs in the sorted
order of the second list, with a match then being readily apparent. (This idea
is laid out in pseudocode in Algorithm 7.5.1.) If gib = thj , then we may take
l = j + ib, and we are through.

Here is a more formal description:

Algorithm 5.3.1 (Baby-steps, giant-steps for discrete logarithms). We
are given a cyclic group G with generator g, an upper bound n for the order of G,
and an element t ∈ G. This algorithm returns an integer l such that gl = t. (It
is understood that we may represent group elements in some numerical fashion
that allows a list of them to be sorted.)

1. [Set limits]
b = �√n�;
h =

(
g−1

)b
; // Via Algorithm 2.1.5, for example.

2. [Construct lists]
A =

{
gi : i = 0, 1, . . . , b − 1

}
;

B =
{
thj : j = 0, 1, . . . , b − 1

}
;

3. [Sort and find intersection]
Sort the lists A, B;
Find an intersection, say gi = thj ; // Via Algorithm 7.5.1.
return l = i + jb;

Note that the hypothesis of the algorithm guarantees that the lists A, B will
indeed have a common element. Note, too, that it is not necessary to sort
both lists. Suppose, say, that A is generated and sorted. As the elements of
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B are sequentially generated, one can look for a match in A, provided that
one has rapid means for content-searching in an ordered list. After the match
is found, it is not necessary to continue to generate B, so that on average a
savings of 50% can be gained.

The complexity for Step [Construct lists] is O(
√

n) group operations, and
for Step [Sort and find intersection] is O(

√
n lnn) comparisons. The space

required is what is needed to store O(
√

n) group elements. If one has no idea
how large the group G is, one can let n run through the sequence 2k for
k = 1, 2, . . . . If no match is found with one value of k, repeat the algorithm
with k + 1. Of course, the sets from the previous run should be saved and
enlarged for the next run. Thus if the group G has order m, we certainly will
be successful in computing the logarithm of t in operation count O(

√
m lnm)

and space O(
√

m) group elements.
A more elaborate version of this idea can be found in [Buchmann et al.

1997], [Terr 1999]. Also see [Blackburn and Teske 1999] for other baby-steps,
giant-steps strategies.

We compare Algorithm 5.3.1 with the rho method for discrete logarithms
in Section 5.2.2. There the running time is O(

√
m) and the space is

negligible. However, the rho method is heuristic, while baby-steps, giant-steps
is completely rigorous. In practice, there is no reason not to use a heuristic
method for a discrete logarithm calculation just because a theoretician has
not yet been clever enough to supply a proof that the method works and does
so within the stated time bound. So in practice, the rho method majorizes
the baby-steps, giant-steps method.

However, the simple and elegant idea behind baby-steps, giant-steps is
useful in many contexts, as we shall see in Section 7.5. It also can be used
for factoring, as shown in [Shanks 1971]. In fact, that paper introduced the
baby-steps, giant-steps idea. The context here is the class group of binary
quadratic forms with a given discriminant. We shall visit this method at the
end of this chapter, in Section 5.6.4.

5.4 Pollard p − 1 method

We know from Fermat’s little theorem that if p is an odd prime, then 2p−1 ≡ 1
(mod p). Further, if p − 1|M , then 2M ≡ 1 (mod p). So if p is a prime factor
of an integer n, then p divides gcd(2M − 1, n). The p− 1 method of J. Pollard
makes use of this idea as a tool to factor n. His idea is to choose numbers
M with many divisors of the form p − 1, and so search for many primes p as
possible divisors of n in one fell swoop.

Let M(k) be the least common multiple of the integers up to k. So, M(1) =
1, M(2) = 2, M(3) = 6, M(4) = 12, etc. The sequence M(1), M(2), . . . may be
computed recursively as follows. Suppose M(k) has already been computed. If
k+1 is not a prime or a power of a prime, then M(k+1) = M(k). If k+1 = pa,
where p is prime, then M(k + 1) = pM(k). A precomputation via a sieve, see
Section 3.2, can locate all the primes up to some limit, and this may be easily
augmented with the powers of the primes. Thus, the sequence M(1), M(2), . . .
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can be computed quite easily. In the following algorithm we arrive at M(B)
by using directly the primes up to B and their maximal powers up to B.

Algorithm 5.4.1 (Basic Pollard p − 1 method). We are given a composite
odd number n and a search bound B. This algorithm attempts to find a nontrivial
factor of n.

1. [Establish prime-power base]
Find, for example via Algorithm 3.2.1, the sequence of primes p1 < p2 <

· · · < pm ≤ B, and for each such prime pi, the maximum integer ai

such that pai
i ≤ B;

2. [Perform power ladders]
c = 2; // Actually, a random c can be tried.
for(1 ≤ i ≤ m) {

for(1 ≤ j ≤ ai) c = cpi mod n;
}

3. [Test gcd]
g = gcd(c − 1, n);
return g; // We hope for a success 1 < g < n.

There are two ways that the basic p−1 method can fail: (1) if gcd(c−1, n) = 1,
or (2) if this gcd is n itself. Here is an example to illustrate these problems.
Suppose n = 2047 and B = 10. The prime powers are 23, 32, 5, 7, and the final
g value is 1. However, we can increase the search bound. If we increase B to
12, there is one additional prime power, namely 11. Now, the final returned
value is g = n itself, and the algorithm still fails to yield a proper factor of n.
Even taking more frequent gcd’s in Step [Test gcd] does not help for this n.

What is going on here is that 2047 = 211 − 1 = 23 · 89. Thus,
gcd

(
2M − 1, n

)
= n if 11|M and is 1 otherwise. In the event of this type

of failure, it is evident that increasing the search bound will not be of any
help. However, one may replace the initial value c = 2 with c = 3 or some
other number. With c = 3 one is computing gcd

(
3M(B) − 1, n

)
. However, this

strategy does not work very well for n = 2047; the least initial value that
splits n is c = 12. For this value we find gcd

(
12M(8) − 1, n

)
= 89.

There is a second alternative in case the algorithm fails with gcd equal
to n. Choose a random integer for the initial value c, and reorganize the list
of prime powers so that the 2 power comes at the end. Then take a gcd as
in Step [Test gcd] repeatedly, once before each factor of 2 is used. It is not
hard to show that if n is divisible by at least 2 different odd primes, then
the probability that a random c will cause a failure because the gcd is n is at
most 1/2.

It should be pointed out, though, that failing with gcd equal to n rarely
occurs in practice. By far the more common form of failure occurs when the
algorithm runs its course and the gcd is still 1 at the end. With this event, we
may increase the search bound B, and/or apply the so-called second stage.

There are various versions of the second stage—we describe here the
original one. Let us consider a second search bound B′ that is somewhat
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larger than B. After searching through the exponents M(1), M(2), . . . , M(B),
we next search through the exponents QM(B), where Q runs over the
primes in the interval (B, B′]. This then has the chance of uncovering
those primes p|n with p − 1 = Qu, where Q is a prime in (B, B′] and
u|M(B). It is particularly easy to traverse the various exponents QM(B).
Suppose the sequence of primes in (B, B′] is Q1 < Q2 < · · · . Note that
2Q1M(B) mod n may be computed from 2M(B) mod n in O(lnQ1) steps. For
2Q2M(B) mod n, we multiply 2Q1M(B) mod n by 2(Q2−Q1)M(B) mod n, then
by 2(Q3−Q2)M(B) mod n to get 2Q3M(B) mod n, and so on. The differences
Qi+1−Qi are all much smaller than the Qi’s themselves, and for various values
d of these differences, the residues 2dM(B) mod n can be precomputed. Thus,
if B′ > 2B, say, the amortized cost of computing all of the 2QiM(B) mod n
is just one modular multiplication per Qi. If we agree to spend just as much
time doing the second stage as the basic p − 1 method, then we may take B′

much larger than B, perhaps as big as B lnB.
There are many interesting issues pertaining to the second stage, such as

means for further acceleration, birthday paradox manifestations, and so on.
See [Montgomery 1987, 1992a], [Crandall 1996a], and Exercise 5.9 for some of
these issues.

We shall see that the basic idea of the Pollard p−1 method is revisited with
the Lenstra elliptic curve method (ECM) for factoring integers (see Section
7.4).

5.5 Polynomial evaluation method

Suppose the function F (k, n) = k! mod n were easy to evaluate. Then a great
deal of factoring and primality testing would also be easy. For example, the
Wilson–Lagrange theorem (Theorem 1.3.6) says that an integer n > 1 is prime
if and only if F (n − 1, n) = n − 1. Alternatively, n > 1 is prime if and only if
F (�√n� , n) is coprime to n. Further, we could factor almost as easily: Carry
out a binary search for the least positive integer k with gcd(F (k, n), n) > 1—
this k, of course, will be the least prime factor of n.

As outlandish as this idea may seem, there is actually a fairly fast
theoretical factoring algorithm based on it, an algorithm that stands as the
fastest deterministic rigorously analyzed factoring algorithm of which we
know. This is the Pollard–Strassen polynomial evaluation method; see [Pollard
1974] and [Strassen 1976].

The idea is as follows. Let B =
⌈
n1/4

⌉
and let f(x) be the polynomial

x(x − 1) · · · (x − B + 1). Then f(jB) = (jB)!/((j − 1)B)! for every positive
integer j, so that the least j with gcd(f(jB), n) > 1 isolates the least prime
factor of n in the interval ((j − 1)B, jB]. Once we know this, if the gcd is in
the stated interval, it is the least prime factor of n, and if the gcd is larger
than jB, we may sequentially try the members of the interval as divisors of
n, the first divisor found being the least prime divisor of n. Clearly, this last
calculation takes at most B arithmetic operations with integers the size of n;
that is, it is O(n1/4). But what of the earlier steps? If we could compute each
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f(jB) mod n for j = 1, 2, . . . , B, then we would be in business to check each
gcd and find the first that exceeds 1.

Algorithm 9.6.7 provides the computation of f(x) as a polynomial in Zn[x]
(that is, the coefficients are reduced modulo n) and the evaluation of each
f(jB) modulo n for j = 1, 2, . . . , B in O

(
B ln2 B

)
= O

(
n1/4 ln2 n

)
arithmetic

operations with integers the size of n. This latter big-O expression then stands
as the complexity of the Pollard–Strassen polynomial evaluation method for
factoring n.

5.6 Binary quadratic forms

There is a rich theory of binary quadratic forms, as developed by Lagrange,
Legendre, and Gauss in the late 1700s, a theory that played, and still plays,
an important role in computational number theory.

5.6.1 Quadratic form fundamentals

For integers a, b, c we may consider the quadratic form ax2 + bxy + cy2. It is a
polynomial in the variables x, y, but often we suppress the variables, and just
refer to a quadratic form as an ordered triple (a, b, c) of integers.

We say that a quadratic form (a, b, c) represents an integer n if there are
integers x, y with ax2 + bxy + cy2 = n. So attached to a quadratic form
(a, b, c) is a certain subset of the integers, namely those numbers that (a, b, c)
represents. We note that certain changes of variables can change the quadratic
form (a, b, c) to another form (a′, b′, c′), but keep fixed the set of numbers that
are represented. In particular, suppose

x = αX + βY, y = γX + δY,

where α, β, γ, δ are integers. Making this substitution, we have

ax2 + bxy + cy2 = a(αX + βY )2 + b(αX + βY )(γX + δY ) + c(γX + δY )2

= a′X2 + b′XY + c′Y 2, (5.1)

say. Thus every number represented by the quadratic form (a′, b′, c′) is also
represented by the quadratic form (a, b, c). We may assert the converse
statement if there are integers α′, β′, γ′, δ′ with

X = α′x + β′y, Y = γ′x + δ′y.

That is, the matrices (
α β
γ δ

)
,

(
α′ β′

γ′ δ′

)
are inverses of each other. A square matrix with integer entries has an inverse
with integer entries if and only if its determinant is ±1. We conclude that if
the quadratic forms (a, b, c) and (a′, b′, c′) are related by a change of variables
as in (5.1), then they represent the same set of integers if αδ − βγ = ±1.
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Allowing both +1 and −1 for the determinant does not give much more
leeway than restricting to just +1. (For example, one can go from (a, b, c)
to (a,−b, c) and to (c, b, a) via changes of variables with determinants −1,
but these are easily recognized, and may be tacked on to a more complicated
change of variables with determinant +1, so there is little loss of generality
in just considering +1.) We shall say that two quadratic forms are equivalent
if there is a change of variables as in (5.1) with determinant +1. Such a
change of variables is called unimodular, and so two quadratic forms are called
equivalent if you can go from one to the other by a unimodular change of
variables.

Equivalence of quadratic forms is an “equivalence relation.” That is, each
form (a, b, c) is equivalent to itself; if (a, b, c) is equivalent to (a′, b′, c′), then
the reverse is true, and two forms equivalent to the same form are equivalent
to each other. We leave the proofs of these simple facts as Exercise 5.10.

There remains the computational problem of deciding whether two given
quadratic forms are equivalent. The discriminant of a form (a, b, c) is the
integer b2 − 4ac. Equivalent forms have the same discriminant (see Exercise
5.12), so it is sometimes easy to see when two quadratic forms are not
equivalent, namely this is so when their discriminants are unequal. However,
the converse is not true. Witness the two forms x2+xy+4y2 and 2x2+xy+2y2.
They both have discriminant −15, but the first can have the value 1 (when
x = 1 and y = 0), while the second cannot. So the two forms are not
equivalent.

If it is the case that in each equivalence class of binary quadratic forms
there is one distinguished form, and if it is the case that it is easy to find
this distinguished form, then it will be easy to tell whether two given forms
are equivalent. Namely, find the distinguished forms equivalent to each, and
if these distinguished forms are the same form, then the two given forms are
equivalent, and conversely.

This is particularly easy to do in the case of binary quadratic forms of
negative discriminant. In fact, the whole theory of binary quadratic forms
bifurcates on the issue of the sign of the discriminant. Forms of positive
discriminant can represent both positive and negative values, but this is not
the case for forms of negative discriminant. (Forms with discriminant zero are
trivial objects—studying them is essentially studying the sequence of squares.)

The theory of binary quadratic forms of positive discriminant is somewhat
more difficult than the corresponding theory of negative-discriminant forms.
There are interesting factorization algorithms connected with the positive-
discriminant case, and also with the negative-discriminant case. In the
interests of brevity, we shall mainly consider the easier case of negative
discriminants, and refer the reader to [Cohen 2000] for a description of
algorithms involving quadratic forms of positive discriminant.

We make a further restriction. Since a binary quadratic form of negative
discriminant does not represent both positive and negative numbers, we shall
restrict attention to those forms that never represent negative numbers. If
(a, b, c) is such a form, then (−a,−b,−c) never represents positive numbers,
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so our restriction is not so severe. Another way of putting these restrictions
is to say we are only considering forms (a, b, c) with b2 − 4ac < 0 and a > 0.
Note that these conditions then force c > 0.

We say that a form (a, b, c) of negative discriminant is reduced if

−a < b ≤ a < c or 0 ≤ b ≤ a = c. (5.2)

Theorem 5.6.1 (Gauss). No two different reduced forms of negative dis-
criminant are equivalent, and every form (a, b, c) of negative discriminant
with a > 0 is equivalent to some reduced form.

Thus, Theorem 5.6.1 provides the mechanism for establishing a distinguished
form in each equivalence class; namely, the reduced forms serve this purpose.
For a proof of the theorem, see, for example, [Rose 1988].

We now discuss how to find the reduced form equivalent to a given form,
and for this task there is a very simple algorithm due to Gauss.

Algorithm 5.6.2 (Reduction for negative discriminant). We are given a
quadratic form (A, B, C), where A, B, C are integers with B2−4AC < 0, A > 0.
This algorithm constructs a reduced quadratic form equivalent to (A, B, C).
1. [Replacement loop]

while(A > C or B > A or B ≤ −A) {
if(A > C) (A, B, C) = (C,−B, A); // ‘Type (1)’ move.
if(A ≤ C and (B > A or B ≤ −A)) {

Find B∗, C∗ such that the three conditions:

−A < B∗ ≤ A,

B∗ ≡ B (mod 2A),
B∗2 − 4AC∗ = B2 − 4AC

hold;
(A, B, C) = (A, B∗, C∗); // ‘Type (2)’ move.

}
}

2. [Final adjustment]
if(A == C and −A < B < 0) (A, B, C) = (A,−B, C);
return (A, B, C);

Moves of type (2) leave the initial coordinate A unchanged, while a move of
type (1) reduces it. So there can be at most finitely many type (1) moves.
Further, we never do two type (2) moves in a row. Thus the algorithm
terminates for each input. We leave it for Exercise 5.13 to show that the
output is equivalent to the initial form. (This then shows that every form
with negative discriminant and positive initial coordinate is equivalent to a
reduced form, which is half of Theorem 5.6.1.)
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5.6.2 Factoring with quadratic form representations

An old factoring strategy going back to Fermat is to try to represent n in two
intrinsically different ways by the quadratic form (1, 0, 1). That is, one tries
to find two different ways to write n as a sum of two squares. For example,
we have 65 = 82 + 12 = 72 + 42. Then the gcd of (8 · 4 − 1 · 7) and 65 is the
proper factor 5. In general, if

n = x2
1 + y2

1 = x2
2 + y2

2 , x1 ≥ y1 ≥ 0, x2 ≥ y2 ≥ 0, x1 > x2,

then 1 < gcd(x1y2−y1x2, n) < n. Indeed, let A = x1y2−y1x2, B = x1y2+y1x2.
It will suffice to show that

AB ≡ 0 (mod n), 1 < A ≤ B < n.

The first follows from y2
i ≡ −x2

i (mod n) for i = 1, 2, since AB = x2
1y

2
2 −

y2
1x2

2 ≡ −x2
1x

2
2 + x2

1x
2
2 ≡ 0 (mod n). It is obvious that A ≤ B. To see

that A > 1, note that y1x2 < y2x2 < y2x1. To see that B < n, note that
uv ≤ 1

2u2 + 1
2v2 for positive numbers u, v, with equality if and only if u = v.

Then, since x1 > y2, we have

B = x1y2 + y1x2 < 1
2x2

1 + 1
2y2

2 + 1
2y2

1 + 1
2x2

2 = 1
2n + 1

2n = n,

which completes the proof.
Two questions arise. Should we expect a composite number n to have

two different representations as a sum of two squares? And if n does have
two representations as a sum of two squares, should we expect to be able
to find them easily? Unfortunately, the answer to both questions is in the
negative. For the first question, it is a theorem that the set of numbers that
can be represented as a sum of two squares in at least one way has asymptotic
density zero. In fact, any number divisible by a prime p ≡ 3 (mod 4) to an odd
exponent has no representation as a sum of two squares, and these numbers
constitute almost all natural numbers (see Exercise 5.16). However, there still
are plenty of numbers that can be represented as a sum of two squares; in
fact, any number pq where p, q are primes that are 1 (mod 4) can indeed be
represented as a sum of two squares in two ways. But we know no way to
easily find these representations.

Despite these obstacles, people have tried to work with this idea to come
up with a factorization strategy. We now describe an algorithm in [McKee
1996] that can factor n in O(n1/3+ε) operations, for each fixed ε > 0.

Observe that if (a, b, c) represents the positive integer n, say ax2 +
bxy + cy2 = n, and if D = b2 − 4ac is the discriminant of (a, b, c), then
(2ax + by)2 − Dy2 = 4an. That is, we have a solution u, v to u2 − Dv2 ≡ 0
(mod 4n). Let

S(D, n) =
{
(u, v) : u2 − Dv2 ≡ 0 (mod 4n)

}
,

so that the above observation gives a mapping from representations of n
by forms of discriminant D into S(D, n). It is straightforward to show that
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equivalent representations of n via (5.1) give pairs (u, v), (u′, v′) in S(D, n)
with the property that uv′ ≡ u′v (mod 2n) (see Exercise 5.18).

Fix now the numbers D, n with D < 0 and n not divisible by any prime up
to

√
|D|. If h is a solution to h2 ≡ D (mod 4n), then the form (A, h, n), where

h2 = D + 4An, represents n via x = 0, y = 1. This maps to the pair (h, 1)
in S(D, n). Suppose now we reduce (A, h, n), and (a, b, c) is the reduced form
equivalent to it. Say the corresponding representation of n is given by x, y, and
this maps to the pair (u, v) in S(D, n). Then from the above paragraph, we
have u ≡ vh (mod 2n). Moreover, v is coprime to n. Indeed, if p is a prime that
divides both v (= y) and n, then p also divides u = 2ax+ by, so that p divides
2ax. But gcd(x, y) = 1, since a unimodular change of variables changed 0, 1 to
x, y. So p divides 2a. But the form (a, b, c) is reduced, so that 0 < a ≤

√
|D|/3

(see Exercise 5.14). The assumption on n implies that p >
√

|D| ≥ 2, so that
p cannot divide 2a after all.

Now suppose we have two solutions h1, h2 to h2 ≡ D (mod 4n) with
h1 ≡ ±h2 (mod n). As in the above paragraph, these solutions give rise
respectively to pairs (ui, vi) in S(D, n) with ui ≡ vihi (mod 2n) and v1v2
coprime to n. We claim, then, that

1 < gcd(u1v2 − u2v1, n) < n.

Indeed, we have u2
1v

2
2 −u2

2v
2
1 ≡ Dv2

1v2
2 −Dv2

2v2
1 ≡ 0 (mod 4n), so it will suffice

to show that u1v2 ≡ ±u2v1 (mod n). If u1v2 ≡ u2v1 (mod n), then

0 ≡ u1v2 − u2v1 ≡ v1h1v2 − v2h2v1 = v1v2(h1 − h2) (mod n),

so that h1 ≡ h2 (mod n), a contradiction. Similarly, if u1v2 ≡ −u2v1 (mod n),
then we get h1 ≡ −h2 (mod n), again a contradiction.

We conclude that if there are two square roots h1, h2 of D modulo 4n such
that h1 ≡ ±h2 (mod n), then there are two pairs (u1, v1), (u2, v2) as above,
where gcd(u1v2 − u2v1, n) is a nontrivial factor of n.

McKee thus proposes to search for pairs (u, v) in S(D, n) to come up with
two pairs (u1, v1), (u2, v2) as above. It is clear that we may restrict the search
to pairs (u, v) with u ≥ 0, v ≥ 0.

Note that if (a, b, c) has negative discriminant D and if ax2+bxy+cy2 = n,
then the corresponding pair (u, v) in S(D, n) satisfies u2 −Dv2 = 4an, so that
|u| ≤ 2

√
an. Further, if (a, b, c) is reduced, then 1 ≤ a ≤

√
|D|/3. McKee

suggests we fix a choice for a with 1 ≤ a ≤
√

|D|/3 and then search for
integers u with 0 ≤ u ≤ 2

√
an and u2 ≡ 4an (mod |D|). For each such u,

check whether (u2 −4an)/D is a square. If we know the prime factorization of
D, then we may quickly solve for the residue classes modulo |D| that u must
lie in; there are fewer than |D|ε of such classes. For each such residue class, our
search for u is in an arithmetic progression of at most �1 + 2

√
an/|D|� terms.

So, for a given a, we must search over at most |D|ε+2
√

an/|D|1−ε choices for u.
Summing this expression for a up to

√
|D|/3 gives O(|D|1/2+ε+

√
n/|D|1/4−ε).

So if we can find a suitable D with |D| about n2/3, we will have an algorithm
that takes at most O(n1/3+ε) steps to factor n.
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Such a suitable D is found very easily. Take x0 =
⌊√

n − n2/3
⌋
, so that if

d = n − x2
0, then n2/3 ≤ d < n2/3 + 2n1/2. We let D = −4d. Note that the

quadratic form (1, 0, d) is already reduced, it represents n with x = x0, y = 1,
and it gives rise to the pair (2x0, 1) in S(D, n). Thus, we get for free one
of the two pairs we are looking for. Moreover, if n is divisible by at least 2
odd primes not dividing d, then there are two solutions h1, h2 to h2 ≡ D
(mod 4n) with h1 ≡ ±h2 (mod n). So the above search will be successful in
finding a second pair in S(D, n), which, together with the pair (2x0, 1), will
be successful in splitting n.

The following algorithm summarizes the above discussion.

Algorithm 5.6.3 (McKee test). We are given an integer n > 1 that has
no prime factors below 3n1/3. This algorithm decides whether n is prime or
composite, the algorithm giving in the composite case the prime factorization
of n. (Note that any nontrivial factorization must be the prime factorization,
since each prime factor of n exceeds the cube root of n.)

1. [Square test]
If n is a square, say p2, return the factorization p · p;

// A number may be tested for squareness via Algorithm 9.2.11.

2. [Side factorization]

d = n −
⌊√

n − n2/3
⌋2

; // Thus, each prime factor of n is > 2
√

d.

if (gcd(n, d) > 1) return the factorization gcd(n, d) · (n/ gcd(n, d));
By trial division, find the complete prime factorization of d;

3. [Congruences]

for(1 ≤ a ≤
⌊
2
√

d/3
⌋
) {

Using the prime factorization of d and a method from Section 2.3.2 find
the solutions u1, . . . , ut of the congruence u2 ≡ 4an (mod 4d);

for(1 ≤ i ≤ t) { // If t = 0 this loop is not executed.
For all integers u with 0 ≤ u ≤ 2

√
an, u ≡ ui (mod 4d), use

Algorithm 9.2.11 to see whether (4an − u2)/4d is a square;
If such a square is found, say v2, and u ≡ ±2x0v (mod 2n), goto

[gcd computation];
}

}
return “n is prime”;

4. [gcd computation]
g = gcd(2x0v − u, n);
return the factorization g · (n/g);

// The factorization is nontrivial and the factors are primes.

Theorem 5.6.4. Consider a procedure that on input of an integer n > 1
first removes from n any prime factor up to 3n1/3 (via trial division), and
if this does not completely factor n, the unfactored portion is used as the
input in Algorithm 5.6.3. In this way, the complete prime factorization of n
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is assembled. For each fixed ε > 0, the running time of this procedure to find
the complete prime factorization of n is O(n1/3+ε).

For another McKee method of different complexity, see Exercise 5.21.

5.6.3 Composition and the class group

Suppose D is a nonsquare integer, (a1, b, c1), (a2, b, c2) are quadratic forms of
discriminant D, and suppose c1/a2 is an integer. Since the middle coefficients
are equal, we have a1c1 = a2c2, so that c1/a2 = c2/a1. We claim that the
product of a number represented by the first form and a number represented
by the second form is a number represented by the form (a1a2, b, c1/a2). To
see this assertion, it is sufficient to verify the identity(

a1x
2
1 + bx1y1 + c1y

2
1
) (

a2x
2
2 + bx2y2 + c2y

2
2
)

= a1a2x
2
3 + bx3y3 + (c1/a2)y2

3 ,

where

x3 = x1x2 − (c1/a2)y1y2, y3 = a1x1y2 + a2x2y1 + by1y2.

So in some sense, we can combine the two forms (a1, b, c1), (a2, b, c2) of
discriminant D to get a third form (a1a2, b, c1/a2). Note that this third form
is also of discriminant D. This is the start of the definition of composition of
forms.

We say that a binary quadratic form (a, b, c) is primitive if gcd(a, b, c) = 1.
Given an integer D that is not a square, but is 0 or 1 (mod 4), let C(D)
denote the set of equivalence classes of primitive binary quadratic forms of
discriminant D; where each class is the set of those forms equivalent to a given
form. We shall use the notation 〈a, b, c〉 for the equivalence class containing
the form (a, b, c).

Lemma 5.6.5. Suppose 〈a1, b, c1〉 = 〈A1, B, C1〉 ∈ C(D), 〈a2, b, c2〉 =
〈A2, B, C2〉 ∈ C(D), and suppose that c1/a2, C1/A2 are integers. Then
〈a1a2, b, c1/a2〉 = 〈A1A2, B, C1/A2〉.

See [Rose 1988], for example.

Lemma 5.6.6. Suppose (a1, b1, c1), (a2, b2, c2) are primitive quadratic forms
of discriminant D. Then there is a form (A1, B, C1) equivalent to (a1, b1, c1)
and a form (A2, B, C2) equivalent to (a2, b2, c2) such that gcd(A1, A2) = 1.

Proof. We first show that there are coprime integers x1, y1 such that
a1x

2
1 + b1x1y1 + c1y

2
1 is coprime to a2. Write a2 = m1m2m3, where every

prime that divides m1 also divides a1, but does not divide c1; every prime that
divides m2 also divides c1, but does not divide a1; and every prime that divides
m3 also divides gcd(a1, c1). Find integers u1, v1 such that u1m1+v1m2m3 = 1,
and let x1 = u1m1. Find integers u2, v2 such that u2m2 + v2m3x1 = 1, and
let y1 = u2m2. Then x1, y1 have the desired properties.

Make the unimodular change of variables x = x1X −Y, y = y1X +v2m3Y .
This changes (a1, b1, c1) to an equivalent form (A1, B1, C

′
1), where A1 =
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ax2
1 + b1x1y1 + c1y

2
1 is coprime to a2. To bring B1 and b2 into agreement,

find integers r, s such that rA1 + sa2 = 1, and let k = r(b2 − B1)/2. (Note
that b2 and B1 have the same parity as D.) Set B = B1+2kA1, so that B ≡ b2
(mod 2a2). Then (see Exercise 5.18) (A1, B1, C

′
1) is equivalent to (A1, B, C1)

for some integer C1, and (a2, b2, c2) is equivalent to (a2, B, C2) for some integer
C2. Let A2 = a2, and we are done. �

Given two primitive quadratic forms (a1, b1, c1), (a2, b2, c2) of discriminant
D, let (A1, B, C1), (A2, B, C2) be the respectively equivalent forms given in
Lemma 5.6.6. We define a certain operation like so:

〈a1, b1, c1〉 ∗ 〈a2, b2, c2〉 = 〈a3, b3, c3〉,

where a3 = A1A2, b3 = B, c3 = C1/A2. (Note that A1C1 = A2C2 and
gcd(A1, A2) = 1 imply that C1/A2 is an integer.) Then Lemma 5.6.5 asserts
that “∗” is a well-defined binary operation on C(D). This is the composition
operation that we alluded to above. It is clearly commutative, and the
proof that it is associative is completely straightforward. If D is even, then
〈1, 0, D/4〉 acts as an identity for ∗, while if D is odd, then 〈1, 1, (1−D)/4〉 acts
as an identity. We denote this identity by 1D. Finally, if 〈a, b, c〉 is in C(D),
then 〈a, b, c〉 ∗ 〈c, b, a〉 = 1D (see Exercise 5.20). We thus have that C(D) is
an abelian group under ∗. This is called the class group of primitive binary
quadratic forms of discriminant D.

It is possible to trace through the above argument and come up with an
algorithm for the composition of forms. Here is a relatively compact procedure:
it may be found in [Shanks 1971] and in [Schoof 1982].

Algorithm 5.6.7 (Composition of forms). We are given two primitive
quadratic forms (a1, b1, c1), (a2, b2, c2) of the same negative discriminant. This
algorithm computes integers a3, b3, c3 such that 〈a1, b1, c1〉 ∗ 〈a2, b2, c2〉 =
〈a3, b3, c3〉.
1. [Extended Euclid operation]

g = gcd(a1, a2, (b1 + b2)/2);
Find u, v, w such that ua1 + va2 + w(b1 + b2)/2 = g;

2. [Final assignment]
Return the values:

a3 =
a1a2

g2 , b3 = b2 + 2
a2

g

(
b1 − b2

2
v − c2w

)
, c3 =

b2
3 − g

4a3
.

(To find the numbers g, u, v, w in Step [Extended Euclid operation] first use
Algorithm 2.1.4 to find integers U, V with h = gcd(a1, a2) = Ua1 + V a2,
and then to find integers U ′, V ′ with g = gcd(h, (b1 + b2)/2)) = U ′h +
V ′(b1 + b2)/2. Then u = U ′U, v = U ′V, w = V ′.) We remark that even
if (a1, b1, c1), (a2, b2, c2) are reduced, the form (a3, b3, c3) that is generated
by the algorithm need not be reduced. One can follow Algorithm 5.6.7 with
Algorithm 5.6.2 to get the reduced form in the class 〈a3, b3, c3〉.
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In the case that D < 0, Theorem 5.6.1 immediately implies that C(D) is
a finite group. Indeed, each member of C(D) corresponds to a unique reduced
form (a, b, c) satisfying (5.2). Thus h(D), the order of C(D), is equal to the
number of coprime triples a, b, c satisfying (5.2) and b2 − 4ac = D. Using
|b| ≤ a, we have −D = 4ac − b2 ≥ 4ac − a2, and using a ≤ c, we have
−D ≥ 3a2. Thus, 0 < a ≤

√
|D|/3. Since c is determined once a, b are chosen,

we thus have h(D) ≤ ∑
2a < 2|D|/3.

But we can do better. Given an integer b with |b| ≤
√

|D|/3 and b ≡ D
(mod 2), the number of choices of a that correspond to b is at most the number
of divisors of b2 − D. But the number of divisors of n is no(1) as n → ∞, so
h(D) ≤ |D|1/2+o(1) as D → −∞.

And we can do better still. The famous Dirichlet class number formula
(see [Davenport 1980]) asserts that for D < 0 and D ≡ 0 or 1 (mod 4),

h(D) =
w

π
L(1, χD)

√
|D|, (5.3)

where w = 3 if D = −3, w = 2 if D = −4, and w = 1 otherwise. The
character χD is the Kronecker symbol (D/·). This is defined as follows: χD

is completely multiplicative, χD(p) is the Legendre symbol (D/p) for p an
odd prime, and χD(2) is 0 if D is even, is 1 if D ≡ 1 (mod 8), and is −1
if D ≡ 5 (mod 8). The L-function L(s, χD) is discussed in Section 1.4.3;
L(1, χD) is the value of the infinite series

∑
χD(n)/n. In 1918, I. Schur

showed that L(1, χD) < 1
2 ln |D|+ln ln |D|+1, so that w

π L(1, χD) < ln |D| for
D ≤ −4. Hence h(D) <

√
|D| ln |D| for these values of D. Since h(−3) = 1,

the inequality holds for D = −3 as well; that is, it holds for all negative
discriminants.

C. Siegel has shown that h(D) = |D|1/2+o(1) as D → −∞, but the proof
is ineffective. That is, it is impossible to use the proof to give a bound, say,
for the largest |D| with h(D) < 1000, though the theorem says such a bound
exists. After work of D. Goldfeld, B. Gross, and D. Zagier, [Oesterlé 1985]
(also, see [Watkins 2004]) established the explicit inequality

h(D) >
1

7000
ln |D|

∏
p

(
1 −

⌊
2
√

p
⌋

p + 1

)
,

where the product is over the primes that divide D and are smaller than√
|D|/4. Combining this with the result 2k−1|h(D), where k is the number of

distinct odd prime factors of D (see Lemma 5.6.8), we get, for example, that
h(D) > 1000 for −D > 101.3·1010

. Though almost surely very far from the
truth, at least it is an explicit bound, something that cannot be obtained just
with the Siegel theorem. Under an assumption of an unproved hypothesis that
is weaker than the ERH, namely that the L-functions L(s, χ) never have a real
zero greater than 1/2, [Tatuzawa 1951] gave an inequality that would imply
that h(D) > 1000 for −D > 1.9 · 1011. Probably even this greatly lowered
bound is about 100 times too high. It may well be possible to establish this
remaining factor of 100 or so conditionally on the ERH.
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In a computational (and theoretical) tour de force, [Watkins 2004] shows
unconditionally that h(D) > 100 for −D > 2384797.

The following formula for h(D) is attractive (but admittedly not very
efficient when |D| is large) in that it replaces the infinite sum implicit in
L(1, χD) with a finite sum. The formula is due to Dirichlet, see [Narkiewicz
1986]. For D < 0, D a fundamental discriminant (this means that either
D ≡ 1 (mod 4) and D is squarefree or D ≡ 8 or 12 (mod 16) and D/4 is
squarefree), we have

h(D) =
w

D

|D|∑
n=1

χD(n)n.

Though an appealing formula, such a summation with its |D| terms is suitable
for the exact computation of h(D) only for small |D|, say |D| < 108. There
are various ways to accelerate such a series; for example, in [Cohen 2000]
one can find error-function summations of only O(|D|1/2) summands, and
such formulae allow one easily to handle |D| ≈ 1016. Moreover, it can be
shown that directly counting the primitive reduced forms (a, b, c) of negative
discriminant D computes h(D) in O

(
|D|1/2+ε

)
operations. And the Shanks

baby-steps, giant-steps method reduces the exponent from 1/2 to 1/4. We
revisit the complexity of computing h(D) in the next section.

5.6.4 Ambiguous forms and factorization

It is not very hard to list all of the elements of the class group C(D) that are
their own inverse. When D < 0, the reduced member of such a class is called an
“ambiguous” form. They come in three types: (a, 0, c), (a, a, c), (a, b, a). These
forms have an intimate relationship with factorizations of the discriminant
into two coprime factors.

We state the classification, and leave the simple verification to the reader.

Lemma 5.6.8. Suppose D is a negative discriminant. If D is even, then the
ambiguous forms of discriminant D include the forms (u, 0, v), where 0 < u ≤
v, gcd(u, v) = 1, and uv = −D/4. In addition, if uv = −D/4, with gcd(u, v) =
1 or 2 and 1

2 (u + v) odd, we have the forms
( 1

2 (u + v), v − u, 1
2 (u + v)

)
when 1

3v ≤ u < v and the forms
(
2u, 2u, 1

2 (u + v)
)

when 0 < u < 1
3v.

If D is odd, then the ambiguous forms of discriminant D are the forms( 1
4 (u + v), 1

2 (v − u), 1
4 (u + v)

)
, where −D = uv with 0 < 1

3v ≤ u ≤ v,
gcd(u, v) = 1, and the forms

(
u, u, 1

4 (u + v)
)
, where −D = uv, 0 < u ≤ 1

3v,
gcd(u, v) = 1.

Note that the form (1, 0, |D|/4) in the case that D is even, and the form
(1, 1, (1 − D)/4) in the case that D is odd, are ambiguous. As we have seen
in the previous section, each is, in its respective case, the reduced form in the
class 1D. They correspond to the trivial factorization of D/4 or D where one
factor is 1. Also, if D ≡ 12 (mod 16) and D ≤ −20, then the ambiguous form
(2, 2, (4 − D)/8) corresponds to the trivial factorization of D/4. We also have
the ambiguous forms (4, 4, 1−D/16) corresponding to the trivial factorization
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of D/4 when D ≡ 0 (mod 32) and D ≤ −64, and the form (3, 2, 3) with
discriminant −32. However, every other ambiguous form gives rise, and arises
from, a nontrivial factorization of D/4 or D. Suppose that D has k distinct
odd prime factors. It follows from Lemma 5.6.8 that there are 2k−1 ambiguous
forms of discriminant D, except for the cases D ≡ 12 (mod 16) and the cases
D ≡ 0 (mod 32), when there are 2k and 2k+1 ambiguous forms, respectively.

Suppose now that n is a positive odd integer divisible by at least two
distinct primes. If n ≡ 3 (mod 4), then D = −n is a discriminant, while if
n ≡ 1 (mod 4), then D = −4n is a discriminant. If we can find any ambiguous
form in the first case, other than (1, 1, (1 + n)/4), we will have a nontrivial
factorization of n. And if we can find any ambiguous form in the second
case, other than (1, 0, n) and (2, 2, (1 + n)/2), then we will have a nontrivial
factorization of n. And in either case, if we find all of the ambiguous forms,
we can use these to construct the complete prime factorization of n.

Thus, one can say that the search for nontrivial factorizations is really a
search for ambiguous forms.

So, let us see how one might find an ambiguous form, given a negative
discriminant D. Let h = h(D) denote the class number, that is, the order
of the group C(D) (see Section 5.6.3). Say h = 2lho, where ho is odd.
If f = 〈a, b, c〉 ∈ C(D), let F = fho . Then either F = 1D, or one of
F, F 2, F 4, . . . , F 2l−1

has order 2 in the group. A reduced member of a class of
order 2 is ambiguous (this is the definition), so knowing h and f , it is a simple
matter to construct an ambiguous form. If the ambiguous form constructed
corresponds to 1D or is (2, 2, (1 + n)/2) (in the case n ≡ 1 (mod 4)), then the
factorization corresponding to our ambiguous form is trivial. Otherwise it is
nontrivial.

So if the above scheme does not work with one choice of f in C(D),
then presumably we could try again with another f . If we had a small set
of generators of the class group, we could try anew with each generator and
so factor n. (In fact, in this case, we would have enough ambiguous forms to
find the complete prime factorization of n, by refining different factorizations
through gcd’s.) If we did not have available a small set of generators, we might
instead take random choices of f .

The principal hurdle in applying the scheme to factor n is not coming up
with an appropriate f in C(D), but in coming up with the class number h.
We can actually get by with less. All we need in the above idea is the order
of f in the class group.

Now, forgetting this for a moment, and actually going for the full order
h of the class group, one might think that since we actually have a formula
for the order of this group, given by (5.3), we are home free. However, this
formula involves an infinite sum, and it is not clear how many terms we have
to take to get a good enough approximation to make the formula useful.
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Note that the infinite sum L(1, χD) that is in the class number formula
(5.3) can be written, too, as an infinite product:

L(1, χD) =
∏
p

(
1 − χD(p)

p

)−1

,

where the product is over all primes. It is shown in [Shanks 1971], [Schoof
1982] that if the ERH is assumed (see Conjecture 1.4.2), and if

L̃ =
∏

p≤n1/5

(
1 − χD(p)

p

)−1

, h̃ = (w/π)
√

|D|L̃,

then there is a computable number c such that |h − h̃| < cn2/5 ln2 n. If we go
to the trouble to compute L̃ to some accuracy, we then have for our trouble
an estimate h̃ to the class number h that is within cn2/5 ln2 n of the truth.
Then the Shanks baby-steps, giant-steps method discussed in Section 7.5 and
Section 5.3 can then be used to find a multiple of the order of any given
f ∈ C(D) that lies in the interval (h̃ − cn2/5 ln2 n, h̃ + cn2/5 ln2 n) in time
O(n1/5 lnn). Since the computation of L̃ can be accomplished in O(n1/5)
steps, we can then achieve a factorization of n, given an appropriate f , in
O(n1/5 lnn) operations with integers the size of n.

If one is willing to assume the ERH, which seems a fair enough gamble
in a factoring algorithm (if the method fails to factor your number, you have
for your effort a disproof of the ERH, presumably something of far greater
interest than the factorization you were attempting), one might ask what other
information the ERH might give, other than the predictable convergence of the
infinite product for L(1, χD). In fact, it can help in a second way. Assuming the
ERH, there is a computable number c′ such that the classes of the primitive
reduced forms (a, b, c) of discriminant D, with a ≤ c′ ln2 |D|), generate the
full class group C(D) (see [Schoof 1982]). Thus, there need be no uncertainty
on the choice of f in the above scenario. Namely, just make all choices for f
with a representative (a, b, c) with a ≤ c′ ln2 |D|.

Assembling these ingredients, we have, then, a deterministic factoring
algorithm with a complexity of O

(
n1/5 ln3 n

)
operations with integers the

size of n. The proof of correctness for this algorithm depends on the so-far
unproved ERH.

Shanks goes further, and shows that on assumption of the ERH, one can
actually compute the class number h, and the group structure for C(D), and
in time O

(
|D|1/5+ε

)
.

It was shown in [Srinivasan 1995] that there is a probabilistic algorithm
to approximate L that is expected to give enough precision to approximate h
again with an error of O

(
|D|2/5+ε

)
, after which the Shanks baby-steps, giant-

steps method may take over. The Srinivasan probabilistic method gets the
approximation in expected time O

(
|D|1/5+ε

)
, and so becomes a probabilistic

factoring algorithm with expected running time O
(
n1/5+ε

)
. This algorithm
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is completely rigorous, depending on no unproved hypotheses. Her method
also computes the class number and group structure in the expected time
O

(
|D|1/5+ε

)
. However, unlike with factoring, which may be easily checked for

correctness, there is no simple way to see whether Srinivasan’s computation
of the class number is correct, though it almost certainly is. As we shall see in
the next chapter, there are faster, completely rigorous, probabilistic factoring
algorithms. The Srinivasan method, though, stands as the fastest known
completely rigorous probabilistic method for computing the class number
C(D). ([Hafner and McCurley 1989] have a subexponential probabilistic
method, but its analysis depends on the ERH.)

5.7 Exercises

5.1. Starting with Lenstra’s Algorithm 4.2.11, develop a deterministic
factoring method that takes at most n1/3+o(1) operations to factor n.

5.2. Suppose one models the iteration of x2 + a mod p in the Pollard-rho
method as a random function f from {0, 1, . . . , p−1} to {0, 1, . . . , p−1}. The
function f describes a directed graph on the residues modulo p where a residue
i has a unique out-arrow pointing to f(i). Show that the expected length of
the longest path r1, r2, . . . , rk of distinct residues is of order of magnitude

√
p.

Here is a possible strategy: If s1, s2, . . . , sj is a path of distinct residues, then
the probability that f(sj) ∈ {s1, . . . , sj} is (p − j)/p. Thus the probability
that a path starting from s hits distinct points for at least j steps is the
product of (p − i)/p for i = 1, 2, . . . , j. The expectation asked for is thus∑p−1

j=0
∏j

i=1(p − i)/p. See [Purdom and Williams 1968].
Next investigate the situation that is more relevant to the Pollard-rho

factorization method, where one assumes the random function f is 2 : 1, or
more generally 2K : 1 (see Exercise 5.24). In this regard see [Brent and Pollard
1981] and [Arney and Bender 1982].

5.3. One fact used in the analysis of the Pollard rho method is that the
function f(x) = x2 + a on Zn to Zn has the property that for each divisor
d of n we have that u ≡ v (mod d) implies that f(u) ≡ f(v) (mod d). It is
easy to see that any polynomial f(x) in Zn[x] has this property. Show the
converse. That is, if f is any function from Zn to Zn with the property that
f(u) ≡ f(v) (mod d) whenever d|n and u ≡ v (mod d), then f(x) must be
a polynomial in Zn[x]. (Hint: First show this for n a prime, then extend to
prime powers, and conclude with the Chinese remainder theorem.)

5.4. Let G be a cyclic group of order n with generator g, and element t. Say
our goal is to solve for the discrete logarithm l of t; that is, an integer l with
gl = t. Assume that we somehow discover an instance gb = ta. Show that the
desired logarithm is then given by

l = ((bu + kn)/d) mod n,
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for some integer k ∈ [0, d − 1], where d = gcd(a, n) and u is a solution to the
extended-Euclid relation au + nv = d.

This exercise shows that finding a logarithm for a nontrivial power of t is,
if d is not too large, essentially equivalent to the original DL problem.

5.5. Suppose G is a finite cyclic group, you know the group order n, and
you know the prime factorization of n. Show how the Shanks baby-steps,
giant-steps method of Section 5.3 can be used to solve discrete logs in G in
O

(√
p lnn

)
operations, where p is the largest prime factor of n. Give a similar

bound for the space required.

5.6. As we have seen in the chapter, the basic Shanks baby-steps, giant-
steps procedure can be summarized thus: Make respective lists for baby steps
and giant steps, sort one list, then find a match by sequentially searching
through the other list. As we know, solving gl = t (where g is a generator of
the cyclic group of order n and t is an element) can be effected in this way
in O(n1/2 lnn) operations (comparisons). But there is a so-called hash-table
construction that heuristically alters this complexity (albeit slightly) and in
practice works quite efficiently. A summary of such a method runs as follows:
(1) Construct the baby-step list, but in hash-table form.
(2) On each successive giant step look up (rapidly) the corresponding hash-

table entry, seeking a match.
The present exercise is to work through—by machine—the following example
of an actual DL solution. This example, unlike the fundamental Algorithm
5.3.1, uses some tricks that exploit the way machines tend to function,
effectively reducing complexity in this way. For the prime p = 231 − 1 and
an explicitly posed DL problem, say to solve

gl ≡ t (mod p),

we proceed as follows. Reminiscent of Algorithm 5.3.1 set b = �√p�, but
in addition choose a special parameter β = 212 to create a baby-steps “hash
table” whose r-th row, for r ∈ [0, β−1], consists of all those residues gj mod p,
for j ∈ [0, b−1], that have r = (gj mod p) mod β. That is, the row of the hash
table into which a power gj mod p is inserted depends only on that modular
power’s low lg β bits. Thus, in about

√
p multiplies (successively, by g) we

construct a hash table of β rows. As a check on the programming effort, for a
specific choice g = 7 the (r = 1271)-th row should appear as

((704148727, 507), (219280631, 3371), (896259319, 4844) . . .),

meaning, for example,

7507 mod p = 704148727 = (. . . 010011110111)2,
73371 mod p = 219280631 = (. . . 010011110111)2,

and so on. After the baby-steps hash table is constructed, you can run through
giant-step terms tg−ib for i ∈ [0, b− 1] and, by inspecting only the low 12 bits
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of each of these terms, index directly into the table to discover a collision. For
the example t = 31, this leads immediately to the DL solution

7723739097 ≡ 31 (mod 231 − 1).

This exercise is a good start for working out out a general DL solver,
which takes arbitrary input of p, g, l, t, then selects optimal parameters
such as β. Incidentally, hash-table approaches such as this one have the
interesting feature that the storage is essentially that of one list, not two
lists. Moreover, if the hash-table indexing is thought of as one fundamental
operation, the algorithm has operation complexity O(p1/2); i.e., the ln p factor
is removed. Note also one other convenience, which is that the hash table, once
constructed, can be reused for another DL calculation (as long as g remains
fixed).

5.7. [E. Teske] Let g be a generator of the finite cyclic group G, and let
h ∈ G. Suppose #G = 2m · n with m ≥ 0 and n odd. Consider the following
walk:

h0 = g ∗ h, hk+1 = hk
2.

The terms hk are computed until hk = hj for some j < k, or hk = 1. Let us
investigate whether this is a good walk for computing discrete logarithms.
(1) Let (αk) and (βk) be the sequences of exponents for g and h, respectively.

That is, hk = gαk ∗ hβk for each k. Determine closed formulae for αk and
βk.

(2) Determine all possible group elements h for which it can happen that
hk = 1 for some k. Determine the largest possible value of k for which
this can happen.

(3) Determine the period λ of the sequence (hk) under the assumption that
#G is prime.

(4) Would you recommend this walk to use for discrete logarithm computa-
tion? If yes, why? If no, why not?

5.8. Here are tasks that allow practical testing of any implementation of the
p − 1 method, Algorithm 5.4.1.
(1) Use the basic algorithm with search bound B = 1000 to achieve the

factorization

n = 67030883744037259 = 179424673 · 373587883.

(2) Explain why, in view of the factorization of 373587882, your value of B
worked.

(3) Again in view of the factorization of 373587882, write a second-stage
version of the algorithm, this time finding the factor with B = 100 but
second-stage bound B′ = 1000. This program should be faster than the
first instance, of course.

(4) Find a nontrivial factor of M67 = 267 − 1 using B = 100, B′ = 2000.
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5.9. Here we describe an interesting way to effect a second stage, and end up
asking an also interesting computational question. We have seen that a second
stage makes sense if a hidden prime factor p of n has the form p = zq+1 where
z is B-smooth and q ∈ (B, B′] is a single outlying prime. One novel approach
([Montgomery 1992a], [Crandall 1996a]) to a second-stage implementation is
this: After a stage-one calculation of b = aM(B) mod n as described in the
text, one can as a second stage accumulate some product (here, g, h run over
some fixed range, or respective sets) like this one:

c =
∏
g =h

(
bgK − bhK

)
mod n

and take gcd(n, c), hoping for a nontrivial factor. The theoretical task here is
to explain why this method works to uncover that outlying prime q, indicating
a rough probability (based on q, K, and the range of g, h) of uncovering a factor
because of a lucky instance gK ≡ hK (mod q).

An interesting computational question arising from this “gK” method is,
how does one compute rapidly the chain

b1K

, b2K

, b3K

, . . . , bAK

,

where each term is, as usual, obtained modulo n? Find an algorithm that in
fact generates the indicated “hyperpower” chain, for fixed K, in only O(A)
operations in ZN .

5.10. Show that equivalence of quadratic forms is an equivalence relation.

5.11. If two quadratic forms ax2 + bxy + cy2 and a′x2 + b′xy + c′y2 have
the same range, must the coefficients (a′, b′, c′) be related to the coefficients
(a, b, c) as in (5.1) where α, β, γ, δ are integers and αδ − βγ = ±1?

5.12. Show that equivalent quadratic forms have the same discriminant.

5.13. Show that the quadratic form that is the output of Algorithm 5.6.2 is
equivalent to the quadratic form that is the input.

5.14. Show that if (a, b, c) is a reduced quadratic form of discriminant D < 0,
then a ≤

√
|D|/3.

5.15. Show that for input (A, B, C), the operation complexity of Algorithm
5.6.2 is O(1 + ln(min{A, C})), with operations involving integers no larger
than 4AC.

5.16. Show that a positive integer n is a sum of two squares if and only if
there is no prime p ≡ 3 (mod 4) that divides n to an odd exponent. Using
the fact that the sum of the reciprocals of the primes that are congruent to
3 (mod 4) diverges (Theorem 1.1.5), prove that the set of natural numbers
that are representable as a sum of two squares has asymptotic density 0. (See
Exercises 1.10, 1.91, and 3.17.)
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5.17. Show that if p is a prime and p ≡ 1 (mod 4), then there is a
probabilistic algorithm to write p as a sum of two squares that is expected
to succeed in polynomial time. In the case that p ≡ 5 (mod 8), show how the
algorithm can be made deterministic. Using the deterministic polynomial-time
method in [Schoof 1985] for taking the square root of −1 modulo p, show how
in the general case the algorithm can be made deterministic, and still run in
polynomial time.

5.18. Suppose that (a, b, c), (a′, b′, c′) are equivalent quadratic forms, n is
a positive integer, ax2 + bxy + cy2 = n, and under the equivalence, x, y gets
taken to x′, y′. Let u = 2ax + by, u′ = 2a′x′ + b′y′. Show that uy′ ≡ u′y
(mod 2n).

5.19. Show that if (a, b, c) is a quadratic form, then for each integer b′ ≡ b
(mod 2a), there is an integer c′ such that (a, b, c) is equivalent to (a, b′, c′).

5.20. Suppose 〈a, b, c〉 ∈ C(D). Prove that 〈a, b, c〉 is the identity 1D in C(D)
if and only if (a, b, c) represents 1. Conclude that 〈a, b, c〉 ∗ 〈c, b, a〉 = 1D.

5.21. Study, and implement the McKee O(n1/4+ε) factoring algorithm as
described in [McKee 1999]. The method is probabilistic, and is a kind of
optimization of the celebrated Fermat method.

5.22. On the basis of the Dirichlet class number formula (5.3), derive the
following formulae for π:

π = 2
∏
p>2

(
1 +

(−1)(p−1)/2

p

)−1

= 4
∏
p>2

(
1 − (−1)(p−1)/2

p

)−1

.

From the mere fact that these formulae are well-defined, prove that there
exist infinitely many primes of each of the forms p = 4k + 1 and p = 4k + 3.
(Compare with Exercise 1.7.) As a computational matter, about how many
primes would you need to attain a reliable value for π to a given number of
decimal places?

5.8 Research problems

5.23. Show that for p = 257, the rho iteration x = x2 − 1 mod p has only
three possible cycle lengths, namely 2, 7, 12. For p = 7001, show the iteration
x = x2 + 3 mod p has only the 8 cycle lengths 3, 4, 6, 7, 19, 28, 36, 67. Find
too the number of distinct connected components in the cycle graphs of these
two iterations. Is it true that the number of distinct cycle lengths, as well as
the number of connected components (which always is at least as large) is
O(ln p)? A similar result has been proved in the case of a random function;
see [Flajolet and Odlyzko 1990].

5.24. If a Pollard-rho iteration be taken not as x = x2 + a mod N but as

x = x2K + a mod N,
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it is an established heuristic that the expected number of iterations to uncover
a hidden prime factor p of N is reduced from c

√
p to

c
√

p√
gcd(p − 1, 2K) − 1

.

For research involving this complexity reduction, it may be helpful first to
work through this heuristic and explore some possible implementations based
on the gcd reduction [Brent and Pollard 1981], [Montgomery 1987], [Crandall
1999d]. Note that when we know something about K the speedup is tangible,
as in the application of Pollard-rho methods to Fermat or Mersenne numbers.
(If K is small, it may be counterproductive to use an iteration x = x2K + a,
even if we know that p ≡ 1 (mod 2K), since the cost per iteration may not
be outweighed by the gain of a shorter cycle.) However, it is when we do not
know anything about K that really tough complexity issues arise.

So an interesting open issue is this: Given M machines each doing Pollard
rho, and no special foreknowledge of K, what is the optimal way to assign
respective values {Km : m ∈ [1, . . . , M ]} to said machines? Perhaps the
answer is just Km = 1 for each machine, or maybe the Km values should
be just small distinct primes. It is also unclear how the K values should be
altered—if at all—as one moves from an “independent machines” paradigm
into a “parallel” paradigm, the latter discussed in Exercise 5.25. An intuitive
glimpse of what is intended here goes like so: The McIntosh–Tardif factor of
F18, namely

81274690703860512587777 = 1 + 223 · 29 · 293 · 1259 · 905678539

(which was found via ECM) could have been found via Pollard rho, especially
if some “lucky” machine were iterating according to

x = x223·29 + a mod F18.

In any complexity analysis, make sure to take into account the problem that
the number of operations per iteration grows as O(lnKm), the operation
complexity of a powering ladder.

5.25. Analyze a particular idea for parallelization of the Pollard rho
factoring method (not the parallelization method for discrete logarithms as
discussed in the text) along the following lines. Say the j-th of M machines
computes a Pollard sequence, from iteration x = x2 +a mod N , with common
parameter a but machine-dependent initial x

(j)
1 seed, as{

x
(j)
i : i = 1, 2, . . . , n

}
,

so we have such a whole length-n sequence for each j ∈ [1, M ]. Argue that if
we can calculate the product

Q =
n∏

i=1

M∏
j=1

M∏
k=1

(
x

(j)
2i − x

(k)
i

)
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modulo the N to be factored, then the full product has about n2M2 algebraic
factors, implying, in turn, about p1/2/M parallel iterations for discovering a
hidden factor p. So the question comes down to this: Can one parallelize the
indicated product, using some sort of fast polynomial evaluation scheme? The
answer is yes, subject to some heuristic controversies, with details in [Crandall
1999d], where it is argued that with M machines one should be able to find a
hidden factor p in

O

(√
p

ln2 M

M

)
parallel operations.

5.26. Recall that the Pollard-rho approach to DL solving has the feature
that very little memory is required. What is more, variants of the basic rho
approach are pleasantly varied. The present exercise is to work through a very
simple such variant (that is not computationally optimized), with a view to
solving the specific DL relation

gl ≡ t (mod p),

where t and primitive root g are given as usual. First define a pseudorandom
function on residues z mod p, for example,

f(z) = 2 + 3θ(z − p/2),

that is, f(z) = 2 for z < p/2, and f(z) = 5 otherwise. Now define a sequence
x1 = t, x2, x3, . . . with

xn+1 = gf(xn)xnt

for n ≥ 1. The beautiful thing is that we can use two sequences (wn = x2n),
(xn) just as in Algorithm 5.2.1, with one sequence forging ahead of the other
via twofold acceleration. We perform, then, these iterations and hope for a
collision

x2n ≡ xn (mod p),

the point being that such a collision signals a relation

ta ≡ gb (mod p),

and we can use the result of Exercise 5.4 to infer the desired DL solution. In
this way, using the explicit form for the pseudorandom f given above, solve
by machine for the logarithm in such test cases as

11495011427 ≡ 3 (mod 231 − 1),
171629 ≡ 3 (mod 217 − 1).

An interesting research question is this: Just how varied are the Pollard-
rho possibilities? We have now seen more than one way of creating Pollard
sequences as mixtures of powers of x and g, but one can even consider
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fractional powers. For example, if a root chain can be established in Pollard-
rho fashion √

gen . . .

√
ge2

√
ge1t ≡

√
ge2n . . .

√
ge2

√
ge1t (mod p),

where the powers en are random (except always chosen so that a square root
along the chain can indeed be taken), then each side of the collision can
be formally squared often enough to get a mixed relation in g, t as before.
Though square-rooting is not inexpensive, this approach would be of interest
if statistically short cycles for the root chains could somehow be generated.

5.27. In connection with the Pollard p − 1 method, show that if n is
composite and not a power, and if you are in possession of an integer m < n2

such that p − 1|m for some prime p|n, then you can use this number m in a
probabilistic algorithm to get a nontrivial factorization of n. Argue that the
algorithm is expected to succeed in polynomial time (the number of arithmetic
steps with integers the size of n is bounded by a power of lnn).

5.28. Here we investigate the “circle group,” defined for odd prime p as the
set

Cp = {(x, y) : x, y ∈ [0, p − 1];x2 + y2 ≡ 1 (mod p)},

together with an operation “⊕” defined by

(x, y) ⊕ (x′, y′) = (xx′ − yy′, xy′ + yx′) mod p.

Show that the order of the circle group is

#Cp = p −
(−1

p

)
.

Prove the corollary that this order is always divisible by 4. Explain how the ⊕
operation is equivalent to complex multiplication (for Gaussian integers) and
discuss any algebraic connection between the circle group and the field Fp2 .

Next, describe a factoring algorithm—which could be called a “p ± 1”
method—based on the circle group. One would start with an initial point
P0 = (x0.y0), and evaluate multiples [n]P0 in much the same style as we do
in ECM. How does one even find an initial point? (In this connection see
Exercise 5.16.) How efficient is your method, as compared to the standard
p − 1 method? In assessing efficiency, observe that a point may be doubled
in only two field multiplies. How many multiplies does it take to add two
arbitrary points?

Then, analyze whether a “hyperspherical” group factoring method makes
sense. The group would be

Hp =
{
(x, y, z, w) : x, y, z, w ∈ [0, p − 1]; x2 + y2 + w2 + z2 ≡ 1 (mod p)

}
,

and the group operation would be quaternion hypercomplex multiplication.
Show that the order of the group is

#Hp = p3 − p.
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In judging the efficacy of such a factoring method, one should address at
least the following questions. How, in this case, do we find an initial point
(x0, y0, w0, z0) in the group? How many field operations are required for point
doubling, and for arbitrary point addition?

Explore any algebraic connections of the circle and hyperspherical groups
(and perhaps further relatives of these) with groups of matrices (mod p).
For example, all n × n matrices having determinant 1 modulo p form a
group that can for better or worse be used to forge some kind of factoring
algorithm. These relations are well known, including yet more relations with
so-called cyclotomic factoring. But an interesting line of research is based on
this question: How do we design efficient factoring algorithms, if any, using
these group/matrix ideas? We already know that complex multiplication, for
example, can be done in three multiplies instead of four, and large-matrix
multiplication can be endowed with its own special speedups, such as Strassen
recursion [Crandall 1994b] and number-theoretical transform acceleration
[Yagle 1995]; see Exercise 9.84.

5.29. Investigate the possibility of modifying the polynomial evaluation
method of Pollard and Strassen for application to the factorization of Fermat
numbers Fn = 22n

+ 1. Since we may restrict factor searches to primes of the
form p = k2n+2 + 1, consider the following approach. Form a product

P =
∏

i

(
ki2n+2 + 1

)

(all modulo Fn), where the {ki} constitute some set of cleverly chosen integers,
with a view to eventual taking of gcd(Fn, P ). The Pollard–Strassen notion of
evaluating products of consecutive integers is to be altered: Now we wish to
form the product over a special multiplier set. So investigate possible means
for efficient creation of P . There is the interesting consideration that we should
be able somehow to presieve the {ki}, or even to alter the exponents n + 2
in some i-dependent manner. Does it make sense to describe the multiplier
set {ki} as a union of disjoint arithmetic progressions (as would result from a
presieving operation)? One practical matter that would be valuable to settle is
this: Does a Pollard–Strassen variant of this type have any hope of exceeding
the performance of direct, conventional sieving (in which one simply checks
22n

(mod p) for various p = k2n+2 + 1)? The problem is not without merit,
since beyond F20 or thereabouts, direct sieving has been the only recourse to
date for discovering factors of the mighty Fn.



Chapter 6

SUBEXPONENTIAL FACTORING ALGORITHMS

The methods of this chapter include two of the three basic workhorses of
modern factoring, the quadratic sieve (QS) and the number field sieve (NFS).
(The third workhorse, the elliptic curve method (ECM), is described in
Chapter 7.) The quadratic sieve and number field sieve are direct descendants
of the continued fraction factoring method of Brillhart and Morrison, which
was the first subexponential factoring algorithm on the scene. The continued
fraction factoring method, which was introduced in the early 1970s, allowed
complete factorizations of numbers of around 50 digits, when previously, about
20 digits had been the limit. The quadratic sieve and the number field sieve,
each with its strengths and domain of excellence, have pushed our capability
for complete factorization from 50 digits to now over 150 digits for the size
of numbers to be routinely factored. By contrast, the elliptic curve method
has allowed the discovery of prime factors up to 50 digits and beyond, with
fortunately weak dependence on the size of number to be factored. We include
in this chapter a small discussion of rigorous factorization methods that in
their own way also represent the state of the art. We also discuss briefly some
subexponential discrete logarithm algorithms for the multiplicative groups of
finite fields.

6.1 The quadratic sieve factorization method

Though first introduced in [Pomerance 1982], the quadratic sieve (QS) method
owes much to prior factorization methods, including the continued-fraction
method of [Morrison and Brillhart 1975]. See [Pomerance 1996b] for some of
the history of the QS method and also the number field sieve.

6.1.1 Basic QS

Let n be an odd number with exactly k distinct prime factors. Then there are
exactly 2k square roots of 1 modulo n. This is easy in the case k = 1, and it
follows in the general case from the Chinese remainder theorem; see Section
2.1.3. Two of these 2k square roots of 1 are the old familiar ±1. All of the
others are interesting in that they can be used to split n. Indeed, if a2 ≡ 1
(mod n) and a ≡ ±1 (mod n), then gcd(a − 1, n) must be a nontrivial factor
of n. To see this, note that n|(a−1)(a+1), but n does not divide either factor,
so part of n must divide a − 1 and part must divide a + 1.
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For example, take the case a = 11 and n = 15. We have a2 ≡ 1 (mod n),
and gcd(a − 1, n) = 5, a nontrivial factor of 15.

Consider the following three simple tasks: Find a factor of an even number,
factor nontrivial powers, compute gcd’s. The first task needs no comment! The
second can be accomplished by extracting

⌊
n1/k

⌋
and seeing whether its k-th

power is n, the root extraction being done via Newton’s method and for k
up to lg n. The third simple task is easily done via Algorithm 2.1.2. Thus, we
can “reduce” the factorization problem to finding nontrivial square roots of
1 for odd composites that are not powers. We write “reduce” in quotes since
it is not much of a reduction—the two tasks are essentially computationally
equivalent. Indeed, if we can factor n, an odd composite that is not a power,
it is easy to play with this factorization and with gcd’s to get a factorization
n = AB where A, B are greater than 1 and coprime; see the Exercises. Then
let a be the solution to the Chinese remainder theorem problem posed thus:

a ≡ 1 (mod A), , a ≡ −1 (mod B).

We have thus created a nontrivial square root of 1 modulo n.
So we now set out on the task of finding a nontrivial square root of 1

modulo n, where n is an odd composite that is not a power. This task, in
turn, is equivalent to finding a solution to x2 ≡ y2 (mod n), where xy is
coprime to n and x ≡ ±y (mod n). For then, xy−1 (mod n) is a nontrivial
square root of 1. However, as we have seen, any solution to x2 ≡ y2 (mod n)
with x ≡ ±y (mod n) can be used to split n.

The basic idea of the QS algorithm is to find congruences of the form
x2

i ≡ ai (mod n), where
∏

ai is a square, say y2. If x =
∏

xi, then x2 ≡ y2

(mod n). The extra requirement that x ≡ ±y (mod n) is basically ignored.
If this condition works out, we are happy and can factor n. If it does not
work out, we try the method again. We shall see that we actually can
obtain many pairs of congruent squares, and assuming some kind of statistical
independence, half of them or more should lead to a nontrivial factorization of
n. It should be noted, though, right from the start, that QS is not a random
algorithm. When we talk of statistical independence we do so heuristically.
The numbers we are trying to factor don’t seem to mind our lack of rigor,
they get factored anyway.

Let us try this out on n = 1649, which is composite and not a power.
Beginning as with Fermat’s method, we take for the xi’s the numbers just
above

√
n (see Section 5.1.1):

412 = 1681 ≡ 32 (mod 1649),
422 = 1764 ≡ 115 (mod 1649),
432 = 1849 ≡ 200 (mod 1649).

With the Fermat method we would continue this computation until we reach
572, but with our new idea of combining congruences, we can stop with the
above three calculations. Indeed, 32 · 200 = 6400 = 802, so we have

(41 · 43)2 ≡ 802 (mod 1649).
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Note that 41 · 43 = 1763 ≡ 114 (mod 1649) and that 114 ≡ ±80 (mod 1649),
so we are in business. Indeed, gcd(114 − 80, 1649) = 17, and we discover that
1649 = 17 · 97.

Can this idea be tooled up for big numbers? Say we look at the numbers
x2 mod n for x running through integers starting at �√n�. We wish to find a
nonempty subset of them with product a square. An obvious problem comes
to mind: How does one search for such a subset?

Let us make some reductions in the problem to begin to address the issue
of searching. First, note that if some x2 mod n has a large prime factor to the
first power, then if we are to involve this particular residue in our subset with
square product, there will have to be another x′2 mod n that has the same
large prime factor. For example, in our limited experience above with 1649,
the second residue is 115 which has the relatively large prime factor 23 (large
compared with the prime factors of the other two residues), and indeed we
threw this congruence away and did not use it in our product. So, what if we
do this systematically and throw away any x2 mod n that has a prime factor
exceeding B, say? That is, suppose we keep only the B-smooth numbers, (see
Definition 1.4.8)? A relevant question is the following:

How many positive B-smooth numbers are necessary before we are sure
that the product of a nonempty subset of them is a square?

A moment’s reflection leads one to realize that this question is really in the
arena of linear algebra! Let us associate an “exponent vector” to a B-smooth
number m =

∏
pei

i , where p1, p2, . . . , pπ(B) are the primes up to B and each
exponent ei ≥ 0. The exponent vector is

�v(m) = (e1, e2, . . . , eπ(B)).

If m1, m2, . . . , mk are all B-smooth, then
∏k

i=1 mi is a square if and only if∑k
i=1 �v(mi) has all even coordinates.
This last thought suggests we reduce the exponent vectors modulo 2 and

think of them in the vector space Fπ(B)
2 . The field of scalars of this vector

space is F2 which has only the two elements 0, 1. Thus a linear combination
of different vectors in this vector space is precisely the same thing as a subset
sum; the subset corresponds to those vectors in the linear combination that
have the coefficient 1. So the search for a nonempty subset of integers with
product being a square is reduced to a search for a linear dependency in a set
of vectors.

There are two great advantages of this point of view. First, we immediately
have the theorem from linear algebra that a set of vectors is linearly dependent
if there are more of them than the dimension of the vector space. So we have
an answer: The creation of a product as a square requires at most π(B) + 1
positive B-smooth numbers. Second, the subject of linear algebra also comes
equipped with efficient algorithms such as matrix reduction. So the issue of
finding a linear dependency in a set of vectors comes down to row-reduction
of the matrix formed with these vectors.
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So we seem to have solved the “obvious problem” stated above for ramping
up the 1649 example to larger numbers. We have a way of systematically
handling our residues x2 mod n, a theorem to tell us when we have enough of
them, and an algorithm to find a subset of them with product being a square.

We have not, however, specified how the smoothness bound B is to be
chosen, and actually, the above discussion really does not suggest that this
scheme will be any faster than the method of Fermat.

If we choose B small, we have the advantage that we do not need many
B-smooth residues to find a subset product that is a square. But if B is too
small, the property of being B-smooth is so special that we may not find any
B-smooth numbers. So we need to balance the two forces operating on the
smoothness bound B: The bound should be small enough that we do not need
too many B-smooth numbers to be successful, yet B should be large enough
that the B-smooth numbers are arriving with sufficient frequency.

To try to solve this problem, we should compute what the frequency of
B-smooth numbers will be as a function of B and n. Perhaps we can try to
use (1.44), and assume that the “probability” that x2 mod n is B-smooth is
about u−u, where u = lnn/ lnB.

There are two thoughts about this approach. First, (1.44) applies only to
a total population of all numbers up to a certain bound, not a special subset.
Are we so sure that members of our subset are just as likely to be smooth as
is a typical number? Second, what exactly is the size of the numbers in our
subset? In the above paragraph we just used the bound n when we formed
the number u.

We shall overlook the first of these difficulties, since we are designing a
heuristic factorization method. If the method works, our “conjecture” that our
special numbers are just like typical numbers, as far as smoothness goes, gains
some validity. The second of the difficulties, after a little thought, actually can
be resolved in our favor. That is, we are wrong about the size of the residues
x2 mod n, they are actually smaller than n, much smaller.

Recall that we have suggested starting with x = �√n� and running up
from that point. But until we get to

⌈√
2n

⌉
, the residue x2 mod n is given

by the simple formula x2 − n. And if
√

n < x <
√

n + nε, where ε > 0 is
small, then x2 − n is of order of magnitude n1/2+ε. Thus, we should revise
our heuristic estimate on the likelihood of x leading to a B-smooth number
to u−u with u now about 1

2 lnn/ lnB.
There is one further consideration before we try to use the u−u estimate

to pick out an optimal B and estimate the number of x’s needed. That is, how
long do we need to spend with a particular number x to see whether x2 − n
is B-smooth? One might first think that the answer is about π(B), since trial
division with the primes up to B is certainly an obvious way to see whether
a number is B-smooth. But in fact, there is a much better way to do this, a
way that makes a big difference. We can use the sieving methods of Section
3.2.5 and Section 3.2.6 so that the average number of arithmetic operations
spent per value of x is only about ln lnB, a very small bound indeed. These
sieving methods require us to sieve by primes and powers of primes where
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the power is as high as could possibly divide one of the values x2 − n. The
primes p on which these powers are based are those for which x2 − n ≡ 0
(mod p) is solvable, namely the prime p = 2 and the odd primes p ≤ B for
which the Legendre symbol

(
n
p

)
= 1. And for each such odd prime p and each

relevant power of p, there are two residue classes to sieve over. Let K be the
number of primes up to B that over which we sieve. Then, heuristically, K is
about 1

2π(B). We will be assured of a linear dependency among our exponent
vectors once we have assembled K + 1 of them.

If the probability of a value of x leading to a B-smooth is u−u, then the
expected number of values of x to get one success is uu, and the expected
number of values to get K + 1 successes is uu(K + 1). We multiply this
expectation by ln lnB, the amount of work on average to deal with each value
of x. So let us assume that this all works out, and take the expression

T (B) = uu(K + 1) ln lnB, where u =
lnn

2 ln B
.

We now attempt to find B as a function of n so as to minimize T (B). Since
K ≈ 1

2π(B) is of order of magnitude B/ lnB (see Theorem 1.1.4), we have
that lnT (B) ∼ S(B), where S(B) = u lnu + lnB. Putting in what u is we
have that the derivative is given by

dS

dB
=

− lnn

2B ln2 B
(ln lnn − ln lnB − ln 2 + 1) +

1
B

.

Setting this equal to zero, we find that lnB is somewhere between a constant
times

√
lnn and a constant times

√
lnn ln lnn, so that ln lnB ∼ 1

2 ln lnn. Thus
we find that the critical B and other entities behave as

lnB ∼ 1
2

√
lnn ln lnn, u ∼

√
lnn/ ln lnn, S(B) ∼

√
lnn ln lnn.

We conclude that an optimal choice of the smoothness bound B is about
exp

(
1
2

√
lnn ln lnn

)
, and that the running time with this choice of B is about

B2, that is, the running time for the above scheme to factor n should be about
exp

(√
lnn ln lnn

)
.

We shall abbreviate this last function of n as follows:

L(n) = e
√

ln n ln ln n. (6.1)

The above argument ignores the complexity of the linear algebra step, but
it can be shown that this, too, is about B2; see Section 6.1.3. Assuming the
validity of all the heuristic leaps made, we have described a deterministic
algorithm for factoring an odd composite n that is not a power. The running
time is L(n)1+o(1). This function of n is subexponential; that is, it is of the
form no(1), and as such, it is a smaller-growing function of n than any of the
complexity estimates for the factoring algorithms described in Chapter 5.
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6.1.2 Basic QS: A summary

We have described the basic QS algorithm in the above discussion. We now
give a summary description.

Algorithm 6.1.1 (Basic quadratic sieve). We are given an odd composite
number n that is not a power. This algorithm attempts to give a nontrivial
factorization of n.

1. [Initialization]
B =

⌈
L(n)1/2

⌉
; // Or tune B to taste.

Set p1 = 2 and a1 = 1;
Find the odd primes p ≤ B for which

(
n
p

)
= 1, and label them p2, . . . , pK ;

for(2 ≤ i ≤ K) find roots ±ai with a2
i ≡ n (mod pi);

// Find such roots via Algorithm 2.3.8 or 2.3.9.

2. [Sieving]
Sieve the sequence (x2−n), x = �√n� , �√n�+1, . . . for B-smooth values,

until K + 1 such pairs (x, x2 − n) are collected in a set S;
// See Sections 3.2.5, 3.2.6, and remarks (2), (3), (4).

3. [Linear algebra]
for((x, x2 − n) ∈ S) {

Establish prime factorization x2 − n =
∏K

i=1 pei
i ;

�v(x2 − n) = (e1, e2, . . . , eK); // Exponent vector.
}
Form the (K +1)×K matrix with rows being the various vectors �v(x2 −n)

reduced mod 2;
Use algorithms of linear algebra to find a nontrivial subset of the rows of

the matrix that sum to the 0-vector (mod 2), say �v(x1)+�v(x2)+ · · ·+
�v(xk) = �0;

4. [Factorization]
x = x1x2 · · ·xk mod n;
y =

√
(x2

1 − n) (x2
2 − n) . . . (x2

k − n) mod n;
// Infer this root directly from the known prime factorization of the

perfect square (x2
1 − n)(x2

2 − n) . . . (x2
k − n), see remark (6).

d = gcd(x − y, n);
return d;

There are several points that should be made about this algorithm:
(1) In practice, people generally use a somewhat smaller value of B than that

given by the formula in Step [Initialization]. Any value of B of order of
magnitude L(n)1/2 will lead to the same overall complexity, and there
are various practical issues that mitigate toward a smaller value, such as
the size of the matrix that one deals with in Step [Linear algebra], and
the size of the moduli one sieves with in comparison to cache size on the
machine used in Step [Sieving]. The optimal B-value is more of an art
than a science, and is perhaps best left to experimentation.
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(2) To do the sieving, one must know which residue classes to sieve for each pi

found in Step [Initialization]. (For simplicity, we shall ignore the problem
of sieving with higher powers of these primes. Such sieving is easy to do—
one can use Algorithm 2.3.11, for example—but might also be ignored in
practice, since it does not contribute much to the finding of B-smooth
numbers.) For the odd primes pi in Step [Initialization], we have solved
the congruence x2 ≡ n (mod pi). This is solvable, since the pi’s have
been selected in Step [Initialization] precisely to have this property. Either
Algorithm 2.3.8 or Algorithm 2.3.9 may be used to solve the congruence.
Of course, for each solution, we also have the negative of this residue class
as a second solution, so we sieve two residue classes for each pi with pi odd.
(Though we could sieve with p1 = 2 as indicated in the pseudocode, we
do not have to sieve at all with 2 and other small primes; see the remarks
in Section 3.2.5.)

(3) An important point is that the arithmetic involved in the actual sieving
can be done through additions of approximate logarithms of the primes
being sieved, as discussed in Section 3.2.5. In particular, one should set up
a zero-initialized array of some convenient count of b bytes, corresponding
to the first b of the x values. Then one adds a lg pi increment (rounded
to the nearest integer) starting at offsets xi, x

′
i, the least integers ≥ �√n�

that are congruent (mod pi) to ai,−ai, respectively, and at every spacing
pi from there forward in the array. If necessary (i.e., not enough smooth
numbers have been found) a new array is zeroed with its first element
corresponding to �√n�+b, and continue in the same fashion. The threshold
set for reporting a location with a B-smooth value is set as

⌊
lg |x2 − n|

⌋
,

minus some considerable fudge, such as 20, to make up for the errors in
the approximate logarithms, and other errors that might accrue from not
sieving with small primes or higher powers. Any value reported must be
tested by trial division to see if it is indeed B-smooth. This factorization
plays a role in step [Linear algebra]. (To get an implementation working
properly, it helps to test the logarithmic array entries against actual, hard
factorizations.)

(4) Instead of starting at �√n� and running up through the integers, consider
instead the possibility of x running through a sequence of integers centered
at

√
n. There is an advantage and a disadvantage to this thought. The

advantage is that the values of the polynomial x2 − n are now somewhat
smaller on average, and so presumably they are more likely to be B-
smooth. The disadvantage is that some values are now negative, and the
sign is an important consideration when forming squares. Squares not
only have all their prime factors appearing with even exponents, they are
also positive. This disadvantage can be handled very simply. We enlarge
the exponent vectors by one coordinate, letting the new coordinate, say
the zeroth one, be 1 if the integer is negative and 0 if it is positive. So,
just like all of the other coordinates, we wish to get an even number
of 1’s. This has the effect of raising the dimension of our vector space
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from K to K + 1. Thus the disadvantage of using negatives is that our
vectors are 1 bit longer, and we need one more vector to be assured of
a linear dependency. This disadvantage is minor; it is small compared to
the advantage of smaller numbers in the sieve. We therefore go ahead and
allow negative polynomial values.

(5) We have been ignoring the problem that there is no guarantee that the
number d produced in Step [Factorization] is a nontrivial divisor of n.
Assuming some kind of randomness (which is certainly not the case, but
may be a reasonable heuristic assumption), the “probability” that d is a
nontrivial divisor is 1/2 or larger; see Exercise 6.2. If we find a few more
dependencies among our exponent vectors, and again assuming statistical
independence, we can raise the odds for success. For example, say we sieve
in Step [Sieving] until K + 11 polynomial values are found that are B-
smooth. Assuming that the dimension of our space is now K +1 (because
we allow negative values of the polynomial; see above), there will be at
least 10 independent linear dependencies. The odds that none will work
to give a nontrivial factorization of n is smaller than 1 in 1000. And if
these odds for failure are still too high for your liking, you can collect a
few more B-smooth numbers for good measure.

(6) In Step [Factorizaton] we have to take the square root of perhaps a very
large square, namely Y 2 = (x2

1 − n)(x2
2 − n) · · · (x2

k − n). However, we
are interested only in y = Y mod n. We can exploit the fact that we
actually know the prime factorization of Y 2, and so we know the prime
factorization of Y . We can thus compute y by using Algorithm 2.1.5 to
find the residue of each prime power in Y modulo n, and then multiply
these together, again reducing modulo n. We shall find that in the number
field sieve, the square root problem cannot be solved so easily.

In the next few sections we shall discuss some of the principal enhancements
to the basic quadratic sieve algorithm.

6.1.3 Fast matrix methods

With B = exp
(

1
2

√
lnn ln lnn

)
, we have seen that the time to complete the

sieving stage of QS is (heuristically) B2+o(1). After this stage, one has about
B vectors of length about B, with entries in the finite field F2 of two elements,
and one wishes to find a nonempty subset with sum being the zero vector.
To achieve the overall complexity of B2+o(1) for QS, we shall need a linear
algebra subroutine that can find the nonempty subset within this time bound.

We first note that forming a matrix with our vectors and using Gaussian
elimination to find subsets with sum being the zero vector has a time bound
of O

(
B3

)
(assuming that the matrix is B × B). Nevertheless, in practice,

Gaussian elimination is a fine method to use for smaller factorizations. There
are several reasons why the high-complexity estimate is not a problem in
practice.
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(1) Since the matrix arithmetic is over F2, it naturally lends itself to computer
implementation. With w being the machine word length (typically 8 or
16 bits on older machines, 32 or 64 or even more bits on newer ones), we
can deal with blocks of w coordinates in a row at a time, where one step
is just a logical operation requiring very few clock cycles.

(2) The initial matrix is quite sparse, so at the start, before “fill in” occurs,
there are few operations to perform, thus somewhat reducing the worst
case time bound.

(3) If the number we are factoring is not too large, we can load the algorithm
toward the sieving stage and away from the matrix stage. That is, we
can choose a bound B that is somewhat too small, thus causing the
sieving stage to run longer, but easing difficulties in the matrix stage.
Space difficulties with higher values of B form another practical reason to
choose B smaller than an otherwise optimal choice.
Concerning point (2), ways have been found to use Gaussian elimination

in an “intelligent” way so as to preserve sparseness as long as possible,
see [Odlyzko 1985] and [Pomerance and Smith 1992]. These methods are
sometimes referred to as “structured-Gauss” methods.

As the numbers we try to factor get larger, the matrix stage of QS
(and especially of the number field sieve; see Section 6.2) looms larger.
The unfavorable complexity bound of Gaussian elimination ruins our overall
complexity estimates, which assume that the matrix stage is not a bottleneck.
In addition, the awkwardness of dealing with huge matrices seems to require
large and expensive computers, computers for which it is not easy to get large
blocks of time.

There have been suggested at least three alternative sparse-matrix
methods intended to replace Gaussian elimination, two of which having
already been well-studied in numerical analysis. These two, the conjugate
gradient method and the Lanczos method, have been adapted to matrices with
entries in a finite field. A third option is the coordinate recurrence method in
[Wiedemann 1986]. This method is based on the Berlekamp–Massey algorithm
for discovering the smallest linear recurrence relation in a sequence of finite
field elements.

Each of these methods can be accomplished with a sparse encoding of the
matrix, namely an encoding that lists merely the locations of the nonzero
entries. Thus, if the matrix has N nonzero entries, the space required is
O(N lnB). Since our factorization matrices have at most O(lnn) nonzero
entries per row, the space requirement for the matrix stage of the algorithm,
using a sparse encoding, is O

(
B ln2 n

)
.

Both the Wiedemann and Lanczos methods can be made rigorous. The
running time for these methods is O(BN), where N is the number of
nonzero entries in the matrix. Thus, the time bound for the matrix stage
of factorization algorithms such as QS is B2+o(1), equaling the time bound for
sieving.
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For a discussion of the conjugate gradient method and the Lanczos
method, see [Odlyzko 1985]. For a study of the Lanczos method in a theoretical
setting see [Teitelbaum 1998]. For some practical improvements to the Lanczos
method see [Montgomery 1995].

6.1.4 Large prime variations

As discussed above and in Section 3.2.5, sieving is a very cheap operation.
Unlike trial division, which takes time proportional to the number of trial
divisors, that is, one “unit” of time per prime used as a trial, sieving takes less
and less time per prime sieved as the prime modulus grows. In fact the time
spent per sieve location, on average, for each prime modulus p is proportional
to 1/p. However, there are hidden costs for increasing the list of primes p with
which we sieve. One is that it is unlikely we can fit the entire sieve array into
memory on a computer, so we segment it. If a prime p exceeds the length of
this part of the sieve, we have to spend a unit of time per segment to see
whether this prime will “hit” something or not. Thus, once the prime exceeds
this threshold, the 1/p “philosophy” of the sieve is left behind, and we spend
essentially the same time for each of these larger primes: Sieving begins to
resemble trial division. Another hidden cost is perhaps not so hidden at all.
When we turn to the linear-algebra stage of the algorithm, the matrix will be
that much bigger if more primes are used. Suppose we are using 106 primes, a
number that is not inconceivable for the sieving stage. The matrix, if encoded
as a binary (0,1) matrix, would have 1012 bits. Indeed, this would be a large
object on which to carry out linear algebra! In fact, some of the linear algebra
routines that will be used, see Section 6.1.3, involve a sparse encoding of the
matrix, namely, a listing of where the 1’s appear, since almost all of the entries
are 0’s. Nevertheless, space for the matrix is a worrisome concern, and it puts
a limit on the size of the smoothness bound we take.

The analysis in Section 6.1.1 indicates a third reason for not taking
the smoothness bound too large; namely, it would increase the number of
reports necessary to find a linear dependency. Somehow, though, this reason
is specious. If there is already a dependency around with a subset of our data,
having more data should not destroy this, but just make it a bit harder to
find, perhaps. So we should not take an overshooting of the smoothness bound
as a serious handicap if we can handle the two difficulties mentioned in the
above paragraph.

In its simplest form, the large-prime variation allows us a cheap way to
somewhat increase our smoothness bound, by giving us for free many numbers
that are almost B-smooth, but fail because they have one larger prime factor.
This larger prime could be taken in the interval (B, B2]. It should be noted
from the very start that allowing for numbers that are B-smooth except for
having one prime factor in the interval (B, B2] is not the same as taking
B2-smooth numbers. With B about L(n)1/2, as suggested in Section 6.1.1, a
typical B2-smooth number near n1/2+ε in fact has many prime factors in the
interval (B, B2], not just one.
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Be that as it may, the large-prime variation does give us something that
we did not have before. By allowing sieve reports of numbers that are close to
the threshold for B-smoothness, but not quite there, we can discover numbers
that have one slightly larger prime. In fact, if a number has all the primes
up to B removed from its prime factorization, and the resulting number is
smaller than B2, but larger than 1, then the resulting number must be a
prime. It is this idea that is at work in the large-prime variation. Our sieve
is not perfect, since we are using approximate logarithms and perhaps not
sieving with small primes (see Section 3.2.5), but the added grayness does
not matter much in the mass of numbers being considered. Some numbers
with a large prime factor that might have been reported are possibly passed
over, and some numbers are reported that should not have been, but neither
problem is of great consequence.

So if we can obtain these numbers with a large prime factor for free, how
then can we process them in the linear algebra stage of the algorithm? In
fact, we should not view the numbers with a large prime as having longer
exponent vectors, since this could cause our matrix to be too large. There is
a very cheap way to process these large prime reports. Simply sort them on
the value of the large prime factor. If any large prime appears just once in
the sorted list, then this number cannot possibly be used to make a square
for us, so it is discarded. Say we have k reports with the same large prime:
x2

i − n = yiP , for i = 1, 2, . . . , k. Then

(x1xi)2 ≡ y1yiP
2 (mod n), for i = 2, . . . , k.

So when k ≥ 2 we can use the exponent vectors for the k − 1 numbers y1yi,
since the contribution of P 2 to the exponent vector, once it is reduced mod
2, is 0. That is, duplicate large primes lead to exponent vectors on the primes
up to B. Since it is very fast to sort a list, the creation of these new exponent
vectors is like a gift from heaven.

There is one penalty to using these new exponent vectors, though it has
not proved to be a big one. The exponent vector for a y1yi as above is usually
not as sparse as an exponent vector for a fully smooth report. Thus, the
matrix techniques that take advantage of sparseness are somewhat hobbled.
Again, this penalty is not severe, and every important implementation of the
QS method uses the large-prime variation.

One might wonder how likely it is to have a pair of large primes matching.
That is, when we sort our list, could it be that there are very few matches,
and that almost everything is discarded because it appears just once? The
birthday paradox from probability theory suggests that matches will not be
uncommon, once one has plenty of large prime reports. In fact the experience
that factorers have is that the importance of the large prime reports is nil near
the beginning of the run, because there are very few matches, but as the data
set gets larger, the effect of the birthday paradox begins, and the matches for
the large primes blossom and become a significant source of rows for the final
matrix.
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It is noticed in practice, and this is supported too by theory, that the
larger the large prime, the less likely for it to be matched up. Thus, most
practitioners eschew the larger range for large primes, perhaps keeping only
those in the interval (B, 20B] or (B, 100B].

Various people have suggested over the years that if one large prime is
good, perhaps two large primes are better. This idea has been developed in
[Lenstra and Manasse 1994], and they do, in fact, find better performance for
larger factorizations if they use two large primes. The landmark factorization
of the RSA129 challenge number mentioned in Section 1.1.2 was factored using
this double large-prime variation.

There are various complications for the double large-prime variation that
are not present in the single large-prime variation discussed above. If an integer
in the interval (1, B2] has all prime factors exceeding B, then it must be
prime: This is the fundamental observation used in the single large-prime
variation. What if an integer in (B2, B3] has no prime factor ≤ B? Then
either it is a prime, or it is the product of two primes each exceeding B.
In essence, the double large prime variation allows for reports where the
unfactored portion is as large as B3. If this unfactored portion m exceeds
B2, a cheap pseudoprimality test is applied, say checking whether 2m−1 ≡ 1
(mod m); see Section 3.4.1. If m satisfies the congruence, it is discarded, since
then it is likely to be prime, and also too large to be matched with another
large prime. If m is proved composite by the congruence, it is then factored,
say by the Pollard rho method; see Section 5.2.1. This will then allow reports
that are B-smooth, except for two prime factors larger than B (and not much
larger).

As one can see, this already requires much more work than the single large-
prime variation. But there is more to come. One must search the reported
numbers with a single large prime or two large primes for cycles; that is,
subsets whose product is B-smooth, except for larger primes that all appear
to even exponents. For example, say we have the reports y1P1, y2P2, y3P1P2,
where y1, y2, y3 are B-smooth and P1, P2 are primes exceeding B (so we are
describing here a cycle consisting of two single large prime reports and one
double large prime report). The product of these three reports is y1y2y3P

2
1 P 2

2 ,
whose exponent vector modulo 2 is the same as that for the B-smooth number
y1y2y3. Of course, there can be more complicated cycles than this, some even
involving only double large-prime factorizations (though that kind will be
infrequent). It is not as simple as before, to search through our data set for
these cycles. For one, the data set is much larger than before and there is
a possibility of being swamped with data. These problems are discussed in
[Lenstra and Manasse 1994]. They find that with larger numbers they gain a
more than twofold speed-up using the double large-prime variation. However,
they also admit that they use a value of B that is perhaps smaller than others
would choose. It would be interesting to see an experiment that allows for
variations of all parameters involved to see which combination is the best for
numbers of various sizes.
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And what, then, of three large primes? One can appreciate that the added
difficulties with two large primes increase still further. It may be worth it, but
it seems likely that instead, using a larger B would be more profitable.

6.1.5 Multiple polynomials

In the basic QS method we let x run over integers near
√

n, searching for values
x2 − n that are B-smooth. The reason we take x near

√
n is to minimize the

size of x2 −n, since smaller numbers are more likely to be smooth than larger
numbers. But for x near to

√
n, we have x2 − n ≈ 2 (x − √

n)
√

n, and so as x
marches away from

√
n, so, too, do the numbers x2 − n, and at a steady and

rapid rate. There is thus built into the basic QS method a certain diminishing
return as one runs the algorithm, with perhaps a healthy yield rate for smooth
reports at the beginning of the sieve, but this rate declining perceptibly as
one continues to sieve.

The multiple polynomial variation of the QS method allows one to get
around this problem by using a family of polynomials rather than just the
one polynomial x2 − n. Different versions of using multiple polynomials have
been suggested independently by Davis, Holdridge, and Montgomery; see
[Pomerance 1985]. The Montgomery method is slightly better and is the
way we currently use the QS algorithm. Basically, what Montgomery does
is replace the variable x with a wisely chosen linear function in x.

Suppose a, b, c are integers with b2 − ac = n. Consider the quadratic
polynomial f(x) = ax2 + 2bx + c. Then

af(x) = a2x2 + 2abx + ac = (ax + b)2 − n, (6.2)

so that
(ax + b)2 ≡ af(x) (mod n).

If we have a value of a that is a square times a B-smooth number and a value
of x for which f(x) is B-smooth, then the exponent vector for af(x), once it is
reduced modulo 2, gives us a row for our matrix. Moreover, the possible odd
primes p that can divide f(x) (and do not divide n) are those with

(
p
n

)
= 1,

namely the same primes that we are using in the basic QS algorithm. (It is
somewhat important to have the set of primes occurring not depend on the
polynomial used, since otherwise, we will have more columns for our matrix,
and thus need more rows to generate a dependency.)

We are requiring that the triple a, b, c satisfy b2 − ac = n and that a be
a B-smooth number times a square. However, the reason we are using the
polynomial f(x) is that its values might be small, and so more likely to be
smooth. What conditions should we put on a, b, c to have small values for
f(x) = ax2 + 2bx + c? Well, this depends on how long an interval we sieve
on for the given polynomial. Let us decide beforehand that we will only sieve
the polynomial for arguments x running in an interval of length 2M . Also,
by (6.2), we can agree to take the coefficient b so that it satisfies |b| ≤ 1

2a
(assuming a is positive). That is, we are ensuring our interval of length 2M
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for x to be precisely the interval [−M,M ]. Note that the largest value of f(x)
on this interval is at the endpoints, where the value is about (a2M2 − n)/a,
and the least value is at x = 0, being there about −n/a. Let us set the absolute
values of these two expressions approximately equal to each other, giving the
approximate equation a2M2 ≈ 2n, so that a ≈

√
2n/M .

If a satisfies this approximate equality, then the absolute value of f(x) on
the interval [−M,M ] is bounded by (M/

√
2)

√
n. This should be compared

with the original polynomial x2 − n used in the basic QS method. On the
interval [

√
n−M,

√
n+M ], the values are bounded by approximately 2M

√
n.

So we have saved a factor 2
√

2 in size. But we have saved much more than that.
In the basic QS method the values continue to grow, we cannot stop at a preset
value M . But when we use a family of polynomials, we can continually change.
Roughly, using the analysis of Section 6.1.1, we can choose M = B = L(n)1/2

when we use multiple polynomials, but must choose M = B2 = L(n) when
we use only one polynomial. So the numbers that “would be smooth” using
multiple polynomials are smaller on average by a factor B. A heuristic analysis
shows that using multiple polynomials speeds up the quadratic sieve method
by roughly a factor 1

2

√
lnn ln lnn. When n is about 100 digits, this gives a

savings of about a factor 17; that is, QS with multiple polynomials runs about
17 times as fast as the basic QS method. (This “thought experiment” has not
been numerically verified, though there can be no doubt that using multiple
polynomials is considerably faster in practice.)

However, there is one last requirement for the leading coefficient a: We
need to find values of b, c to go along with it. If we can solve b2 ≡ n (mod a)
for b, then we can ensure that |b| ≤ a/2, and we can let c = (b2 − n)/a.
Note that the methods of Section 2.3.2 will allow us to solve the congruence
provided that we choose a such that a is odd, we know the prime factorization
of a, and for each prime p|a, we have

(
n
p

)
= 1. One effective way to do this is

to take various primes p ≈ (2n)1/4/M1/2, with
(
n
p

)
= 1, and choose a = p2.

Then such values of a meet all the criteria we have set for them:
(1) We have a equal to a square times a B-smooth number.
(2) We have a ≈

√
2n/M .

(3) We can efficiently solve b2 ≡ n (mod a) for b.
The congruence b2 ≡ n (mod a) has two solutions, if we take a = p2 as

above. However, the two solutions lead to equivalent polynomials, so we use
only one of the solutions, say the one with 0 < b < 1

2a.

6.1.6 Self initialization

In Section 6.1.5 we learned that it is good to change polynomials frequently.
The question is, how frequently? One constraint, already implicitly discussed,
is that the length, 2M , of the interval on which we sieve a polynomial should
be at least B, the bound for the moduli with which we sieve. If this is the only
constraint, then a reasonable choice might then be to take M with 2M = B.
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For numbers in the range of 50 to 150 digits, typical choices for B are in
the range 104 to 107, approximately. It turns out that sieving is so fast an
operation, that if we changed polynomials every time we sieved B numbers,
the overhead in making the change would be so time-consuming that overall
efficiency would suffer. This overhead is principally to solve the initialization
problem. That is, given a, b, c as in Section 6.1.5, for each odd prime p ≤ B
with

(
n
p

)
= 1, we have to solve the congruence

ax2 + 2bx + c ≡ 0 (mod p)

for the two roots r(p) mod p and s(p) mod p (we assume here that p does not
divide an). Thus, we have

r(p) = (−b + t(p))a−1 mod p, s(p) = (−b − t(p))a−1 mod p, (6.3)

where
t(p)2 ≡ n (mod p).

For each polynomial, we can use the exact same residue t(p) each time when
we come to finding r(p), s(p). So the principal work in using (6.3) is in
computing a−1 mod p for each p (say by Algorithm 2.1.4) and the two mod p
multiplications. If there are many primes p for which this needs to be done,
it is enough work that we do not want to do it too frequently.

The idea of self initialization is to amortize the work in (6.3) over several
polynomials with the same value of a. For each value of a, we choose b such
that b2 ≡ n (mod a) and 0 < b < a/2; see Section 6.1.5. For each such b we can
write down a polynomial ax2 +2bx+ c to use in QS, by letting c = (b2 −n)/a.
The number of choices for b for a given value of a is 2k−1, where a has k
distinct prime factors (assuming that a is odd, and for each prime p|a we have(
n
p

)
= 1). So, choosing a as the square of a prime, as suggested in Section 6.1.5,

gives exactly 1 choice for b. Suppose instead we choose a as the product of 10
different primes p. Then there are 512 = 29 choices for b corresponding to the
given a, and so the a−1 (mod p) computations need only be done once and
then used for all 512 of the polynomials. Moreover, if none of the 10 primes
used in a exceeds B, then it is not necessary to have them squared in a, their
elimination is already built into the matrix step anyway.

There can be more savings with self initialization if one is willing to do
some additional precomputation and store some files. For example, if one
computes and stores the list of all 2t(p)a−1 mod p for all the primes p with
which we sieve, then the computation to get r(p), s(p) in (6.3) can be done
with a single multiplication rather than 2. Namely, multiply −b + t(p) by the
stored value a−1 mod p and reduce mod p. This gives r(p). Subtracting the
stored value 2t(p)a−1 mod p and adding p if necessary, we get s(p).

It is even possible to eliminate the one multiplication remaining, by
traversing the different solutions b using a Gray code; see Exercise 6.7. In
fact, the Chinese remainder theorem, see Section 2.1.3, gives the different
solutions b in the form B1 ±B2 ±· · ·±Bk. (If a = p1p2 · · · pk, then Bi satisfies
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B2
i ≡ n (mod pi) and Bi ≡ 0 (mod a/pi).) If we traverse the 2k−1 numbers

B1 ±B2 ± . . .±Bk using a Gray code and precompute the lists 2Bia
−1 mod p

for all p with which we sieve, then we can move from the sieving coordinates
for one polynomial to the next doing merely some low-precision adds and
subtracts for each p. One can get by with storing only the most frequently
used files 2Bia

−1 mod a if space is at a premium. For example, storing this
file only for i = k, which is in action every second step in the Gray code,
we have initialization being very cheap half the time, and done with a single
modular multiplication for each p (and a few adds and subtracts) the other
half of the time.

The idea for self initialization was briefly sketched in [Pomerance et al.
1988] and more fully described in [Alford and Pomerance 1995] and [Peralta
1993]. In [Contini 1997] it is shown through some experiments that self
initialization gives about a twofold speedup over standard implementations
of QS using multiple polynomials.

6.1.7 Zhang’s special quadratic sieve

What makes the quadratic sieve fast is that we have a polynomial progression
of small quadratic residues. That they are quadratic residues renders them
useful for obtaining congruent squares that can split n. That they form a
polynomial progression (that is, consecutive values of a polynomial) makes
it easy to discover smooth values, namely, via a sieve. And of course, that
they are small makes them more likely to be smooth than random residues
modulo n. One possible way to improve this method is to find a polynomial
progression of even smaller quadratic residues. Recently, M. Zhang has found
such a way, but only for special values of n, [Zhang 1998]. We call his method
the special quadratic sieve, or SQS.

Suppose the number n we are trying to factor (which is odd, composite,
and not a power) can be represented as

n = m3 + a2m
2 + a1m + a0, (6.4)

where m, a2, a1, a0 are integers, m ≈ n1/3. Actually, every number n can be
represented in this way; just choose m =

⌊
n1/3

⌋
, let a1 = a2 = 0, and let

a0 = n − m3. We shall see below, though, that the representation (6.4) will
be useful only when the ai’s are all small in absolute value, and so we are
considering only special values of n.

Let b0, b1, b2 be integer variables, and let

x = b2m
2 + b1m + b0,

where m is as in (6.4). Since

m3 ≡ −a2m
2 − a1m − a0 (mod n),

m4 ≡ (a2
2 − a1)m2 + (a1a2 − a0)m + a0a2 (mod n),

we have
x2 ≡ c2m

2 + c1m + c0 (mod n), (6.5)
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where

c2 = (a2
2 − a1)b2

2 − 2a2b1b2 + b2
1 + 2b0b2,

c1 = (a1a2 − a0)b2
2 − 2a1b1b2 + 2b0b1,

c0 = a0a2b
2
2 − 2a0b1b2 + b2

0.

Since b0, b1, b2 are free variables, perhaps they can be chosen so that they are
small integers and that c2 = 0. Indeed, they can. Let

b2 = 2, b1 = 2b, b0 = a1 − a2
2 + 2a2b − b2,

where b is an arbitrary integer. With these choices of b0, b1, b2 we have

x(b)2 ≡ y(b) (mod n), (6.6)

where

x(b) = 2m2 + 2bm + a1 − a2
2 + 2a2b − b2,

y(b) =
(
4a1a2 − 4a0 −

(
4a1 + 4a2

2
)
b + 8a2b

2 − 4b3)m

+ 4a0a2 − 8a0b +
(
a1 − a2

2 + 2a2b − b2)2
.

The proposal is to let b run through small numbers, use a sieve to search for
smooth values of y(b), and then use a matrix of exponent vectors to find a
subset of the congruences (6.6) to construct two congruent squares mod n
that then may be tried for factoring n. If a0, a1, a2, and b are all O(nε), where
0 ≤ ε < 1/3, and m = O

(
n1/3

)
, then y(b) = O(n1/3+3ε). The complexity

analysis of Section 6.1.1 gives a heuristic running time of

L(n)
√

2/3+6ε+o(1),

where L(n) is defined in (6.1). If ε is small enough, this estimate beats the
heuristic complexity of QS.

It may also be profitable to generalize (6.4) to

an = m3 + a2m
2 + a1m + a0.

The number a does not appear in the expressions for x(b), y(b), but it does
affect the size of the number m, which is now about (an)1/3.

For example, consider the number 2601 −1. We have the two prime factors
3607 and 64863527, but the resulting number n0 when these primes are divided
into 2601 −1 is a composite of 170 decimal digits for which we know no factor.
We have

22 · 3607 · 64863527n0 = 2603 − 22 =
(
2201)3 − 4,

so that we may take a0 = −4, a1 = a2 = 0, m = 2201. These assignments give
the congruence (6.6) with

x(b) = 2m2 + 2bm − b2, y(b) = (16 − 4b3)m + 32b + b4, m = 2201.
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As the number b grows in absolute value, y(b) is dominated by the term
−4b3m. It is not unreasonable to expect that b will grow as large as 240,
in which case the size of |y(b)| will be near 2323. This does not compare
favorably with the quadratic sieve with multiple polynomials, where the size
of the numbers we sieve for smooths would be about 220√n ≈ 2301. (This
assumes a sieving interval of about 220 per polynomial.)

However, we can also use multiple polynomials with the special quadratic
sieve. For example, for the above number n0, take b0 = −2u2, b1 = 2uv,
b2 = v2. This then implies that we may take

x(u, v) = v2m2 + 2uvm − 2u2, y(u, v) = (4v4 − 8u3v)m + 16uv3 + 4u4,

and let u, v range over small, coprime integers. (It is important to take u, v
coprime, since otherwise, we shall get redundant relations.) If u, v are allowed
to range over numbers with absolute value up to 220, we get about the same
number of pairs as choices for b above, but the size of |y(u, v)| is now about
2283, a savings over the ordinary quadratic sieve. (There is a small additional
savings, since we may actually consider the pair n−1

2 x(u, v), 1
4y(u, v).)

It is perhaps not clear why the introduction of u, v may be considered as
“multiple polynomials.” The idea is that we may fix one of these letters, and
sieve over the other. Each choice of the first letter gives a new polynomial in
the second letter.

The assumption in the above analysis of a sieve of length 240 is probably
on the small side for a number the size of n0. A larger sieve length will make
SQS look poorer in comparison with ordinary QS.

It is not clear whether the special quadratic sieve, as described above, will
be a useful factoring algorithm (as of this writing, it has not actually been tried
out in significant settings). If the number n is not too large, the growth of the
coefficient of m in y(b) or y(u, v) will dominate and make the comparison with
the ordinary quadratic sieve poor. If the number n is somewhat larger, so that
the special quadratic sieve starts to look better, as in the above example, there
is actually another algorithm that may come into play and again majorize the
special quadratic sieve. This is the number field sieve, something we shall
discuss in the next section.

6.2 Number field sieve

We have encountered some of the inventive ideas of J. Pollard in Chapter 5. In
1988 (see [Lenstra and Lenstra 1993]) Pollard suggested a factoring method
that was very well suited for numbers, such as Fermat numbers, that are close
to a high power. Before long, this method had been generalized so that it
could be used for general composites. Today, the number field sieve (NFS)
stands as the asymptotically fastest heuristic factoring algorithm we know for
“worst-case” composite numbers.
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6.2.1 Basic NFS: Strategy

The quadratic sieve factorization method is fast because it produces small
quadratic residues modulo the number we are trying to factor, and because
we can use a sieve to quickly recognize which of these quadratic residues
are smooth. The QS method would be faster still if the quadratic residues
it produces could be arranged to be smaller, since then they would be more
likely to be smooth, and so we would not have to sift through as many of
them. An interesting thought in this regard is that it is not necessary that
they be quadratic residues, only small! We have a technique through linear
algebra of multiplying subsets of smooth numbers so as to obtain squares. In
the quadratic sieve, we had only to worry about one side of the congruence,
since the other side was already a square. In the number field sieve we use the
linear algebra method on both sides of the key congruence.

However, our congruences will not start with two integers being congruent
mod n. Rather, they will start with pairs θ, φ(θ), where θ lies in a particular
algebraic number ring, and φ is a homomorphism from the ring to Zn. (These
concepts will be described concretely, in a moment.) Suppose we have k such
pairs θ1, φ(θ1), . . . , θk, φ(θk), such that the product θ1 · · · θk is a square in
the number ring, say γ2, and there is an integer square, say v2, such that
φ(θ1) · · ·φ(θk) ≡ v2 (mod n). Then if φ(γ) ≡ u (mod n) for an integer u, we
have

u2 ≡ φ(γ)2 ≡ φ(γ2) ≡ φ(θ1 · · · θk) ≡ φ(θ1) · · ·φ(θk) ≡ v2 (mod n).

That is, stripping away all of the interior expressions, we have the congruence
u2 ≡ v2 (mod n), and so could try to factor n via gcd(u − v, n).

The above ideas constitute the strategy of NFS. We now discuss the basic
setup that introduces the number ring and the homomorphism φ. Suppose we
are trying to factor the number n, which is odd, composite, and not a power.
Let

f(x) = xd + cd−1x
d−1 + · · · + c0

be an irreducible polynomial in Z[x], and let α be a complex number that
is a root of f . We do not need to numerically approximate α; we just use
the symbol “α” to stand for one of the roots of f . Our number ring will
be Z[α]. This is computationally thought of as the set of ordered d-tuples
(a0, a1, . . . , ad−1) of integers, where we “picture” such a d-tuple as the element
a0 +a1α+ · · · ad−1α

d−1. We add two such expressions coordinatewise, and we
multiply via the normal polynomial product, but then reduce to a d-tuple via
the identity f(α) = 0. Another, equivalent way of thinking of the number ring
Z[α] is to realize it as Z[x]/(f(x)), that is, involving polynomial arithmetic
modulo f(x).

The connection to the number n we are factoring comes via an integer m
with the property that

f(m) ≡ 0 (mod n).
We do need to know what the integer m is. We remark that there is a
very simple method of coming up with an acceptable choice of f(x) and
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m. Choose the degree d for our polynomial. (We will later give a heuristic
argument on how to choose d so as to minimize the running time to factor
n. Experimentally, for numbers of around 130 digits, the choice d = 5 is
acceptable.) Let m =

⌊
n1/d

⌋
, and write n in base m, so that

n = md + cd−1m
d−1 + · · · + c0,

where each cj ∈ [0, m−1]. (From Exercise 6.8 we have that if 1.5(d/ ln 2)d < n,
then n < 2md, so the md-coefficient is indeed 1, as in the above display.) So
the polynomial f(x) falls right out of the base-m expansion of n: We have
f(x) = xd+cd−1x

d−1+· · ·+c0. This polynomial is self-evidently monic. But it
may not be irreducible. Actually, this is an excellent situation in which to find
ourselves, since if we have the nontrivial factorization f(x) = g(x)h(x) in Z[x],
then the integer factorization n = g(m)h(m) is also nontrivial; see [Brillhart
et al. 1981] and Exercises 6.9 and 6.10. Since polynomial factorization is
relatively easy, see [Lenstra et al. 1982], [Cohen 2000, p. 139], one should
factor f into irreducibles in Z[x]. If the factorization is nontrivial, one has a
nontrivial factorization of n. If f is irreducible, we may continue with NFS.

The homomorphism φ from Z[α] to Zn is defined by φ(α) being the residue
class m (mod n). That is, φ first sends a0+a1α+ · · ·+ad−1α

d−1 to the integer
a0 + a1m + · · · + ad−1m

d−1, and then reduces this integer mod n. It will be
interesting to think of φ in this “two step” way, since we will also be dealing
with the integer a0 + a1m + · · · + ad−1m

d−1 before it is reduced.
The elements θ in the ring Z[α] that we will consider will all be of the

form a− bα, where a, b ∈ Z, with gcd(a, b) = 1. Thus, we are looking for a set
S of coprime integer pairs (a, b) such that

∏
(a,b)∈S

(a − bα) = γ2, for some γ ∈ Z[α],

∏
(a,b)∈S

(a − bm) = v2, for some v ∈ Z.

Then, if u is an integer such that φ(γ) ≡ u (mod n), then, as above, u2 ≡ v2

(mod n), and we may try to factor n via gcd(u − v, n). (The pairs (a, b) in S
are assumed to be coprime so as to avoid trivial redundancies.)

6.2.2 Basic NFS: Exponent vectors

How, then, are we supposed to find the set S of pairs (a, b)? The method
resembles what we do in the quadratic sieve. There we have a single variable
that runs over an interval. We use a sieve to detect smooth values of the
given polynomial, and associate exponent vectors to these smooth values,
using linear algebra to find a subset of them with product being a square.
With NFS, we have two variables a, b. As with the special quadratic sieve
(see Section 6.1.7), we can fix the first variable, and sieve over the other, then
change to the next value of the first variable, sieve on the other, and so on.
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But sieve what? To begin to answer this question, let us begin with a
simpler question. Let us ignore the problem of having the product of the
a − bα being a square in Z[α] and instead focus just on the second property
that S is supposed to have, namely, the product of the a − bm is a square
in Z. Here, m is a fixed integer that we compute at the start. Say we let a, b
run over pairs of integers with 0 < |a|, b ≤ M , where M is some large bound
(large enough so that there will be enough pairs a, b for us to be successful).
Then we have just the degree-1 homogeneous polynomial G(a, b) = a − bm,
which we sieve for smooth values, say B-smooth. We toss out any pair (a, b)
found with gcd(a, b) > 1. Once we have found more than π(B)+1 such pairs,
linear algebra modulo 2 can be used on the exponent vectors corresponding
to the smooth values of G(a, b) to find a subset of them whose product is a
square.

This is all fine, but we are ignoring the hardest part of the problem: to
simultaneously have our set of pairs (a, b) have the additional property that
the product of a − bα is a square in Z[α].

Let the roots of f(x) in the complex numbers be α1, . . . , αd, where
α = α1. The norm of an element β = s0 + s1α + · · · + sd−1α

d−1 in
the algebraic number field Q[α] (where the coefficients s0, s1, . . . , sd−1 are
arbitrary rational numbers) is simply the product of the complex numbers
s0 + s1αj + · · · + sd−1α

d−1
j for j = 1, 2, . . . , d. This complex number, denoted

by N(β), is actually a rational number, since it is a symmetric expression
in the roots α1, . . . , αd, and the elementary symmetric polynomials in these
roots are ±cj for j = 0, 1, . . . , d − 1, which are integers. In particular, if the
rationals sj are all actually integers, then N(β) is an integer, too. (We shall
later refer to what is called the trace of β. This is the sum of the conjugates
s0 + s1αj + · · · + sd−1α

d−1
j for j = 1, 2, . . . , d.)

The norm function N is also fairly easily seen to be multiplicative, that
is, N(ββ′) = N(β)N(β′). An important corollary goes: If β = γ2 for some
γ ∈ Z[α], then N(β) is an integer square, namely the square of the integer
N(γ).

Thus, a necessary condition for the product of a − bα for (a, b) in S to be
a square in Z[α] is for the corresponding product of the integers N(a − bα)
to be a square in Z. Let us leave aside momentarily the question of whether
this condition is also sufficient and let us see how we might arrange for the
product of N(a − bα) to be a square.

We first note that

N(a − bα) = (a − bα1) · · · (a − bαd)
= bd(a/b − α1) · · · (a/b − αd)
= bdf(a/b),

since f(x) = (x − α1) · · · (x − αd). Let F (x, y) be the homogeneous form of f ,
namely,

F (x, y) = xd + cd−1x
d−1y + · · · + c0y

d = ydf(x/y).
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Then N(a − bα) = F (a, b). That is, N(a − bα) may be viewed quite explicitly
as a polynomial in the two variables a, b.

Thus, we can arrange for the product of N(a − bα) for (a, b) ∈ S to be
a square by letting a, b run so that |a|, |b| ≤ M , using a sieve to detect B-
smooth values of F (a, b), form the corresponding exponent vectors, and use
matrix methods to find the subset S. And if we want S also to have the first
property that the product of the a−bm is also a square in Z, then we alter the
procedure to sieve for smooth values of F (a, b)G(a, b), this product, too, being
a polynomial in the variables a, b. For the smooth values we create exponent
vectors with two fields of coordinates. The first field corresponds to the prime
factorization of F (a, b), and the second to the prime factorization of G(a, b).
These longer exponent vectors are then collected into a matrix, and again we
can do linear algebra modulo 2. Before, we needed just π(B) + 2 vectors to
ensure success. Now we need 2π(B) + 3 vectors to ensure success, since each
vector will have 2π(B)+2 coordinates: the first half for the prime factorization
of F (a, b), and the second half for the prime factorization of G(a, b). So we
need only to collect twice as many vectors, and then we can accomplish both
tasks simultaneously.

We return now to the question of sufficiency. That is, if N(β) is a square
in Z and β ∈ Z[α], must it be true that β is a square in Z[α]? The answer is a
resounding no. It is perhaps instructive to look at a simple example. Consider
the case f(x) = x2 + 1, and let us denote a root by the symbol “i” (as one
might have guessed). Then N(a+bi) = a2+b2. If a2+b2 is a square in Z, then
a + bi need not be a square in Z[i]. For example, if a is a positive, nonsquare
integer, then it is also a nonsquare in Z[i], yet N(a) = a2 is a square in Z.

Actually, the ring Z[i], known as the ring of Gaussian integers, is a well-
understood ring with many beautiful properties in complete analogy to the
ring Z. The Gaussian integers are a unique factorization domain, as Z is.
Each prime in Z[i] “lies over” an ordinary prime p in Z. If the prime p is 1
(mod 4), it can be written in the form a2 + b2, and then a + bi and a − bi are
the two different primes of Z[i] that lie over p. (Each prime has 4 “associates”
corresponding to multiplying by the 4 units: 1,−1, i,−i. Associated primes
are considered the same prime, since the principal ideals they generate are
exactly the same.) If the ordinary prime p is 3 (mod 4), then it remains prime
in Z[i]. And the prime 2 has the single prime 1 + i (and its associates) lying
over it. For more on the arithmetic of the Gaussian integers, see [Niven et al.
1991].

So we can see, for example, that 5i is definitely not a square in Z[i], since
it has the prime factorization (2+ i)(1+2i), and 2+ i and 1+2i are different
primes. (In contrast, 2i is a square, it is (1 + i)2.) However, N(5i) = 25, and
of course, 25 is recognized as a square in Z. The problem is that the norm
function smashes together the two different primes 1+2i and 2+ i. We would
like then to have some way to distinguish the different primes.

If our ring Z[α] in the number field sieve were actually a unique
factorization domain, our challenge would be much simpler: Just form
exponent vectors based on the prime factorization of the various elements
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a − bα. There is a problem with units, and if we were to take this route, we
would also want to find a system of “fundamental units” and have coordinates
in our exponent vectors for each of these. (In the case of Z[i] the fundamental
unit is rather trivial, it is just i, and we can take for distinguished primes
in each associate class the one that is in the first quadrant but not on the
imaginary axis.)

However, we shall see that the number field sieve can work just fine even
if the ring Z[α] is far from being a unique factorization domain, and even if
we have no idea about the units.

For each prime p, let R(p) denote the set of integers r ∈ [0, p − 1] with
f(r) ≡ 0 (mod p). For example, if f(x) = x2+1, then R(2) = {1}, R(3) = { },
and R(5) = {2, 3}. Then if a, b are coprime integers,

F (a, b) ≡ 0 (mod p) if and only if a ≡ br (mod p) for some r ∈ R(p).

Thus, if we discover that p|F (a, b), we also have a second piece of information,
namely a number r ∈ R(p) with a ≡ br (mod p). (Actually, the sets R(p) are
used in the sieve that we use to factor the numbers F (a, b). We may fix
the number b and consider F (a, b) as a polynomial in the variable a. Then
when sieving by the prime p, we sieve the residue classes a ≡ br (mod p) for
multiples of p.) We keep track of this additional information in our exponent
vectors. The field of coordinates of our exponent vectors that correspond to
the factorization of F (a, b) will have entries for each pair p, r, where p is a
prime ≤ B, and r ∈ R(p).

Let us again consider the polynomial f(x) = x2 + 1. If B = 5,
then exponent vectors for B-smooth members of Z[i] (that is, members
of Z[i] whose norms are B-smooth integers) will have three coordinates,
corresponding to the three pairs: (2,1), (5,2), and (5,3). Then

F (3, 1) = 10 has the exponent vector (1, 0, 1),
F (2, 1) = 5 has the exponent vector (0, 1, 0),
F (1, 1) = 2 has the exponent vector (1, 0, 0),

F (2,−1) = 5 has the exponent vector (0, 0, 1).

Although F (3, 1)F (2, 1)F (1, 1) = 100 is a square, the exponent vectors allow
us to see that (3 + i)(2 + i)(1 + i) is not a square: The sum of the three
vectors modulo 2 is (0, 1, 1), which is not the zero vector. But now consider
(3 + i)(2 − i)(1 + i) = 8 + 6i. The sum of the three corresponding exponent
vectors modulo 2 is (0, 0, 0), and indeed, 8 + 6i is a square in Z[i].

This method is not foolproof. For example, though i has the zero vector
as its exponent vector in the above scheme, it is not a square. If this were
the only problem, namely the issue of units, we could fairly directly find a
solution. However, this is not the only problem.

Let I denote the ring of algebraic integers in the algebraic number field
Q[α]. That is, I is the set of elements of Q[α] that are the root of some monic
polynomial in Z[x]. The set I is closed under multiplication and addition.
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That is, it is a ring; see [Marcus 1977]. In the case of f(x) = x2 + 1, the
algebraic integers in Q[i] constitute exactly the ring Z[i]. The ring Z[α] will
always be a subset of I, but in general, it will be a proper subset. For example,
consider the case where f(x) = x2 − 5. The ring of all algebraic integers in
Q

[√
5
]

is Z
[
(1 +

√
5)/2

]
, which properly contains Z

[√
5
]
.

We now summarize the situation regarding the exponent vectors for the
numbers a−bα. We say that a−bα is B-smooth if its norm N(a−bα) = F (a, b)
is B-smooth. For a, b coprime and a − bα being B-smooth, we associate to it
an exponent vector �v(a− bα) that has entries vp,r(a− bα) for each pair (p, r),
where p is a prime number not exceeding B with r ∈ R(p). (Later we shall
use the notation �v(a − bα) for a longer vector that contains within it what is
being considered here.) If a ≡ br (mod p), then we define vp,r(a − bα) = 0.
Otherwise a ≡ br (mod p) and vp,r(a− bα) is defined to be the exponent on p
in the prime factorization of F (a, b). We have the following important result.

Lemma 6.2.1. If S is a set of coprime integer pairs a, b such that each
a − bα is B-smooth, and if

∏
(a,b)∈S(a − bα) is the square of an element in I,

the ring of algebraic integers in Q[α], then∑
(a,b)∈S

�v(a − bα) ≡ �0 (mod 2). (6.7)

Proof. We begin with a brief discussion of what the numbers vp,r(a − bα)
represent. It is well known in algebraic number theory that the ring I is a
Dedekind domain; see [Marcus 1977]. In particular, nonzero ideals of I may
be uniquely factored into prime ideals. We also use the concept of norm of an
ideal: If J is a nonzero ideal of I, then N(J) is the number of elements in the
(finite) quotient ring I/J . (The norm of the zero ideal is defined to be zero.)
The norm function is multiplicative on ideals, that is, N(J1J2) = N(J1)N(J2)
for any ideals J1, J2 in I. The connection with the norm of an element of I
and the norm of the principal ideal it generates is beautiful: If β ∈ I, then
N((β)) = |N(β)|.

If p is a prime number and r ∈ R(p), let P1, . . . , Pk be the prime ideals of
I that divide the ideal (p, α − r). (This ideal is not the unit ideal, since
N(α − r) = f(r), an integer divisible by p.) There are positive integers
e1, . . . , ek such that N(Pj) = pej for j = 1, . . . , k. The usual situation is that
k = 1, e1 = 1, and that (p, α− r) = P1. In fact, this scenario occurs whenever
p does not divide the index of Z[α] in I; see [Marcus 1977]. However, we will
deal with the general case.

Note that if r′ ∈ R(p) and r′ = r, then the prime ideals that divide
(p, α − r) are different from the prime ideals that divide (p, α − r′); that is,
the ideals (p, α − r′) and (p, α − r) are coprime. This observation follows,
since the integer r − r′ is coprime to the prime p. In addition, if a, b are
integers, then a − bα ∈ (p, α − r) if and only if a ≡ br (mod p). To see this,
write a − bα = a − br − b(α − r), so that a − bα ∈ (p, α − r) if and only
if a − br ∈ (p, α − r), if and only if a ≡ br (mod p). We need one further
property: If a, b are coprime integers, a ≡ br (mod p), and if P is a prime
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ideal of I that divides both (p) and (a−bα), then P divides (p, α−r); that is,
P is one of the Pj . To see this, note that the hypotheses that a, b are coprime
and a ≡ br (mod p) imply b ≡ 0 (mod p), so there is an integer c with cb ≡ 1
(mod p). Then, since a − bα = a − br − b(α − r) ∈ P and a − br ≡ 0 (mod p),
we have b(α − r) ∈ P , so that cb(α − r) ∈ P , and α − r ∈ P . Thus, P divides
(p, α − r), as claimed.

Suppose a, b are coprime integers and that P a1
1 · · ·P ak

k appears in the prime
ideal factorization of (a − bα). As we have seen, if any of these exponents aj

are positive, it is necessary and sufficient that a ≡ br (mod p), in which case
all of the exponents aj are positive and no other prime ideal divisor of (p)
divides (a − bα). Thus the “p part” of the norm of a − bα is exactly the norm
of P a1

1 · · ·P ak

k ; that is,

pvp,r(a−bα) = N(P a1
1 · · ·P ak

k ) = pe1a1+···+ekak .

Let vP (a − bα) denote the exponent on the prime ideal P in the prime ideal
factorization of (a − bα). Then from the above,

vp,r(a − bα) =
k∑

j=1

ejvPj (a − bα).

Now, if
∏

(a,b)∈S(a− bα) is a square in I, then the principal ideal it generates
is a square of an ideal. Thus, for every prime ideal P in I we have that∑

(a,b)∈S vP (a − bα) is even. We apply this principle to the prime ideals Pj

dividing (p, α − r). We have

∑
(a,b)∈S

vp,r(a − bα) =
k∑

j=1

ej

∑
(a,b)∈S

vPj (a − bα).

As each inner sum on the right side of this equation is an even integer, the
integer on the left side of the equation must also be even. �

6.2.3 Basic NFS: Complexity

We have not yet given a full description of NFS, but it is perhaps worthwhile to
envision why the strategy outlined so far leads to a fast factorization method,
and to get an idea of the order of magnitude of the parameters to be chosen.

In both QS and NFS we are presented with a stream of numbers on which
we may use a sieve to detect smooth values. When we have enough smooth
values, we can use linear algebra on exponent vectors corresponding to the
smooth values to find a nonempty subset of these vectors whose sum in the
zero vector mod 2. Let us model the general problem as follows. We have a
random sequence of positive integers bounded by X. How far does one expect
to go in this sequence before a nontrivial subsequence has product being a
square? The heuristic analysis in Section 6.1.1 gives an answer: It is at most
L(X)

√
2+o(1), where the smoothness bound to achieve this is L(X)1/

√
2. (We
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use here the notation of (6.1).) This heuristic upper bound can actually be
rigorously proved as a two-sided estimate via the following theorem.

Theorem 6.2.2 (Pomerance 1996a). Suppose m1, m2, . . . is a sequence of
integers in [1, X], each chosen independently and with uniform distribu-
tion. Let N be the least integer such that a nonempty subsequence from
m1, m2, . . . , mN has product being a square. Then the expected value for N

is L(X)
√

2+o(1). The same expectation holds if we also insist that each mj

used in the product be B-smooth, with B = L(X)1/
√

2.

Thus, in some sense, smooth numbers are forced upon us, and are not merely
an artifact. Interestingly, there is an identical theorem for the random variable
N ′, being the least integer such that m1, m2, . . . , mN ′ are “multiplicatively
dependent”, which means that there are integers a1, a2, . . . , aN ′ , not all zero,
such that

∏
m

aj

j = 1. (Equivalently, the numbers lnm1, lnm2, . . . , lnmN ′ are
linearly dependent over Q.)

In the QS analysis, the bound X is n1/2+o(1), and this is where we get
the complexity L(n)1+o(1) for QS. This complexity estimate is not a theorem,
since the numbers we are looking at to form squares are not random—we just
assume they are random for convenience in the analysis.

This approach, then, seems like a relatively painless way to do a complexity
analysis. Just find the bound X for the numbers that we are trying to
combine to make squares. The lower X is, the lower the complexity of the
algorithm. In NFS the integers that we deal with are the values of the
polynomial F (x, y)G(x, y), where F (x, y) = xd + cd−1x

d−1y + · · · + c0y
d

and G(x, y) = x − my. We will ignore the fact that integers of the form
F (a, b)G(a, b) are already factored into the product of two numbers, and
so may be more likely to be smooth than random numbers of the same
magnitude, since this property has little effect on the asymptotic complexity.

Let us assume that the integer m in NFS is bounded by n1/d, the
coefficients cj of the polynomial f(x) are also bounded by n1/d, and that
we investigate values of a, b with |a|, |b| ≤ M . Then a bound for the numbers
|F (a, b)G(a, b)| is 2(d + 1)n2/dMd+1. If we call this number X, then from
Theorem 6.2.2, we might expect to have to look at L(X)

√
2+o(1) pairs a, b

to find enough to be used to complete the algorithm. Thus, M should
satisfy the constraint M2 = L(X)

√
2+o(1). Putting this into the equation

X = 2(d + 1)n2/dMd+1 and taking the logarithm of both sides, we have

lnX ∼ ln(2(d + 1)) +
2
d

lnn + (d + 1)

√
1
2

lnX ln lnX. (6.8)

It is clear that the first term on the right is negligible compared to the
third term. Suppose first that d is fixed; that is, we are going to analyze
the complexity of NFS when we fix the degree of the polynomial f(x), and
assume that n → ∞. Then the last term on the right of (6.8) is small compared
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to the left side, so (6.8) simplifies to

lnX ∼ 2
d

lnn.

Hence the running time with d fixed is

L(X)
√

2+o(1) = L(n)
√

4/d+o(1),

which suggests that NFS will not do better than QS until we take d = 5 or
larger.

Now let us assume that d → ∞ as n → ∞. Then we may replace the
coefficient d + 1 in the last term of (6.8) with d, getting

lnX ∼ 2
d

lnn + d

√
1
2

lnX ln lnX.

Let us somewhat imprecisely change the “∼” to “=” and try to choose d so
as to minimize X. (An optimal X0 will have the property that lnX0 ∼ lnX.)
Taking the derivative with respect to the “variable” d, we have

X ′

X
=

−2
d2 lnn +

√
1
2

lnX ln lnX +
dX ′(1 + ln lnX)

4X
√

1
2 lnX ln lnX

.

Setting X ′ = 0, we get

d = (2 lnn)1/2((1/2) lnX ln lnX)−1/4,

so that
lnX = 2(2 lnn)1/2((1/2) lnX ln lnX)1/4.

Then
(lnX)3/4 = 2(2 lnn)1/2((1/2) ln lnX)1/4,

so that 3
4 ln lnX ∼ 1

2 ln lnn. Substituting, we get

(lnX)3/4 ∼ 2(2 lnn)1/2((1/3) ln lnn)1/4,

or
lnX ∼ 4

31/3 (lnn)2/3(ln lnn)1/3.

So the running time for NFS is

L(X)
√

2+o(1) = exp
((

(64/9)1/3 + o(1)
)
(lnn)1/3(ln lnn)2/3

)
.

The values of d that achieve this heuristic asymptotic complexity satisfy

d ∼
(

3 ln n

ln lnn

)1/3

.
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One can see that “at infinity,” NFS is far superior (heuristically) than QS.
The low complexity estimate should motivate us to forge on and solve the
remaining technical problems in connection with the algorithm.

If we could come up with a polynomial with smaller coefficients, the
complexity estimate would be smaller. In particular, if the polynomial f(x)
has coefficients that are bounded by nε/d, then the above analysis gives the
complexity L(n)

√
(2+2ε)/d+o(1) for fixed d; and for d → ∞ as n → ∞, it is

exp
((

(32(1 + ε)/9)1/3 + o(1)
)
(lnn)1/3(ln lnn)2/3

)
. The case ε = o(1) is the

“special” number field sieve; see Section 6.2.7.

6.2.4 Basic NFS: Obstructions

After this interlude into complexity theory, we return to the strategy of NFS.
We are looking for some easily checkable condition for the product of (a− bα)
for (a, b) ∈ S to be a square in Z[α]. Lemma 6.2.1 goes a long way to meet
this condition, but there are several “obstructions” that remain. Suppose that
(6.7) holds. Let β =

∏
(a,b)∈S(a − bα).

(1) If the ring Z[α] is equal to I (the ring of all algebraic integers in Q(α)),
then we at least have the ideal (β) in I being the square of some ideal J .
But it may not be that Z[α] = I. So it may not be that (β) in I is the
square of an ideal in I.

(2) Even if (β) = J2 for some ideal J in I, it may not be that J is a principal
ideal.

(3) Even if (β) = (γ)2 for some γ ∈ I, it may not be that β = γ2.
(4) Even if β = γ2 for some γ ∈ I, it may not be that γ ∈ Z[α].
Though these four obstructions appear forbidding, we shall see that two simple
devices can be used to overcome all four. We begin with the last of the four.
The following lemma is of interest here.

Lemma 6.2.3. Let f(x) be a monic irreducible polynomial in Z[x], with root
α in the complex numbers. Let I be the ring of algebraic integers in Q(α), and
let β ∈ I. Then f ′(α)β ∈ Z[α].

Proof. Our proof follows an argument in [Weiss 1963, Sections 3–7]. Let
β0, β1, . . . , βd−1 be the coefficients of the polynomial f(x)/(x − α). That is,
f(x)/(x − α) =

∑d−1
j=0 βjx

j . From Proposition 3-7-12 in [Weiss 1963], a result
attributed to Euler, we have β0/f ′(α), . . . , βd−1/f ′(α) a basis for Q(α) over
Q, each βj ∈ Z[α], and the trace of αkβj/f ′(α) is 1 if j = k, and 0 otherwise.
(See Section 6.2.2 for the definition of trace. From this definition it is easy to
see that the trace operation is Q-linear, it takes values in Q, and on elements
of I it takes values in Z.) Let β ∈ I. There are rationals s0, . . . , sd−1 such
that β =

∑d−1
j=0 sjβj/f ′(α). Then the trace of βαk is sk for k = 0, . . . , d − 1.

So each sk ∈ Z. Thus, f ′(α)β =
∑d−1

j=0 sjβj is in Z[α]. �
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We use Lemma 6.2.3 as follows. Instead of holding out for a set S of
coprime integers with

∏
(a,b)∈S(a−bα) being a square in Z[α], as we originally

desired, we settle instead for the product being a square in I, say γ2. Then
by Lemma 6.2.3, f ′(α)γ ∈ Z[α], so that f ′(α)2

∏
(a,b)∈S(a− bα) is a square in

Z[α].
The first three obstructions are all quite different, but they have a common

theme, namely well-studied groups. Obstruction (1) is concerned with the
group I/Z[α]. Obstruction (2) is concerned with the class group of I. And
obstruction (3) is concerned with the unit group of I. A befuddled reader may
well consult a text on algebraic number theory for full discussions of these
groups, but as we shall see below, a very simple device will let us overcome
these first three obstructions. Further, to understand how to implement the
number field sieve, one needs only to understand this simple device. This
hypothetical befuddled reader might well skip ahead a few paragraphs!

For obstruction (1), though the prime ideal factorization (into prime ideals
in I) of

(∏
(a,b)∈S(a − bα)

)
may not have all even exponents, the prime ideals

with odd exponents all lie over prime numbers that divide the index of Z[α]
in I, so that the number of these exceptional prime ideals is bounded by the
(base-2) logarithm of this index.

Obstruction (2) is more properly described as the ideal class group modulo
the subgroup of squares of ideal classes. This is a 2-group whose rank is the
2-rank of the ideal class group, which is bounded by the (base-2) logarithm
of the order of the class group; that is, the logarithm of the class number.

Obstruction (3) is again more properly described as the group of units
modulo the subgroup of squares of units. This again is a 2-group, and its rank
is ≤ d, the degree of f(x). (We use here the famous Dirichlet unit theorem.)

The detailed analysis of these obstructions can be found in [Buhler et al.
1993]. We shall be content with the conclusion that though all are different,
obstructions (1), (2), and (3) are all “small.” There is a brute force way
around these three obstructions, but there is also a beautiful and simple
circumvention. The circumvention idea is due to Adleman and runs as follows.
For a moment, suppose you somehow could not tell positive numbers from
negative numbers, but you could discern prime factorizations. Thus both 4
and −4 would look like squares to you, since in their prime factorizations we
have 2 raised to an even power, and no other primes are involved. However,
−4 is not a square. Without using that it is negative, we can still tell that −4
is not a square by noting that it is not a square modulo 7. We can detect
this via the Legendre symbol

(−4
7

)
= −1. More generally, if q is an odd

prime and if
(
m
q

)
= −1, then m is not a square. Adleman’s idea is to use

the converse statement, even though it is not a theorem! The trick is to think
probabilistically. Suppose for a given integer m, we choose k distinct odd
primes q at random in the range q < |m|. And suppose for each of the k test
primes q we have

(
m
q

)
= 1. If m is not a square, then the probability of this

event occurring is (heuristically) about 2−k. So, if the event does occur and k
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is large (say, k > lg |m|), then it is reasonable to suppose that m actually is a
square.

We wish to use this idea with the algebraic integers a − bα, and the
following result allows us to do so via ordinary Legendre symbols.

Lemma 6.2.4. Let f(x) be a monic, irreducible polynomial in Z[x] and let
α be a root of f in the complex numbers. Suppose q is an odd prime number
and s is an integer with f(s) ≡ 0 (mod q) and f ′(s) ≡ 0 (mod q). Let S be a
set of coprime integer pairs (a, b) such that q does not divide any a − bs for
(a, b) ∈ S and f ′(α)2

∏
(a,b)∈S(a − bα) is a square in Z[α]. Then

∏
(a,b)∈S

(
a − bs

q

)
= 1. (6.9)

Proof. Consider the homomorphism φq from Z[α] to Zq where φq(α) is the
residue class s (mod q). We have f ′(α)2

∏
(a,b)∈S(a − bα) = γ2 for some

γ ∈ Z[α]. By the hypothesis, φq(γ2) ≡ f ′(s)2
∏

(a,b)∈S(a − bs) ≡ 0 (mod q).

Then
(φq(γ2)

q

)
=

(φq(γ)2

q

)
= 1 and

(f ′(s)2

q

)
= 1, so that

(∏
(a,b)∈S(a − bs)

q

)
= 1,

which implies that (6.9) holds. �

So again we have a necessary condition for squareness, while we are still
searching for a sufficient condition. But we are nearly there. As we have seen,
one might heuristically argue that if k is sufficiently large and if q1, . . . , qk are
odd primes that divide no N(a − bα) for (a, b) ∈ S and if we have sj ∈ R(qj)
for j = 1, . . . , k, where f ′(sj) ≡ 0 (mod qj), then∑

(a,b)∈S
�v(a − bα) ≡ �0 (mod 2)

and ∏
(a,b)∈S

(
a − bsj

qj

)
= 1 for j = 1, . . . , k

imply that ∏
(a,b)∈S

(a − bα) = γ2 for some γ ∈ I.

And how large is sufficiently large? Again, since the dimensions of obstructions
(1), (2), (3) are all small, k need not be very large at all. We shall choose the
polynomial f(x) so that the degree d satisfies d2d2

< n (where n is the number
we are factoring), and the coefficients of cj of f all satisfy |cj | < n1/d. Under
these conditions, it can be shown that the sum of the dimensions of the first
three obstructions is less than lg n; see [Buhler et al. 1993], Theorem 6.7. It
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is conjectured that it is sufficient to choose k = �3 lg n� (with the k primes qj

chosen as the least possible). Probably a somewhat smaller value of k would
also suffice, but this aspect is not a time bottleneck for the algorithm.

We use the pairs qj , sj to augment our exponent vectors with k additional
entries. If

(a−bsj

qj

)
= 1, the entry corresponding to qj , sj in the exponent vector

for a − bα is 0. If the Legendre symbol is −1, the entry is 1. (This allows the
translation from the multiplicative group {1,−1} of order 2 to the additive
group Z2 of order 2.) These augmented exponent vectors turn out now to be
not only necessary, but also sufficient (in practice) for constructing squares.

6.2.5 Basic NFS: Square roots

Suppose we have overcome all the obstructions of the last section, and we now
have a set S of coprime integer pairs such that f ′(α)2

∏
(a,b)∈S(a − bα) = γ2

for γ ∈ Z[α], and
∏

(a,b)∈S(a − bm) = v2 for v ∈ Z. We then are nearly done,
for if u is an integer with φ(γ) ≡ u (mod n), then u2 ≡ (f ′(m)v)2 (mod n),
and we may attempt to factor n via gcd(u − f ′(m)v, n).

However, a problem remains. The methods of the above sections allow us
to find the set S with the above properties, but they do not say how we might
go about finding the square roots γ and v. That is, we have squares, one in
Z[α], the other in Z, and we wish to find their square roots.

The problem for v is simple, and can be done in the same way as in QS.
From the exponent vectors, we can deduce easily the prime factorization of
v2, and from this, we can deduce even more easily the prime factorization of
v. We actually do not need to know the integer v; rather, we need to know
only its residue modulo n. For each prime power divisor of v, compute its
residue mod n by a fast modular powering algorithm, say Algorithm 2.1.5.
Then multiply these residues together in Zn, finally getting v (mod n).

The more difficult, and more interesting, problem is the computation of γ.
If γ is expressed as a0 +a1α+ · · ·+ad−1α

d−1, then an integer u that works is
a0 + a1m + · · · + ad−1m

d−1. Since again we are interested only in the residue
u (mod n), it means that we are interested only in the residues aj (mod n).
This is good, since the integers a0, . . . , ad−1 might well be very large, with
perhaps about as many digits as the square root of the number of steps for
the rest of the algorithm! One would not want to do much arithmetic with
such huge numbers. Even if one computed only the algebraic integer γ2, and
did not worry about finding the square root γ, one would have to use the
fast multiplication methods of Chapter 8.8 in order to keep the computation
within the time bound of Section 6.2.3. And this does not even begin to touch
how one would take the square root.

If we are in the special case where Z[α] = I and this ring is a unique
factorization domain, we can use a method similar to the one sketched above
for computing v (mod n). But in the general case, our ring may be far from
being a UFD.
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One method, suggested in [Buhler et al. 1993], begins by finding a prime p
such that f(x) is irreducible modulo p. Then we solve for γ (mod p) (that is,
for the coefficients of γ modulo p). We do this as a computation in the finite
field Zp[x]/(f(x)); see Section 2.2.2. The square root computation can follow
along the lines of Algorithm 2.3.8; see Exercise 2.16. So this is a start, since
we can actually find the residues a0 (mod p), . . . , ad−1 (mod p) fairly easily.
Why not do this for other primes p, and then glue using the Chinese remainder
theorem? There is a seemingly trivial problem with this overall approach. For
each prime p for which we do this, there are two square roots, and we don’t
know how to choose the signs in the gluing. We could try every possibility,
but if we use k primes, only 2 of the 2k possibilities work. We may choose one
of the solutions for one of the primes p, and then get it down to 2k−1 choices
for the other primes, but this is small comfort if k is large.

There are at least two possible ways to overcome this problem of choosing
the right signs. The method suggested in [Buhler et al. 1993] is not to use
Chinese remaindering with different primes, but rather to use Hensel lifting
to get solutions modulo higher and higher powers of the same fixed prime p;
see Algorithm 2.3.11. When the power of p exceeds a bound for the coefficients
aj , it means we have found them. This is simpler than using the polynomial
factorization methods of [Lenstra 1983], but at the top of the Hensel game
when we have our largest prime powers, we are doing arithmetic with huge
integers, and to keep the complexity bound under control we must use fast
subroutines as in Chapter 8.8.

Another strategy, suggested in [Couveignes 1993], allows Chinese remain-
dering, but it works only for the case d odd. In this case, the norm of −1 is −1,
so that we can set off right from the beginning and insist that we are looking
for the choice for γ with positive norm. Since the prime factorization of N(γ)
is known from the exponent vectors, we may compute N(γ) (mod p), where p
is as above, a prime modulo which f(x) is irreducible. When we compute γp

that satisfies γ2
p ≡ γ2 (mod p), we choose γp or −γp according to which has

norm congruent to N(γ) (mod p). This, then, allows a correct choice of signs
for each prime p used. This idea does not seem to generalize to even degrees d.

As it turns out there is a heuristic approach for finding square roots that
seems to work very well in practice, making this step of the algorithm not
of great consequence for the overall running time. The method uses some of
the ideas above, as well as some others. For details, see [Montgomery 1994],
[Nguyen 1998].

6.2.6 Basic NFS: Summary algorithm

We now sum up the preceding sections by giving a reasonably concise
description of the NFS. Due to the relative intricacy of the algorithm, we have
chosen to use a fair amount of English description in the following display.
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Algorithm 6.2.5 (Number field sieve). We are given an odd composite
number n that is not a power. This algorithm attempts to find a nontrivial
factorization of n.

1. [Setup]
d =

⌊
(3 lnn/ ln lnn)1/3

⌋
; // This d has d2d2

< n.
B =

⌊
exp((8/9)1/3(lnn)1/3(ln lnn)2/3)

⌋
;

// Note that d, B can optionally be tuned to taste.
m =

⌊
n1/d

⌋
;

Write n in base m: n = md + cd−1m
d−1 + · · · + c0;

f(x) = xd + cd−1x
d−1 + · · · + c0; // Establish the polynomial f .

Attempt to factor f(x) into irreducible polynomials in Z[x] using the
factoring algorithm in [Lenstra et al. 1982] or a variant such as [Cohen
2000, p. 139];

If f(x) has the nontrivial factorization g(x)h(x), return the (also nontrivial)
factorization n = g(m)h(m);

F (x, y) = xd + cd−1x
d−1y + · · · + c0y

d; // Establish polynomial F .
G(x, y) = x − my;
for(prime p ≤ B) compute the set

R(p) = {r ∈ [0, p − 1] : f(r) ≡ 0 (mod p)};
k = �3 lg n�;
Compute the first k primes q1, . . . , qk > B such that R(qj) contains some

element sj with f ′(sj) ≡ 0 (mod qj), storing the k pairs (qj , sj);
B′ =

∑
p≤B #R(p);

V = 1 + π(B) + B′ + k;
M = B;

2. [The sieve]
Use a sieve to find a set S ′ of coprime integer pairs (a, b) with 0 < |a|, b ≤

M , and F (a, b)G(a, b) being B-smooth, until #S ′ > V , or failing this,
increase M and try again, or goto [Setup] and increase B;

3. [The matrix]
// We shall build a V × #S ′ binary matrix, one row per (a, b) pair.

// We shall compute �v(a−bα), the binary exponent vector for a−bα
having V bits (coordinates) as follows:

Set the first bit of �v to 1 if G(a, b) < 0, else set this bit to 0;
// The next π(B) bits depend on the primes p ≤ B: Define pγ as

the power of p in the prime factorization of |G(a, b)|.
Set the bit for p to 1 if γ is odd, else set this bit to 0;

// The next B′ bits are to correspond to the pairs p, r where p is
a prime not exceeding B and r ∈ R(p). We use the notation
vp,r(a − bα) defined prior to Lemma 6.2.1.

Set the bit for p, r to 1 if vp,r(a − bα) is odd, else set it to 0;
// Next, the last k bits correspond to the pairs qj , sj .

Set the bit for qj , sj to 1 if
(a−bsj

qj

)
is −1, else set it to 0;
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Install the exponent vector �v(a − bα) as the next row of the matrix;
}

4. [Linear algebra]
By some method of linear algebra (see Section 6.1.3), find a nonempty

subset S of S ′ such that
∑

(a,b)∈S �v(a − bα) is the 0-vector (mod 2);

5. [Square roots]
Use the known prime factorization of the integer square

∏
(a,b)∈S(a − bm)

to find a residue v mod n with
∏

(a,b)∈S(a − bm) ≡ v2 (mod n);
By some method, such as those of Section 6.2.5, find a square root γ in

Z[α] of f ′(α)2
∏

(a,b)∈S(a − bα), and, via simple replacement α → m,
compute u = φ(γ) (mod n);

6. [Factorization]
return gcd(u − f ′(m)v, n);

If the divisor of n that is reported in Algorithm 6.2.5 is trivial, one has the
option of finding more linear dependencies in the matrix and trying again. If
we run out of linear dependencies, one again has the option to sieve further
to find more rows for the matrix, and so have more linear dependencies.

6.2.7 NFS: Further considerations

As with the basic quadratic sieve, there are many “bells and whistles” that
may be added to the number field sieve to make it an even better factorization
method. In this section we shall briefly discuss some of these improvements.

Free relations

Suppose p is a prime in the “factor base,” that is, p ≤ B. Our exponent
vectors have a coordinate corresponding to p as a possible prime factor of
a − bm, and #R(p) further coordinates corresponding to integers r ∈ R(p).
(Recall that R(p) is the set of residues r (mod p) with f(r) ≡ 0 (mod p).) On
average, #R(p) is 1, but it can be as low as 0 (in the case that f(x) has no
roots (mod p), or it can be as high as d, the degree of f(x) (in the case that
f(x) splits into d distinct linear factors (mod p)). In this latter case, we have
that the product of the prime ideals (p, α − r) in the full ring of algebraic
integers in Q[α] is (p).

Suppose p is a prime with p ≤ B, and R(p) has d members. Let us throw
into our matrix an extra row vector �v(p), which has 1’s in the coordinates
corresponding to p and to each pair p, r where r ∈ R(p). Also, in the final
field of k coordinates corresponding to the quadratic characters modulo qj

for j = 1, . . . , k, put a 0 in place j of �v(p) if
(

p
qj

)
= 1 and put a 1 in place

j if
(

p
qj

)
= −1. Such a vector �v(p) is called a free relation, since it is found

in the precomputations, and not in the sieving stage. Now, when we find a
subset of rows that sum to the zero vector mod 2, we have that the subset
corresponds to a set S of coprime pairs a, b and a set F of free relations. Let
w be the product of the primes p corresponding to the free relations in F .
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Then it should be that

wf ′(α)2
∏

(a,b)∈S
(a − bα) = γ2, for some γ ∈ Z[α],

wf ′(m)2
∏

(a,b)∈S
(a − bm) = v2, for some v ∈ Z.

Then if φ(γ) = u, we have u2 ≡ v2 (mod n), as before.
The advantage of free relations is that the more of them there are, the

fewer relations need be uncovered in the time-consuming sieve stage. Also, the
vectors �v(p) are sparser than a typical exponent vector �v(a, b), so including
free relations allows the matrix stage to run faster.

So, how many free relations do we expect to find? A free relation
corresponds to a prime p that splits completely in the algebraic number field
Q(α). Let g be the order of the splitting field of f(x); that is, the Galois
closure of Q(α) in the complex numbers. It follows from the Chebotarev
density theorem that the number of primes p up to a bound X that split
completely in Q(α) is asymptotically 1

g π(X), as X → ∞. That is, on average,
1 out of every g prime numbers corresponds to a free relation. Assuming that
our factor base bound B is large enough so that the asymptotics are beginning
to take over (this is yet another heuristic, but reasonable, assumption), we thus
should expect about 1

g π(B) free relations. Now, the order g of the splitting
field could be as small as d, the degree of f(x), or as high as d!. Obviously,
the smaller g is, the more free relations we should expect. Unfortunately, the
generic case is g = d!. That is, for most irreducible polynomials f(x) in Z[x]
of degree d, the order of the splitting field of f(x) is d!. So, for example, if
d = 5, we should expect only about 1

120π(B) free relations, if we choose our
polynomial f(x) according to the scheme in Step [Setup] in Algorithm 6.2.5.
Since our vectors have about 2π(B) coordinates, the free relations in this case
would only reduce the sieving time by less than one-half of 1 per cent. But
still, it is free, so to speak, and every little bit helps.

Free relations can help considerably more in the case of special polynomials
f(x) with small splitting fields. For example, in the factorization of the ninth
Fermat number F9, the polynomial f(x) = x5 + 8 was used. The order of
the splitting field here is 20, so free relations allowed the sieving time to be
reduced by about 2.5%.

Partial relations
As in the quadratic sieve method, sieving in the number field sieve not

only reveals those pairs a, b where both of the numbers N(a−bα) = F (a, b) =
bdf(a/b) and a − bm are B-smooth, but also pairs a, b where one or both of
these numbers are a B-smooth number times one somewhat larger prime. If
we allow relations that have such large primes, at most one each for N(a−bα)
and a− bm, we then have a data structure not unlike the quadratic sieve with
the double large-prime variation; see Section 6.1.4. It has also been suggested
that reports can be used with N(a − bα) having two large primes and a − bm
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being B-smooth, and vice versa. And some even consider using reports where
both numbers in question have up to two large prime factors. One wonders
whether it would not be simpler and more efficient in this case just to increase
the size of the bound B.

Nonmonic polynomials

It is specified in Algorithm 6.2.5 that the polynomial f(x) chosen in Step
[Setup] be done so in a particular way, a way that renders f monic. The
discussion in the above sections assumed that the polynomial f(x) is indeed
monic. In this case, where α is a root of f(x), the ring Z[α] is a subring of the
ring of algebraic integers in Q(α). In fact, we have more freedom in the choice
of f(x) than stated. It is necessary only that f(x) ∈ Z[x] be irreducible. It
is not necessary that f be chosen in the particular way of Step [Setup], nor
is it necessary that f be monic. Primes that divide the leading coefficient of
f(x) have a somewhat suspect treatment in our exponent vectors. But we are
used to this kind of thing, since also primes that divide the discriminant of
f(x) in the treatment of the monic case were suspect, and became part of
the need for the quadratic characters in Step [The matrix] of Algorithm 6.2.5
(discussed in Section 6.2.4). Suffice it to say that nonmonic polynomials do
not introduce any significant new difficulties.

But why should we bother with nonmonic polynomials? As we saw in
Section 6.2.3, the key to a faster algorithm is reducing the size of the numbers
that over which we sieve in the hope of finding smooth ones. The size of
these numbers in NFS depends directly on the size of the number m and the
coefficients of the polynomial f(x), for a given degree d. Choosing a monic
polynomial we could arrange for m and these coefficients to be bounded by
n1/d. If we now allow nonmonic polynomials, we can choose m to be

⌈
n1/(d+1)

⌉
.

Writing n in base m, we have n = cdm
d + cd−1m

d−1 + · · · + c0. This suggests
that we use the polynomial f(x) = cdx

d +cd−1x
d−1 + · · ·+c0. The coefficients

ci are bounded by n1/(d+1), so both m and the coefficients are smaller by a
factor of about n1/(d2+d).

For numbers at infinity, this savings in the coefficient size is not very
significant: The heuristic complexity of NFS stands roughly as before. (The
asymptotic speedup is about a factor of ln1/6 n.) However, we are still not
factoring numbers at infinity, and for the numbers we are factoring, the savings
is important.

Suppose f(x) = cdx
d + cd−1x

d−1 + · · · + c0 is irreducible in Z[x] and
that α ∈ C is a root. Then cdα is an algebraic integer. It is a root of
F (x) = xd + cd−1x

d−1 + cdcd−2x
d−2 + · · · + cd−1

d c0, which can be easily seen,
since F (cdx) = cd−1

d f(x). We conclude that if S is a set of coprime integer
pairs a, b, if

∏
(a,b)∈S

(a − bα)
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is a square in Q(α), and if S has an even number of pairs, then

F ′(cdα)2
∏

(a,b)∈S
(acd − bcdα)

is a square in Z[cdα], say γ2. Finding the integral coefficients (modulo n)
of γ with respect to the basis 1, cdα, . . . , (cdα)d−1 then allows us as before
to get two congruent squares modulo n, and so gives us a chance to factor
n. (Note that if F (x, y) = ydf(x/y) is the homogenized form of f(x), then
F (cdx, cd) = cdF (cdx), and so Fx(cdα, cd) = cdF

′(cdα). We thus may use
Fx(cdα, cd) in place of F ′(cdα) in the above, if we wish.) So, using a nonmonic
polynomial poses no great complications. To ensure that the cardinality of the
set S is even, we can enlarge all of our exponent vectors by one additional
coordinate, which is always set to be 1.

The above argument assumes that the coefficient cd is coprime to n.
However, it is a simple matter to check that cd and n are coprime. And, since
cd is smaller than n in all the cases that would be considered, a nontrivial
gcd would lead to a nontrivial splitting of n. For further details on how to
use nonmonic polynomials, and also how to use homogeneous polynomials,
[Buhler et al. 1993, Section 12].

There have been some exciting developments in polynomial selection,
developments that were very important in the record 155-digit factorization
of the famous RSA challenge number in late 1999. It turns out that a
good polynomial makes so much difference that it is worthwhile to spend
a considerable amount of resources searching through polynomial choices. For
details on the latest strategies see [Murphy 1998, 1999].

Polynomial pairs
The description of NFS given in the sections above actually involves two

polynomials, though we have emphasized only the single polynomial f(x) for
which we have an integer m with f(m) ≡ 0 (mod n). It is more precisely
the homogenized form of f that we considered, namely F (x, y) = ydf(x/y),
where d is the degree of f(x). The second polynomial is the rather trivial
g(x) = x − m. Its homogenized form is G(x, y) = yg(x/y) = x − my.
The numbers that we sieve looking for smooth values are the values of
F (x, y)G(x, y) in a box near the origin.

However, it is not necessary for the degree of g(x) to be 1. Suppose we have
two distinct, irreducible (not necessarily monic) polynomials f(x), g(x) ∈ Z[x],
and an integer m with f(m) ≡ g(m) ≡ 0 (mod n). Let α be a root of f(x) in
C and let β be a root of g(x) in C. Assuming that the leading coefficient c of
f(x) and C of g(x) are coprime to n, we have homomorphisms φ : Z[cα] → Zn

and ψ : Z[Cβ] → Zn, where φ(cα) ≡ cm (mod n) and ψ(Cβ) ≡ Cm (mod n).
Suppose, too, that we have a set S consisting of an even number of coprime

integer pairs a, b and elements γ ∈ Z[α] and β ∈ Z[β] with

Fx(cα, c)2
∏

(a,b)∈S
(ac − bcα) = γ2, Gx(Cβ, C)2

∏
(a,b)∈S

(aC − bCβ) = δ2.
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If S has 2k elements, and φ(γ) ≡ v (mod n), ψ(δ) ≡ w (mod n), then

(
CkGx(Cm, C)v

)2 ≡
(
ckFx(cm, c)w

)2
(mod n),

and so we may attempt to factor n via gcd(CkGx(Cm, C)u−ckFx(cm, c)v, n).
One may wonder why it is advantageous to use two polynomials of degree

higher than 1. The answer is a bit subtle. Though the first-order desirable
quality for the numbers that we sieve for smooth values is their size, there is
a second-order quality that also has some significance. If a number near x is
given to us as a product of two numbers near x1/2, then it is more likely to
be smooth than if it is a random number near x that is not necessarily such a
product. If it is y-smoothness we are interested in and u = lnx/ ln y, then this
second-order effect may be quantified as about 2u. That is, a number near x
given as a product of two random numbers near x1/2 is about 2u times as likely
to be y-smooth than is a random number near x. If we have two polynomials in
the number field sieve with the same degree and with coefficients of the same
magnitude, then their respective homogeneous forms have values that are of
the same magnitude. It is the product of the two homogeneous forms that we
are sieving for smooth values, so this 2u philosophy seems to be relevant.

However, in the “ordinary” NFS as described in Algorithm 6.2.5, we
are also looking for the product of two numbers to be smooth: One is the
homogeneous form F (a, b), and the other is the linear form a − bm. They do
not have roughly equal magnitude. In fact, using the parameters suggested,
F (a, b) is about the 3/4 power of the product, and a − bm is about the 1/4
power of the product. Such numbers also have an enhanced probability of
being y-smooth, namely,

(
4/33/4

)u
.

So, using two polynomials of the same degree d ≈ 1
2 (3 lnn/ ln lnn)1/3, and

with coefficients bounded by about n1/2d, we get an increased probability of
smoothness over the choices in Algorithm 6.2.5 of about

(
33/4/2

)u
. Now, u is

about 2(3 lnn/ ln lnn)1/3, so that using the two polynomials of degree d saves
a factor of about (1.46)(ln n/ ln ln n)1/3

. While not altering the basic complexity,
such a speedup represents significant savings.

The trouble, though, with using dual polynomials is finding them. Other
than an exhaustive search, perhaps augmented with fast lattice techniques, no
one has suggested a good way of finding such polynomials. For example, take
the case of d = 3. We do not know any good method when given a large integer
n of coming up with two distinct, irreducible, degree 3 polynomials f(x), g(x),
with coefficients bounded by n1/6, say, and an integer m, perhaps very large,
such that f(m) ≡ g(m) ≡ 0 (mod n). A counting argument suggests that
such polynomials should exist with coefficients even somewhat smaller, say
bounded by about n1/8.

Special number field sieve (SNFS)
Counting arguments show that for most numbers n, we cannot do very

much better in finding polynomials than the simple-minded strategy of
Algorithm 6.2.5. However, there are many numbers for which much better
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polynomials do exist, and if we can find such polynomials, then the complexity
of NFS is significantly lowered. The special number field sieve (SNFS) refers to
the cases of NFS where we are able to find extraordinarily good polynomials.

The SNFS has principally been used to factor many Cunningham numbers
(these are numbers of the form bk ± 1 for b = 2, 3, 5, 6, 7, 10, 11, 12, see
[Brillhart et al. 1988]). We have already mentioned the factorization of the
ninth Fermat number, F9 = 2512 +1, by [Lenstra et al. 1993a]. They used the
polynomial f(x) = x5 + 8 and the integer m = 2103, so that f(m) = 8F9 ≡ 0
(mod F9). Even though we already knew the factor 2424833 of F9 (found by
A. E. Western in 1903), this was ignored. That is, the pretty nature of F9
itself was used; the number F9/2424833 is not so pretty!

What makes a polynomial extraordinary is that it has very small
coefficients. If we have a number n = bk ± 1, we can create a polynomial
as follows. Say we wish the degree of f(x) to be 5. Write k = 5l + r, where r
is the remainder when 5 is divided into k. Then b5−rn = b5(l+1) ± b5−r. Thus,
we may use the polynomial f(x) = x5 ± b5−r, and choose m = bl+1. When k
is large, the coefficients of f(x) are very small in comparison to n.

A small advantage of a polynomial of the form xd + c is that the order of
the Galois group is a divisor of dϕ(d), rather than having the generic value
d! for degree-d polynomials. Recall that the usefulness of free relations is
proportional to the reciprocal of the order of the Galois group. Thus, free
relations are more useful with special polynomials of the form xd + c than in
the general case.

Sometimes a fair amount of ingenuity can go into the choosing of special
polynomials. Take the case of 10193 − 1, factored in 1996 by M. Elkenbracht-
Huizing and P. Montgomery. They might have used the polynomial x5 − 100
and m = 1039, as suggested by the above discussion, or perhaps 10x6 − 1 and
m = 1032. However, the factorization still would have been a formidable. The
number 10193 − 1 was already partially factored. There is the obvious factor
9, but we also knew the factors

773, 39373, 561470969, 639701219449517, 4274417556076113498947,

26409540111952717487908689681403.

After dividing these known factors into 10193 − 1, the resulting number n was
still composite and had 108 digits. It would have been feasible to use either
the quadratic sieve or the general NFS on n, but it seemed a shame not to
use n’s pretty ancestry. Namely, we know that 10 has a small multiplicative
order modulo n. This leads us to the congruence

(
1064

)3 ≡ 10−1 (mod n),
and to the congruence

(
6 · 1064

)3 ≡ 63 · 10−1 ≡ 108 · 5−1 (mod n). Thus,
for the polynomial f(x) = 5x3 − 108 and m = 6 · 1064, we have f(m) ≡ 0
(mod n). However, m is too large to profitably use the linear polynomial
x−m. Instead, Elkenbracht-Huizing and Montgomery searched for a quadratic
polynomial g(x) with relatively small coefficients and with g(m) ≡ 0 (mod n).
This was done by considering the lattice of integer triples (A, B, C) with
Am2 + Bm + C ≡ 0 (mod n). The task is to find a short vector in this
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lattice. Using techniques to find such short vectors, they came up with a
choice for A, B, C all at most 36 digits long. They then used both f(x) and
g(x) = Ax2 + Bx + C to complete the factorization of n, finding that n is the
product of two primes, the smaller being

447798287131284928051408304965265782892174953181087929.

Many polynomials
It is not hard to come up with many polynomials that may be used

in NFS. For example, choose the degree d, let m =
⌈
n1/(d+1)

⌉
, write n in

base m, getting n = cdn
d + · · · + c0, let f(x) = cdx

d + · · · + c0, and let
fj(x) = f(x) + jx − mj for various small integers j. Or one could look at the
family fj,k(x) = f(x) + kx2 − (mk − j)x − mj for various small integers k, j.
Each of these polynomials evaluated at m is n.

One might use such a family to search for a particularly favorable
polynomial, such as one where there is a tendency for many small primes
to have multiple roots. Such a polynomial may have its homogeneous form
being smooth more frequently than a polynomial where the small primes do
not have this tendency.

But can all of the polynomials be used together? There is an obvious
hindrance to doing this. Each time a new polynomial is introduced, the
factor base must be extended to take into account the ways primes split
for this polynomial. That is, each polynomial used must have its own field
of coordinates in the exponent vectors, so that introducing more polynomials
makes for longer vectors.

In [Coppersmith 1993] a way is found to (theoretically) get around this
problem. He uses a large factor base for the linear form a − bm and small
factor bases for the various polynomials used. Specifically, if the primes up
to B are used for the linear form, and k polynomials are used, then we use
primes only up to B/k for each of these polynomials. Further, we consider
only pairs a, b where both a − bm is B-smooth and the homogeneous form of
one of the polynomials is (B/k)-smooth. After B relations are collected, we
(most likely) have more than enough to create congruent squares.

Coppersmith suggests first sieving over the linear form a − bm for B-
smooth numbers, and then individually checking at the homogeneous form of
each polynomial used to see if the value at a, b is B/k-smooth. This check can
be quickly done using the elliptic curve method (see Section 7.4). The elliptic
curve method (ECM) used as a smoothness test is not as efficient in practice as
sieving. However, if one wanted to use ECM in QS or NFS instead of sieving,
the overall heuristic complexity would remain unchanged, the only difference
coming in the o(1) expression. In Coppersmith’s variant of NFS he cannot
efficiently use sieving to check his homogeneous polynomials for smoothness,
since the pairs a, b that he checks for are irregularly spaced, being those where
a−bm has passed a smoothness test. (One might actually sieve over the letter
j in the family fj(x) suggested above, but this will not be a long enough array
to make the sieve economical.) Nevertheless, using ECM as a smoothness test
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allows one to use the same complexity estimates that one would have if one
had sieved instead.

Assuming that about a total of B2 pairs a, b are put into the linear form
a − bm, at the end, a total of B2k pairs of the linear form and the norm
form of a polynomial are checked for simultaneous smoothness (the first being
B-smooth, the second B/k-smooth). If the parameters are chosen so that
at most B2/k pairs a, b survive the first sieve, then the total time spent is
not much more than B2 total. This savings leads to a lower complexity in
NFS. Coppersmith gives a heuristic argument that with an optimal choice of
parameters the running time to factor n is exp

(
(c + o(1))(lnn)1/3(ln lnn)2/3

)
,

where

c =
1
3

(
92 + 26

√
13

)1/3
≈ 1.9019.

This compares with the value c = (64/9)1/3 ≈ 1.9230 for the NFS as
described in Algorithm 6.2.5. As mentioned previously, the smaller c in
Coppersmith’s method is offset by a “fatter” o(1). This secondary factor likely
makes the crossover point, after which Coppersmith’s variant is superior, in
the thousands of digits. Before we reach this point, NFS will probably have
been replaced by far better methods. Nevertheless, Coppersmith’s variant of
NFS currently stands as the asymptotically fastest heuristic factoring method
known.

There may yet be some practical advantage to using many polynomials.
For a discussion, see [Elkenbracht-Huizing 1997].

6.3 Rigorous factoring

None of the factoring methods discussed so far in this chapter are rigorous.
However, the subexponential ECM, discussed in the next chapter, comes close
to being rigorous. Assuming a reasonable conjecture about the distribution
in short intervals of smooth numbers, [Lenstra 1987] shows that ECM is
expected to find the least prime factor p of the composite number n in
exp((2 + o(1))

√
ln p ln ln p) arithmetic operations with integers the size of n,

the “o(1)” term tending to 0 as p → ∞. Thus, ECM requires only one heuristic
“leap.” In contrast, QS and NFS seem to require several heuristic leaps in their
analyses.

It is of interest to see what is the fastest factoring algorithm that we can
rigorously analyze. This is not necessarily of practical value, but seems to be
required by the dignity of the subject!

The first issue one might address is whether a factoring algorithm
is deterministic or probabilistic. Since randomness is such a powerful
tool, we would expect to see lower complexity records for probabilistic
factoring algorithms over deterministic ones, and indeed we do. The fastest
deterministic factoring algorithm that has been rigorously analyzed is the
Pollard–Strassen method. This uses fast polynomial evaluation techniques as
discussed in Section 5.5, where the running time to factor n is seen to be
O

(
n1/4+o(1)

)
.
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Assuming the ERH, see Conjecture 1.4.2, an algorithm of Shanks
deterministically factors n in a running-time bound of O(n1/5+o(1)). This
method is described in Section 5.6.4.

That is it for rigorous, deterministic methods. What, then, of probabilistic
methods? The first subexponential probabilistic factoring algorithm with a
completely rigorous analysis was the “random-squares method” of J. Dixon;
see [Dixon 1981]. His algorithm is to take random integers r in [1, n], looking
for those where r2 mod n is smooth. If enough are found, then congruent
squares can be assembled, as in QS, and so a factorization of n may be
attempted. The randomness of the numbers r that are used allows one to say
rigorously how frequently the residues r2 mod n are smooth, and how likely
the congruent squares assembled lead to a nontrivial factorization of n. Dixon
showed that the expected running time for his algorithm to split n is bounded
by exp

(
(c + o(1))

√
lnn ln lnn

)
, where c =

√
8. Subsequent improvements by

Pomerance and later by B. Vallée lowered c to
√

4/3.
The current lowest running-time bound for a rigorous probabilistic

factoring algorithm is exp((1 + o(1))
√

lnn ln lnn). This is achieved by the
“class-group-relations method” of [Lenstra and Pomerance 1992]. Previously,
this time bound was achieved by A. Lenstra for a very similar algorithm,
but the analysis required the use of the ERH. It is interesting that this time
bound is exactly the same as that heuristically achieved by QS. Again the
devil is in the “o(1),” making the class-group-relations method impractical in
comparison.

It is interesting that both the improved versions of the random-squares
method and the class-group-relations method use ECM as a subroutine to
quickly recognize smooth numbers. One might well wonder how a not-yet-
rigorously analyzed algorithm can be used as a subroutine in a rigorous
algorithm. The answer is that one need not show that the subroutine
always works, just that it works frequently enough to be of use. It can be
shown rigorously that ECM recognizes most y-smooth numbers below x in
yo(1) lnx arithmetic operations with integers the size of x. There may be some
exceptional numbers that are stubborn for ECM, but they are provably rare.

Concerning the issue of smoothness tests, a probabilistic algorithm
announced in [Lenstra et al. 1993b] recognizes all y-smooth numbers n in
yo(1) lnn arithmetic operations. That is, it performs similarly as ECM, but
unlike ECM, the complexity estimate is completely rigorous and there are
provably no exceptional numbers.

6.4 Index-calculus method for discrete logarithms

In Chapter 5 we described some general algorithms for the computation of
discrete logarithms that work in virtually any cyclic group for which we can
represent group elements on a computer and perform the group operation.
These exponential-time algorithms have the number of steps being about
the square root of the group order. In certain specific groups we have more



6.4 Index-calculus method for discrete logarithms 303

information that might be used profitably for DL computations. We have
seen in this chapter the ubiquitous role of smooth numbers as an aid to
factorization. In some groups sense can be made of saying that a group element
is smooth, and when this is the case, it is often possible to perform DLs via
a subexponential algorithm. The basic idea is embodied in the index-calculus
method.

We first describe the index-calculus method for the multiplicative group
of the finite field Fp, where p is prime. Later we shall see how the method can
be used for all finite fields.

The fact that subexponential methods exist for solving DLs in the
multiplicative group of a finite field have led cryptographers to use other
groups, the most popular being elliptic-curve groups; see Chapter 7.

6.4.1 Discrete logarithms in prime finite fields

Consider the multiplicative group F∗
p, where p is a large prime. This group is

cyclic, a generator being known as a primitive root (Definition 2.2.6). Suppose
g is a primitive root and t is an element of the group. The DL problem for F∗

p

is, given p, g, t to find an integer l with gl = t. Actually, l is not well-defined
by this equation, the integers l that work form a residue class modulo p − 1.
We write l ≡ logg t (mod p − 1).

What makes the index-calculus method work in F∗
p is that we do not

have to think of g and t as abstract group elements, but rather as integers,
and we may think of the equation gl = t as the congruence gl ≡ t
(mod p). The index-calculus method consists of two principal stages. The first
stage involves gathering “relations.” These are congruences gr ≡ pr1

1 · · · prk

k

(mod p), where p1, . . . , pk are small prime numbers. Such a congruence gives
rise to a congruence of discrete logarithms:

r ≡ r1 logg p1 + · · · + rk logg pk (mod p − 1).

If there are enough of these relations, it may then be possible to use linear
algebra to solve for the various logg pi. After this precomputation, which is
the heart of the method, the final discrete logarithm of t is relatively simple.
If one has a relation of the form gRt ≡ pτ1

1 · · · pτk

k (mod p), then we have that

logg t ≡ −R + τ1 logg p1 + · · · + logg pk (mod p − 1).

Both kinds of relations are found via random choices for the numbers r,R. A
choice for r gives rise to some residue gr mod p, which may or may not factor
completely over the small primes p1, . . . , pk. Similarly, a choice for R gives rise
to the residue gRt mod p. By taking residues closest to 0 and allowing a factor
−1 in a prime factorization, a small gain is realized. Note that we do not have
to solve for the discrete logarithm of −1; it is already known as (p− 1)/2. We
summarize the index-calculus method for F∗

p in the following pseudocode.
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Algorithm 6.4.1 (Index-calculus method for F∗
p). We are given a prime p,

a primitive root g, and a nonzero residue t (mod p). This probabilistic algorithm
attempts to find logg t.

1. [Set smoothness bound]
Choose a smoothness bound B; // See text for reasonable B choices.
Find the primes p1, . . . , pk in [1, B];

2. [Search for general relations]
Choose random integers r in [1, p−2] until B cases are found with gr mod p

being B-smooth;
// It is slightly better to use the residue of gr mod p closest to 0.

3. [Linear algebra]
By some method of linear algebra, use the relations found to solve for

logg p1, . . . , logg pk;

4. [Search for a special relation]
Choose random integers R in [1, p − 2] and find the residue closest to 0 of

gRt (mod p) until one is found with this residue being B-smooth;
Use the special relation found together with the values of logg p1,. . .,logg pk

found in Step [Linear algebra] to find logg t;

This brief description raises several questions:
(1) How does one determine whether a number is B-smooth?
(2) How does one do linear algebra modulo the composite number p − 1?
(3) Are B relations an appropriate number so that there is a reasonable chance

of success in Step [Linear algebra]?
(4) What is a good choice for B?
(5) What is the complexity of this method, and is it really subexponential?

On question (1), there are several options including trial division,
the Pollard rho method (Algorithm 5.2.1), and the elliptic curve method
(Algorithm 7.4.2). Which method one employs affects the overall complexity,
but with any of these methods, the index-calculus method is subexponential.

It is a bit tricky doing matrix algebra over Zn with n composite. In Step
[Linear algebra] we are asked to do this with n = p − 1, which is composite
for all primes p > 3. As with solving polynomial congruences, one idea is to
reduce the problem to prime moduli. Matrix algebra over Zq with q prime
is just matrix algebra over a finite field, and the usual Gaussian methods
work, as well as do various faster methods. As with polynomial congruences,
one can also employ Hensel-type methods for matrix algebra modulo prime
powers, and Chinese remainder methods for gluing powers of different primes.
In addition, one does not have to work all that hard at the factorization. If
some large factor of p − 1 is actually composite and difficult to factor further,
one can proceed with the matrix algebra modulo this factor as if it were prime.
If one is called to invert a nonzero residue, usually one will be successful, but
if not, a factorization is found for free. So either one is successful in the matrix
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algebra, which is the primary goal, or one gets a factorization of the modulus,
and so can restart the matrix algebra with the finer factors one has found.

Regarding question (3), it is likely that with somewhat more than π(B)
relations of the form gr ≡ pr1

1 · · · prk

k (mod p), where p1, . . . , pk are all of the
primes in [1, B], that the various exponent vectors (r1, . . . , rk) found span the
module Zk

p−1. So obtaining B of these vectors is a bit of overkill. In addition,
it is not even necessary that the vectors span the complete module, but only
that the vector corresponding to the relation found in step [Search for a special
relation] be in the submodule generated by them. This idea, then, would make
the separate solutions for logg pi in Step [Linear algebra] unnecessary; namely,
one would do the linear algebra only after the special relation is found.

The final two questions above can be answered together. Just as with the
analysis of some of the factorization methods, we find that an asymptotically
optimal choice for B is of the shape L(p)c, where L(p) is defined in (6.1). If
a fast smoothness test is used, such as the elliptic curve method, we would
choose c = 1/

√
2, and end up with a total complexity of L(p)

√
2+o(1). If a

slow smoothness test is used, such as trial division, a smaller value of c should
be chosen, namely c = 1/2, leading to a total complexity of L(p)2+o(1). If a
smoothness test is used that is of intermediate complexity, one is led to an
intermediate value of c and an intermediate total complexity.

At finite levels, the asymptotic analysis is only a rough guide, and good
choices should be chosen by the implementer following some trial runs. For
details on the index-calculus method for prime finite fields, see [Pomerance
1987b].

6.4.2 Discrete logarithms via smooth polynomials and
smooth algebraic integers

What makes the index-calculus method successful, or even possible, for Fp

is that we may think of Fp as Zp, and thus represent group elements with
integers. It is not true that Fpd is isomorphic to Zpd when d > 1, and so
there is no convenient way to represent elements of nonprime finite fields with
integers. As we saw in Section 2.2.2, we may view Fpd as the quotient ring
Zp[x]/(f(x)), where f(x) is an irreducible polynomial in Zp[x] of degree d.
Thus, we may identify to each member of F∗

pd a nonzero polynomial in Zp[x]
of degree less than d.

The polynomial ring Zp[x] is like the ring of integers Z in many ways.
Both are unique factorization domains, where the “primes” of Zp[x] are the
monic irreducible polynomials of positive degree. Both have only finitely many
invertible elements (the residues 1, 2, . . . , p − 1 modulo p in the former case,
and the integers ±1 in the latter case), and both rings have a concept of
size. Indeed, though Zp[x] is not an ordered ring, we nevertheless have a
rudimentary concept of size via the degree of a polynomial. And so, we have
a concept of “smoothness” for a polynomial: We say that a polynomial is b-
smooth if each of its irreducible factors has degree at most b. We even have
a theorem analogous to (1.44): The fraction of b-smooth polynomials in Zp[x]
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of degree less than d is about u−u, where u = d/b, for a wide range of the
variables p, d, b.

Now obviously, this does not make too much sense when d is small.
For example, when d = 2, everything is 1-smooth, and about 1/p of the
polynomials are 0-smooth. However, when d is large the index-calculus
method does work for discrete logarithms in Z∗

pd , giving a method that is
subexponential; see [Lovorn Bender and Pomerance 1998].

What, then, of the cases when d > 1, but d is not large. There is an
alternative representation of Fpd that is useful in these cases. Suppose K is
an algebraic number field of degree d over the field of rational numbers. Let
OK denote the ring of algebraic integers in K. If p is a prime number that
is inert in K, that is, the ideal (p) in Ok is a prime ideal, then the quotient
structure OK/(p) is isomorphic to Fpd . Thus we may think of members of
the finite field as algebraic integers. And as we saw with the NFS factoring
algorithm, it makes sense to talk of when an algebraic integer is smooth:
Namely, it is y-smooth if all of the prime factors of its norm to the rationals
are at most y.

Let us illustrate in the case d = 2 where p is a prime that is 3 (mod 4).
We take K = Q[i], the field of Gaussian rationals, namely {a + bi : a, b ∈ Q}.
Then OK is Z[i] = {a + bi : a, b ∈ Z}, the ring of Gaussian integers. We
have that Z[i]/(p) is isomorphic to the finite field Fp2 . So, the index-calculus
method will still work, but now we are dealing with Gaussian integers a + bi
instead of ordinary integers.

In the case d = 2, the index-calculus method via a quadratic imaginary
field can be made completely rigorous; see [Lovorn 1992]. The use of other
fields are conjecturally acceptable, but the analysis of the index calculus
method in these cases remains heuristic.

There are heuristic methods analogous to the NFS factoring algorithm to
do discrete logs in any finite field Fpd , including the case d = 1. For a wide
range of cases, the complexity is heuristically brought down to functions of
the shape exp

(
c
(
log pd

)1/3 (log log pd
)2/3

)
; see [Gordon 1993], [Schirokauer

et al. 1996], and [Adleman 1994]. These methods may be thought of as grand
generalizations of the index-calculus method, and what makes them work is a
representation of group elements that allows the notion of smoothness. It is for
this reason that cryptographers tend to eschew the full multiplicative group
of a finite field in favor of elliptic-curve groups. With elliptic-curve groups
we have no convenient notion of smoothness, and the index-calculus method
appears to be useless. For these groups, the best DL methods that universally
work all take exponential time.

6.5 Exercises

6.1. You are given a composite number n that is not a power, and a
nontrivial factorization n = ab. Describe an efficient algorithm for finding
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a nontrivial coprime factorization of n; that is, finding coprime integers A, B,
both larger than 1, with n = AB.

6.2. Show that if n is odd, composite, and not a power, then at least
half of the pairs x, y with 0 ≤ x, y < n and x2 ≡ y2 (mod n) have
1 < gcd(x − y, n) < n.

6.3. Sometimes when one uses QS, the number n to be factored is replaced
with kn for a small integer k. Though using a multiplier increases the
magnitude of the residues being sieved for smoothness, there can be significant
compensation. It can happen that k skews the set of sieving primes to favor
smaller primes. Investigate the choice of a multiplier for using QS to factor

n = 1883199855619205203.

In particular, compare the time for factoring this number n with the time for
factoring 3n. (That is, the number 3n is given to the algorithm which should
eventually come up with a factorization 3n = ab where 3 < a < b.) Next,
investigate the choice of multiplier for using QS to factor

n = 21565941721999797939843713963.

(If you are interested in actual program construction, see Exercise 6.14 for
implementation issues.)

6.4. There are numerous factoring methods exploiting the idea of “small
squares” as it is enunciated at the beginning of the chapter. While the QS and
NFS are powerful manifestations of the idea, there are other, not so powerful,
but interesting, methods that employ side factorizations of small residues,
with eventual linear combination as in our QS discussion. One of the earlier
methods of the class is the Brillhart–Morrison continued-fraction method (see
[Cohen 2000] for a concise summary), which involves using the continued
fraction expansion of

√
n (or

√
kn for a small integer k) for the generation of

many congruences Q ≡ x2 (mod n) with Q = x2, |Q| = O(
√

n). One attempts
to factor the numbers Q to construct instances of u2 ≡ v2 (mod n). An
early triumph of this method was the 1974 demolition of F7 by Brillhart
and Morrison (see Table 1.3). In the size of the quadratic residues Q that are
formed, the method is somewhat superior to QS. However, the sequence of
numbers Q does not appear to be amenable to a sieve, so practitioners of the
continued-fraction method have been forced to spend a fair amount of time
per Q value, even though most of the Q are ultimately discarded for not being
sufficiently smooth.

We shall not delve into the continued-fraction method further. Instead, we
list here various tasks and questions intended to exemplify—through practice,
algebra, and perhaps some entertainment!—the creation and use of “small
squares” modulo a given n to be factored. We shall focus below on special
numbers such as the Fermat numbers n = Fk = 22k

+1 or Mersenne numbers
n = Mq = 2q − 1 because the manipulations are easier in many respects for
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such special forms; but, like the mighty NFS, the notions can for the most
part be extended to more general composite n.
(1) Use the explicit congruences

2588837172 mod M29 = −2 · 3 · 5 · 292,

3010361802 mod M29 = −3 · 5 · 11 · 79,

1266419592 mod M29 = 2 · 32 · 11 · 79,

to create an appropriate nontrivial congruence u2 ≡ v2 and thereby
discover a factor of M29.

(2) It turns out that
√

2 exists modulo each of the special numbers n = Fk, k ≥
2, and the numbers n = Mq, q ≥ 3; and remarkably, one can give explicit
such roots whether or not n is composite. To this end, show that

23·2k−2 − 22k−2
, 2(q+1)/2

are square roots of 2 in the respective Fermat, Mersenne cases. In addition,
give an explicit, primitive fourth root of (−1) for the Fermat cases, and
an explicit ((q mod 4)-dependent) fourth root of 2 in the Mersenne cases.
Incidentally, these observations have actual application: One can now
remove any power of 2 in a squared residue, because there is now a closed
form for

√
2k; likewise in the Fermat cases factors of (−1) in squared

residues can be removed.
(3) Using ideas from the previous item, prove “by hand” the congruence

2(26 − 8)2 ≡ (26 + 1)2 (mod M11),

and infer from this the factorization of M11.
(4) It is a lucky fact that for a certain ω, a primitive fourth root of 2 modulo

M43, we have(
2704ω2 − 3

)2
mod M43 = 23 · 34 · 432 · 26992.

Use this fact to discover a factor of M43.
(5) For ω a primitive fourth root of −1 modulo Fk, k ≥ 2, and with given

integers a, b, c, d, set

x = a + bω + cω2 + dω3.

It is of interest that certain choices of a, b, c, d automatically give small
squares—one might call them small “symbolic squares”—for any of the
Fk indicated. Show that if we adopt a constraint

ad + bc = 0

then x2 mod Fk can be written as a polynomial in ω with degree less than
3. Thus for example(

−6 + 12ω + 4ω2 + 8ω3)2 ≡ 4(8ω2 − 52ω − 43),
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and furthermore, the coefficients in this congruence hold uniformly across
all the Fermat numbers indicated (except that ω, of course, depends on
the Fermat number). Using these ideas, provide a lower bound, for a given
constant K, on how many “symbolic squares” can be found with

|x2 mod Fk| < K
√

Fk.

Then provide a similar estimate for small squares modulo Mersenne
numbers Mq.

(6) Pursuant to the previous item, investigate this kind of factoring for more
general odd composites N = ω4 +1 using the square of a fixed cubic form,
e.g.

x = −16 + 8ω + 2ω2 + ω3,

along the following lines. Argue that (−1) is always a square modulo N ,
and also that

x2 ≡ 236 − 260ω − ω2 (mod N).

In this way discover a proper factor of

N = 16452725990417

by finding a certain square that is congruent, nontrivially, to x2. Of course,
the factorization of this particular N is easily done in other ways, but the
example shows that certain forms ω4 + 1 are immediately susceptible to
the present, small-squares formalism. Investigate, then, ways to juggle the
coefficients of x in such a way that a host of other numbers N = ω4 + 1
become susceptible.

Related ideas on creating small squares, for factoring certain cubic forms,
appear in [Zhang 1998].

6.5. Suppose you were in possession of a device such that if you give it a
positive integer n and an integer a in [1, n], you are told one solution to x2 ≡ a
(mod n) if such a solution exists, or told that no solution exists if this is the
case. If the congruence has several solutions, the device picks one of these
by some method unknown to you. Assume that the device takes polynomial
time to do its work; that is, the time it takes to present its answer is bounded
by a constant times a fixed power of the logarithm of n. Show how, armed
with such a device, one can factor via a probabilistic algorithm with expected
running time being polynomial. Conversely, show that if you can factor in
polynomial time, then you can build such a device.

6.6. Suppose you had a magic algorithm that given an N to be factored could
routinely (and quickly, say in polynomial time per instance) find integers x
satisfying √

N < x < N −
√

N, x2 mod N < Nα,

for some fixed α. (Note that the continued-fraction method and the quadratic
sieve do this essentially for α ≈ 1/2.) Assume, furthermore, that these “small
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square” congruences each require O(lnβ N) operations to discover. Give the
(heuristic) complexity, then, for factoring via this magic algorithm.

6.7. A Gray code is a sequence of k-bit binary strings in such an order that
when moving from one string to the next, one and only one bit flips to its
opposite bit. Show that such a code—whether for the self-initialization QS
option or any other application—can be generated with ease, using a function
that employs exclusive-or “∧” and shift “>>” operators in the following
elegant way:

g(n) = n ∧ (n >> 1).

This very simple generator is easily seen to yield, for example, a 3-bit Gray
counter that runs:

(g(0), . . . , g(7)) = (000, 001, 011, 010, 110, 111, 101, 100),

this counting chain clearly having exactly one bit flip on each iteration.

6.8. Show that if n ≥ 64 and m =
⌊
n1/3

⌋
, then n < 2m3. More generally,

show that if d is a positive integer, n > 1.5(d/ ln 2)d, and m =
⌊
n1/d

⌋
, then

n < 2md.

6.9. The following result, which allows an integer factorization via a
polynomial factorization, is shown in [Brillhart et al. 1981].

Theorem. Let n be a positive integer, let m be an integer with m ≥ 2, write
n in base m as n = f(m) where f(x) = cdx

d + cd−1x
d−1 + · · ·+ c0, so that the

ci’s are nonnegative integers less than m. Suppose f(x) is reducible in Z[x],
with f(x) = g(x)h(x) where neither g(x) nor h(x) is a constant polynomial
with value ±1. Then n = g(m)h(m) is a nontrivial factorization of n. In
particular, if n is prime, then f(x) is irreducible.

This exercise is to prove this theorem in the case m ≥ 3 using the following
outline:
(1) Prove the inequality

∣∣∣∣ f(z)
zd−1

∣∣∣∣ ≥ Re(cdz) + cd−1 −
d∑

j=2

cd−j

|z|j−1

and use it to show that f(z) = 0 for Re z ≥ m − 1. (Use that each cj

satisfies 0 ≤ cj ≤ m − 1 and that cd ≥ 1.)
(2) Using the factorization of a polynomial by its roots show that |g(m)| >

|c| ≥ 1, where c is the leading coefficient of g(x), and similarly that
|h(m)| > 1. Thus, the factorization n = g(m)h(m) is nontrivial.

6.10. This exercise is to prove the theorem of Exercise 6.9 in the remaining
case m = 2. Hint: By a slightly more elaborate inequality as in (1) of Exercise
6.9 (using that Re(cd−2/z) ≥ 0 for Re(z) > 0), show that every root ρ of f has
Re(ρ) < 1.49. Then let G(x) = g(x+1.49) and show that all of the coefficients
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of the rational polynomial G(x) have the same sign. Deduce from this that
1 ≤ |g(1)| = |G(−0.49)| < |G(0.51)| = |g(2)|, and similarly |h(2)| > 1, so that
the factorization n = g(2)h(2) is nontrivial.

6.11. Use the method of Exercise 6.9 to factor n = 187 using the base
m = 10. Do the same with n = 4189, m = 29.

6.12. Generalize the x(u, v), y(u, v) construction in Section 6.1.7 to arbitrary
numbers n satisfying (6.4).

6.13. Give a heuristic argument for the complexity bound

exp
(
(c + o(1))(lnn)1/3(ln lnn)2/3

)
operations, with c = (32/9)1/3, for the special number field sieve (SNFS).

6.14. Here we sketch some practical QS examples that can serve as guidance
for the creation of truly powerful QS implementations. In particular, the
reader who chooses to implement QS can use the following examples for
program checking. Incidentally, each one of the examples below—except
the last—can be effected on a typical symbolic processor possessed of
multiprecision operations. So the exercise shows that numbers in the 30-
digit region and beyond can be handled even without fast, compiled
implementations.
(1) In Algorithm 6.1.1 let us take the very small example n = 10807 and,

because this n is well below typical ranges of applicability of practical
QS, let us force at the start of the algorithm the smoothness limit
B = 200. Then you should find k = 21 appropriate primes, You then get a
21×21 binary matrix, and can Gaussian-reduce said matrix. Incidentally,
packages exist for such matrix algebra, e.g., in the Mathematica language
a matrix m can be reduced for such purpose with the single statement

r = NullSpace[Transpose[m], Modulus->2];

(although, as pointed out to us by D. Lichtblau one may optimize the
overall operation by intervention at a lower level, using bit operations
rather than (mod 2) reduction, say). With such a command, there is a
row of the reduced matrix r that has just three 1’s, and this leads to the
relation:

34 · 114 · 134 ≡ 1062 · 1282 · 1582 (mod n),

and thus a factorization of n.
(2) Now for a somewhat larger composite, namely n = 7001 · 70001, try using

the B assignment of Algorithm 6.1.1 as is, in which case you should have
B = 2305, k = 164. The resulting 164 × 164 matrix is not too unwieldy
in this day and age, so you should be able to factor n using the same
approach as in the previous item.

(3) Now try to factor the Mersenne number n = 267 −1 but using smoothness
bound B = 80000, leading to k = 3962. Not only will this example start
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testing your QS implementation in earnest, it will demonstrate how 12-
digit factors can be extracted with QS in a matter of seconds or minutes
(depending on the efficiency of the sieve and the matrix package). This is
still somewhat slower than sheer sieving or say Pollard-rho methods, but
of course, QS can be pressed much further, with its favorable asymptotic
behavior.

(4) Try factoring the repunit

n =
1029 − 1

9
= 11111111111111111111111111111

using a forced parameter B = 40000, for which matrices will be about
2000 × 2000 in size.

(5) If you have not already for the above, implement Algorithm 6.1.1 in fast,
compiled fashion to attempt factorization of, say, 100-digit composites.

6.15. In the spirit of Exercise 6.14, we here work through the following
explicit examples of the NFS Algorithm 6.2.5. Again the point is to give the
reader some guidance and means for algorithm debugging. We shall find that
a particular obstruction—the square-rooting in the number field—begs to be
handled in different ways, depending on the scale of the problem.
(1) Start with the simple choice n = 10403 and discover that the polynomial

f is reducible, hence the very Step [Setup] yields a factorization, with no
sieving required.

(2) Use Algorithm 6.2.5 with initialization parameters as is in the pseudocode
listing, to factor n = F5 = 232 + 1. (Of course, the SNFS likes this
composite, but the exercise here is to get the general NFS working!) From
the initialization we thus have d = 2, B = 265, m = 65536, k = 96,
and thus matrix dimension V = 204. The matrix manipulations then
accrue exactly as in Exercise 6.14, and you will obtain a suitable set
S of (a, b) pairs. Now, for the small composite n in question (and the
correspondingly small parameters) you can, in Step [Square roots], just
multiply out the product

∏
(a,b)∈S(a− bα) to generate a Gaussian integer,

because the assignment α = i is acceptable. Note how one is lucky for
such (d = 2) examples, in that square-rooting in the number field is a
numerical triviality. In fact, the square root of a Gaussian integer c + di
can be obtained by solving simple simultaneous relations. So for such small
degree as d = 2, the penultimate Step [Square roots] of Algorithm 6.2.5 is
about as simple as can be.

(3) As a kind of “second gear” with respect mainly to the square-root obstacle,
try next the same composite n = F5 but force parameters d = 4, B = 600,
which choices will result in successful NFS. Now, at the Step [Square
roots], you can again just multiply out the product of terms (a − bα)
where now α =

√
i, and you can then take the square root of the resulting

element
s0 + s1α + s2α

2 + s3α
3
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in the number field. There are easy ways to do this numerically, for
example a simple version of the deconvolution of Exercise 6.18 will work,
or you can just use the Vandermonde scheme discussed later in the present
exercise.

(4) Next, choose n = 76409 and this time force parameters as: d = 2, B = 96,
to get a polynomial f(x) = x2+233x. Then, near the end of the algorithm,
you can again multiply out the (a− bα) terms, then use simple arithmetic
to take the number-field root and thereby complete the factorization.

(5) Just as in the last item, factor the repunit n = 11111111111 by initializing
parameters thus: d = 2, B = 620.

(6) Next, for n = F6 = 264+1, force d = 4, B = 2000, and this time force even
the parameter k = 80 for convenience. Use any of the indicated methods
to take a square root in the number field with α =

√
i.

(7) Now we can try a “third gear” in the sense of the square-root obstruction.
Factor the repunit n = (1017 − 1)/9 = 11111111111111111 but by forcing
parameters d = 3, B = 2221. This time, the square root needs be taken
in a number field with a cube root of 1. It is at this juncture that we
may as well discuss the Vandermonde matrix method for rooting. Let us
form γ2, that is the form f ′(α)2

∏
(a,b)∈S(a − bα), simply by multiplying

all relevant terms together modulo f(α). (Such a procedure would always
work in principle, yet for large enough n the coefficients of the result γ2

become unwieldy.) The Vandermonde matrix approach then runs like so.
Write the entity to be square-rooted as

γ2 = s0 + s1α + · · · + sd−1α
d−1.

Then, use the (sufficiently precise) d roots of f , call them α1, . . . , αd, to
construct the matrix of ascending powers of roots

H =

⎛
⎜⎜⎝

1 α1 α1
2 · · · α1

d−1

1 α2 α2
2 · · · α2

d−1

...
...

...
. . .

...
1 αd α2

d · · · αd
d−1

⎞
⎟⎟⎠ .

Then take sufficiently high-precision square roots of real numbers, that is,
calculate the vector

β =
√

HsT ,

where s = (s0, . . . , sd−1) is the vector of coefficients of γ2, and the square
root of the matrix-vector product is simply taken componentwise. Now
the idea is to calculate matrix-vector products:

H−1

⎛
⎜⎜⎝

± β0
± β1

...
±βd−1

⎞
⎟⎟⎠ ,
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where the ± ambiguities are tried one at a time, until the vector resulting
from this multiplication by H−1 has all integer components. Such a vector
will be a square root in the number field. To aid in any implementations,
we give here an explicit, small example of this rooting method. Let us
take the polynomial f(x) = x3 + 5x + 6 and square-root the entity
γ2 = 117−366x+46x2 modulo f(x) (we are using preknowledge that the
entity here really is a square). We construct the Vandermode matrix using
zeros of f , namely (α1, α2, α3) =

(
−1,

(
1 − i

√
23

)
/2,

(
1 + i

√
23

)
/2

)
, as a

numerical entity whose first row is (1,−1, 1) with complex entries in the
other rows. There needs to be enough precision, which for this present
example is say 12 decimal digits. Then we take a (componentwise) square
root and try the eight possible (±) combinations

γ = H−1

⎛
⎝±r1

±r2
±r3

⎞
⎠ ,

⎛
⎝ r1

r2
r3

⎞
⎠ =

√√√√√H

⎛
⎝ 177

− 366
46

⎞
⎠.

Sure enough, one of these eight combinations is the vector

γ =

⎛
⎝ 15

− 9
−1

⎞
⎠

indicating that(
15 − 9x − x2)2

mod f(x) = 117 − 366x + 46x2

as desired.
(8) Just as with Exercise 6.14, we can only go so far with symbolic

processors and must move to fast, compiled programs to handle large
composites. Still, numbers in the region of 30 digits can indeed be handled
interpretively. Take the repunit n = (1029 − 1)/9, force d = 4, B = 30000,
and this time force also k = 100, to see a successful factorization that
is doable without fast programs. In this case, you can use any of the
above methods for handling degree-4 number fields, still with brute-
force multiplying-out for the γ2 entity (although for the given parameters
one already needs perhaps 3000-digit precision, and the advanced means
discussed in the text and in Exercise 6.18 start to look tantalizing for the
square-rooting stage).

The explicit tasks above should go a long way toward the polishing of a serious
NFS implementation. However, there is more that can be done even for these
relatively minuscule composites. For example, the free relations and other
optimizations of Section 6.2.7 can help even for the above tasks, and should
certainly be invoked for large composites.

6.16. Here we solve an explicit and simple DL problem to give an illustration
of the index-calculus method (Algorithm 6.4.1). Take the prime p = 213 − 1,
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primitive root g = 17, and say we want to solve gl ≡ 5 (mod p). Note the
following congruences, which can be obtained rapidly by machine:

g3513 ≡ 23 · 3 · 52 (mod p),
g993 ≡ 24 · 3 · 52 (mod p),

g1311 ≡ 22 · 3 · 5 (mod p).

(In principle, one can do this by setting a smoothness limit on prime factors
of the residue, then just testing random powers of g.) Now solve the indicated
DL problem by finding via linear algebra three integers a, b, c such that

g3513a+993b+1311c ≡ 5 (mod p).

6.6 Research problems

6.17. Investigate the following idea for forging a subexponential factoring
algorithm. Observe first the amusing algebraic identity [Crandall 1996a]

F (x) =
(
(x2 − 85)2 − 4176

)2 − 28802

= (x − 13)(x − 11)(x − 7)(x − 1)(x + 1)(x + 7)(x + 11)(x + 13),

so that F actually has 8 simple, algebraic factors in Z[x]. Another of this type
is

G(x) = ((x2 − 377)2 − 73504)2 − 504002

= (x − 27)(x − 23)(x − 15)(x − 5)(x + 5)(x + 15)(x + 23)(x + 27),

and there certainly exist others. It appears on the face of it that for a number
N = pq to be factored (with primes p ≈ q, say) one could simply take
gcd(F (x) mod N, N) for random x (mod N), so that N should be factored
in about

√
N/(2 · 8) evaluations of F . (The extra 2 is because we can get by

chance either p or q as a factor.) Since F is calculated via 3 squarings modulo
N , and we expect 1 multiply to accumulate a new F product, we should have
an operational gain of 8/4 = 2 over naive product accumulation. The gain is
even more when we acknowledge the relative simplicity of a modular squaring
operation vs. a modular multiply. But what if we discovered an appropriate
set {aj} of fixed integers, and defined

H(x) = (· · · ((((x2 − a1)2 − a2)2 − a3)2 − a4)2 − · · ·)2 − a2
k,

so that a total of k squarings (we assume a2
k prestored) would generate

2k algebraic factors? Can this successive-squaring idea lead directly to
subexponential (if not polynomial-time) complexity for factoring? Or are there
blockades preventing such a wonderful achievement? Another question is,
noting that the above two examples (F, G) have disjoint roots, i.e., F (x)G(x)
has 16 distinct factors, can one somehow use two identities at a time to improve
the gain? Yet another observation is, since all roots of F (x)G(x) are odd, x
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can simply be incremented/decremented to x ± 1, yielding a whole new flock
of factors. Is there some way to exploit this phenomenon for more gain?

Incidentally, there are other identities that require, for a desired product of
terms, fewer operations than one might expect. For example, we have another
general identity which reads:

(n + 8)!
n!

=
(
204 + 270n + 111n2 + 18n3 + n4)2 − 16(9 + 2n)2,

allowing for a product of 8 consecutive integers to be effected in 5 multiplies
(not counting multiplications by constants). Thus, even if the pure-squaring
ladder at the beginning of this exercise fails to allow generalization, there are
perhaps other ways to proceed.

Theoretical work on such issues does exist; for example, [Dilcher 1999]
discourses on the difficulty of creating longer squaring ladders of the indicated
kind. Recently, D. Symes has discovered a (k = 4) identity, with coefficients
(a1, a2, a3, a4) as implied in the construct

(((x2−67405)2−3525798096)2−533470702551552000)2−4692082091913216002

which, as the reader may wish to verify via symbolic processing, is indeed
the product of 16 monomials! P. Carmody recently reports that many such
4-squarings cases are easy to generate via, say, a GP/Pari script.

6.18. Are there yet-unknown ways to extract square roots in number fields,
as required for successful NFS? We have discussed in Section 6.2.5 some state-
of-the-art approaches, and seen in Exercise 6.15 that some elementary means
exist. Here we enumerate some further ideas and directions.
(1) The method of Hensel lifting mentioned in Section 6.2.5 is a kind of p-

adic Newton method. But are there other Newton variants? Note as in
Exercise 9.14 that one can extract, in principle, square roots without
inversion, at least in the real-number field. Moreover, there is such a thing
as Newton solution of simultaneous nonlinear equations. But a collection
of such equations is what one gets if one simply writes down the relations
for a polynomial squared to be another polynomial (there is a mod f
complication but that can possibly be built into the Newton–Jacobian
matrix for the solver).

(2) In number fields depending on polynomials of the simple form f(x) =
xd+1, one can actually extract square roots via “negacyclic deconvolution”
(see Section 9.5.3 for the relevant techniques in what follows). Let the
entity for which we know there exists a square root be written

γ2 =
d−1∑
j=0

zjα
j

where α is a d-th root of (−1) (i.e., a root of f). Now, in signal
processing terminology, we are saying that for some length-d signal γ to
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be determined,
z = γ ×− γ,

where ×− denotes negacyclic convolution, and z is the signal consisting
of the zj coefficients. But we know how to do negacyclic convolution via
fast transform methods. Writing

Γk =
d−1∑
j=0

γjα
jα−2kj ,

one can establish the weighted-convolution identity

zn = α−n 1
d

d−1∑
k=0

Γ2
kα+2nk.

The deconvolution idea, then, is simple: Given the signal z to be square-
rooted, transform this last equation above to obtain the Γ2

k, then assign
one of 2d−1 distinct choices of sign for the respective ±

√
Γ2

k, k ∈ [1, d−1],
then solve for γj via another transform. This negacyclic deconvolution
procedure will result in a correct square root γ of γ2. The research question
is this: Since we know that number fields based on f(x) = xd + 1 are
easily handled in many other ways, can this deconvolution approach be
generalized? How about f(x) = xd + c, or even much more general f?
It is also an interesting question whether the transforms above need to
be floating-point ones (which does, in fact, do the job at the expense of
the high precision), or whether errorless, pure-integer number-theoretical
transforms can be introduced.

(3) For any of these various ideas, a paramount issue is how to avoid the rapid
growth of coefficient sizes. Therefore one needs to be aware that a square-
root procedure, even if it is numerically sound, has to somehow keep
coefficients under control. One general suggestion is to combine whatever
square-rooting algorithm with a CRT; that is, work somehow modulo
many small primes simultaneously. In this way, machine parallelism may
be possible as well. As we intimated in text, ideas of Couveignes and
Montgomery have brought the square-root obstacle down to a reasonably
efficient phase in the best prevailing NFS implementations. Still, it would
be good to have a simple, clear, and highly efficient scheme that generalizes
not just to cases of parity on the degree d, but also manages somehow to
control coefficients and still avoid CRT reconstruction.
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ELLIPTIC CURVE ARITHMETIC

The history of what are called elliptic curves goes back well more than
a century. Originally developed for classical analysis, elliptic curves have
found their way into abstract and computational number theory, and now sit
squarely as a primary tool. Like the prime numbers themselves, elliptic curves
have the wonderful aspects of elegance, complexity, and power. Elliptic curves
are not only celebrated algebraic constructs; they also provide considerable
leverage in regard to prime number and factorization studies. Elliptic curve
applications even go beyond these domains; for example, they have an
increasingly popular role in modern cryptography, as we discuss in Section
8.1.3.

In what follows, our primary focus will be on elliptic curves over fields
Fp, with p > 3 an odd prime. One is aware of a now vast research field—
indeed even an industry—involving fields Fpk where k > 1 or (more prevalent
in current applications) fields F2k . Because the theme of the present volume
is prime numbers, we have chosen to limit discussion to the former fields of
primary interest. For more information in regard to the alternative fields, the
interested reader may consult references such as [Seroussi et al. 1999] and
various journal papers referenced therein.

7.1 Elliptic curve fundamentals

Consider the general equation of a degree-3 polynomial in two variables, with
coefficients in a field F , set equal to 0:

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0. (7.1)

To ensure that the polynomial is really of degree 3, we assume that at least
one of a, b, c, d is nonzero. We also assume that the polynomial is absolutely
irreducible; that is, it is irreducible in F [x, y], where F is the algebraic closure
of F . One might consider the pairs (x, y) ∈ F × F that satisfy (7.1); they
are called the affine solutions to the equation. Or one might consider the
projective solutions. For these we begin with triples (x, y, z) ∈ F × F × F
(with x, y, z not all zero) that satisfy

ax3 + bx2y + cxy2 + dy3 + ex2z + fxyz + gy2z +hxz2 + iyz2 + jz3 = 0. (7.2)

Note that (x, y, z) is a solution if and only if (tx, ty, tz) is also a solution, for
t ∈ F , t = 0. Thus, in the projective case, it makes more sense to talk of
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[x, y, z] being a solution, the notation indicating that we consider as identical
any two solutions (x, y, z), (x′, y′, z′) of (7.2) if and only if there is a nonzero
t ∈ F with x′ = tx, y′ = ty, z′ = tz.

The projective solutions of (7.2) are almost exactly the same as the affine
solutions of (7.1). In particular, a solution (x, y) of (7.1) may be identified with
the solution [x, y, 1] of (7.2), and any solution [x, y, z] of (7.2) with z = 0 may
be identified with the solution (x/z, y/z) of (7.1). The solutions [x, y, z] with
z = 0 do not correspond to any affine solutions, and are called the “points at
infinity” for the equation.

Equations (7.1) and (7.2) are cumbersome. It is profitable to consider
a change in variables that sends solutions with coordinates in F to like
solutions, and vice versa for the inverse transformation. For example, consider
the Fermat equation for exponent 3, namely,

x3 + y3 = z3.

Assume we are considering solutions in a field F with characteristic not equal
to 2 or 3. Letting X = 12z, Y = 36(x − y), Z = x + y, we have the equivalent
equation

Y 2Z = X3 − 432Z3.

The inverse change of variables is x = 1
72Y + 1

2Z, y = − 1
72Y + 1

2Z, z = 1
12X.

The projective curve (7.2) is considered to be “nonsingular” (or “smooth”)
over the field F if even over the algebraic closure of F there is no point
[x, y, z] on the curve where all three partial derivatives vanish. In fact, if the
characteristic of F is not equal to 2 or 3, any nonsingular projective equation
(7.2) with at least one solution in F × F × F (with not all of the coordinates
zero) may be transformed by a change of variables to the standard form

y2z = x3 + axz2 + bz3, a, b ∈ F, (7.3)

where the one given solution of the original equation is sent to [0, 1, 0]. Further,
it is clear that a curve given by (7.3) has just this one point at infinity, [0, 1, 0].
The affine form is

y2 = x3 + ax + b. (7.4)

Such a form for a cubic curve is called a Weierstrass form. It is sometimes
convenient to replace x with (x + constant), and so get another Weierstrass
form:

y2 = x3 + Cx2 + Ax + B, A, B, C ∈ F. (7.5)

If we have a curve in the form (7.4) and the characteristic of F is not 2 or 3,
then the curve is nonsingular if and only if 4a3+27b2 is not 0; see Exercise 7.3.
If the curve is in the form (7.5), the condition that the curve be nonsingular
is more complicated: It is that 4A3 + 27B2 − 18ABC − A2C2 + 4BC3 = 0.

Whether we are dealing with the affine form (7.4) or (7.5), we use the
notation O to denote the one point at infinity [0, 1, 0] that occurs for the
projective form of the curve.

We now make the fundamental definition for this chapter.
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Definition 7.1.1. A nonsingular cubic curve (7.2) with coefficients in a
field F and with at least one point with coordinates in F (that are not
all zero) is said to be an elliptic curve over F . If the characteristic of F
is not 2 or 3, then the equations (7.4) and (7.5) also define elliptic curves
over F , provided that 4a3 + 27b2 = 0 in the case of equation (7.4) and
4A3 + 27B2 − 18ABC − A2C2 + 4BC3 = 0 in the case of equation (7.5).
In these two cases, we denote by E(F ) the set of points with coordinates in
F that satisfy the equation together with the point at infinity, denoted by O.
So, in the case of (7.4),

E(F ) =
{
(x, y) ∈ F × F : y2 = x3 + ax + b

}
∪ {O},

and similarly for a curve defined by equation (7.5).

Note that we are concentrating on fields of characteristic not equal to 2
or 3. For fields such as F2m the modified equation (7.11) of Exercise 7.1 must
be used (see, for example, [Koblitz 1994] for a clear exposition of this).

We use the form (7.5) because it is sometimes computationally useful
in, for example, cryptography and factoring studies. Since the form (7.4)
corresponds to the special case of (7.5) with C = 0, it should be sufficient
to give any formulae for the form (7.5), allowing the reader to immediately
convert to a formula for the form (7.4) in case the quadratic term in x is
missing. However, it is important to note that equation (7.5) is overspecified
because of an extra parameter. So in a word, the Weierstrass form (7.4) is
completely general for curves over the fields in question, but sometimes our
parameterization (7.5) is computationally convenient.

The following parameter classes will be of special practical importance:
(1) C = 0, giving immediately the Weierstrass form y2 = x3 + Ax + B. This

parameterization is the standard form for much theoretical work on elliptic
curves.

(2) A = 1, B = 0, so curves are based on y2 = x3 + Cx2 + x. This
parameterization has particular value in factorization implementations
[Montgomery 1987], [Brent et al. 2000], and admits of arithmetic
enhancements in practice.

(3) C = 0, A = 0, so the cubic is y2 = x3 + B. This form has value in finding
particular curves of specified order (the number elements of the set E, as
we shall see), and also allows practical arithmetic enhancements.

(4) C = 0, B = 0, so the cubic is y2 = x3 + Ax, with advantages as in (3).
The tremendous power of elliptic curves becomes available when we define

a certain group operation, under which E(F ) becomes, in fact, an abelian
group:

Definition 7.1.2. Let E(F ) be an elliptic curve defined by (7.5) over a field
F of characteristic not equal to 2 or 3. Denoting two arbitrary curve points
by P1 = (x1, y1), P2 = (x2, y2) (not necessarily distinct), and denoting by O
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the point at infinity, define a commutative operation + with inverse operation
− as follows:

(1) −O = O;
(2) −P1 = (x1,−y1);
(3) O + P1 = P1;
(4) if P2 = −P1, then P1 + P2 = O;
(5) if P2 = −P1, then P1 + P2 = (x3, y3), with

x3 = m2 − C − x1 − x2,

−y3 = m(x3 − x1) + y1,

where the slope m is defined by

m =

⎧⎪⎪⎨
⎪⎪⎩

y2 − y1

x2 − x1
, if x2 = x1

3x2
1 + 2Cx1 + A

2y1
, if x2 = x1.

The addition/subtraction operations thus defined have an interesting geomet-
rical interpretation in the case that the underlying field F is the real number
field. Namely, 3 points on the curve are collinear if and only if they sum to 0.
This interpretation is generalized to allow for a double intersection at a point
of tangency (unless it is an inflection point, in which case it is a triple inter-
section). Finally, the geometrical interpretation takes the view that vertical
lines intersect the curve at the point at infinity. When the field is finite, say
F = Fp, the geometrical interpretation is not evident, as we realize Fp as the
integers modulo p; in particular, the division operations for the slope m are
inverses (mod p).

It is a beautiful outcome of the theory that the curve operations in
Definition 7.1.2 define a group; furthermore, this group has special properties,
depending on the underlying field. We collect such results in the following
theorem:

Theorem 7.1.3 (Cassels). An elliptic curve E(F ) together with the opera-
tions of Definition 7.1.2 is an abelian group. In the finite-field case the group
E(Fpk) is either cyclic or isomorphic to a product of two cyclic groups:

E ∼= Zd1 × Zd2 ,

with d1|d2 and d1|pk − 1.

That E is an abelian group is not hard to show, except that establishing
associativity is somewhat tedious (see Exercise 7.7). The structure result for
E

(
Fpk

)
may be found in [Cassels 1966], [Silverman 1986], [Cohen 2000].

If the field F is finite, E(F ) is always a finite group, and the group order,
#E(F ), which is the number of points (x, y) on the affine curve plus 1 for
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the point at infinity, is a number that gives rise to fascinating and profound
issues. Indeed, the question of order will arise in such domains as primality
proving, factorization, and cryptography.

We define elliptic multiplication by integers in a natural manner: For point
P ∈ E and positive integer n, we denote the n-th multiple of the point by

[n]P = P + P + · · · + P,

where exactly n copies of P appear on the right. We define [0]P as the group
identity O, the point at infinity. Further, we define [−n]P to be −[n]P . From
elementary group theory we know that when F is finite,

[#E(F )]P = O,

a fact of paramount importance in practical applications of elliptic curves.
This issue of curve order is addressed in more detail in Section 7.5. As regards
any group, we may consider the order of an element. In an elliptic-curve group,
the order of a point P is the least positive integer n with [n]P = 0, while if
no such integer n exists, we say that P has infinite order. If E(F ) is finite,
then every point in E(F ) has finite order dividing #E(F ).

The fundamental relevance of elliptic curves for factorization will be the
fact that, if one has a composite n to be factored, one can try to work
on an elliptic curve over Zn, even though Zn is not a field and treating it
as such might be considered “illegal.” When an illegal curve operation is
encountered, it is exploited to find a factor of n. This idea of what we might
call “pseudocurves” is the starting point of H. Lenstra’s elliptic curve method
(ECM) for factorization, whose details are discussed in Section 7.4. Before we
get to this wonderful algorithm we first discuss “legal” elliptic curve arithmetic
over a field.

7.2 Elliptic arithmetic

Armed with some elliptic curve fundamentals, we now proceed to develop
practical algorithms for elliptic arithmetic. For simplicity we shall adopt a
finite field Fp for prime p > 3, although generally speaking the algorithm
structures remain the same for other fields. We begin with a simple method
for finding explicit points (x, y) on a given curve, the idea being that we
require the relevant cubic form in x to be a square modulo p:

Algorithm 7.2.1 (Finding a point on a given elliptic curve). For a prime
p > 3 we assume an elliptic curve E(Fp) determined by cubic y2 = x3 + ax + b.
This algorithm returns a point (x, y) on E.

1. [Loop]
Choose random x ∈ [0, p − 1];
t = (x(x2 + a) + b) mod p; // Affine cubic form in x.
if(
(

t
p

)
== −1) goto [Loop]; // Via Algorithm 2.3.5.

return (x,±
√

t mod p); // Square root via Algorithm 2.3.8 or 2.3.9.
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Either square root of the residue may be returned, since (x, y) ∈ E(Fp) implies
(x,−y) ∈ E(Fp). Though the algorithm is probabilistic, the method can be
expected to require just a few iterations of the do-loop. There is another
important issue here: For certain problems where the y-coordinate is not
needed, one can always check that some point (x, ?) exists—i.e., that x is
a valid x-coordinate—simply by checking whether the Jacobi symbol

(
t
p

)
is

not −1.
These means of finding a point on a given curve are useful in primality

proving and cryptography. But there is an interesting modified question: How
can one find both a random curve and a point on said curve? This question
is important in factorization. We defer this algorithm to Section 7.4, where
“pseudocurves” with arithmetic modulo composite n are indicated.

But given a point P , or some collection of points, on a curve E, how do
we add them pairwise, and most importantly, how do we calculate elliptic
multiples [n]P? For these operations, there are several ways to proceed:

Option (1): Affine coordinates. Use the fundamental group operations of
Definition 7.1.2 in a straightforward manner, this approach generally involving
an inversion for a curve operation.

Option (2): Projective coordinates. Use the group operations, but for
projective coordinates [X, Y, Z] to avoid inversions. When Z = 0, [X, Y, Z]
corresponds to the affine point (X/Z, Y/Z) on the curve. The point [0, 1, 0] is
O, the point at infinity.

Option (3): Modified projective coordinates. Use triples 〈X, Y, Z〉, where if
Z = 0, this corresponds to the affine point (X/Z2, Y/Z3) on the curve, plus
the point 〈0, 1, 0〉 corresponding to O, the point at infinity. This system also
avoids inversions, and has a lower operation count than projective coordinates.

Option (4): X, Z coordinates, sometimes called Montgomery coordinates. Use
coordinates [X : Z], which are the same as the projective coordinates [X, Y, Z],
but with “Y ” dropped. One can recover the x coordinate of the affine point
when Z = 0 as x = X/Z. There are generally two possibilities for y, and
this is left ambiguous. This option tends to work well in elliptic multiplication
and when y-coordinates are not needed at any stage, as sometimes happens
in certain factorization and cryptography work, or when the elliptic algebra
must be carried out in higher domains where coordinates themselves can be
polynomials.

Which of these algorithmic approaches is best depends on various side issues.
For example, assuming an underlying field Fp, if one has a fast inverse (mod p),
one might elect option (1) above. On the other hand, if one has already
implemented option (1) and wishes to reduce the expensive time for a (slow)
inverse, one might move to (2) or (3) with, as we shall see, minor changes in
the algorithm flow. If one wishes to build an implementation from scratch,
option (4) may be indicated, especially in factorization of very large numbers
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with ECM, in which case inversion (mod n) for the composite n can be avoided
altogether.

As for explicit elliptic-curve arithmetic, we shall start for completeness
with option (1), though the operations for this option are easy to infer directly
from Definition 7.1.2. An important note: The operations are given here and
in subsequent algorithms for underlying field F , although further work with
“pseudocurves” as in factorization of composite n involves using the ring Zn

with operations mod n instead of mod p, while extension to fields Fpk involves
straightforward polynomial or equivalent arithmetic, and so on.

Algorithm 7.2.2 (Elliptic addition: Affine coordinates). We assume an el-
liptic curve E(F ) (see note preceding this algorithm), given by the affine equation
Y 2 = X3 + aX + b, where a, b ∈ F and the characteristic of the field F is not
equal to 2 or 3. We represent points P as triples (x, y, z), where for an affine point,
z = 1 and (x, y) lies on the affine curve, and for O, the point at infinity, z = 0
(the triples (0, 1, 0), (0,−1, 0), both standing for the same point). This algorithm
provides functions for point negation, doubling, addition, and subtraction.

1. [Elliptic negate function]
neg(P ) return (x,−y, z);

2. [Elliptic double function]
double(P ) return add(P, P );

3. [Elliptic add function]
add(P1, P2){

if(z1 == 0) return P2; // Point P1 = O.
if(z2 == 0) return P1; // Point P2 = O.
if(x1 == x2) {

if(y1 + y2 == 0) return (0, 1, 0); // i.e., return O.
m = (3x2

1 + a)(2y1)−1; // Inversion in the field F .
} else {

m = (y2 − y1)(x2 − x1)−1; // Inversion in the field F .
}
x3 = m2 − x1 − x2;
return (x3, m(x1 − x3) − y1, 1);

}
4. [Elliptic subtract function]

sub(P1, P2) return add(P1, neg(P2));

In the case of option (2) using ordinary projective coordinates, consider
the curve Y 2Z = X3 + aXZ2 + bZ3 and points Pi = [Xi, Yi, Zi] for i = 1, 2.
Rule (5) of Definition 7.1.2, for P1 + P2 when P1 = ±P2 and neither P1, P2 is
O, becomes

P3 = P1 + P2 = [X3, Y3, Z3],

where

X3 = α
(
γ2ζ − α2β

)
,



326 Chapter 7 ELLIPTIC CURVE ARITHMETIC

Y3 =
1
2
(
γ
(
3α2β − γ2ζ

)
− α3δ

)
,

Z3 = α3ζ,

and
α = X2Z1 − X1Z2, β = X2Z1 + X1Z2,

γ = Y2Z1 − Y1Z2, δ = Y2Z1 + Y1Z2, ζ = Z1Z2.

By holding on to the intermediate calculations of α2, α3, α2β, γ2ζ, the
coordinates of P1 +P2 may be computed in 14 field multiplications and 8 field
additions (multiplication by 1/2 can generally be accomplished by a shift or
an add and a shift). In the case of doubling a point by rule (5), if [2]P = O,
the projective equations for

[2]P = [2][X, Y, Z] = [X ′, Y ′, Z ′]

are

X ′ = ν(µ2 − 2λν),
Y ′ = µ

(
3λν − µ2) − 2Y 2

1 ν2,

Z ′ = ν3,

where
λ = 2XY, µ = 3X2 + aZ2, ν = 2Y Z.

So doubling can be accomplished in 13 field multiplications and 4 field
additions. In both adding and doubling, no field inversions of variables are
necessary.

When using projective coordinates and starting from a given affine point
(u, v), one easily creates projective coordinates by tacking on a 1 at the end,
namely, creating the projective point [u, v, 1]. If one wishes to recover an
affine point from [X, Y, Z] at the end of a long calculation, and if this is not
the point at infinity, one computes Z−1 in the field, and has the affine point
(XZ−1, Y Z−1).

We shall see that option (3) also avoids field inversions. In comparison with
option (2), the addition for option (3) is more expensive, but the doubling for
option (3) is cheaper. Since in a typical elliptic multiplication [n]P we would
expect about twice as many doublings as additions, one can see that option (3)
could well be preferable to option (2). Recalling the notation, we understand
〈X, Y, Z〉 to be the affine point (X/Z2, Y/Z3) on y2 = x3 + ax + b if Z = 0,
and we understand 〈0, 1, 0〉 to be the point at infinity. Again, if we start with
an affine point (u, v) on the curve and wish to convert to modified projective
coordinates, we just tack on a 1 at the end, creating the point 〈u, v, 1〉. And if
one has a modified projective point 〈X, Y, Z〉 that is not the point at infinity,
and one wishes to find the affine point corresponding to it, one computes
Z−1, Z−2, Z−3 and the affine point (XZ−2, Y Z−3). The following algorithm
performs the algebra for modified projective coordinates, option (3).
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Algorithm 7.2.3 (Elliptic addition: Modified projective coordinates).
We assume an elliptic curve E(F ) over a field F with characteristic = 2, 3
(but see the note preceding Algorithm 7.2.2), given by the affine equation
y2 = x3+ax+b. For modified projective points of the general form P = 〈X, Y, Z〉,
with 〈0, 1, 0〉, 〈0,−1, 0〉 both denoting the point at infinity P = O, this algorithm
provides functions for point negation, doubling, addition, and subtraction.

1. [Elliptic negate function]
neg(P ) return 〈X, −Y, Z〉;

2. [Elliptic double function]
double(P ) {

if(Y == 0 or Z == 0) return 〈0, 1, 0〉;
M = (3X2 + aZ4); S = 4XY 2;
X ′ = M2 − 2S; Y ′ = M(S − X2) − 8Y 4; Z ′ = 2Y Z;
return 〈X ′, Y ′, Z ′〉;

}
3. [Elliptic add function]

add(P1, P2) {
if(Z1 == 0) return P2; // Point P1 = O.
if(Z2 == 0) return P1; // Point P2 = O.
U1 = X2Z

2
1 ; U2 = X1Z

2
2 ;

S1 = Y2Z
3
1 ; S2 = Y1Z

3
2 ;

W = U1 − U2; R = S1 − S2;
if(W == 0) { // x-coordinates match.

if(R == 0) return double(P1);
return 〈0, 1, 0〉;

}
T = U1 + U2; M = S1 + S2;
X3 = R2 − TW 2;
Y3 = 1

2 ((TW 2 − 2X3)R − MW 3);
Z3 = Z1Z2W ;
return 〈X3, Y3, Z3〉;

}
4. [Elliptic subtract function]

sub(P1, P2) {
return add(P1, neg(P2));

}

It should be stressed that in all of our elliptic addition algorithms, if
arithmetic is in Zn, modular reductions are taken whenever intermediate
numbers exceed the modulus. This option (3) algorithm (modified projective
coordinates) obviously has more field multiplications than does option (1)
(affine coordinates), but as we have said, the idea is to avoid inversions (see
Exercise 7.9). It is to be understood that in implementing Algorithm 7.2.3
one should save some of the intermediate calculations for further use; not all
of these are explicitly described in our algorithm display above. In particular,
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for the elliptic add function, the value W 2 used for X3 is recalled in the
calculation of W 3 needed for Y3, as is the value of TW 2. If such care is
taken, the function double() consumes 10 field multiplications. (However, for
small a or the special case a = −3 in the field, this count of 10 can be
reduced further; see Exercise 7.10.) The general addition function add(), on
the other hand, requires 16 field multiplications, but there is an important
modification of this estimate: When Z1 = 1 only 11 multiplies are required.
And this side condition is very common; in fact, it is forced to hold within
certain classes of multiplication ladders. (In the case of ordinary projective
coordinates discussed before Algorithm 7.2.3 assuming Z1 = 1 reduces the 14
multiplies necessary for general addition also to 11.)

Having discussed options (1), (2), (3) for elliptic arithmetic, we are now
at an appropriate juncture to discuss elliptic multiplication, the problem of
evaluating [n]P for integer n acting on points P ∈ E. One can, of course, use
Algorithm 2.1.5 for this purpose. However, since doubling is so much cheaper
than adding two unequal points, and since subtracting has the same cost
as adding, the method of choice is a modified binary ladder, the so-called
addition–subtraction ladder. For most numbers n the ratio of doublings to
addition–subtraction operations is higher than for standard binary ladders
as in Algorithm 2.1.5, and the overall number of calls to elliptic arithmetic
is lower. Such a method is good whenever the group inverse (i.e., negation)
is easy—for elliptic curves one just flips the sign of the y-coordinate. (Note
that a yet different ladder approach to elliptic multiplication will be exhibited
later, as Algorithm 7.2.7.)

Algorithm 7.2.4 (Elliptic multiplication: Addition–subtraction ladder).
This algorithm assumes functions double(), add(), sub() from either Algorithm
7.2.2 or 7.2.3, and performs the elliptic multiplication [n]P for nonnegative inte-
ger n and point P ∈ E. We assume a B-bit binary representation of m = 3n as a
sequence of bits (mB−1, . . . , m0), and a corresponding B-bit representation (nj)
for n (which representation is zero-padded on the left to B bits), with B = 0 for
n = 0 understood.

1. [Initialize]
if(n == 0) return O; // Point at infinity.
Q = P ;

2. [Compare bits of 3n, n]
for(B − 2 ≥ j ≥ 1) {

Q = double(Q);
if((mj , nj) == (1, 0)) Q = add(Q, P );
if((mj , nj) == (0, 1)) Q = sub(Q, P );

}
return Q;

The proof that this algorithm works is encountered later as Exercise 9.30.
There is a fascinating open research area concerning the best way to construct
a ladder. See Exercise 9.77 in this regard.
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Before we discuss option (4) for elliptic arithmetic, we bring in an
extraordinarily useful idea, one that has repercussions far beyond option (4).

Definition 7.2.5. If E(F ) is an elliptic curve over a field F , governed by
the equation y2 = x3 + Cx2 + Ax + B, and g is a nonzero element of F ,
then the quadratic twist of E by g is the elliptic curve over F governed by the
equation gy2 = x3+Cx2+Ax+B. By a change of variables X = gx, Y = g2y,
the Weierstrass form for this twist curve is Y 2 = X3 + gCX2 + g2AX + g3B.

We shall find that in some contexts it will be useful to leave the curve in the
form gy2 = x3 + Cx2 + Ax + B, and in other contexts, we shall wish to use
the equivalent Weierstrass form.

An immediate observation is that if g, h are nonzero elements of the field
F , then the quadratic twist of an elliptic curve by g gives a group isomorphic
to the quadratic twist of the curve by gh2. (Indeed, just let a new variable Y
be hy. To see that the groups are isomorphic, a simple check of the formulae
involved suffices.) Thus, if Fq is a finite field, there is really only one quadratic
twist of an elliptic curve E(Fq) that is different from the curve itself. This
follows, since if g is not a square in Fq, then as h runs over the nonzero
elements of Fq, gh2 runs over all of the nonsquares. This unique nontrivial
quadratic twist of E(Fq) is sometimes denoted by E′(Fq), especially when we
are not particularly interested in which nonsquare is involved in the twist.

Now for option (4), homogeneous coordinates with “Y ” dropped. We shall
discuss this for a twist curve gy2 = x3+Cx2+Ax+B; see Definition 7.2.5. We
first develop the idea using affine coordinates. Suppose P1, P2 are affine points
on an elliptic curve E(F ) with P1 = ±P2. One can write down via Definition
7.1.2 (generalized for the presence of “g”) expressions for x+, x−, namely,
the x-coordinates of P1 + P2 and P1 − P2, respectively. If these expressions
are multiplied, one sees that the y-coordinates of P1, P2 appear only to even
powers, and so may be replaced by x-expressions, using the defining curve
gy2 = x3 + Cx2 + Ax + B. Somewhat miraculously the resulting expression
is subject to much cancellation, including the disappearance of the parameter
g. The equations are stated in the following result from [Montgomery 1987,
1992a], though we generalize them here to a quadratic twist of any curve that
is given by equation (7.5).

Theorem 7.2.6 (Generalized Montgomery identities). Given an elliptic
curve E determined by the cubic

gy2 = x3 + Cx2 + Ax + B,

and two points P1 = (x1, y1), P2 = (x2, y2), neither being O, denote by x±
respectively the x-coordinates of P1 ± P2. Then if x1 = x2, we have

x+x− =
(x1x2 − A)2 − 4B(x1 + x2 + C)

(x1 − x2)2
,
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whereas if x1 = x2 and 2P1 = O, we have

x+ =
(x2

1 − A)2 − 4B(2x1 + C)
4(x3

1 + Cx2
1 + Ax1 + B)

.

Note that g is irrelevant in the theorem, in the sense that the algebra for
combining x-coordinates is independent of g; in fact, one would only use g if a
particular starting y-coordinate were involved, but of course the main thrust of
Montgomery parameterization is to ignore y-coordinates. We remind ourselves
that the case C = 0 reduces to the ordinary Weierstrass form given by (7.4).
However, as Montgomery noted, the case B = 0 is especially pleasant: For
example, we have the simple relation

x+x− =
(x1x2 − A)2

(x1 − x2)2
.

We shall see in what follows how this sort of relation leads to computationally
efficient elliptic algebra.

The idea is to use an addition chain to arrive at [n]P , where whenever
we are to add two unequal points P1, P2, we happen to know already what
P1 − P2 is. This magic is accomplished via the Lucas chain already discussed
in Section 3.6.3. In the current notation, we will have at intermediate steps a
pair [k]P, [k +1]P , and from this we shall form either the pair [2k]P, [2k +1]P
or the pair [2k + 1]P, [2k + 2]P , depending on the bits of n. In either case,
we perform one doubling and one addition. And for the addition, we already
know the difference of the two points added, namely P itself.

To avoid inversions, we adopt the homogeneous coordinates of option (2),
but we drop the “Y ” coordinate. Since the coordinates are homogeneous, when
we have the pair [X : Z], it is only the ratio X/Z that is determined (when
Z = 0). The point at infinity is recognized as the pair [0 : 0]. Suppose we
have points P1, P2 in homogeneous coordinates on an elliptic curve given by
equation (7.5), and P1, P2 are not O, P1 = P2. If

P1 = [X1, Y1, Z1], P2 = [X2, Y2, Z2],

P1 + P2 = [X+, Y+, Z+], P1 − P2 = [X−, Y−, Z−],

then on the basis of Theorem 7.2.6 it is straightforward to establish, in the
case that X− = 0, that we may take

X+ = Z−
(
(X1X2 − AZ1Z2)2 − 4B(X1Z2 + X2Z1 + CZ1Z2)Z1Z2

)
,

(7.6)
Z+ = X−(X1Z2 − X2Z1)2.

These equations define the pair X+, Z+ as a function of the six quantities
X1, Z1, X2, Z2, X−, Z−, with Y1, Y2 being completely irrelevant. We denote
this function by

[X+ : Z+] = addh([X1 : Z1], [X2 : Z2], [X− : Z−]),
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the “h” in the function name emphasizing the homogeneous nature of each
[X : Z] pair. The definition of addh can easily be extended to any case where
X−Z− = 0. That is, it is possible to allow one of [X1 : Z1], [X2 : Z2] to be
[0 : 0]. In particular, if [X1 : Z1] = [0 : 0] and [X2 : Z2] is not [0 : 0], then we
may define addh([0 : 0], [X2 : Z2], [X2 : Z2]) as [X2 : Z2] (and so not use the
above equations). We may proceed similarly if [X2 : Z2] = [0 : 0] and [X1 : Z1]
is not [0 : 0]. In the case of P1 = P2, we have a doubling function

[X+ : Z+] = doubleh([X1 : Z1]),

where

X+ =
(
X2

1 − AZ2
1
)2 − 4B(2X1 + CZ1)Z3

1 ,

(7.7)
Z+ = 4Z1

(
X3

1 + CX2
1Z1 + AX1Z

2
1 + BZ3

1
)
.

The function doubleh works in all cases, even [X1 : Z1] = [0 : 0]. Let us see,
for example, how we might compute [X : Z] for [13]P , with P a point on an
elliptic curve. Say [k]P = [Xk : Yk]. We have

[13]P = ([2]([2]P ) + ([2]P + P )) + ([2]([2]P + P )),

which is computed as follows:

[X2 : Z2] = doubleh([X1 : Z1]),
[X3 : Z3] = addh([X2 : Z2], [X1 : Z1], [X1 : Z1]),
[X4 : Z4] = doubleh([X2 : Z2]),
[X6 : Z6] = doubleh([X3 : Z3]),
[X7 : Z7] = addh([X4 : Z4], [X3 : Z3], [X1 : Z1]),

[X13 : Z13] = addh([X7 : Z7], [X6 : Z6], [X1 : Z1]).

(For this to be accurate, we must assume that X1 = 0.) In general, we may
use the following algorithm, which essentially contains within it Algorithm
3.6.7 for computing a Lucas chain.

Algorithm 7.2.7 (Elliptic multiplication: Montgomery method). This al-
gorithm assumes functions addh() and doubleh() as described above and at-
tempts to perform the elliptic multiplication of nonnegative integer n by point
P = [X : any : Z], in E(F ), with XZ = 0, returning the [X : Z] coordinates of
[n]P . We assume a B-bit binary representation of n > 0 as a sequence of bits
(nB−1, . . . , n0).
1. [Initialize]

if(n == 0) return O; // Point at infinity.
if(n == 1) return [X : Z]; // Return the original point P .
if(n == 2) return doubleh([X : Z]);
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2. [Begin Montgomery adding/doubling ladder]
[U : V ] = [X : Z]; // Copy coordinate.
[T : W ] = doubleh([X : Z]);

3. [Loop over bits of n, starting with next-to-highest]
for(B − 2 ≥ j ≥ 0) {

if(nj == 1) {
[U : V ] = addh([T : W ], [U : V ], [X : Z]);
[T : W ] = doubleh([T : W ]);

} else {
[T : W ] = addh([U : V ], [T : W ], [X : Z]);
[U : V ] = doubleh([U : V ]);

}
}

4. [Final calculation]
if(n0 == 1) return addh([U : V ], [T : W ], [X : Y ]);
return doubleh([U : V ]);

Montgomery’s rules when B = 0 make for an efficient algorithm, as can
be seen from the simplification of the addh() and doubleh() function forms.
In particular, the addh() and doubleh() functions can each be done in 9
multiplications. In the case B = 0, A = 1, the operation count drops further.

We have noted that to get the affine x-coordinate of [n]P , one must
compute XZ−1 in the field. When n is very large, the single inversion is,
of course, not expensive in comparison. But such inversion can sometimes
be avoided entirely. For example, if, as in factoring studies covered later, we
wish to know whether [n]P = [m]P in the elliptic-curve group, it is enough
to check whether the cross product XnZm − XmZn vanishes, and this is yet
another inversion-free task. Similarly, there is a very convenient fact: If the
point at infinity has been attained by some multiple [n]P = O, then the Z
denominator will have vanished, and any further multiples [mn]P will also
have vanishing Z denominator. Because of this, one need not find the precise
multiple when O is attained; the fact of Z = 0 propagates nicely through
successive applications of the elliptic multiply functions.

We have observed that only x-coordinates of multiples [n]P are processed
in Algorithm 7.2.7, and that ignorance of y values is acceptable in certain
implementations. It is not easy to add two arbitrary points with the
homogeneous coordinate approach above, because of the suppression of y
coordinates. But all is not lost: There is a useful result that tells very quickly
whether the sum of two points can possibly be a given third point. That is,
given merely the x-coordinates of two points P1, P2 the following algorithm
can be used to determine the two x-coordinates for the pair P1 ±P2, although
which of the coordinates goes with the + and which with − will be unknown.
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Algorithm 7.2.8 (Sum/difference without y-coordinates (Crandall)). For
an elliptic curve E determined by the cubic

y2 = x3 + Cx2 + Ax + B,

we are given the unequal x-coordinates x1, x2 of two respective points P1, P2.
This algorithm returns a quadratic polynomial whose roots are (in unspecified
order) the x-coordinates of P1 ± P2.

1. [Form coefficients]
G = x1 − x2;
α = (x1x2 + A)(x1 + x2) + 2(Cx1x2 + B);
β = (x1x2 − A)2 − 4B(x1 + x2 + C);

2. [Return quadratic polynomial]
return G2X2 − 2αX + β;

// This polynomial vanishes for x+, x−, the x-coordinates of P1 ± P2.

It turns out that the discriminant 4(α2 − βG2) must always be square in the
field, so that if one requires the explicit pair of x-coordinates for P1 ± P2, one
may calculate (

α ±
√

α2 − βG2
)

G−2

in the field, to obtain x+, x−, although again, which sign of the radical goes
with which coordinate is unspecified (see Exercise 7.11). The algorithm thus
offers a test of whether P3 = P1±P2 for a set of three given points with missing
y-coordinates; this test has value in certain cryptographic applications, such as
digital signature [Crandall 1996b]. Note that the missing case of the algorithm,
x1 = x2 is immediate: One of P1 ± P2 is O, the other has x-coordinate as in
the last part of Theorem 7.2.6. For more on elliptic arithmetic, see [Cohen et
al. 1998]. The issue of efficient ladders for elliptic arithmetic is discussed later,
in Section 9.3.

7.3 The theorems of Hasse, Deuring, and Lenstra

A fascinating and difficult problem is that of finding the order of an elliptic
curve group defined over a finite field, i.e., the number of points including
O on an elliptic curve Ea,b(F ) for a finite field F . For field Fp, with prime
p > 3, we can immediately write out an exact expression for the order #E
by observing, as we did in the simple Algorithm 7.2.1, that for (x, y) to be a
point, the cubic form in x must be a square in the field. Using the Legendre
symbol we can write

#E (Fp) = p + 1 +
∑

x∈Fp

(
x3 + ax + b

p

)
(7.8)

as the required number of points (x, y) (mod p) that solve the cubic (mod p),
with of course 1 added for the point at infinity. This equation may be
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generalized to fields Fpk as follows:

#E
(
Fpk

)
= pk + 1 +

∑
x∈F

pk

χ(x3 + ax + b),

where χ is the quadratic character for Fpk . (That is, χ(u) = 1,−1, 0,
respectively, depending on whether u is a nonzero square in the field, not
a square, or 0.) A celebrated result of H. Hasse is the following:

Theorem 7.3.1 (Hasse). The order #E of Ea,b(Fpk) satisfies

∣∣(#E) − (pk + 1)
∣∣ ≤ 2

√
pk.

This remarkable result strikes to the very heart of elliptic curve theory and
applications thereof. Looking at the Hasse inequality for Fp, we see that

p + 1 − 2
√

p < #E < p + 1 + 2
√

p.

There is an attractive heuristic connection between this inequality and the
alternative relation (7.8). Namely, think of the Legendre symbol

(
x3+ax+b

p

)
as a “random walk,” i.e., a walk driven by coin flips of value ±1 except
for possible symbols

(0
p

)
= 0. It is known from statistical theory that the

expected absolute distance from the origin after summation of n such random
±1 flips is proportional to

√
n. Certainly, the Hasse theorem gives the “right”

order of magnitude for the excursions away from p for the possible orders
of #Ea,b(Fp). At a deeper heuristic level one must have caution, however:
As mentioned in Section 1.4.2, the ratio of such a random walk’s position
to

√
n can be expected to diverge something like ln lnn. The Hasse theorem

says this cannot happen—the stated ratio is bounded by 2. Indeed, there
are certain subtle features of Legendre-symbol statistics that reveal departure
from randomness (see Exercise 2.41).

Less well known is a theorem from [Deuring 1941], saying that for any
integer m ∈ (p+1− 2

√
p, p+1+2

√
p), there exists some pair (a, b) in the set

{(a, b) : a, b ∈ Fp; 4a3 + 27b2 = 0}

such that #Ea,b(Fp) = m. What the Deuring theorem actually says is that the
number of curves—up to isomorphism—of order m is the so-called Kronecker
class number of (p+1−m)2 −4m. In [Lenstra 1987], these results of Hasseand
Deuring are exploited to say something about the statistics of curve orders
over a given field Fp, as we shall now see.

In applications to factoring, primality testing, and cryptography, we are
concerned with choosing a random elliptic curve and then asking for the
likelihood of the curve order possessing a particular arithmetic property, such
as being smooth, being easily factorable, or being prime. However, there are
two possible ways of choosing a random curve. One is to just choose a, b
at random and be done with it. But sometimes we also would like to have
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a random point on the curve. If one is working with a true elliptic curve
over a finite field, points on it can easily be found via Algorithm 7.2.1. But
if one is working over Zn with n composite, the call to the square root in
this algorithm is not likely to be useful. However, it is possible to completely
bypass Algorithm 7.2.1 and find a random curve and a point on it by choosing
the point before the curve is fully defined! Namely, choose a at random, then
choose a point (x0, y0) at random, then choose b such that (x0, y0) is on the
curve y2 = x3 + ax + b; that is, b = y2

0 − x3
0 − ax0.

With these two approaches to finding a random curve, we can formalize
the question of the likelihood of the curve order having a particular property.
Suppose p is a prime larger than 3, and let S be a set of integers in the
Hasse interval (p + 1 − 2

√
p, p + 1 + 2

√
p). For example, S might be the set

of B-smooth numbers in the interval for some appropriate value of B (see
Section 1.4.5), or S might be the set of prime numbers in the interval, or the
set of doubles of primes. Let N1(S) be the number of pairs (a, b) ∈ F2

p with
4a3 + 27b2 = 0 and with #Ea,b(Fp) ∈ S. Let N2(S) be the number of triples
(a, x0, y0) ∈ F3

p such that for b = y2
0 − x3

0 − ax0, we have 4a3 + 27b2 = 0
and #Ea,b(Fp) ∈ S. What would we expect for the counts N1(S), N2(S)? For
the first count, there are p2 choices for a, b to begin with, and each number
#Ea,b(Fp) falls in an interval of length 4

√
p, so we might expect N1(S) to be

about 1
4 (#S)p3/2. Similarly, we might expect N2(S) to be about 1

4 (#S)p5/2.
That is, in each case we expect the probability that the curve order lands
in the set S to be about the same as the probability that a random integer
chosen from (p+1−2

√
p, p+1+2

√
p) lands in S. The following theorem says

that this is almost the case.

Theorem 7.3.2 (Lenstra). There is a positive number c such that if p > 3
is prime and S is a set of integers in the interval (p + 1 − 2

√
p, p + 1 + 2

√
p)

with at least 3 members, then

N1(S) > c(#S)p3/2/ ln p, N2(S) > c(#S)p5/2/ ln p.

This theorem is proved in [Lenstra 1987], where also upper bounds, of the
same approximate order as the lower bounds, are given.

7.4 Elliptic curve method

A subexponential factorization method of great elegance and practical
importance is the elliptic curve method (ECM) of H. Lenstra. The elegance
will be self-evident. The practical importance lies in the fact that unlike QS
or NFS, ECM complexity to factor a number n depends strongly on the size
of the least prime factor of n, and only weakly on n itself. For this reason,
many factors of truly gigantic numbers have been uncovered in recent years;
many of these numbers lying well beyond the range of QS or NFS.

Later in this section we exhibit some explicit modern ECM successes that
exemplify the considerable power of this method.
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7.4.1 Basic ECM algorithm

The ECM algorithm uses many of the concepts of elliptic arithmetic developed
in the preceding sections. However, we shall be applying this arithmetic to a
construct Ea,b(Zn), something that is not a true elliptic curve, when n is a
composite number.

Definition 7.4.1. For elements a, b in the ring Zn, with gcd(n, 6) = 1 and
discriminant condition gcd(4a3 + 27b2, n) = 1, an elliptic pseudocurve over
the ring is a set

Ea,b(Zn) = {(x, y) ∈ Zn × Zn : y2 = x3 + ax + b} ∪ {O},

where O is the point at infinity. (Thus an elliptic curve over Fp = Zp from
Definition 7.1.1 is also an elliptic pseudocurve.)

(Curves given in the form (7.5) are also considered as pseudocurves, with the
appropriate discriminant condition holding.) We have seen in Section 7.1 that
when n is prime, the point at infinity refers to the one extra projective point
on the curve that does not correspond to an affine point. When n is composite,
there are additional projective points not corresponding to affine points, yet
in our definition of pseudocurve, we still allow only the one extra point,
corresponding to the projective solution [0, 1, 0]. Because of this (intentional)
shortchanging in our definition, the pseudocurve Ea,b(Zn), together with the
operations of Definition 7.1.2, does not form a group (when n is composite).
In particular, there are pairs of points P, Q for which “P + Q” is undefined.
This would be detected in the construction of the slope m in Definition 7.1.2;
since Zn is not a field when n is composite, one would be called upon to
invert a nonzero member of Zn that is not invertible. This group-law failure
is the motive for the name “pseudocurve,” yet, happily, there are powerful
applications of the pseudocurve concept. In particular, Algorithm 2.1.4 (the
extended Euclid algorithm), if called upon to find the inverse of a nonzero
member of Zn that is in fact noninvertible, will instead produce a nontrivial
factor of n. It is Lenstra’s ingenious idea that through this failure of finding
an inverse, we shall be able to factor the composite number n.

We note in passing that the concept of elliptic multiplication on a
pseudocurve depends on the addition chain used. For example, [5]P may be
perfectly well computable if one computes it via P → [2]P → [4]P → [5]P ,
but the elliptic addition may break down if one tries to compute it via
P → [2]P → [3]P → [5]P . Nevertheless, if two different addition chains
to arrive at [k]P both succeed, they will give the same answer.

Algorithm 7.4.2 (Lenstra elliptic curve method (ECM)). Given a com-
posite number n to be factored, gcd(n, 6) = 1, and n not a proper power, this
algorithm attempts to uncover a nontrivial factor of n. There is a tunable param-
eter B1 called the “stage-one limit” in view of further algorithmic stages in the
modern ECM to follow.

1. [Choose B1 limit]
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B1 = 10000; // Or whatever is a practical initial “stage-one limit” B1.

2. [Find curve Ea,b(Zn) and point (x, y) ∈ E]
Choose random x, y, a ∈ [0, n − 1];
b = (y2 − x3 − ax) mod n;
g = gcd(4a3 + 27b2, n);
if(g == n) goto [Find curve . . .];
if(g > 1) return g; // Factor is found.
E = Ea,b(Zn); P = (x, y); // Elliptic pseudocurve and point on it.

3. [Prime-power multipliers]
for(1 ≤ i ≤ π(B1)) { // Loop over primes pi.

Find largest integer ai such that pai
i ≤ B1;

for(1 ≤ j ≤ ai) { // j is just a counter.
P = [pi]P , halting the elliptic algebra if the computation of

some d−1 for addition-slope denominator d signals a nontrivial
g = gcd(n, d), in which case return g;

// Factor is found.
}

}
4. [Failure]

Possibly increment B1; // See text.
goto [Find curve . . .];

What we hope with basic ECM is that even though the composite n allows
only a pseudocurve, an illegal elliptic operation—specifically the inversion
required for slope calculation from Definition 7.1.2—is a signal that for some
prime p|n we have

[k]P = O, where k =
∏

p
ai
i

≤B1

pai
i ,

with this relation holding on the legitimate elliptic curve Ea,b(Fp). Further-
more, we know from the Hasse Theorem 7.3.1 that the order #Ea,b(Fp) is in
the interval (p+1−2

√
p, p+1+2

√
p). Evidently, we can expect a factor if the

multiplier k is divisible by #E(Fp), which should, in fact, happen if this order
is B1-smooth. (This is not entirely precise, since for the order to be B1-smooth
it is required only that each of its prime factors be at most B1, but in the
above display, we have instead the stronger condition that each prime power
divisor of the order is at most B1. We could change the inequality defining ai

to pai
i ≤ n + 1 + 2

√
n, but in practice the cost of doing so is too high for the

meager benefit it may provide.) We shall thus think of the stage-one limit B1
as a smoothness bound on actual curve orders in the group determined by the
hidden prime factor p.

It is instructive to compare ECM with the Pollard p−1 method (Algorithm
5.4.1). In the p − 1 method one has only the one group Z∗

p (with order p − 1),
and one is successful if this group order is B-smooth. With ECM one has
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a host of elliptic-curve groups to choose from randomly, each giving a fresh
chance at success.

With these ideas, we may perform a heuristic complexity estimate for
ECM. Suppose the number n to be factored is composite, coprime to 6, and
not a proper power. Let p denote the least prime factor of n and let q denote
another prime factor of n. Algorithm 7.4.2 will be successful in splitting n if
we choose a, b, P in Step [Find curve . . .] and if for some value of k of the form

k = pa
l

∏
i<l

pai
i ,

where l ≤ π(B1) and a ≤ al, we have

[k]P = O on Ea,b(Fp), [k]P = O on Ea,b(Fq).

The likelihood of these two events occurring is dominated by the first, and
so we shall ignore the second. As mentioned above, the first event will occur
if #Ea,b(Fp) is B1-smooth. From Theorem 7.3.2, the probability prob(B1) of
success is greater than

c
ψ(p + 1 + 2

√
p, B1) − ψ(p + 1 − 2

√
p, B1)√

p ln p
.

Here the notation ψ(x, y) is as in (1.42). Since it takes about B1 arithmetic
steps to perform the trial for one curve in Step [Prime-power multipliers],
we would like to choose B1 so as to minimize the expression B1/prob(B1).
Assuming that prob(B1) is about the same as

c
ψ( 3

2p, B1) − ψ( 1
2p, B1)

p ln p
,

so that we can use the estimates discussed in Section 1.4.5, we have that this
minimum occurs when

B1 = exp
(
(
√

2/2 + o(1))
√

ln p ln ln p
)

,

and for this value of B1, the complexity estimate B1/prob(B1) is given by

exp
(
(
√

2 + o(1))
√

ln p ln ln p
)

;

see Exercise 7.12. Of course, we do not know p to begin with, and so it would
only be a divination to choose an appropriate value of B1 to begin with in
Step [Choose B1 limit]. Thus, the algorithm instructs us to start with a low
B1 value of 10000, and then possibly to raise this value in Step [Failure].
In practice, what is done is that one value of B1 is run sufficiently many
times without success for one to become convinced that a higher value is
called for, perhaps double the prior value, and this procedure is iterated. Of
course, another option in Step [Failure] is to abort and so give up on the
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factorization attempt completely. When the B1 value is gradually increased
in ECM, one then expects success when B1 finally reaches the critical range
displayed above, and that the time spent unsuccessfully with smaller B1’s is
negligible in comparison.

So, in summary, the heuristic expected complexity of ECM to give a
nontrivial factorization of n with least prime factor p is L(p)

√
2+o(1) arithmetic

steps with integers the size of n, using the notation from (6.1). (Note that the
error expression “o(1)” tends to 0 as p tends to infinity.) Thus, the larger the
least prime factor of n, the more arithmetic steps are expected. The worst
case occurs when n is the product of two roughly equal primes, in which case
the expected number of steps can be expressed as L(n)1+o(1), which is exactly
the same as the heuristic complexity of the quadratic sieve; see Section 6.1.1.
However, due to the higher precision of a typical step in ECM, we generally
prefer to use the QS method, or the NFS method, for worst-case numbers. If
we are presented with a number n that is unknown to be in the worst case,
it is usually recommended to try ECM first, and only after a fair amount of
time is spent with this method should QS or NFS be initiated. But if the
number n is so large that we know beforehand that QS or NFS would be out
of the question, it leaves ECM as the only current option. Who knows, we
may get lucky! Here, “luck” can play either of two roles: The number under
consideration may indeed have a small enough prime factor to discover with
ECM, or upon implementing ECM, we may hit upon a fortunate choice of
parameters sooner than expected and find an impressive factor. In fact, one
interesting feature of ECM is that the variance in the expected number of
steps is large since we are counting on just one successful event to occur.

It is interesting that the heuristic complexity estimate for the ECM may
be made completely rigorous except for the one assumption we made that
integers in the Hasse interval are just as likely to be smooth as typical integers
in the larger interval (p/2, 3p/2); see [Lenstra 1987].

In the discussion following we describe some optimizations of ECM. These
improvements do not materially affect the complexity estimate. but they do
help considerably in practice.

7.4.2 Optimization of ECM

As with the Pollard (p − 1) method (Section 5.4), on which the ECM is
based, there is a natural, second stage continuation. In view of the remarks
following Algorithm 7.4.2, assume that the order #Ea,b(Fp) is not B1-smooth
for whatever practical choice of B1 has been made, so that the basic algorithm
can be expected to fail to find a factor. But we might just happen to have

#E(Fp) = q
∏

p
ai
i

≤B1

pai
i ,

where q is a prime exceeding B1. When such a single outlying prime is part
of the unknown factorization of the order, one need not have multiplied the
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current point by every prime in (B1, q]. Instead, one can use the point

Q =

⎡
⎣ ∏

pi≤B1

pai
i

⎤
⎦P,

which is the point actually “surviving” the stage-one ECM Algorithm 7.4.2,
and check the points

[q0]Q, [q0 + ∆0]Q, [q0 + ∆0 + ∆1]Q, [q0 + ∆0 + ∆1 + ∆2]Q, . . . ,

where q0 is the least prime exceeding B1, and ∆i are the differences between
subsequent primes after q0. The idea is that one can store some points

Ri = [∆i]Q,

once and for all, then quickly process the primes beyond B1 by successive
elliptic additions of appropriate Ri. The primary gain to be realized here
is that to multiply a point by a prime such as q requires O(ln q) elliptic
operations, while addition of a precomputed Ri is, of course, one operation.

Beyond this “stage-two” optimization and variants thereupon, one may
invoke other enhancements such as
(1) Special parameterization to easily obtain random curves.
(2) Choice of curves with order known to be divisible by 12 or 16 [Montgomery

1992a], [Brent et al. 2000].
(3) Enhancements of large-integer arithmetic and of the elliptic algebra itself,

say by FFT.
(4) Fast algorithms applied to stage two, such as “FFT extension” which is

actually a polynomial-evaluation scheme applied to sets of precomputed
x-coordinates.

Rather than work through such enhancements with incremental algorithm
exhibitions, we instead adopt a specific strategy: We shall discuss the above
enhancements briefly, then exhibit a single, practical algorithm containing
many of said enhancements.

On enhancement (1) above, a striking feature our eventual algorithm will
enjoy is that one need not involve y-coordinates at all. In fact, the algorithm
will use the Montgomery parameterization

gy2 = x3 + Cx2 + x,

with elliptic multiplication carried out via Algorithm 7.2.7. Thus a point
will have the general homogeneous form P = [X, any, Z] = [X : Z] (see
Section 7.2 for a discussion of the notation), and we need only track the
residues X, Z (mod n). As we mentioned subsequent to Algorithm 7.2.7, the
appearance of the point-at-infinity O during calculation on a curve over Fp,
where p|n, is signified by the vanishing of denominator Z, and such vanishing
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propagates forever afterward during further evaluations of functions addh()
and doubleh(). Thus, the parameterization in question allows us to continually
check gcd(n, Z), and if this is ever greater than 1, it may well be the hidden
factor p. In practice, we “accumulate” Z-coordinates, and take the gcd only
rarely, for example after stage one, and as we shall see, one final time after a
stage two.

On enhancement (2), it is an observation of Suyama that under
Montgomery parameterization the group order #E is divisible by 4. But
one can press further, to ensure that the order be divisible by 8, 12, or even
16. Thus, in regard to enhancement (2) above, we can make good use of a
convenient result [Brent et al. 2000]:

Theorem 7.4.3 (ECM curve construction). Define an elliptic curve
Eσ(Fp) to be governed by the cubic

y2 = x3 + C(σ)x2 + x,

where C depends on field parameter σ = 0, 1, 5 according to

u = σ2 − 5,

v = 4σ,

C(σ) =
(v − u)3(3u + v)

4u3v
− 2.

Then the order of Eσ is divisible by 12, and moreover, either on E or a twist
E′ (see Definition 7.2.5) there exists a point whose x-coordinate is u3v−3.

Now we can ignite any new curve attempt by simply choosing a random σ.
We use, then, Algorithm 7.2.7 with homogeneous x-coordinatization starting
in the form X/Z = u3/v3, proceeding to ignore all y-coordinates throughout
the factorization run. What is more, we do not even care whether an initial
point is on E or its twist, again because y-coordinate ignorance is allowed.

On enhancements (3), there are ideas that can reduce stage-two compu-
tations. One trick that some researchers enjoy is to use a “birthday paradox”
second stage, which amounts to using semirandom multiples for two sets of co-
ordinates, and this can sometimes yield performance advantages [Brent et al.
2000]. But there are some ideas that apply in the scenario of simply checking
all outlying primes q up to some “stage-two limit” B2 > B1; that is, with-
out any special list-matching schemes. Here is a very practical method that
reduces the computational effort asymptotically down to just two (or fewer)
multiplies (mod n) for each outlying prime candidate. We have already argued
above that if qn, qn+1 are consecutive primes, one can add some stored multi-
ple [∆n]Q to any current calculation [qn]Q to get the next point [qn+1]Q, and
that this involves just one elliptic operation per prime qm. Though that may be
impressive, we recall that an elliptic operation is a handful, say, of multiplies
(mod n). We can bring the complexity down simply, yet dramatically, as fol-
lows. If we know, for some prime r, the multiple [r]Q = [Xr : Zr] and we have
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in hand a precomputed, stored set of difference multiples [∆]Q = [X∆ : Z∆],
where ∆ has run over some relatively small finite set {2, 4, 6, . . .}; then a prime
s near to but larger than r can be checked as the outlying prime, by noting
that a “successful strike”

[s]Q = [r + ∆]Q = O

can be tested by checking whether the cross product

XrZ∆ − X∆Zr

has a nontrivial gcd with n. Thus, armed with enough multiples [∆]Q, and
a few occasional points [r]Q, we can check outlying prime candidates with 3
multiplies (mod n) per candidate. Indeed, beyond the 2 multiplies for the cross
product, we need to accumulate the product

∏
(XrZ∆−X∆Zr) in expectation

of a final gcd of such a product with n. But one can reduce the work still
further, by observing that

XrZ∆ − X∆Zr = (Xr − X∆)(Zr + Z∆) + X∆Z∆ − XrZr.

Thus, one can store precomputed values X∆, Z∆, X∆Z∆, and use isolated
values of Xr, Zr, XrZr for well-separated primes r, to bring the cost of
stage two asymptotically down to 2 multiplies (mod n) per outlying prime
candidate, one for the right-hand side of the identity above and one for
accumulation.

As exemplified in [Brent et al. 2000], there are even more tricks for
such reduction of stage-two ECM work. One of these is also pertinent to
enhancement (3) above, and amounts to mixing into various identities the
notion of transform-based multiplication (see Section 9.5.3). These methods
are most relevant when n is sufficiently large, in other words, when n is in
the region where transform-based multiply is superior to “grammar-school”
multiply. In the aforementioned identity for cross products, one can actually
store transforms (for example DFT’s)

X̂r, Ẑr,

in which case the product (Xr − X∆)(Zr + Z∆) now takes only 1/3 of
a (transform-based) multiply. This dramatic reduction is possible because
the single product indicated is to be done in spectral space, and so is
asymptotically free, the inverse transform alone accounting for the 1/3. Similar
considerations apply to the accumulation of products; in this way one can get
down to about 1 multiply per outlying prime candidate. Along the same lines,
the very elliptic arithmetic itself admits of transform enhancement. Under the
Montgomery parameterization in question, the relevant functions for curve
arithmetic degenerate nicely and are given by equations (7.6) and (7.7); and
again, transform-based multiplication can bring the 6 multiplies required for
addh() down to 4 transform-based multiplies, with similar reduction possible
for doubleh() (see remarks following Algorithm 7.4.4).
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As for enhancements (4) above, Montgomery’s polynomial-evaluation
scheme (sometimes called an “FFT extension” because of the details of how
one evaluates large polynomials via FFT) for stage two is basically to calculate
two sets of points

S = {[mi]P : i = 1, . . . , d1}, T = {[nj ]P : j = 1, . . . , d2},

where P is the point surviving stage one of ECM, d1|d2, and the integers mi, nj

are carefully chosen so that some combination mi ± nj hopefully divides the
(single) outlying prime q. This happy circumstance is in turn detected by the
fact of some x-coordinate of the S list matching with some x-coordinate of the
T list, in the sense that the difference of said coordinates has a nontrivial gcd
with n. We will see this matching problem in another guise—in preparation
for Algorithm 7.5.1. Because Algorithm 7.5.1 may possibly involve too much
machine memory, for sorting and so on, one may proceed to define a degree-d1
polynomial

f(x) =
∏
s∈S

(x − X(s)) mod n,

where the X( ) function returns the affine x-coordinate of a point. Then
one may evaluate this polynomial at the d2 points x ∈ {X(t) : t ∈ T}.
Alternatively, one may take the polynomial gcd of this f(x) and a g(x) =∏

t(x − X(t)). In any case, one can seek matches between the S, T point sets
in O

(
d1+ε
2

)
ring operations, which is lucrative in view of the alternative of

actually doing d1d2 comparisons. Incidentally, Montgomery’s idea is predated
by an approach of [Montgomery and Silverman 1990] for extensions to the
Pollard (p − 1) method.

When we invoke some such means of highly efficient stage-two calculations,
a rule of thumb is that one should spend only a certain fraction (say 1/4 to
1/2, depending on many details) of one’s total time in stage two. This rule
has arisen within the culture of modern users of ECM, and the rule’s validity
can be traced to the machine-dependent complexities of the various per-stage
operations. In practice, this all means that the stage-two limit should be
roughly two orders of magnitude over the stage-one limit, or

B2 ≈ 100B1

This is a good practical rule, effectively reducing nicely the degrees of freedom
associated with ECM in general. Now, the time to resolve one curve—with
both stages in place—is a function only of B1. What is more, there are various
tabulations of what good B1 values might be, in terms of “suspected” sizes of
hidden factors of n [Silverman and Wagstaff 1993], [Zimmermann 2000].

We now exhibit a specific form of enhanced ECM, a form that has achieved
certain factoring milestones and that currently enjoys wide use. While not
every possible enhancement is presented here, we have endeavored to provide
many of the aforementioned manipulations; certainly enough to forge a
practical implementation. The following ECM variant incorporates various
enhancements of Brent, Crandall, Montgomery, Woltman, and Zimmermann:
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Algorithm 7.4.4 (Inversionless ECM). Given a composite number n to be
factored, with gcd(n, 6) = 1, this algorithm attempts to uncover a nontrivial
factor of n. This algorithm is inversion-free, needing only large-integer multiply-
mod (but see text following).

1. [Choose criteria]
B1 = 10000; // Stage-one limit (must be even).
B2 = 100B1; // Stage-two limit (must be even).
D = 100; // Total memory is about 3D size-n integers.

2. [Choose random curve Eσ]
Choose random σ ∈ [6, n − 1]; // Via Theorem 7.4.3.
u = (σ2 − 5) mod n;
v = 4σ mod n;
C = ((v − u)3(3u + v)/(4u3v) − 2) mod n;

// Note: C determines curve y2 = x3 + Cx2 + x,
// yet, C can be kept in the form num/den.

Q = [u3 mod n : v3 mod n]; // Initial point is represented [X : Z].
3. [Perform stage one]

for(1 ≤ i ≤ π(B1)) { // Loop over primes pi.
Find largest integer a such that pa

i ≤ B1;
Q = [pa

i ]Q; // Via Algorithm 7.2.7, and perhaps use FFT
enhancements (see text following).

}
g = gcd(Z(Q), n); // Point has form Q = [X(Q) : Z(Q)].
if(1 < g < n) return g; // Return a nontrivial factor of n.

4. [Enter stage two] // Inversion-free stage two.
S1 = doubleh(Q);
S2 = doubleh(S1);
for(d ∈ [1, D]) { // This loop computes Sd = [2d]Q.

if(d > 2) Sd = addh(Sd−1, S1, Sd−2);
βd = X(Sd)Z(Sd) mod n; // Store the XZ products also.

}
g = 1;
B = B1 − 1; // B is odd.
T = [B − 2D]Q; // Via Algorithm 7.2.7.
R = [B]Q; // Via Algorithm 7.2.7.
for(r = B; r < B2; r = r + 2D) {

α = X(R)Z(R) mod n;
for(prime q ∈ [r + 2, r + 2D]) { //Loop over primes.

δ = (q − r)/2; // Distance to next prime.
// Note the next step admits of transform enhancement.

g = g((X(R) − X(Sδ))(Z(R) + Z(Sδ)) − α + βδ) mod n;
}
(R, T ) = (addh(R,SD, T ), R);

}
g = gcd(g, n);
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if(1 < g < n) return g; // Return a nontrivial factor of n.

5. [Failure]
goto [Choose random curve . . .]; // Or increase B1, B2 limits, etc.

The particular stage-two implementation suggested here involves D difference
multiples [2d]Q, and a stored XZ product for each such multiple, for a
total of 3D stored integers of size n. The stage-two scheme as presented
is asymptotically (for large n and large memory parameter D, say) two
multiplications modulo n per outlying prime candidate, which can be brought
down further if one is willing to perform large-integer inversions—of which the
algorithm as presented is entirely devoid—during stage two. Also, it is perhaps
wasteful to recompute the outlying primes over and over for each choice of
elliptic curve. If space is available, these primes might all be precomputed via
a sieve in Step [Choose criteria]. Another enhancement we did not spell out
in the algorithm is the notion that, when we check whether a cross product
XZ ′ − X ′Z has nontrivial gcd with n, we are actually checking two-point
combinations P ± P ′, since x-coordinates of plus or minus any point are the
same. This means that if two primes are equidistant from a “pivot value” r,
say q′, r, q form an arithmetic progression, then checking one cross product
actually resolves both primes.

To provide a practical ECM variant in the form of Algorithm 7.4.4,
we had to stop somewhere, deciding what detailed and sophisticated
optimizations to drop from the above presentation. Yet more optimizations
beyond the algorithm have been effected in [Montgomery 1987, 1992a],
[Zimmermann 2000], and [Woltman 2000] to considerable advantage. Various
of Zimmermann’s enhancements resulted in his discovery in 1998 of a 49-digit
factor of M2071 = 22071 − 1. Woltman has implemented (specifically for cases
n = 2m ± 1) variants of the discrete weighted transform (DWT) Algorithms
9.5.17, 9.5.19, ideas for elliptic multiplication using Lucas-sequence addition
chains as in Algorithm 3.6.7, and also the FFT-intervention technique in
[Crandall and Fagin 1994], [Crandall 1999b], with which one carries out the
elliptic algebra itself in spectral space. Along lines previously discussed, one
can perform either of the relevant doubling or adding operations (respectively,
doubleh(), addh() in Algorithm 7.2.7) in the equivalent of 4 multiplies. In other
words, by virtue of stored transforms, each of said operations requires only 12
FFTs, of which 3 such are equivalent to one integer multiply as in Algorithm
7.2.7, and thus we infer the 4-multiplies equivalence. A specific achievement
along these lines is the discovery by C. Curry and G. Woltman, of a 53-
digit factor of M667 = 2667 − 1. Because the data have considerable value for
anyone who wishes to test an ECM algorithm, we give the explicit parameters
as follows. Curry used the seed

σ = 8689346476060549,

and the stage limits

B1 = 11000000, B2 = 100B1,
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to obtain the factorization of 2677 − 1 as

1943118631 · 531132717139346021081 · 978146583988637765536217 ·
53625112691923843508117942311516428173021903300344567 · P,

where the final factor P is a proven prime. This beautiful example of serious
ECM effort—which as of this writing involves one of the largest ECM factors
yet found—looms even more beautiful when one looks at the group order
#E(Fp) for the 53-digit p above (and for the given seed σ), which is

24 · 39 · 3079 · 152077 · 172259 · 1067063 · 3682177 · 3815423 · 8867563 · 15880351.

Indeed, the largest prime factor here in #E is greater than B1, and sure
enough, as Curry and Woltman reported, the 53-digit factor of M677 was
found in stage two. Note that even though those investigators used detailed
enhancements and algorithms, one should be able to find this particular
factor—using the hindsight embodied in the above parameters—to factor
M667 with the explicit Algorithm 7.4.4. Another success is the 54-digit factor
of n = b4 − b2 + 1, where b = 643 − 1, found in January 2000 by N. Lygeros
and M. Mizony. Such a factorization can be given the same “tour” of group
order and so on that we did above for the 53-digit discovery [Zimmermann
2000]. (See Chapter 1 for more recent ECM successes.)

Other successes have accrued from the polynomial-evaluation method
pioneered by Montgomery and touched upon previously. His method was
used to discover a 47-digit factor of 5 · 2256 + 1, and for a time this stood
as an ECM record of sorts. Although requiring considerable memory, the
polynomial-evaluation approach can radically speed up stage two, as we have
explained.

In case the reader wishes to embark on an ECM implementation—a
practice that can be quite a satisfying one—we provide here some results
consistent with the notation in Algorithm 7.4.4. The 33-decimal-digit Fermat
factor listed in Section 1.3.2, namely

188981757975021318420037633 |F15,

was found in 1997 by Crandall and C. van Halewyn, with the following
parameters: B1 = 107 for stage-one limit, and the choice B2 = 50B1 for stage-
two limit, with the lucky choice σ = 253301772 determining the successful
elliptic curve Eσ. After the 33-digit prime factor p was uncovered, Brent
resolved the group order of Eσ(Fp) as

#Eσ(Fp) = (25 · 3 · 1889 · 5701 · 9883 · 11777 · 5909317) · 91704181,

where we have intentionally shown the “smooth” part of the order in
parentheses, with outlying prime 91704181. It is clear that B1 “could have
been” taken to be about 6 million, while B2 could have been about 100
million; but of course—in the words of C. Siegel—“one cannot guess the real
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difficulties of a problem before having solved it.” The paper [Brent et al. 2000]
indicates other test values for recent factors of other Fermat numbers. Such
data are extremely useful for algorithm debugging. In fact, one can effect a
very rapid program check by taking the explicit factorization of a known curve
order, starting with a point P , and just multiplying in the handful of primes,
expecting a successful factor to indicate that the program is good.

As we have discussed, ECM is especially suitable when the hidden prime
factor is not too large, even if n itself is very large. In practice, factors
discovered via ECM are fairly rare in the 30-decimal-digit region, yet more
rare in the 40-digit region, and so far have a vanishing population at say 60
digits.

7.5 Counting points on elliptic curves

We have seen in Section 7.3 that the number of points on an elliptic
curve defined over a prime finite field Fp is an integer in the interval(
(
√

p − 1)2, (
√

p + 1)2
)
. In this section we shall discuss how one may go about

actually finding this integer.

7.5.1 Shanks–Mestre method

For small primes p, less than 1000, say, one can simply carry out the explicit
sum (7.8) for #Ea,b(Fp). But this involves, without any special enhancements
(such as fast algorithms for computing successive polynomial evaluations),
O(p ln p) field operations for the O(p) instances of (p − 1)/2-th powers. One
can do asymptotically better by choosing a point P on E, and finding all
multiples [n]P for n ∈ (p + 1 − 2

√
p, p + 1 + 2

√
p), looking for an occurrence

[n]P = O. (Note that this finds only a multiple of the order of P—it is the
actual order if it occurs that the order of P has a unique multiple in the
interval (p + 1 − 2

√
p, p + 1 + 2

√
p), an event that is not unlikely.) But this

approach involves O(
√

p ln p) field operations (with a fairly large implied big-O
constant due to the elliptic arithmetic), and for large p, say greater than 1010,
this becomes a cumbersome method. There are faster O

(√
p lnk p

)
algorithms

that do not involve explicit elliptic algebra (see Exercise 7.26), but these, too,
are currently useless for primes of modern interest in the present context,
say p ≈ 1050 and beyond, this rough threshold being driven in large part by
practical cryptography. All is not lost, however, for there are sophisticated
modern algorithms, and enhancements to same, that press the limit on point
counting to more acceptable heights.

There is an elegant, often useful, O(p1/4+ε) algorithm for assessing curve
order. We have already visited the basic idea in Algorithm 5.3.1, the baby-
steps, giant-steps method of Shanks (for discrete logarithms). In essence this
algorithm exploits a marvelous answer to the following question: If we have two
length-N lists of numbers, say A = {A0, . . . , AN−1} and B = {B0, . . . , BN−1},
how many operations (comparisons) are required to determine whether A∩B
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is empty? And if nonempty, what is the precise intersection A ∩ B? A naive
method is simply to check A1 against every Bi, then check A2 against every
Bi, and so on. This inefficient procedure gives, of course, an O(N2) complexity.
Much better is the following procedure:
(1) Sort each list A, B, say into nondecreasing order;
(2) Track through the sorted lists, logging any comparisons.
As is well known, the sorting step (1) requires O(N lnN) operations
(comparisons), while the tracking step (2) can be done in only O(N)
operations. Though the concepts are fairly transparent, we think it valuable
to lay out an explicit and general list-intersection algorithm. In the following
exposition the input sets A, B are multisets, that is, repetitions are allowed,
yet the final output A ∩ B is a set devoid of repetitions. We shall
assume a function sort() that returns a sorted version of a list, having
the same elements, but arranged in nondecreasing order; for example,
sort({3, 1, 2, 1}) = {1, 1, 2, 3}.

Algorithm 7.5.1 (Finding the intersection of two lists). Given two finite
lists of numbers A = {a0, . . . , am−1} and B = {b0, . . . , bn−1}, this algorithm
returns the intersection set A ∩ B, written in strictly increasing order. Note
that duplicates are properly removed; for example, if A = {3, 2, 4, 2}, B =
{1, 0, 8, 3, 3, 2}, then A ∩ B is returned as {2, 3}.

1. [Initialize]
A = sort(A); // Sort into nondecreasing order.
B = sort(B);
i = j = 0;
S = { }; // Intersection set initialized empty.

2. [Tracking stage]
while((i < #A) and (j < #B)) {

if(ai ≤ bj) {
if(ai == bj) S = S ∪ {ai}; // Append the match to S.
i = i + 1;
while((i < (#A) − 1) and (ai == ai−1)) i = i + 1;

} else {
j = j + 1;
while((j < (#B) − 1) and (bj == bj−1)) j = j + 1;

}
}
return S; // Return intersection A ∩ B.

Note that we have laid out the algorithm for general cardinalities; it is
not required that #A = #B. Because of the aforementioned complexity
of sorting, the whole algorithm has complexity O(Q lnQ) operations, where
Q = max{#A, #B}. Incidentally, there are other compelling ways to effect a
list intersection (see Exercise 7.13).
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Now to Shanks’s application of the list intersection notion to the problem
of curve order. Imagine we can find a relation for a point P ∈ E, say

[p + 1 + u]P = ±[v]P,

or, what amounts to the same thing because −(x, y) = (x,−y) always, we
find a match between the x-coordinates of [p+1+u]P and vP . Such a match
implies that

[p + 1 + u ∓ v]P = O.

This would be a tantalizing match, because the multiplier here on the left
must now be a multiple of the order of the point P , and might be the curve
order itself. Define an integer W =

⌈
p1/4

√
2
⌉
. We can represent integers k

with |k| < 2
√

p as k = β + γW , where β ranges over [0, W − 1] and γ ranges
over [0, W ]. (We use the letters β, γ to remind us of Shanks’s baby-steps and
giant-steps, respectively.) Thus, we can form a list of x-coordinates of the
points

{[p + 1 + β]P : β ∈ [0, . . . , W − 1]},

calling that list A (with #A = W ), and form a separate list of x-coordinates
of the points

{[γW ]P : γ ∈ [0, . . . , W ]},

calling this list B (with #B = W + 1). When we find a match, we can test
directly to see which multiple [p + 1 + β ∓ γW ]P (or both) is the point at
infinity. We see that the generation of baby-step and giant-step points requires
O

(
p1/4

)
elliptic operations, and the intersection algorithm has O

(
p1/4 ln p

)
steps, for a total complexity of O

(
p1/4+ε

)
.

Unfortunately, finding a vanishing point multiple is not the complete task;
it can happen that more than one vanishing multiple is found (and this is why
we have phrased Algorithm 7.5.1 to return all elements of an intersection).
However, whenever the point chosen has order greater than 4

√
p, the algorithm

will find the unique multiple of the order in the target interval, and this will
be the actual curve order. It occasionally may occur that the group has low
exponent (that is, all points have low order), and the Shanks method will never
find the true group order using just one point. There are two ways around
this impasse. One is to iterate the Shanks method with subsequent choices
of points, building up larger subgroups that are not necessarily cyclic. If the
subgroup order has a unique multiple in the Hasse interval, this multiple is
the curve order. The second idea is much simpler to implement and is based
on the following result of J. Mestre; see [Cohen 2000], [Schoof 1995]:

Theorem 7.5.2 (Mestre). For an elliptic curve E(Fp) and its twist E′(Fp)
by a quadratic nonresidue mod p, we have

#E + #E′ = 2p + 2.

When p > 457, there exists a point of order greater than 4
√

p on at least
one of the two elliptic curves E,E′. Furthermore, if p > 229, at least one
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of the two curves possesses a point P with the property that the only integer
m ∈ (p + 1 − 2

√
p, p + 1 + 2

√
p) having [m]P = O is the actual curve order.

Note that the relation #E +#E′ = 2p+2 is an easy result (see Exercise 7.16)
and that the real content of the theorem lies in the statement concerning a
singleton m in the stated Hasse range of orders. It is a further easy argument
to get that there is a positive constant c (which is independent of p and
the elliptic curve) such that the number of points P satisfying the theorem
exceeds cp/ ln ln p—see Exercise 7.17—so that points satisfying the theorem
are fairly common. The idea now is to use the Shanks method on E, and if
this fails (because the point order has more than one multiple in the Hasse
interval), to use it on E′, and if this fails, to use it on E, and so on. According
to the theorem, if we try this long enough, it should eventually work. This
leads to an efficient point-counting algorithm for curves E(Fp) when p is up
to, roughly speaking, 1030. In the algorithm following, we denote by x(P ) the
x-coordinate of a point P . In the convenient scenario where all x-coordinates
are given by X/Z ratios, the fact of denominator Z = 0 signifies as usual the
point at infinity:

Algorithm 7.5.3 (Shanks–Mestre assessment of curve order).
Given an elliptic curve E = Ea,b(Fp), this algorithm returns the order #E. For
list S = {s1, s2, . . .} and entry s ∈ S, we assume an index function ind(S, s) to
return some index i such that si = s. Also, list-returning function shanks() is
defined at the end of the algorithm; this function modifies two global lists A, B
of coordinates.

1. [Check magnitude of p]
if(p ≤ 229) return p + 1 +

∑
x

(
x3+ax+b

p

)
; // Equation (7.8).

2. [Initialize Shanks search]
Find a quadratic nonresidue g (mod p);
W = �p1/4

√
2�; // Giant-step parameter.

(c, d) = (g2a, g3b); // Twist parameters.

3. [Mestre loop] // We shall find a P of Theorem 7.5.2.
Choose random x ∈ [0, p − 1];
σ =

(
x3+ax+b

p

)
;

if(σ == 0) goto [Mestre loop];
// Henceforth we have a definite curve signature σ = ±1.

if(σ == 1) E = Ea,b; // Set original curve.
else {

E = Ec,d;
x = gx; // Set twist curve and valid x.

}
Define an initial point P ∈ E to have x(P ) = x;
S = shanks(P, E); // Search for Shanks intersection.
if(#S = 1) goto [Mestre loop]; // Exactly one match is sought.
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Set s as the (unique) element of S;
β = ind(A, s); γ = ind(B, s); // Find indices of unique match.
Choose sign in t = β ± γW such that [p + 1 + t]P == O on E;
return p + 1 + σt; // Desired order of original curve Ea,b.

4. [Function shanks()]
shanks(P, E) { // P is assumed on given curve E.

A = {x([p + 1 + β]P ) : β ∈ [0, W − 1]}; //Baby steps.
B = {x([γW ]P ) : γ ∈ [0, W ]}; // Giant steps.
return A ∩ B; // Via Algorithm 7.5.1.

}

Note that assignment of point P based on random x can be done either as
P = (x, y, 1), where y is a square root of the cubic form, or as P = [x : 1] in
case Montgomery parameterization—and thus, avoidance of y-coordinates—
is desired. (In this latter parameterization, the algorithm should be modified
slightly, to use notation consistent with Theorem 7.2.6.) Likewise, in the
shanks() function, one may use Algorithm 7.2.7 (or more efficient, detailed
application of the addh(), doubleh() functions) to get the desired point
multiples in [X : Z] form, then construct the A, B lists from numbers XZ−1.
One can even imagine rendering the entire procedure inversionless, by working
out an analogue of baby-steps, giant-steps for lists of (x, z) pairs, seeking
matches not of the form x = x′, rather of the form xz′ = zx′.

The condition p > 229 for applicability of the Shanks–Mestre approach
is not artificial: There is a scenario for p = 229 in which the existence of a
singleton set s of matches is not guaranteed (see Exercise 7.18).

7.5.2 Schoof method

Having seen point-counting schemes of complexities ranging from O
(
p1+ε

)
to O

(
p1/2+ε

)
and O

(
p1/4+ε

)
, we next turn to an elegant point-counting

algorithm due to Schoof, which algorithm has polynomial-time complexity
O

(
lnk p

)
for fixed k. The basic notion of Schoof is to resolve the order #E

(mod l) for sufficiently many small primes l, so as to reconstruct the desired
order using the CRT. Let us first look at the comparatively trivial case of #E
(mod 2). Now, the order of a group is even if and only if there is an element
of order 2. Since a point P = O has 2P = O if and only if the calculated
slope (from Definition 7.1.2) involves a vanishing y-coordinate, we know that
points of order 2 are those of the form P = (x, 0). Therefore, the curve order
is even if and only if the governing cubic x3 + ax + b has roots in Fp. This, in
turn, can be checked via a polynomial gcd as in Algorithm 2.3.10.

To consider #E (mod l) for small primes l > 2, we introduce a few
more tools for elliptic curves over finite fields. Suppose we have an elliptic
curve E(Fp), but now we consider points on the curve where the coordinates
are in the algebraic closure Fp of Fp. Raising to the p-th power is a field
automorphism of Fp that fixes elements of Fp, so this automorphism, applied
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to the coordinates of a point (x, y) ∈ E(Fp), takes this point to another
point in E(Fp). And since the rules for addition of points involve rational
expressions of the Fp-coefficients of the defining equation, this mapping is
seen to be a group automorphism of E(Fp). This is the celebrated Frobenius
endomorphism Φ. Thus, for (x, y) ∈ E(Fp), we have Φ(x, y) = (xp, yp); also,
Φ(O) = O. One might well wonder what use it is to consider the algebraic
closure of Fp when it is really the points defined over Fp itself that we are
interested in. The connection comes from a beautiful theorem: If the order of
the elliptic curve group E(Fp) is p + 1 − t, then

Φ2(P ) − [t]Φ(P ) + [p]P = O

for every point P ∈ E(Fp). That is, the Frobenius endomorphism satisfies
a quadratic equation, and the trace (the sum of the roots of the polynomial
x2 − tx + p) is t, the number that will give us the order of E(Fp).

A second idea comes into play. For any positive integer n, consider those
points P of E(Fp) for which [n]P = O. This set is denoted by E[n], and it
consists of those points of order dividing n in the group, namely, the n-torsion
points. Two easy facts about E[n] are crucial: It is a subgroup of E(Fp), and
Φ maps E[n] to itself. Thus, we have

Φ2(P ) − [t mod n]Φ(P ) + [p mod n]P = O, for all P ∈ E[n]. (7.9)

The brilliant idea of Schoof, see [Schoof 1985], [Schoof 1995], was to use this
equation to compute the residue t mod n by trial and error procedure until the
correct value that satisfies (7.9) is found. To do this, the division polynomials
are used. These polynomials both simulate elliptic multiplication and pick out
n-torsion points.

Definition 7.5.4. To an elliptic curve Ea,b(Fp) we associate the division
polynomials Ψn(X, Y ) ∈ Fp[X, Y ]/(Y 2 − X3 − aX − b) defined as follows:

Ψ−1 = −1, Ψ0 = 0, Ψ1 = 1, Ψ2 = 2Y,

Ψ3 = 3X4 + 6aX2 + 12bX − a2,

Ψ4 = 4Y
(
X6 + 5aX4 + 20bX3 − 5a2X2 − 4abX − 8b2 − a3) ,

while all further cases are given by

Ψ2n = Ψn

(
Ψn+2Ψ2

n−1 − Ψn−2Ψ2
n+1

)
/(2Y ),

Ψ2n+1 = Ψn+2Ψ3
n − Ψ3

n+1Ψn−1.

Note that in division polynomial construction, any occurrence of powers of
Y greater than the first power are to be reduced according to the relation
Y 2 = X3+aX +b. Some computationally important properties of the division
polynomials are collected here:

Theorem 7.5.5 (Properties of division polynomials). The division polyno-
mial Ψn(X, Y ) is, for n odd, a polynomial in X alone, while for n even it is
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Y times a polynomial in X alone. For n odd and not a multiple of p, we have
deg(Ψn) = (n2 − 1)/2. For n even and not a multiple of p, we have that the
degree of Ψn in the variable X is (n2 −4)/2. For a point (x, y) ∈ E(Fp)\E[2]
we have [n]P = O if and only if Ψn(x) = 0 (when n is odd) and Ψn(x, y) = 0
(when n is even). Further, if (x, y) ∈ E(Fp) \ E[n], then

[n](x, y) =
(

x − Ψn−1Ψn+1

Ψ2
n

,
Ψn+2Ψ2

n−1 − Ψn−2Ψ2
n+1

4yΨ3
n

)
.

Note that in the last statement, if y = 0, then n must be odd (since y = 0
signifies a point of order 2, and we are given that (x, y) ∈ E[n]), so y2 divides
the numerator of the rational expression in the second coordinate. In this case,
it is natural to take this expression as 0.

It is worth remarking that for odd prime l = p, there is a unique integer t
in [0, l − 1] such that(

xp2
, yp2

)
+ [p mod l](x, y) = [t]

(
xp, yp

)
for all (x, y) ∈ E[l] \ {O}. (7.10)

Indeed, this follows directly from (7.9) and the consequence of Theorem 7.5.5
that E(Fp) does indeed contain points of order l. If this unique integer t could
be computed, we would then know that the order of E(Fp) is congruent to
p + 1 − t modulo l.

The computational significance of the relation is that using the division
polynomials, it is feasible to test the various choices for t to see which one
works. This is done as follows:
(1) Points are pairs of polynomials in Fp[X, Y ].
(2) Since the points are on E, we may constantly reduce modulo Y 2 − X3 −

aX − b so as to keep powers of Y no higher than the first power, and
since the points we are considering are in E[n], we may reduce also by
the polynomial Ψn to keep the X powers in check as well. Finally, the
coefficients are in Fp, so that mod p reductions can be taken with the
coefficients, whenever convenient. These three kinds of reductions may be
taken in any order.

(3) High powers of X, Y are to be reduced by a powering ladder such as that
provided in Algorithm 2.1.5, with appropriate polynomial mods taken
along the way for continual degree reduction.

(4) The addition on the left side of (7.10) is to be simulated using the formulae
in Definition 7.1.2.
On the face of it, explicit polynomial inversion—from the fundamental

elliptic operation definition—would seem to be required. This could be
accomplished via Algorithm 2.2.2, but it is not necessary to do so because
of the following observation. We have seen in various elliptic addition
algorithms previous that inversions can be avoided by adroit representations of
coordinates. In actual practice, we have found it convenient to work either with
the projective point representation of Algorithm 7.2.3 or a “rational” variant
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of same. We now describe the latter representation, as it is well suited for
calculations involving division polynomials, especially in regard to the point-
multiplication property in Theorem 7.5.5. We shall consider a point to be
P = (U/V, F/G), where U, V, F, G are all polynomials, presumably bivariate
in X, Y . There is an alternative strategy, which is to use projective coordinates
as mentioned in Exercise 7.29. In either strategy a simplification occurs, that
in the Schoof algorithm we always obtain any point in a particular form; for
example in the P = (U/V, F/G) parameterization option used in the algorithm
display below, one always has the form

P = (N(X)/D(X), Y M(X)/C(X)),

because of the division polynomial algebra. One should think of these four
polynomials, then, as reduced mod Ψn and mod p, in the sense of item (2)
above. Another enhancement we have found efficient in practice is to invoke
large polynomial multiply via our Algorithm 9.6.1 (or see alternatives as in
Exercise 9.70), which is particularly advantageous because deg(Ψn) is so large,
making ordinary polynomial arithmetic painful. Yet more efficiency obtains
when we use our Algorithm 9.6.4 to achieve polynomial mod for these large-
degree polynomials.

Algorithm 7.5.6 (Explicit Schoof algorithm for curve order). Let p > 3
be a prime. For curve Ea,b(Fp) this algorithm returns the value of t (mod l),
where l is a prime (much smaller than p) and the curve order is #E = p + 1 − t.
Exact curve order is thus obtained by effecting this algorithm for enough primes
l such that

∏
l > 4

√
p, and then using the Chinese remainder theorem to

recover the exact value of t. We assume that for a contemplated ceiling L ≥ l
on the possible l values used, we have precomputed the division polynomials
Ψ−1, . . . ,ΨL+1 mod p, which can be made monic (via cancellation of the high
coefficient modulo p) with a view to such as Algorithm 9.6.4.

1. [Check l = 2]
if(l == 2) {

g(X) = gcd(Xp − X, X3 + aX + b); // Polynomial gcd in Fp[X].
if(g(X) == 1) return 0; // T ≡ 0 (mod 2), so order #E is even.
return 1; // #E is odd.

}
2. [Analyze relation (7.10)]

p = p mod l;
u(X) = Xp mod (Ψl, p);
v(X) = (X3 + aX + b)(p−1)/2 mod (Ψl, p);

// That is, v(X) = Y p−1 mod (Ψl, p).
P0 = (u(X), Y v(X)); // P0 = (Xp, Y p).
P1 = (u(X)p mod (Ψl, p), Y v(X)p+1 mod (Ψl, p));

// P1 = (Xp2
, Y p2

).
Cast P2 = [p](X, Y ) in rational form (N(X)/D(X), Y M(X)/C(X)), for

example by using Theorem 7.5.5;
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if(P1 + P2 == O) return 0; // #E = p + 1 − t with t ≡ 0 (mod l).
P3 = P0;
for(1 ≤ k ≤ l/2) {

if(X-coordinates of (P1 + P2) and P3 match) {
if(Y -coordinates also match) return k; // Y -coordinate check.
return l − k;

}
P3 = P3 + P0;

}

In the addition tests above for matching of some coordinate between (P1+P2)
and P3, one is asking generally whether

(N1/D1, Y M1/C1) + (N2/D2, Y M2/C2) = (N3/D3, Y M3/C3),

and such a relation is to be checked, of course, using the usual elliptic addition
rules. The polynomial P1 +P2 on the left can be combined—using the elliptic
rules of Algorithm 7.2.2, with the coordinates in that algorithm being now, of
course, our polynomial ratios—into polynomial form (N ′/D′, Y M ′/C ′), and
this is compared with (N3/D3, Y M3/C3). For such comparison in turn one
checks whether the cross products (N3D

′ − N ′D3) and (M3C
′ − M ′C3) both

vanish mod (Ψl, p). As for the check on whether P1 + P2 = O, we are asking
whether M1/C1 = −M2/C2, and this is also an easy cross product relation.
The idea is that the entire implementation we are describing involves only
polynomial multiplication and the mod (Ψl, p) reductions throughout. And
as we have mentioned, both polynomial multiply and mod can be made quite
efficient.

In case an attempt is made by the reader to implement Algorithm 7.5.6,
we give here some small cases within the calculation, for purpose of, shall we
say, “algorithm debugging.” For p = 101 and the curve

Y 2 = X3 + 3X + 4

over Fp, the algorithm gives, for l selections l = 2, 3, 5, 7, the results t mod 2 =
0, t mod 3 = 1, t mod 5 = 0, t mod 7 = 3, from which we infer #E = 92.
(We might have skipped the prime l = 5, since the product of the other primes
exceeds 4

√
p.) Along the way we have, for example,

Ψ3 = 98 + 16X + 6X2 + X4,(
Xp2

, Y p2
)

=
(
32 + 17X + 13X2 + 92X3, Y (74 + 96X + 14X2 + 68X3)

)
,

[2](X, Y ) =
(

12 + 53X + 89X2

16 + 12X + 4X3 , Y
74 + 10X + 5X2 + 64X3

27 + 91X + 96X2 + 37X3

)
,

(Xp, Y p) =
(
70 + 61X + 83X2 + 44X3, Y (43 + 76X + 21X2 + 25X3)

)
,

where it will be observed that every polynomial appearing in the point
coordinates has been reduced mod (Ψ3, p). (Note that p in Step [Analyze
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. . .] is 2, which is why we consider [2](X, Y ).) It turns out that the last point
here is indeed the elliptic sum of the two points previous, consistent with the
claim that t mod 3 = 1.

There is an important enhancement that we have intentionally left out for
clarity. This is that prime powers work equally well. In other words, l = qa

can be used directly in the algorithm (with the gcd for l = 2 ignored when
l = 4, 8, 16, . . .) to reduce the computation somewhat. All that is required is
that the overall product of all prime-power values l used (but no more than
one for each prime) exceed 4

√
p.

We have been able to assess curve orders, via this basic Schoof scheme,
for primes in the region p ≈ 1080, by using prime powers l < 100. It is
sometimes said in the literature that there is little hope of using l much
larger than 30, say, but with the aforementioned enhancements—in particular
the large-polynomial multiply/mod algorithms covered in Chapter 8.8—the
Schoof prime l can be pressed to 100 and perhaps beyond.

By not taking Algorithm 7.5.6 all the way to CRT saturation (that is,
not handling quite enough small primes l to resolve the order), and by then
employing a Shanks–Mestre approach to finish the calculation based on the
new knowledge of the possible orders, one may, in turn, press this rough
bound of 1080 further. However, it is a testimony to the power of the Schoof
algorithm that, upon analysis of how far a “Shanks–Mestre boost” can take
us, we see that only a few extra decimal digits—say 10 or 20 digits—can be
added to the 80 digits we resolve using the Schoof algorithm alone. For such
reasons, it usually makes more practical sense to enhance an existing Schoof
implementation, rather than to piggyback a Shanks–Mestre atop it.

But can one carry out point counting for significantly larger primes?
Indeed, the transformation of the Schoof algorithm into a “Schoof–Elkies–
Atkin” (SEA) variant (see [Atkin 1986, 1988, 1992] and [Elkies 1991, 1997],
with computational enhancements in [Morain 1995], [Couveignes and Morain
1994], [Couveignes et al. 1996]) has achieved unprecedented point-counting
performance. The essential improvement of Elkies was to observe that for some
of the l (depending on a, b, p; in fact, for about half of possible l values), a
certain polynomial fl dividing Ψl but of degree only (l−1)/2 can be employed,
and furthermore, that the Schoof relation of (7.10) can be simplified. The
Elkies approach is to seek an eigenvalue λ with

(Xp, Y p) = [λ](X, Y ),

where all calculations are done mod (fl, p), whence #E = p + 1 − t with

t ≡ λ + p/λ (mod l).

Because the degrees of fl are so small, this important discovery effectively pulls
some powers of ln p off the complexity estimate, to yield O(ln6 p) rather than
the original Schoof complexity O(ln8 p) [Schoof 1995]. (Note, however, that
such estimates assume direct “grammar-school” multiplication of integers, and
can be reduced yet further in the power of ln.) The SEA ideas certainly give
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impressive performance. Atkin, for example, used such enhancements to find
in 1992, for the smallest prime having 200 decimal digits, namely

p = 10000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000153,

and the curve over Fp governed by the cubic

Y 2 = X3 + 105X + 78153,

a point order

#E = 10000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000\
06789750288004224118080314365460277641928049641888\
39991591392960032210630561760029050858613689631753.

Amusingly, it is not too hard to agree that this choice of curve is “random”
(even if the prime p is not): The (a, b) = (105, 78153) parameters for this curve
were derived from a postal address in France [Schoof 1995]. Subsequently,
Morain was able to provide further computational enhancements, to find an
explicit order for a curve over Fp, with p a 500-decimal-digit prime [Morain
1995].

Most recently, A. Enge, P. Gaudry, and F. Morain were able to count the
points on the curve

y2 = x3 + 4589x + 91128

over Fp with p = 101499 + 2001 being a 1500-digit prime. These researchers
used new techniques—not yet published—for generating the relevant SEA
modular equations efficiently.

In this treatment we have, in regard to the powerful Schoof algorithm and
its extensions, touched merely the tip of the proverbial iceberg. There is a great
deal more to be said; a good modern reference for practical point-counting on
elliptic curves is [Seroussi et al. 1999], and various implementations of the
SEA continuations have been reported [Izu et al. 1998], [Scott 1999].

In his original paper [Schoof 1985] gave an application of the point-
counting method to obtain square roots of an integer D modulo p in (not
random, but deterministic) polynomial time, assuming that D is fixed. Though
the commonly used random algorithms 2.3.8, 2.3.9 are much more practical,
Schoof’s point-counting approach for square roots establishes, at least for fixed
D, a true deterministic polynomial-time complexity.

Incidentally, an amusing anecdote cannot be resisted here. As mentioned
by [Elkies 1997], Schoof’s magnificent point-counting algorithm was rejected in
its initial paper form as being, in the referee’s opinion, somehow unimportant.
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But with modified title, that title now ending with “. . . square roots mod p,”
the modified paper [Schoof 1985] was, as we appreciate, finally published.

Though the SEA method remains as of this writing the bastion of hope
for point counting over E(Fp) with p prime, there have been several very
new—and remarkable—developments for curves E(Fpd) where the prime p is
small. In fact, R. Harley showed in 2002 that the points can be counted, for
fixed characteristic p, in time

O(d2 ln2 d ln ln d),

and succeeded in counting the points on a curve over the enormous field
F2130020 . Other lines of development are due to T. Satoh on canonical lifts
and even p-adic forms of the arithmetic-geometric mean (AGM). One good
way to envision the excitement in this new algebraic endeavor is to peruse the
references at Harley’s site [Harley 2002].

7.5.3 Atkin–Morain method

We have addressed the question, given a curve E = Ea,b(Fp), what is #E? A
kind of converse question—which is of great importance in primality proving
and cryptography is, can we find a suitable order #E, and then specify a
curve having that order? For example, one might want a prime order, or an
order 2q for prime q, or an order divisible by a high power of 2. One might
call this the study of “closed-form” curve orders, in the following sense: for
certain representations 4p = u2 + |D|v2, as we have encountered previously in
Algorithm 2.3.13, one can write down immediately certain curve orders and
also—usually with more effort—the a, b parameters of the governing cubic.
These ideas emerged from the seminal work of A. O. L. Atkin in the latter
1980s and his later joint work with F. Morain.

In order to make sense of these ideas it is necessary to delve a bit into some
additional theoretical considerations on elliptic curves. For a more thorough
treatment, see [Atkin and Morain 1993b], [Cohen 2000], [Silverman 1986].

For an elliptic curve E defined over the complex numbers C, one may
consider the “endomorphisms” of E. These are group homomorphisms from
the group E to itself that are given by rational functions. The set of such
endomorphisms, denoted by End(E), naturally form a ring, where addition
is derived from elliptic addition, and multiplication is composition. That is,
if φ, σ are in End(E), then φ + σ is the endomorphism on E that sends a
point P to φ(P ) + σ(P ), the latter “+” being elliptic addition; and φ · σ is
the endomorphism on E that sends P to φ(σ(P )).

If n is an integer, the map [n] that sends a point P on E to [n]P is a member
of End(E), since it is a group homomorphism and since Theorem 7.5.5 shows
that [n]P has coordinates that are rational functions of the coordinates of
P . Thus the ring End(E) contains an isomorphic copy of the ring of integers
Z. It is often the case, in fact usually the case, that this is the whole story
for End(E). However, sometimes there are endomorphisms of E that do not
correspond to an integer. It turns out, though, that the ring End(E) is never
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too much larger than Z: if it is not isomorphic to Z, then it is isomorphic to
an order in an imaginary quadratic number field. (An “order” is a subring of
finite index of the ring of algebraic integers in the field.) In such a case it is
said that E has complex multiplication, or is a CM curve.

Suppose E is an elliptic curve defined over the rationals, and when
considered over the complex numbers has complex multiplication by an order
in Q(

√
D), where D is a negative integer. Suppose p > 3 is a prime that

does not divide the discriminant of E. We then may consider E over Fp by
reducing the coefficients of E modulo p. Suppose the prime p is a norm of
an algebraic integer in Q(

√
D). In this case it turns out that we can easily

find the order of the elliptic-curve group E(Fp). The work in computing this
order does not even require the coefficients of the curve E, one only needs the
numbers D and p. And this work to compute the order is indeed simple; one
uses the Cornacchia–Smith Algorithm 2.3.13. There is additional, somewhat
harder, work to compute the coefficients of an equation defining E, but if one
can see for some reason that the order will not be useful, this extra work can
be short-circuited. This, in essence, is the idea of Atkin and Morain.

We now review some ideas connected with imaginary quadratic fields, and
the dual theory of binary quadratic forms of negative discriminant. Some of
these ideas were developed in Section 5.6. The (negative) discriminants D
relevant to curve order assessment are defined thus:

Definition 7.5.7. A negative integer D is a fundamental discriminant if the
odd part of D is squarefree, and |D| ≡ 3, 4, 7, 8, 11, 15 (mod 16).

Briefly put, these are discriminants of imaginary quadratic fields. Now,
associated with each fundamental discriminant is the class number h(D). As
we saw in Section 5.6.3, h(D) is the order of the group C(D) of reduced binary
quadratic forms of discriminant D. In Section 5.6.4 we mentioned how the
baby-steps, giant-steps method of Shanks can be used to compute h(D). The
following algorithm serves to do this and to optionally generate the reduced
forms, as well as to compute the Hilbert class polynomial corresponding to
D. This is a polynomial of degree h(D) with coefficients in Z such that the
splitting field for the polynomial over Q(

√
D) has Galois group isomorphic to

the class group C(D). This splitting field is called the Hilbert class field for
Q(

√
D) and is the largest abelian unramified extension of Q(

√
D). The Hilbert

class field has the property that a prime number p splits completely in this
field if and only if there are integers u, v with 4p = u2 + |D|v2. In particular,
since the Hilbert class field has degree 2h(D) over the rational field Q, the
proportion, among all primes, of primes p with 4p so representable is 1/2h(D),
[Cox 1989].

We require a function (again, we bypass the beautiful and complicated
foundations of the theory in favor of an immediate algorithm development)

∆(q) = q

(
1 +

∞∑
n=1

(−1)n
(
qn(3n−1)/2 + qn(3n+1)/2

))24

,
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arising in the theory of invariants and modular forms [Cohen 2000], [Atkin and
Morain 1993b]. (It is interesting that ∆(q) has the alternative and beautiful
representation q

∏
n≥1(1 − qn)24, but we shall not use this in what follows.

The first given expression for ∆(q) is more amenable to calculation since the
exponents grow quadratically.)

Algorithm 7.5.8 (Class number and Hilbert class polynomial).
Given a (negative) fundamental discriminant D, this algorithm returns any desired
combination of the class number h(D), the Hilbert class polynomial T ∈ Z[X]
(whose degree is h(D)), and the set of reduced forms (a, b, c) of discriminant D
(whose cardinality is h(D)).
1. [Initialize]

T = 1;
b = D mod 2;
r = �

√
|D|/3�;

h = 0; // Zero class count.
red = { }; // Empty set of primitive reduced forms.

2. [Outer loop on b]
while(b ≤ r) {

m = (b2 − D)/4;
for(1 ≤ a and a2 ≤ m) {

if(m mod a = 0) continue; // Continue ‘for’ loop to force a|m.
c = m/a;
if(b > a) continue; // Continue ‘for’ loop.

3. [Optional polynomial setup]
τ = (−b + i

√
|D|)/(2a); // Note precision (see text following).

f = ∆(e4πiτ )/∆(e2πiτ ); // Note precision.
j = (256f + 1)3/f ; // Note precision.

4. [Begin divisors test]
if(b == a or c == a or b == 0) {

T = T ∗ (X − j);
h = h + 1; // Class count.
red = red ∪ (a, b, c); // New form.

} else {
T = T ∗ (X2 − 2 Re(j)X + |j|2);
h = h + 2; // Class count.
red = red ∪ (a,±b, c); // Two new forms.

}
}

}
5. [Return values of interest]

return (combination of) h, round(Re(T (x))), red;

This algorithm is straightforward in every respect except on the issue of
floating-point precision. Note that the function ∆ must be evaluated for
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complex q arguments. The theory shows that sufficient precision for the whole
algorithm is essentially

δ =
π
√

|D|
ln 10

∑ 1
a

decimal digits, where the sum is over all primitive reduced forms (a, b, c) of
discriminant D [Atkin and Morain 1993b]. This means that a little more than
δ digits (perhaps δ + 10, as in [Cohen 2000]) should be used for the [Optional
polynomial setup] phase, the ultimate idea being that the polynomial T (x)—
consisting of possibly some linear factors and some quadratic factors—
should have integer coefficients. Thus the final polynomial output in the
form round(Re(T (x))) means that T is to be expanded, with the coefficients
rounded so that T ∈ Z[X]. Algorithm 7.5.8 can, of course, be used in a
multiple-pass fashion: First calculate just the reduced forms, to estimate∑

1/a and thus the required precision, then start over and this time calculate
the actual Hilbert class polynomial. In any event, the quantity

∑
1/a is always

O
(
ln2 |D|

)
.

For reader convenience, we give here some explicit polynomial examples
from the algorithm, where TD refers to the Hilbert class polynomial for
discriminant D:

T−3 = X,

T−4 = X − 1728,

T−15 = X2 + 191025X − 121287375,

T−23 = X3 + 3491750X2 − 5151296875X + 12771880859375.

One notes that the polynomial degrees are consistent with the class numbers
below. There are further interesting aspects of these polynomials. One is that
the constant coefficient is always a cube. Also, the coefficients of TD grow
radically as one works through lists of discriminants. But one can use in
the Atkin-Morain approach less unwieldy polynomials—the Weber variety—
at the cost of some complications for special cases. These and many more
optimizations are discussed in [Morain 1990], [Atkin and Morain 1993b].

In the Atkin–Morain order-finding scheme, it will be useful to think of
discriminants ordered by their class numbers, this ordering being essentially
one of increasing complexity. As simple runs of Algorithm 7.5.8 would show
(without the polynomial option, say),

h(D) = 1 for D = −3,−4,−7,−8,−11,−19,−43,−67,−163;
h(D) = 2 for D = −15,−20,−24,−35,−40,−51,−52,−88,−91,−115,

−123,−148,−187,−232,−235,−267,−403,−427;
h(D) = 3 for D = −23,−31,−59, . . . .

That the discriminant lists for h(D) = 1, 2 are in fact complete as given here
is a profound result of the theory [Cox 1989]. We currently have complete
lists for h(D) ≤ 16, see [Watkins 2000], and it is known, in principle at least,
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how to compute a complete list for any prescribed value of h. The effective
determination of such lists is an extremely interesting computational problem.

To apply the Atkin–Morain method, we want to consider discriminants
ordered, say, as above, i.e., lowest h(D) first. We shall seek curve orders based
on specific representations

4p = u2 + |D|v2,

whence, as we see in the following algorithm exhibition, the resulting possible
curve orders will be simple functions of p, u, v. Note that for D = −3,−4
there are 6, 4 possible orders, respectively, while for other D there are two
possible orders. Such representations of 4p are to be attempted via Algorithm
2.3.13. If p is prime, the “probability” that 4p is so representable, given that(
D
p

)
= 1, is 1/h(D), as mentioned above. In the following algorithm, either it

is assumed that our discriminant list is finite, or we agree to let the algorithm
run for some prescribed amount of time.

Algorithm 7.5.9 (CM method for generating curves and orders). We as-
sume a list of fundamental discriminants {Dj < 0 : j = 1, 2, 3, . . .} ordered,
say, by increasing class number h(D), and within the same class number by in-
creasing |D|. We are given a prime p > 3. The algorithm reports (optionally)
possible curve orders or (also optionally) curve parameters for CM curves associ-
ated with the various Dj .

1. [Calculate nonresidue]
Find a random quadratic nonresidue g (mod p);
if(p ≡ 1 (mod 3) and g(p−1)/3 ≡ 1 (mod p)) goto [Calculate nonresidue];

// In case D = −3 is used, g must also be a noncube modulo p.
j = 0;

2. [Discriminant loop]
j = j + 1;
D = Dj ;
if(
(
D
p

)
= 1) goto [Discriminant loop];

3. [Seek a quadratic form for 4p]
Attempt to represent 4p = u2 + |D|v2, via Algorithm 2.3.13, but if the

attempt fails, goto [Discriminant loop];

4. [Option: Curve orders]
if(D == −4) report {p + 1 ± u, p + 1 ± 2v}; // 4 possible orders.
if(D == −3) report {p + 1 ± u, p + 1 ± (u ± 3v)/2}; // 6 possible orders.
if(D < −4) report {p + 1 ± u}; // 2 possible orders.

5. [Option: Curve parameters]
if(D == −4) return {(a, b)} = {(−gk mod p, 0) : k = 0, 1, 2, 3};
if(D == −3) return {(a, b)} = {(0,−gk mod p) : k = 0, 1, 2, 3, 4, 5};

6. [Continuation for D < −4]
Compute the Hilbert class polynomial T ∈ Z[X], via Algorithm 7.5.8;
S = T mod p; // Reduce to polynomial ∈ Fp[X].
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Obtain a root j ∈ Fp of S, via Algorithm 2.3.10;
c = j(j − 1728)−1 mod p;
r = −3c mod p;
s = 2c mod p;

7. [Return two curve-parameter pairs]
return {(a, b)} = {(r, s), (rg2 mod p, sg3 mod p)};

What the Atkin–Morain method prescribes is that for D = −4,−3 the
governing cubics are given in terms of a quadratic nonresidue g, which is
also a cubic nonresidue in the case D = −3, by

y2 = x3 − gkx, k = 0, 1, 2, 3,

y2 = x3 − gk, k = 0, 1, 2, 3, 4, 5,

respectively (i.e., there are respectively 4, 6 isomorphism classes of curves for
these two D values); while for other discriminants D the relevant curve and
its twist are

y2 = x3 − 3cg2kx + 2cg3k, k = 0, 1,

where c is given as in Step [Continuation for D < −4]. The method, while
providing much more generality than closed-form solutions such as Algorithm
7.5.10 below, is more difficult to implement, mainly because of the Hilbert
class polynomial calculation.

Note the important feature that prior to the actual curve parameter
calculations, we already know the possible curve orders involved. Thus in
both primality proving and cryptography applications, we can analyze the
possible orders before entering into the laborious (a, b) calculations, knowing
that if a curve order is attractive for any reason, we can get those parameters
at will. We take up this issue in Sections 7.6 and 8.1.

Let us work through an example of Algorithm 7.5.9 in action. Take the
Mersenne prime

p = 289 − 1,

for which we desire some possible curves Ea,b(Fp) and their orders. In the
[Seek a quadratic form for 4p] algorithm step above, we find via Algorithm
2.3.13 many representations for 4p, just a few of which being

4p = 482158326880192 + 3 · 70972660645192

= 370643614901642 + 163 · 26002750985862

= 356490866348202 + 51 · 48608534324382

= 273471497147562 + 187 · 30398542403222

= 287431183964132 + 499 · 18182515018252.

For these exemplary representations the discriminants of interest are D =
−3,−163,−51,−187,−499, respectively; and we repeat that there are plenty
of other values of D one may use for this p. The relevant curve orders will
generally be

p + 1 ± u,
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where u is the first number being squared in a given representation; yet there
will be more possible orders for the D = −3 case. To illustrate the detailed
algorithm workings, let us consider the case D = −499 above. Then in the
[Option: curve parameters] step we obtain

T−499 = 4671133182399954782798673154437441310949376
− 6063717825494266394722392560011051008x

+ 3005101108071026200706725969920x2

+ x3 .

Note that, as must be, the constant term in this polynomial is a cube. Now
this cubic can be reduced right away (mod p) to yield

S = T−499 mod p = 489476008241378181249146744
+ 356560280230433613294194825x

+ 1662705765583389101921015x2

+ x3 ,

but we are illustrating the concept that one could in principle prestore the
Hilbert class polynomials T−D ∈ Z[X], reducing quickly to S ∈ Fp[X]
whenever a new p is being analyzed. We are then to use Algorithm 2.3.10
to find a root j of S = T mod p. A root is found as

j = 431302127816045615339451868.

It is this value that ignites the curve parameter construction. We obtain

c = j/(j − 1728) mod p = 544175025087910210133176287,

and thus end up with two governing cubics (the required nonresidue g can be
taken to be −1 for this p):

y2 = x3 + 224384983664339781949157472x ± 469380030533130282816790463,

with respective curve orders

#E = 289 ± 28743118396413.

Incidentally, which curve has which order is usually an easy computation: For
given a, b parameters, find a point P ∈ E and verify that [#E]P = O, for one
possibility for #E and not the other. In fact, if p > 475, Theorem 7.5.2 implies
that either there is a point P on E with [#E′]P = O (where E′ is the twist
of E) or there is a point Q on E′ with [#E]Q = O. Thus, randomly choosing
points, first on one of the curves, then on the other, one should expect to soon
be able to detect which order goes with which curve. In any case, many of the
algorithms based on the Atkin–Morain approach can make use of points that
simply have vanishing multiples, and it is not necessary to ascertain the full
curve order.
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We observe that the polynomial calculations for the deeper discriminants
(i.e. possessed of higher class numbers) can be difficult. For example, there is
the precision issue when using floating-point arithmetic in Algorithm 7.5.8. It
is therefore worthwhile to contemplate means for establishing some explicit
curve parameters for small |D|, in this way obviating the need for class
polynomial calculations. To this end, we have compiled here a complete list
of curve parameter sets for all D with h(D) = 1, 2:

D r s

−7 125 189
−8 125 98
−11 512 539
−19 512 513
−43 512000 512001
−67 85184000 85184001
−163 151931373056000 151931373056001
−15 1225 − 2080

√
5 5929

−20 108250 + 29835
√

5 174724
−24 1757 − 494

√
2 1058

−35 −1126400 − 1589760
√

5 2428447
−40 54175 − 1020

√
5 51894

−51 75520 − 7936
√

17 108241
−52 1778750 + 5125

√
13 1797228

−88 181713125 − 44250
√

2 181650546
−91 74752 − 36352

√
13 205821

−115 269593600 − 89157120
√

5 468954981
−123 1025058304000 − 1248832000

√
41 1033054730449

−148 499833128054750 + 356500625
√

37 499835296563372
−187 91878880000 − 1074017568000

√
17 4520166756633

−232 1728371226151263375 − 11276414500
√

29 1728371165425912854
−235 7574816832000 − 190341944320

√
5 8000434358469

−267 3632253349307716000000 − 12320504793376000
√

89
3632369580717474122449

−403 16416107434811840000 − 4799513373120384000
√

13
33720998998872514077

−427 564510997315289728000 − 5784785611102784000
√

61
609691617259594724421

Table 7.1 Explicit curve parameters of CM curves for class number 1 and 2

Algorithm 7.5.10 (Explicit CM curve parameters: Class numbers 1, 2).
Given prime p > 3, this algorithm reports explicit CM curves y2 = x3 + ax + b
over Fp, with orders as specified in the [Option: Curve orders] step of Algorithm
7.5.9. The search herein is exhaustive over all discriminants D of class numbers
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h(D) = 1, 2: the algorithm reports every set of CM curve parameters (a, b) for
the allowed class numbers.

1. [Establish full discriminant list]
∆ = {−3,−4,−7,−8,−11,−19,−43,−67,−163,

−15,−20,−24,−35,−40,−51,−52,−88,−91,−115,−123,
−148,−187,−232,−235,−267,−403,−427};

2. [Loop over representations]
for(D ∈ ∆) {

Attempt to represent 4p = u2 + |D|v2, via Algorithm 2.3.13, but if the
attempt fails, jump to next D;

Calculate a suitable nonresidue g of p as in Step [Calculate nonresidue]
of Algorithm 7.5.9;

3. [Handle D = −3,−4]
if(D == −3) return {(a, b)} = {(0,−gk) : k = 0, . . . , 5};

// Six curves y2 = x3 − gk.
if(D == −4) return {(a, b)} = {(−gk, 0) : k = 0, . . . , 3};

// Four curves y2 = x3 − gkx.

4. [Parameters for all other D with h(D) = 1, 2]
Select a pair (r, s) from Table 7.1, using Algorithm 2.3.9 when square

roots are required (mod p);

5. [Return curve parameters]
report {(a, b)} = {(−3rs3g2k, 2rs5g3k) : k = 0, 1};

// The governing cubic will be y2 = x3 − 3rs3g2kx + 2rs5g3k.
}

There are several points of interest in connection with this algorithm. The
specific parameterizations of Algorithm 7.5.10 can be calculated, of course,
via the Hilbert class polynomials, as in Algorithm 7.5.8. However, having
laid these parameters out explicitly means that one can proceed to establish
CM curves very rapidly, with minimal programming overhead. It is not even
necessary to verify that 4a3 + 27b2 = 0, as is demanded for legitimate elliptic
curves over Fp. Yet another interesting feature is that the specific square roots
exhibited in the algorithm always exist (mod p). What is more, the tabulated
r, s parameters tend to enjoy interesting factorizations. In particular the s
values tend to be highly smooth numbers (see Exercise 7.15 for more details
on these various issues).

It is appropriate at this juncture to clarify by worked example how
quickly Algorithm 7.5.10 will generate curves and orders. Taking the prime
p =

(
231 + 1

)
/3, we find by appeal to Algorithm 2.3.13 representations

4p = u2 + |D|v2 for ten discriminants D of class number not exceeding
two, namely, for D = −3,−7,−8,−11,−67,−51,−91,−187,−403,−427. The
respective a, b parameters and curve orders work out, via Algorithm 7.5.10 as
tabulated on the following page.

For this particular run, the requisite quadratic nonresidue (and cubic
nonresidue for the D = −3 case) was chosen as 5. Note that Algorithm 7.5.10
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does not tell us which of the curve parameter pairs (a, b) goes with which
order (from Step [Option: Curve orders] of Algorithm 7.5.9). As mentioned
above, this is not a serious problem: One finds a point P on one curve where
a candidate order does not kill it, so we know that the candidate belongs to
another curve. For the example in the last paragraph with p = (231 + 1)/3,
the orders shown were matched to the curves in just this way.

D E #E

−3 y2 = x3 + 0x + 715827882 715861972
y2 = x3 + 0x + 715827878 715880649
y2 = x3 + 0x + 715827858 715846561
y2 = x3 + 0x + 715827758 715793796
y2 = x3 + 0x + 715827258 715775119
y2 = x3 + 0x + 715824758 715809207

−7 y2 = x3 + 331585657x + 632369458 715788584
y2 = x3 + 415534712x + 305115120 715867184

−8 y2 = x3 + 362880883x + 649193252 715784194
y2 = x3 + 482087479x + 260605721 715871574

−11 y2 = x3 + 710498587x + 673622741 715774393
y2 = x3 + 582595483x + 450980314 715881375

−67 y2 = x3 + 265592125x + 480243852 715785809
y2 = x3 + 197352178x + 616767211 715869959

−51 y2 = x3 + 602207293x + 487817116 715826683
y2 = x3 + 22796782x + 131769445 715829085

−91 y2 = x3 + 407640471x + 205746226 715824963
y2 = x3 + 169421413x + 664302345 715830805

−187 y2 = x3 + 389987874x + 525671592 715817117
y2 = x3 + 443934371x + 568611647 715838651

−403 y2 = x3 + 644736647x + 438316263 715881357
y2 = x3 + 370202749x + 386613767 715774411

−427 y2 = x3 + 370428023x + 532016446 715860684
y2 = x3 + 670765979x + 645890514 715795084

But one can, in principle, go a little further and specify theoretically which
orders go with which curves, at least for discriminants D having h(D) = 1.
There are explicit curves and orders in the literature [Rishi et al. 1984], [Padma
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and Ventkataraman 1996]. Many such results go back to the work of Stark,
who connected the precise curve order p + 1 − u, when 4p = u2 + |D|v2 and u
is allowed to be positive or negative, with the Jacobi symbol

(
u

|D|
)
. Interesting

refinements of this work are found in the modern treatment in [Morain 1998].

7.6 Elliptic curve primality proving (ECPP)

We have seen in Section 4.1 that a partial factorization of n − 1 can lead to a
primality proof for n. One might wonder whether elliptic-curve groups—given
their variable group orders under the Hasse theorem 7.3.1—can be brought to
bear for primality proofs. Indeed they can, as evidenced by a certain theorem,
which is a kind of elliptic curve analogy to the Pocklington Theorem 4.1.3.

Before we exhibit the theorem, we recall Definition 7.4.1 of a pseudocurve
E(Zn). Recalling, too, the caveat about elliptic multiplication on a pseu-
docurve mentioned following the definition, we proceed with the following
central result.

Theorem 7.6.1 (Goldwasser–Kilian ECPP theorem). Let n > 1 be an
integer coprime to 6, let E(Zn) be a pseudocurve, and let s, m be positive
integers with s|m. Assume that there exists a point P ∈ E such that we can
carry out the curve operations for [m]P to find

[m]P = O,

and for every prime q dividing s we can carry out the curve operations to
obtain

[m/q]P = O.

Then for every prime p dividing n we have

#E(Fp) ≡ 0 (mod s).

Moreover, if s >
(
n1/4 + 1

)2
, then n is prime.

Proof. Let p be a prime factor of n. The calculations on the pseudocurve,
when reduced modulo p, imply that s divides the order of P on E(Fp).
This proves the first assertion. In addition, if s >

(
n1/4 + 1

)2
, we may

infer that #E(Fp) >
(
n1/4 + 1

)2
. But the Hasse Theorem 7.3.1 implies that

#E(Fp) <
(
p1/2 + 1

)2
. We deduce that p1/2 > n1/4, so that p > n1/2. As n

has all of its prime factors greater than its square root, n must be prime. �

7.6.1 Goldwasser–Kilian primality test

On the basis of Theorem 7.6.1, Goldwasser and Kilian demonstrated a
primality testing algorithm with expected polynomial-time complexity for
conjecturally all, and provably “most,” prime numbers n. That is, a number n

could be tested in an expected number of operations O
(
lnk n

)
for an absolute
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constant k. Their idea is to find appropriate curves with orders that have
large enough “probable prime” factors, and recurse on the notion that these
factors should in turn be provably prime. In each recursive level but the last,
Theorem 7.6.1 is used with s the probable prime factor of the curve order.
This continues for smaller and smaller probable primes, until the number is
so small it may be proved prime by trial division. This, in turn, justifies all
previous steps, and establishes the primality of the starting number n.

Algorithm 7.6.2 (Goldwasser–Kilian primality test). Given a nonsquare
integer n > 232 strongly suspected of being prime (in particular, gcd(n, 6) = 1
and presumably n has already passed a probable prime test), this algorithm at-
tempts to reduce the issue of primality of n to that of a smaller number q. The
algorithm returns either the assertion “n is composite” or the assertion “If q is
prime then n is prime,” where q is an integer smaller than n.

1. [Choose a pseudocurve over Zn]
Choose random (a, b) ∈ [0, n − 1]2 such that gcd(4a3 + 27b2, n) = 1;

2. [Assess curve order]
Via Algorithm 7.5.6 calculate the integer m that would be #Ea,b(Zn) if

n is prime (however if the point-counting algorithm fails, return “n is
composite”);
// If n is composite, Algorithm 7.5.6 could fail if each candidate for t

(mod l) is rejected or if the final curve order is not in the interval
(n + 1 − 2

√
n, n + 1 + 2

√
n).

3. [Attempt to factor]
Attempt to factor m = kq where k > 1 and q is a probable prime exceeding(

n1/4 + 1
)2

, but if this cannot be done according to some time-limit
criterion, goto [Choose a pseudocurve . . .];

4. [Choose point on Ea,b(Zn)]
Choose random x ∈ [0, n − 1] such that Q = (x3 + ax + b) mod n has(

Q
n

)
= −1;

Apply Algorithm 2.3.8 or 2.3.9 (with a = Q and p = n) to find an integer
y that would satisfy y2 ≡ Q (mod n) if n were prime;

if(y2 mod n = Q) return “n is composite”;
P = (x, y);

5. [Operate on point]
Compute the multiple U = [m/q]P (however if any illegal inversions occur,

return “n is composite”);
if(U == O) goto [Choose point . . .];
Compute V = [q]U (however check the above rule on illegal inversions);
if(V = O) return “n is composite”;
return “If q is prime, then n is prime”;

The correctness of Algorithm 7.6.2 follows directly from Theorem 7.6.1, with
q playing the role of s in that theorem.
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In practice one would iterate the algorithm, getting a chain of inferences,
with the last number q so small it can be proved prime by trial division. If some
intermediate q is composite, then one can retreat one level in the chain and
apply the algorithm again. Iterating the Goldwasser–Kilian scheme not only
provides a rigorous primality test but also generates a certificate of primality.
This certificate can be thought of as the chain

(n = n0, a0, b0, m0, q0, P0), (q0 = n1, a1, b1, m1, q1, P1), . . .

consisting of consecutive n, a, b, m, q, P entities along the recursion. The
primary feature of the certificate is that it can be published alongside, or
otherwise associated with, the original n that is proven prime. This concise
listing can then be used by anyone who wishes to verify that n is prime, using
Theorem 7.6.1 at the various steps along the way. The reconstruction of the
proof usually takes considerably less time than the initial run that finds the
certificate. The certificate feature is nontrivial, since many primality proofs
must be run again from scratch if they are to be checked.

It should be noted that the elliptic arithmetic in Algorithm 7.6.2 can
be sped up using Montgomery coordinates [X : Z] with “Y ” dropped, as
discussed in Section 7.2.

To aid in the reader’s testing of any implementations, we now report a
detailed example. Let us take the prime p = 1020 + 39. On the first pass of
Algorithm 7.6.2, we use n = p and obtain random parameters in Step [Choose
a pseudocurve . . .] as

a = 69771859804340235254, b = 10558409492409151218,

for which 4a3 + 27b2 is coprime to n. The number that would be the order of
Ea,b(Zn) if n is indeed prime is found, via Algorithm 7.5.6 to be

m = #E = 99999999985875882644 = 22 · 59 · 1182449 · q,

where 2, 59, 1182449 are known primes (falling below the threshold 232

suggested in the algorithm description), and q = 358348489871 is a probable
prime. Then, in Step [Choose point . . .] the random point obtained is

P = [X : Z] = [31689859357184528586 : 1],

where for practical simplicity we have adopted Montgomery parameterization,
with a view to using Algorithm 7.2.7 for elliptic multiples. Accordingly, it was
found that

U = [m/q]P = [69046631243878263311 : 1] = O,

V = [q]U = O.

Therefore, p is prime if q is. So now we assign n = 358348489871 and run
again through Algorithm 7.6.2. In so doing the relevant values encountered
are

a = 34328822753, b = 187921935449,

m = #E = 358349377736 = 23 · 7 · 7949 · 805019,
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where now all the factors fall under our 232 threshold. For randomly chosen
starting point

P = [X : Z] = [245203089935 : 1]

we obtain, with q = 805019,

U = [m/q]P = [260419245130 : 1] = O,

V = [q]P = O.

It follows that the original p = 1020 + 39 is prime. The relevant numbers are
then collected as a primality certificate for this prime. It should be noted that
for larger examples one should not expect to be lucky enough to get a good
factorization of m on every attempt, though conjecturally the event should
not be so very rare.

The study of the computational complexity of Algorithm 7.6.2 is
interesting. Success hinges on the likelihood of finding a curve order that
factors as in Step [Attempt to factor]. Note that one is happy even if one finds
an order m = 2q where q is a prime. Thus, it can be shown via Theorem 7.3.2
that if

π
(
x + 1 + 2

√
x
)

− π
(
x + 1 − 2

√
x
)

> A

√
x

lnc x

for positive constants A, c, then the expected bit complexity of the algorithm
is O

(
ln9+c n

)
; see [Goldwasser and Kilian 1986]. It is conjectured that the

inequality holds with A = c = 1 and all sufficiently large values of x.
In addition, using results in analytic number theory that say that such
inequalities are usually true, it is possible to show that the Goldwasser–Kilian
test (Algorithm 7.6.2) usually works, and does so in polynomial time. To
remove this lacuna, one might note that sufficient information is known about
primes in an interval of length x3/4 near x. Using this, [Adleman and Huang
1992] were able to achieve a guaranteed expected polynomial time bound. In
their scheme, a certificate chain is likewise generated, yet, remarkably, the
initial primes in the chain actually increase in size, eventually to decay to
acceptable levels. The decay is done via the Goldwasser–Kilian test as above,
and the increase is designed so as to “gain randomness.” The initial candidate
n might be one for which the Goldwasser–Kilian test does not work (this
would be evidenced by never having luck in factoring curve orders or just
taking too long to factor), so the initial steps of “reducing” the primality of n
to that of larger numbers is a way of replacing the given number n with a new
number that is random enough so that the Goldwasser–Kilian test is expected
to work for it. This “going up” is done via Jacobian varieties of hyperelliptic
curves of genus 2.

7.6.2 Atkin–Morain primality test

The Goldwasser–Kilian Algorithm 7.6.2 is, in practice for large n under
scrutiny, noticeably sluggish due to the point-counting step to assess #E.
Atkin found an elegant solution to this impasse, and together with Morain
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implemented a highly efficient elliptic curve primality proving (ECPP) scheme
[Atkin and Morain 1993b]. The method is now in wide use. There are various
ways to proceed in practice with this ECPP; we give just one here.

The idea once again is to find either “closed-form” curve orders, or at least
be able to specify orders relatively quickly. One could conceivably use closed
forms such as those of Algorithm 7.5.10, but one may well “run out of gas,”
not being able to find an order with the proper structure for Theorem 7.6.1.
The Atkin–Morain approach is to find curves with complex multiplication, as
in Algorithm 7.5.9. In this way, a crucial step (called [Assess curve order], in
Algorithm 7.6.2) is a point of entry into the Atkin–Morain order/curve-finding
Algorithm 7.5.9. A quick perusal will show the great similarity of Algorithm
7.6.3 below and Algorithm 7.6.2. The difference is that here one searches for
appropriate curve orders first, and only then constructs the corresponding
elliptic curve, both using Algorithm 7.5.9, while the Schoof algorithm 7.5.6 is
dispensed with.

Algorithm 7.6.3 (Atkin–Morain primality test). Given a nonsquare integer
n > 232 strongly suspected of being prime (in particular gcd(n, 6) = 1 and
presumably n has already passed a probable prime test), this algorithm attempts
to reduce the issue of primality of n to that of a smaller number q. The algorithm
returns either the assertion “n is composite” or the assertion “If q is prime, then
n is prime,” where q is an integer smaller than n. (Note similar structure of
Algorithm 7.6.2.)

1. [Choose discriminant]
Select a fundamental discriminant D by increasing value of h(D) for

which
(
D
n

)
= 1 and for which we are successful in finding a solution

u2 + |D|v2 = 4n via Algorithm 2.3.13, yielding possible curve orders m:
m ∈ {n + 1 ± u, n + 1 ± 2v}, for D = −4,
m ∈ {n + 1 ± u, n + 1 ± (u ± 3v)/2}, for D = −3,
m ∈ {n + 1 ± u}, for D < −4;

2. [Factor orders]
Find a possible order m that factors as m = kq, where k > 1 and q is a

probable prime > (n1/4 +1)2 (however if this cannot be done according
to some time-limit criterion, goto [Choose discriminant]);

3. [Obtain curve parameters]
Using the parameter-generating option of Algorithm 7.5.9, establish the

parameters a, b for an elliptic curve that would have order m if n is
indeed prime;

4. [Choose point on Ea,b(Zn)]
Choose random x ∈ [0, n − 1] such that Q = (x3 + ax + b) mod n has(

Q
n

)
= −1;

Apply Algorithm 2.3.8 or 2.3.9 (with a = Q and p = n) to find an integer
y that would satisfy y2 ≡ Q (mod n) if n were prime;

if(y2 mod n = Q) return “n is composite”;
P = (x, y);
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5. [Operate on point]
Compute the multiple U = [m/q]P (however if any illegal inversions occur,

return “n is composite”);
if(U == O) goto [Choose point . . .];
Compute V = [q]U (however check the above rule on illegal inversions);
if(V = O) return “n is composite”;
return “If q is prime, then n is prime”;

Note that if n is composite, then there is no guarantee that Algorithm 2.3.13
in Step [Choose discriminant] will successfully find u, v, even if they exist. In
this event, we continue with the next D, until we are eventually successful, or
we lose patience and give up.

Let us work through an explicit example. Recall the Mersenne prime
p = 289 − 1 analyzed after Algorithm 7.5.9. We found a discriminant D = −3
for complex multiplication curves, for which D there turn out to be six possible
curve orders. The recursive primality proving works, in this case, by taking
p + 1 + u as the order; in fact, this choice happens to work at every level like
so:

p = 289 − 1,

D = −3 : u = 34753815440788, v = 20559283311750,

#E = p + 1 + u = 22 · 32 · 52 · 7 · 848173 · p2,

p2 = 115836285129447871,

D = −3 : u = 557417116, v = 225559526,

#E = p2 + 1 + u = 22 · 3 · 7 · 37 · 65707 · p3,

and we establish that p3 = 567220573 is prime by trial division. What we have
outlined is the essential “backbone” of a primality certificate for p = 289 − 1.
The full certificate requires, of course, the actual curve parameters (from Step
[Obtain curve parameters]) and relevant starting points (from Step [Choose
point . . .]) in Algorithm 7.6.3.

Compared to the Goldwasser–Kilian approach, the complexity of the
Atkin–Morain method is a cloudy issue—although heuristic estimates are
polynomial, e.g. O(ln4+ε N) operations to prove N prime (see Section 7.6.3).
The added difficulty comes from the fact that the potential curve orders
that one tries to factor have an unknown distribution. However, in practice,
the method is excellent, and like the Goldwasser–Kilian method a complete
and succinct certificate of primality is provided. Morain’s implementation of
variants of Algorithm 7.6.3 has achieved primality proofs for “random” primes
of well over two thousand decimal digits, as we mentioned in Section 1.1.2.
But even more enhancement has been possible, as we discuss next.

7.6.3 Fast primality-proving via ellpitic curves (fastECPP)

A new development in primality proving has enabled primality proofs of some
spectacularly large numbers. For example, in July 2004, the primality of the
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Leyland number (with general form xy + yx)

N = 44052638 + 26384405

was established, a number of 15071 decimal digits. This “fastECPP” method
is based on an asymptotic improvement, due to J. Shallit, that yields a bit-
complexity heuristic of O(ln4+ε N) to prove N prime.

The basic idea is to build a base of small squareroots, and build
discriminants from this basis. Let L = lnN where N is the possible prime
under scrutiny. Now Algorithm 7.6.3 requires, we expect, O(L2) discriminants
D tried before finding a good D. Instead, one may build discriminants of the
form −D = (−p)(q), where p, q are primes each taken from a pool of size
only O(L). In this way, Step [Choose discriminant] can be enhanced, and the
overall operation complexity of Algorithm 7.6.3—which complexity started
out as O(ln5+ε N) thus has the 5 turning into a 4.

The details and various primality-proof records are found in [Franke et al.
2004] and (especially for the fastECPP theory) [Morain 2004].

7.7 Exercises

7.1. Find a bilinear transformation of the form

(x, y) �→ (αx + βy, γx + δy)

that renders the curve

y2 + axy + by = x3 + cx2 + dx + e (7.11)

into Weierstrass form (7.4). Indicate, then, where the fact of field characteristic
not equal to 2 or 3 is required for the transformation to be legal.

7.2. Show that curve with governing cubic

Y 2 = X3 + CX2 + AX + B

has affine representation

y2 = x3 + (A − C2/3)x + (B − AC/3 + 2C3/27).

This shows that a Montgomery curve (B = 0) always has an affine
equivalent. But the converse is false. Describe exactly under what conditions
on parameters a, b in

y2 = x3 + ax + b

such an affine curve does possess a Montgomery equivalent with B = 0.
Describe applications of this result, for example in cryptography or point-
counting.

7.3. Show that the curve given by relation (7.4) is nonsingular over a field
F with characteristic = 2, 3 if and only if 4a3 + 27b2 = 0.
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7.4. As in Exercise 7.3 the nonsingularity condition for affine curves is that
the discriminant 4a3 + 27b2 be nonzero in the field Fp. Show that for the
parameterization

Y 2 = X3 + CX2 + AX + B

and characteristic p > 3 the nonsingularity condition is different on a
discriminant ∆, namely

∆ = 4(A − C2/3)3 + 27(B − AC/3 + 2C3/27)2 = 0.

Then show that in the computationally useful Montgomery parameterization

Y 2 = X3 + CX2 + X

is nonsingular if and only if C2 = 4.

7.5. For an elliptic curve over Fp, p > 3, with cubic

Y 2 = X3 + CX2 + AX + B

we define the j-invariant of E as

j(E) = 4096
(C2 − 3A)3

∆
,

where the discriminant ∆ is given in Exercise 7.4. Carry out the following
computational exercise. By choosing a conveniently small prime that allows
hand computation or easy machine work (you might assess curve orders via the
direct formula (7.8)), create a table of curve orders vs. j-invariants. Based on
such empirical evidence, state an apparent connection between curve orders
and j-invariant values. For an excellent overview of the beautiful theory of
j-invariants and curve isomorphisms see [Seroussi et al. 1999] and numerous
references therein, especially [Silverman 1986].

7.6. Here we investigate just a little of the beautiful classical theory of
elliptic integrals and functions, with a view to the connections of same
to the modern theory of elliptic curves. Good introductory references are
[Namba 1984], [Silverman 1986], [Kaliski 1988]. One essential connection is
the observation of Weierstrass that the elliptic integral

Z(x) =
∫ ∞

x

ds√
4s3 − g2s − g3

can be considered as a solution to an implicit relation

℘g2,g3(Z) = x,

where ℘ is the Weierstrass function. Derive, then, the differential equations

℘(z1 + z2) =
1
4

(
℘′(z1) − ℘′(z2)
℘(z1) − ℘(z2)

)2

− ℘(z1) − ℘(z2)
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and that
℘′(z)2 = ℘3(z) − g2℘(z) − g3,

and indicate how the parameters g2, g3 need be related to the affine a, b curve
parameters, to render the differential scheme equivalent to the affine scheme.

7.7. Prove the first statement of Theorem 7.1.3, that Ea,b(F ) together with
the defined operations is an abelian group. A good symbolic processor for
abstract algebra might come in handy, especially for the hardest part, which
is proving associativity (P1 + P2) + P3 = P1 + (P2 + P3).

7.8. Show that an abelian group of squarefree order is cyclic. Deduce that
if a curve order #E is squarefree, then the elliptic-curve group is cyclic. This
is an important issue for cryptographic applications [Kaliski 1991], [Morain
1992].

7.9. Compare the operation (multiplies only) counts in Algorithms 7.2.2,
7.2.3, with a view to the different efficiencies of doubling and (unequal point)
addition. In this way, determine the threshold k at which an inverse must be
faster than k multiplies for the first algorithm to be superior. In this connection
see Exercise 7.25.

7.10. Show that if we conspire to have parameter a = −3 in the field, the
operation count of the doubling operation of Algorithm 7.2.3 can be reduced
yet further. Investigate the claim in [Solinas 1998] that “the proportion of
elliptic curves modulo p that can be rescaled so that a = p − 3 is about 1/4
if p ≡ 1 (mod 4) and about 1/2 if p ≡ 3 (mod 4).” Incidentally, the slight
speedup for doubling may seem trivial but in practice will always be noticed,
because doubling operations constitute a significant portion of a typical point-
multiplying ladder.

7.11. Prove that the elliptic addition test, Algorithm 7.2.8, works. Establish
first, for the coordinates x± of P1 ± P2, respectively, algebraic relations for
the sum and product x+ +x− and x+x−, using Definition 7.1.2 and Theorem
7.2.6. The resulting relations should be entirely devoid of y dependence. Now
from these sum and product relations, infer the quadratic relation.

7.12. Work out the heuristic expected complexity bound for ECM as
discussed following Algorithm 7.4.2.

7.13. Recall the method, relevant to the second stage of ECM, and touched
upon in the text, for finding a match between two lists but without using
Algorithm 7.5.1. The idea is first to form a polynomial

f(x) =
m−1∏
i=0

(x − Ai),

then evaluate this at the n values in B; i.e., evaluate for x = Bj , j =
0, . . . , n − 1. The point is, if a zero of f is found in this way, we have a match
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(some Bj equals Ai). Give the computational complexity of this polynomial
method for finding A ∩ B. How does one handle duplicate matches in this
polynomial setting? Note the related material in Sections 5.5, 9.6.3.

7.14. By analyzing the trend of “record” ECM factorizations, estimate in
what calendar year we shall be able to discover 70-digit factors via ECM.
([Zimmermann 2000] has projected the year 2010, for example.)

7.15. Verify claims made in reference to Algorithm 7.5.10, as follows. First,
show how the tabulated parameters r, s were obtained. For this, one uses the
fact of the class polynomial being at most quadratic, and notes also that a
defining cubic y2 = x3 + Rx/S + T/S can be cleared of denominator S by
multiplying through by S6. Second, use quadratic reciprocity to prove that
every explicit square root in the tabulated parameters does, in fact, exist. For
this, one presumes that a representation 4p = u2 + |D|v2 has been found for p.
Third, show that 4a3 + 27b2 cannot vanish (mod p). This could be done case
by case, but it is easier to go back to Algorithm 7.5.9 and see how the final a, b
parameters actually arise. Finally, factor the s values of the tabulated data
to verify that they tend to be highly smooth. How can this smoothness be
explained?

7.16. Recall that for elliptic curve Ea,b(Fp) a twist curve E′ of E is governed
by a cubic

y2 = x3 + g2ax + g3b,

where
(
g
p

)
= −1. Show that the curve orders are related thus:

#E + #E′ = 2p + 2.

7.17. Suppose the largest order of an element in a finite abelian group G is
m. Show there is an absolute constant c > 0 (that is, c does not depend on
m or G) such that the proportion of elements of G with order m is at least
c/ ln ln(3m). (The presence of the factor 3 is only to ensure that the double
log is positive.) This result is relevant to the comments following Theorem
7.5.2 and also to some results in Chapter 3.

7.18. Consider, for p = 229, the curves E,E′ over Fp governed respectively
by

y2 = x3 − 1,

y2 = x3 − 8,

the latter being a twist curve of the former. Show that #E = 252,#E′ = 208
with respective group structures

E ∼= Z42 × Z6,

E′ ∼= Z52 × Z4.

Argue thus that every point P ∈ E has [252]P = [210]P = O, and similarly
every point P ∈ E′ has [208]P = [260]P = O, and therefore that for any point
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on either curve there is no unique m in the Hasse interval with [m]P = O.
See [Schoof 1995] for this and other special cases pertaining to the Mestre
theorems.

7.19. Here we investigate the operation complexity of the Schoof Algorithm
7.5.6. Derive the bound O

(
ln8 p

)
on operation complexity for Schoof’s original

method, assuming grammar-school polynomial multiplication (which in turn
has complexity O(de) field operations for degrees d, e of operands). Explain
why the Schoof–Elkies–Atkin (SEA) method continuation reduces this to
O

(
ln6 p

)
. (To deduce such reduction, one need only know the degree of an SEA

polynomial, which is O(l) rather than O(l2) for the prime l.) Describe what
then happens to the complexity bound if one also invokes a fast multiplication
method not only for integers but also for polynomial multiplication (see text
following Algorithm 7.5.6), and perhaps also a Shanks–Mestre boost. Finally,
what can be said about bit complexity to resolve curve order for a prime p
having n bits?

7.20. Elliptic curve theory can be used to establish certain results on sums of
cubes in rings. By way of the Hasse Theorem 7.3.1, prove that if p > 7 is prime,
then every element of Fp is a sum of two cubes. By analyzing, then, prime
powers, prove the following conjecture (which was motivated numerically and
communicated by D. Copeland): Let dN be the density of representables (as
(cube+cube)) in the ring ZN . Then

if 63|N then dN = 25/63, otherwise
if 7|N then dN = 5/7, or
if 9|N then dN = 5/9,
and in all other cases dN = 1.

An extension is: Study sums of higher powers (see Exercise 9.80).

7.21. Here is an example of how symbolic exercise can tune one’s
understanding of the workings a specific, tough algorithm. It is sometimes
possible actually to carry out what we might call a “symbolic Schoof
algorithm,” to obtain exact results on curve orders, in the following fashion.
Consider an elliptic curve E0,b(Fp) for p > 3, and so governed by the cubic

y2 = x3 + b.

We shall determine the order (mod 3) of any such curve, yet do this via
symbolic manipulations alone; i.e., without the usual numerical calculations
associated with Schoof implementations. Perform the following proofs, without
the assistance of computing machinery (although a symbolic machine may be
valuable in checking one’s algebra):
(1) Argue that with respect to the division polynomial Ψ3, we have

x4 ≡ −4bx (mod Ψ3).

(2) Prove that for k > 0,

x3k ≡ (−4b)k−1x3 (mod Ψ3).
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This reduction ignites a chain of exact results for the Frobenius relation,
as we shall see.

(3) Show that xp can now be given the closed form

xp ≡ (−4b)
p/3�xp mod 3 (mod Ψ3),

where our usual mod notation is in force, so p mod 3 = 1 or 2.
(4) Show that xp2

can also be written down exactly as

xp2 ≡ (−4b)(p
2−1)/3x (mod Ψ3),

and argue that for p ≡ 2 (mod 3) the congruence here boils down to
xp2 ≡ x, independent of b.

(5) By way of binomial series and the reduction relation from (2) above,
establish the following general identity for positive integer d and γ ≡ 0
(mod p):

(x3 + γ)d ≡ γd

(
1 − x3

4b

(
(1 − 4b/γ)d − 1

))
(mod Ψ3).

(6) Starting with the notion that yp ≡ y(x3 + b)(p−1)/2, resolve the power yp

as
yp ≡ yb(p−1)/2q(x) (mod Ψ3),

where q(x) = 1 or (1 + x3/(2b)) as p ≡ 1, 2 (mod 3), respectively.
(7) Show that we always have, then,

yp2 ≡ y (mod Ψ3).

Now, given the above preparation, argue from Theorem 7.5.5 that for p ≡ 2
(mod 3) we have, independent of b,

#E ≡ p + 1 ≡ 0 (mod 3).

Finally, for p ≡ 1 (mod 3) argue, on the basis of the remaining possibilities
for the Frobenius

(c1x, y) + [1](x, y) = t(c2x, yc3)

for b-dependent parameters ci, that the curve order (mod 3) depends on the
quadratic character of b (mod p) in the following way:

#E ≡ p + 1 +
(

b

p

)
≡ 2 +

(
b

p

)
(mod 3).

An interesting research question is: How far can this “symbolic Schoof”
algorithm be pushed (see Exercise 7.30)?
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7.22. For the example prime p =
(
231 + 1

)
/3 and its curve orders displayed

after Algorithm 7.5.10, which is the best order to use to effect an ECPP proof
that p is prime?

7.23. Use some variant of ECPP to prove primality of every one of the ten
consecutive primes claimed in Exercise 1.87.

7.24. Here we apply ECPP ideas to primality testing of Fermat numbers
Fm = 22m

+ 1. By considering representations

4Fm = u2 + 4v2,

prove that if Fm is prime, then there are four curves (mod Fm)

y2 = x3 − 3kx; k = 0, 1, 2, 3,

having, in some ordering, the curve orders

22m

+ 2m/2+1 + 1,

22m − 2m/2+1 + 1,

22m − 1,

22m

+ 3.

Prove by computer that F7 (or some even larger Fermat number) is composite,
by exhibiting on one of the four curves a point P that is not annihilated by any
of the four orders. One should perhaps use the Montgomery representation
in Algorithm 7.2.7, so that initial points need have only their x-coordinates
checked for validity (see explanation following Algorithm 7.2.1). Otherwise,
the whole exercise is doomed because one usually cannot even perform square-
rooting for composite Fm, to obtain y coordinates.

Of course, the celebrated Pepin primality test (Theorem 4.1.2) is much
more efficient in the matter of weeding out composites, but the notion of CM
curves is instructive here. In fact, when the above procedure is invoked for
F4 = 65537, one finds that indeed, every one of the four curves has an initial
point that is annihilated by one of the four orders. Thus we might regard
65537 as a “probable” prime in the present sense. Just a little more work,
along the lines of the ECPP Algorithm 7.5.9, will complete a primality proof
for this largest known Fermat prime.

7.8 Research problems

7.25. With a view to the complexity tradeoffs between Algorithms 7.2.2,
7.2.3, 7.2.7, analyze the complexity of field inversion. One looks longingly at
expressions x3 = m2 − x1 − x2, y3 = m(x1 − x3) − y1, in the realization that
if only inversion were “free,” the affine approach would surely be superior.
However, known inversion methods are quite expensive. One finds in practice
that inversion times tend to be one or two orders of magnitude greater than
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multiply-mod times. [De Win et al. 1998] explain that it is very hard even
to bring down the cost of inversion (modulo a typical cryptographic prime
p ≈ 2200) to 20 multiplies. But there are open questions. What about primes
of special form, or lookup tables? The lookup notion stems from the simple
fact that if y can be found such that xy ≡ z (mod p) for some z whose inverse
is already known, then x−1 mod p = yz−1 mod p. In connection with the
complexity issue see Algorithm 9.4.5 and Exercise 2.11.

Another research direction is to attempt implementation of the interesting
Sorenson-class methods for k-ary (as opposed to binary) gcd’s [Sorenson 1994],
which methods admit of an extended form for modular inversion.

7.26. For an elliptic curve E(Fp), prime p with governing cubic

y2 = x(x + 1)(x + c)

(and c ≡ 0, 1 (mod p)), show by direct appeal to the order relation (7.8) that
#E = p + 1 − T , where

T =
Q∑

n=0

cn

(
Q
n

)2

,

with Q = (p−1)/2 and we interpret the sum to lie modulo p in (−2
√

p, 2
√

p).
(One way to proceed is to write the Legendre symbol in relation (7.8) as a
(p − 1)/2-th power, then formally sum over x.) Then argue that

T ≡ F (1/2, 1/2, 1; c)|Q (mod p),

where F is the standard Gauss hypergeometric function and the notation
signifies that we are to take the hypergeometric series F (A, B, C; z) only
through the zQ term inclusive. Also derive the formal relation

T = (1 − c)Q/2PQ

(
1 − c/2√

1 − c

)
,

where PQ is the classical Legendre polynomial of order Q. Using known
transformation properties of such special series, find some closed-form curve
orders. For example, taking p ≡ 1 (mod 4) and the known evaluation

PQ(0) =
(

Q
Q/2

)

one can derive that curve order is #E = p + 1 ± 2a, where the prime p
is represented as p = a2 + b2. Actually, this kind of study connects with
algebraic number theory; for example, the study of binomial coefficients
(mod p) [Crandall et al. 1997] is useful in the present context.

Observe that the hypergeometric series can be evaluated in O
(√

p ln2 p
)

field operations, by appeal to fast series evaluation methods [Borwein and
Borwein 1987] (and see Algorithm 9.6.7). This means that, at least for
elliptic curves of the type specified, we have yet another point-counting
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algorithm whose complexity lies essentially between naive residue counting
and the Shanks–Mestre algorithm. There is yet one more possible avenue of
exploration: The DAGM of Exercise 2.42 might actually apply to truncated
hypergeometric series (mod p) in some sense, which we say because the
classical AGM—for real arguments—is a rapid means of evaluating such as
the hypergeometric form above [Borwein and Borwein 1987].

Incidentally, a profound application of the AGM notion has recently been
used in elliptic-curve point counting; see the end of Section 7.5.2.

7.27. Along the lines of Exercise 7.26, show that for a prime p ≡ 1 (mod 8),
the elliptic curve E with governing cubic

y2 = x3 +
3√
2
x2 + x

has order

#E = p + 1 −
(

2(p−1)/4
( p−1

2
p−1
4

)
mod ± p

)
,

where the mod± notation means that we take the signed residue nearest 0.
Does this observation have any value for factoring of Fermat numbers? Here
are some observations. We do know that any prime factor of a composite Fn

is ≡ 1 (mod 8), and that 3/
√

2 can be written modulo any Fermat number
Fn > 5 as 3(23m/4 − 2m/4)−1, with m = 2n; moreover, this algebra works
modulo any prime factor of Fn. In this connection see [Atkin and Morain
1993a], who show how to construct advantageous curves when potential factors
p are known to have certain congruence properties.

7.28. Implement the ECM variant of [Peralta and Okamoto 1996], in which
composite numbers n = pq2 with p prime, q odd, are attacked efficiently. Their
result depends on an interesting probabilistic way to check whether x1 ≡ x2
(mod p); namely, choose a random r and check whether the Jacobi symbol
equality (

x1 + r

n

)
=

(
x2 + r

n

)

holds, which check can be performed, remarkably, in ignorance of p.

7.29. Here is a fascinating line of research in connection with Schoof
point counting, Algorithm 7.5.6. First, investigate the time and space
(memory) tradeoffs for the algorithm, as one decides upon one of the
following representation options: (a) the rational point representations
(N(x)/D(x), yM(x)/C(x)) as we displayed; (b) a projective description
(X(x, y), Y (x, y), Z(x, y)) along the lines of Algorithm 7.2.3; or (c) an affine
representation. Note that these options have the same basic asymptotic
complexity, but we are talking here about implementation advantages, e.g.,
the implied big-O constants.

Such analyses have led to actual packages, not only for the “vanilla Schoof”
Algorithm 7.5.6, but the sophisticated SEA variants. Some such packages are
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highly efficient, able to resolve the curve order for a 200-bit value of p in a
matter of minutes. For example, there is the implementation in [Scott 1999],
which uses projective coordinates and the Shoup method (see Exercise 9.70)
for polynomial multiplication, and for the SEA extension, uses precomputed
polynomials.

But there is another tantalizing option: Employ Montgomery representa-
tion, as in Algorithm 7.2.7, for which the Schoof relation(

xp2
, yp2

)
+ [k](x, y) = [t](xp, yp)

can be analyzed in x-coordinates alone. One computes xp2
(but no powers

of y), uses division polynomials to find the x-coordinate of [k](x, y) (and
perhaps the [t] multiple as well), and employs Algorithm 7.2.8 to find doubly-
ambiguous values of t. This having been done, one has a “partial-CRT”
scenario that is itself of research interest. In such a scenario, one knows not
a specific t mod l for each small prime l, but a pair of t values for each l. At
first it may seem that we need twice as many small primes, but not really so.
If one has, say, n smaller primes l1, . . . , ln one can perform at most 2n elliptic
multiplies to see which genuine curve order annihilates a random point. One
might say that for large n this is too much work, but one could just use the x-
coordinate arithmetic only on some of the larger l. So the research problem is
this: Given that x-coordinate (Montgomery) arithmetic is less expensive than
full (x, y) versions, how does one best handle the ambiguous t values that
result? Besides the 2n continuation, is there a Shanks–Mestre continuation
that starts from the partial-CRT decomposition? Note that in all of this
analysis, one will sometimes get the advantage that t = 0, in which case
there is no ambiguity of (p + 1 ± t) mod l.

7.30. In Exercise 7.21 was outlined “symbolic” means for carrying out
Schoof calculations for an elliptic curve order. Investigate whether the same
manipulations can be effected, again (mod 3), for curves governed by

y2 = x3 + ax,

or for that matter, curves having both a, b nonzero—which cases you would
expect to be difficult. Investigate whether any of these ideas can be effected
for small primes l > 3.

7.31. Describe how one may use Algorithm 7.5.10 to create a relatively
simple primality-proving program, in which one would search only for
discriminant-D curves with h(D) = 1, 2. The advantage of such a scheme
is obvious: The elliptic curve generation is virtually immediate for such
discriminants. The primary disadvantage, of course, is that for large probable
primes under scrutiny, a great deal of effort must go into factoring the severely
limited set of curve orders (one might even contemplate an ECM factoring
engine, to put extra weight on the factoring part of ECPP). Still, this could be
a fine approach for primes of a few hundred binary bits or less. For one thing,
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neither floating-point class-polynomial calculations nor massive polynomial
storage nor sophisticated root-finding routines would be required.

7.32. There is a way to simplify somewhat the elliptic curve computations
for ECPP. Argue that Montgomery parameterization (as in Algorithm 7.2.7)
can certainly be used for primality proofs of some candidate n in the
ECPP Algorithms 7.6.2 or 7.5.9, provided that along with the conditions of
nonvanishing for multiples (X ′, Z ′) = [m/q](X, Z), we always check gcd(Z ′, n)
for possible factors of n.

Describe, then, some enhancements to the ECPP algorithms that we enjoy
when Montgomery parameterization is in force. For example, finding a point
on a curve is simpler, because we only need a valid x-coordinate, and so on.

7.33. Here is a peculiar form of “rapid ECPP” that can—if one has sufficient
luck—work to effect virtually instantaneous primality proofs. Recall, as in
Corollary 4.1.4, that if a probable prime n has n−1 = FR where the factored
part F exceeds

√
n (or in various refinements exceeds an even lesser bound),

then a primality proof can be effected quickly. Consider instead a scenario in
which the same “FR” decomposition is obtained, but we are lucky to be able
to write

R = αF + β,

with a representation 4α = β2 + |D|γ2 existing for fundamental discriminant
−|D|. Show that, under these conditions, if n is prime, there then exists a
CM curve E for discriminant −|D|, with curve order given by the attractive
relation

#E = αF 2.

Thus, we might be able to have F nearly as small as n1/4, and still effect an
ECPP result on n.

Next, show that a McIntosh–Wagstaff probable prime of the form n =
(2q +1)/3 always has a representation with discriminant D = −8, and give the
corresponding curve order. Using these ideas, prove that (2313 +1)/3 is prime,
taking account of the fact that the curve order in question is #E = (2/3)h2,
where h is

32 ·5·7·132 ·53·79·157·313·1259·1613·2731·3121·8191·21841·121369·22366891.

Then prove another interesting corollary: If

n = 22r+2m + 2r+m+1 + 22r + 1

is prime, then the curve E in question has

#E = 22r(22m + 1).

In this manner, and by analyzing the known algebraic factors of 22m +1 when
m is odd, prove that

n = 2576 + 2289 + 22 + 1
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is prime.
For more information on “rapid” primality proofs, see [Pomerance 1987a]

and the discussion in [Williams 1998, p. 366] in regard to numbers of certain
ternary form.

7.34. An interesting problem one may address after having found a factor
via an ECM scheme such as Algorithm 7.4.4 is this: What is the actual group
order that allowed the factor discovery?

One approach, which has been used in [Brent et al. 2000], is simply to
“backtrack” on the stage limits until the precise largest- and second-largest
primes are found, and so on until the group order is completely factored.

But another way is simply to obtain, via Algorithm 7.5.6, say, the actual
order. To this end, work out the preparatory curve algebra as follows. First,
show that if a curve is constructed according to Theorem 7.4.3, then the
rational initial point x/z = u3/v3 satisfies

x3 + Cx2z + xz2 =
(
σ2 − 5

)3 (
125 − 105σ2 − 21σ4 + σ6)2

in the ring. Then deduce that the order of the curve is either the order of

y2 = x3 + ax + b,

or the order of the twist, depending respectively on whether (σ3−5σ
p ) = 1 or

−1, where affine parameters a, b are computed from

γ =
(v − u)3(3u + v)

4u3v
− 2,

a = 1 − 1
3
γ2,

b =
2
27

γ3 − 1
3
γ.

These machinations suggest a straightforward algorithm for finding the order
of the curve that discovered a factor p. Namely, one uses the starting seed σ,
calculates again if necessary the u, v field parameters, then applies the above
formulae to get an affine curve parameter pair (a, b), which in turn can be
used directly in the Schoof algorithm.

Here is an explicit example of the workings of this method. The McIntosh–
Tardif factor

p = 81274690703860512587777

of F18 was found with seed parameter σ = 16500076. One finds with the above
formulae that

a = 26882295688729303004012,

b = 10541033639146374421403,
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and Algorithm 7.5.6 determines the curve order as

#E = 81274690703989163570820
= 22 · 3 · 5 · 23 · 43 · 67 · 149 · 2011 · 2341 · 3571 · 8161.

Indeed, looking at the two largest prime factors here, we see that the factor
could have been found with respective stage limits as low as B1 = 4000, B2 =
10000. R. McIntosh and C. Tardif actually used 100000, 4000000, respectively,
but as always with ECM, what we might call post-factoring hindsight is
a low-cost commodity. Note also the explicit verification that the Brent
parameterization method indeed yields a curve whose order is divisible by
twelve, as expected.

If you are in possession of sufficiently high-precision software, here is
another useful test of the above ideas. Take the known prime factor p =
4485296422913 of F21, and for the specific Brent parameter σ = 1536151048,
find the elliptic-curve group order (mod p), and show that stage limits
B1 = 60000, B2 = 3000000 (being the actual pair used originally in practice
to drive this example of hindsight) suffice to discover the factor p.



Chapter 8

THE UBIQUITY OF PRIME NUMBERS

It is often remarked that prime numbers finally found a legitimate practical
application in the domain of cryptography. The cryptographic relevance is not
disputed, but there are many other applications of the majestic primes. Some
applications are industrial—such as applications in numerical analysis, applied
mathematics, and other applied sciences—while some are of the “conceptual
feedback” variety, in which primes and their surrounding concepts are used
in theoretical work outside of, say, pure number theory. In this lucrative
research mode, primes are used within algorithms that might appear a priori
independent of primes, and so on. It seems fair to regard the prime number
concept as ubiquitous, since the primes appear in so very many disparate
domains of thought.

8.1 Cryptography

On the face of it, the prime numbers apply to cryptography by virtue of the
extreme difficulty of certain computations. Two such problems are factoring
and the discrete logarithm problem. We shall discuss practical instances of
these problems in the field of cryptography, and also discuss elliptic curve
generalizations.

8.1.1 Diffie–Hellman key exchange

In a monumental paper [Diffie and Hellman 1976], those authors observed
the following “one-way function” behavior of certain group operations. For a
given integer x ≥ 0 and an element g of F∗

p, the computation of

h = gx

in the field (so, involving continual (mod p) reductions) is generally of
complexity O(lnx) field operations. On the other hand, solving this equation
for x, assuming g, h, p given, is evidently very much harder. As x is an
exponent, and since we are taking something like a logarithm in this
latter problem, the extraction of the unknown x is known as the discrete
logarithm (DL) problem. Though the forward (exponentiation) direction is of
polynomial-time complexity, no general method is known for obtaining the
DL with anything like that efficiency. Some DL algorithms are discussed in
Chapter 5 and in [Schirokauer et al. 1996].
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An immediate application of this “one-way” feature of exponentiation is a
cryptographic algorithm so simple that we simply state it in English without
formal exhibition. Say you want individuals to have their own passwords to
allow entry onto a computer system or information channel. A universal prime
p and primitive root g are chosen for the whole system of users. Now each
individual user “thinks up” his or her secret password x, an integer, and
computes h = gx mod p, finally storing his or her h value on the system itself.
Thus for the array of users, there is a stored array of h values on the system.
Now when it is time to gain entry to the system, a user need only type the
“password” x, and the system exponentiates this, comparing the result to that
user’s h. The scheme is all very simple, depending on the difficulty of looking
at an h and inferring what was the password x for that h.

Not quite so obvious, but equally elegant, is the Diffie–Hellman key
exchange scheme, which allows two individuals to create a common encryption
key:

Algorithm 8.1.1 (Diffie–Hellman key exchange). Two individuals, Alice
and Bob, agree on a prime p and a generator g ∈ F∗

p. This algorithm allows
Alice and Bob to establish a mutual key (mod p), with neither individual being
able (under DL difficulty) to infer each other’s secret key.

1. [Alice generates public key]
Alice chooses random a ∈ [2, p − 2]; // Alice’s secret key.
x = ga mod p; // x is Alice’s public key.

2. [Bob generates public key]
Bob chooses random b ∈ [2, p − 2]; // Bob’s secret key.
y = gb mod p; // y is Bob’s public key.

3. [Each individual creates the same mutual key]
Bob computes k = xb mod p;
Alice computes k = ya mod p; // The two k-values are identical.

This mutual key creation works, of course, because

(ga)b = (gb)a = gab,

and all of this goes through with the usual reductions (mod p). There are
several important features of this basic Diffie–Hellman key exchange notion.
First, note that in principle Alice and Bob could have avoided random
numbers; choosing instead a memorable phrase, slogan, whatever, and made
those into respective secret values a, b. Second, note that the public keys
ga, gb mod p can be made public in the sense that—under DL difficulty—it
is safe literally to publish such values to the world. Third, on the issue of
what to do with the mutual key created in the algorithm, actual practical
applications often involve the use of the mutual key to encrypt/decrypt long
messages, say through the expedient of a standard block cipher such as DES
[Schneier 1996]. Though it is easy to break the Diffie–Hellman scheme given a
fast DL method, it is unclear whether the two problems are equivalent. That
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is, if an oracle could tell you gab on input of ga and gb, could you use this
oracle to quickly solve for discrete logarithms?

8.1.2 RSA cryptosystem

Soon after the Diffie–Hellman ideas, the now prevalent RSA cryptosystem was
invented by Rivest, Shamir, and Adleman [Rivest et al. 1978].

Algorithm 8.1.2 (RSA private/public key generation). In this algorithm
we generate an individual’s private and associated public keys for the RSA
cryptosystem.

1. [Choose primes]
Choose two distinct primes p, q under prevailing safety criteria (see text);

2. [Generate public key]
N = pq;
ϕ = (p − 1)(q − 1); // Euler totient of N .
Choose random integer E ∈ [3, N − 2] coprime to ϕ;
Report public key as (N, E); // User publishes this key.

3. [Generate private key]
D = E−1 mod ϕ;
Report private key as D; // User keeps D secret.

The primary observation is that because of the difficulty of factoring N = pq,
the public integer N does not give an easy prescription for the private primes
p, q. Furthermore, it is known that if one knows integers D, E in [1, n − 1]
with DE ≡ 1 (mod ϕ), then one can factor N in (probabilistic) polynomial
time [Long 1981] (cf. Exercise 5.27). In the above algorithm it is fashionable
to choose approximately equal private primes p, q, but some cryptographers
suggest further safety tests. In fact, one can locate in the literature a host of
potential drawbacks for certain p, q choices. There is a brief but illuminating
listing of possible security flaws that depend on the magnitudes and other
number-theoretical properties of p, q in [Williams 1998, p. 391]. The reference
[Bressoud and Wagon 2000, p. 249] also lists RSA pitfalls. See also Exercise
8.2 for a variety of RSA security issues.

Having adopted the notion that the public key is the hard-to-break (i.e.,
difficult to factor) composite integer N = pq, we can proceed with actual
encryption of messages, as follows:

Algorithm 8.1.3 (RSA encryption/decryption). We assume that Alice pos-
sesses a private key DA and public key (NA, EA) from Algorithm 8.1.2. Here we
show how another individual (Bob) can encrypt a message x (thought of as an
integer in [0, NA)) to Alice, and how Alice can decrypt said message.

1. [Bob encrypts]
y = xEA mod NA; // Bob is using Alice’s public key.
Bob then sends y to Alice;

2. [Alice decrypts]
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Alice receives encrypted message y;
x = yDA mod NA; // Alice recovers the original x.

It is not hard to see that, as required for Algorithm 8.1.3 to work, we must
have

xDE ≡ x (mod N).

This, in turn, follows from the fact that DE = 1 + kϕ by construction of D
itself, so that xDE = x(xϕ)k ≡ x · 1k = x (mod N), when gcd(x, N) = 1. In
addition, it is easy to see that xDE ≡ x (mod N) continues to hold even when
gcd(x, N) > 1.

Now with the RSA scheme we envision a scenario in which a great
number of individuals all have their respective public keys (Ni, Ei) literally
published—as one might publish individual numbers in a telephone book.
Any individual may thereby send an encrypted message to individual j by
casually referring to the public (Nj , Ej) and doing a little arithmetic. But
can the recipient j know from whom the message was encrypted and sent? It
turns out, yes, to be quite possible, using a clever digital signature method:

Algorithm 8.1.4 (RSA signature: Simple version). We assume that Alice
possesses a private key DA and public key (NA, EA) from Algorithm 8.1.2. Here
we show how another individual (Bob) having private key DB and public key
(NB, EB) can “sign” a message x (thought of as an integer in [0,min{NA, NB})).
1. [Bob encrypts with signature]

s = xDB mod NB; // Bob creates signature from message.
y = sEA mod NA; // Bob is using here Alice’s public key.
Bob then sends y to Alice;

2. [Alice decrypts]
Alice receives signed/encrypted message y;
s = yDA mod NA; // Alice uses her private key.
x = sEB mod NB; // Alice recovers message using Bob’s public key.

Note that in the final stage, Alice uses Bob’s public key, the idea being that—
up to the usual questions of difficulty or breakability of the scheme—only Bob
could have originated the message, because only he knows private key DB. But
there are weaknesses in this admittedly elegant signature scheme. One such
is this: If a forger somehow prepares a “factored message” x = x1x2, and
somehow induces Bob to send Alice the signatures y1, y2 corresponding to the
component messages x1, x2, then the forger can later pose as Bob by sending
Alice y = y1y2, which is the signature for the composite message x. In a sense,
then, Algorithm 8.1.4 has too much symmetry. Such issues can be resolved
nicely by invoking a “message digest,” or hash function, at the signing stage
[Schneier 1996], [Menezes et al. 1997]. Such standards as SHA-1 provide such
a hash function H, where if x is plaintext, H(x) is an integer (often much
smaller, i.e., having many fewer bits, than x). In this way certain methods
for breaking signatures—or false signing—would be suppressed. A signature
scheme involving a hash function goes as follows:
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Algorithm 8.1.5 (RSA encrypt-with-signature: More practical version).
We assume that Bob possesses a private key DB and public key (NB, EB) from
Algorithm 8.1.2. Here we show how Alice can recover Bob’s plaintext message
x (thought of as an integer in some appropriate interval) and also verify Bob’s
signature. We assume the existence of message digest function H, such as from
the SHA-1 standard.

1. [Bob encrypts with signature]
y = xEA mod NA; // Bob encrypts, using Alice’s public key.
y1 = H(x); // y1 is the “hash” of plaintext x.
s = yDB

1 mod NB; // Bob creates signature s.
Bob sends (y, s) (i.e., combined message/signature) to Alice;

2. [Alice decrypts]
Alice receives (y, s);
x = yDA mod NA; // Alice decrypts to recover plaintext x.

3. [Alice processes signature]
y2 = sEB mod NB;
if(y2 == H(x)) Alice accepts signature;

else Alice rejects signature;

We note that there are practical variants of this algorithm that do not
involve actual encryption; e.g., if plaintext security is not an issue while only
authentication is, one can simply concatenate the plaintext and signature, as
(x, s) for transmission to Alice. Note also there are alternative, yet practical
signature schemes that depend instead on a so-called redundancy function, as
laid out, for example, in [Menezes et al. 1997].

8.1.3 Elliptic curve cryptosystems (ECCs)

The mid-1980s saw the emergence of yet another fascinating cryptographic
idea, that of using elliptic curves in cryptosystems [Miller 1987], [Koblitz
1987]. Basically, elliptic curve cryptography (ECC) involves a public curve
Ea,b(F ) where F is a finite field. Prevailing choices are F = Fp for prime p,
and F = F2k for suitable integers k. We shall focus primarily on the former
fields Fp, although much of what we describe works for finite fields in general.
The central idea is that given points P, Q ∈ E such that the relation

Q = [k]P

holds for some integer k, it should be hard in general to extract the elliptic
discrete logarithm (EDL), namely a value for the integer multiplier k. There
is by now a considerable literature on the EDL problem, of which just one
example work is [Lim and Lee 1997], in which it is explained why the group
order’s character (prime or composite, and what kind of factorization) is
important as a security matter.

The Diffie–Hellman key exchange protocol (see Algorithm 8.1.1) can be
used in a cyclic subgroup of any group. The following algorithm is Diffie–
Hellman for elliptic-curve groups.
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Algorithm 8.1.6 (ECC key exchange). Two individuals, Alice and Bob,
agree on a public elliptic curve E and a public point P ∈ E whose point order
is n. (In many scenarios, n is prime, or admits of a large prime factor.) This
algorithm produces a mutual key.

1. [Alice generates public key]
Alice chooses random KA ∈ [2, n − 2]; // Alice’s secret key.
Q = [KA]P ; // Point Q is Alice’s public key.

2. [Bob generates public key]
Bob chooses random KB ∈ [2, n − 2]; // Bob’s secret key.
R = [KB]P ; // Point R is Bob’s public key.

3. [Each individual creates the unique mutual key]
Bob computes point K = [KB]Q;
Alice computes point K = [KA]R. // Results agree.

That the mutual key is unique follows directly from the group rules, as

[KB]([KA]P ) = [KBKA]P = [KAKB]P = [KA]([KB]P ).

Again the notion of the difficulty of Bob, say, discovering Alice’s private key
KA is presumably the difficulty of EDL. That is, if EDL is easy, then the ECC
key exchange is not secure; and, it is thought that the converse is true as well.
Note that in ECC implementations, private keys are integers, usually roughly
the size of p (but could be larger than p—recall that the group order #E can
itself slightly exceed p), while public keys and the exchanged mutual key are
points. Typically, some bits of a mutual key would be used in, say, a block
cipher; for example, one might take the bits of the x-coordinate.

A primary result in regard to the EDL problem is the so-called “MOV
theorem,” which states essentially that the EDL problem over Fp is equivalent
to the normal DL problem over F∗

pB , for some B [Menezes et al. 1993]. There is
a practical test for the estimated level of security in an ECC system—call this
level the MOV threshold—see [Solinas 1998]. In practice, the MOV threshold
B is “about 10,” but depends, of course, on the prevailing complexity estimate
for the DL problem in finite fields. Note, however, that “supersingular” curves,
having order #E = p+1, are particularly susceptible, having EDL complexity
known to be no worse than that of the DL problem in Fpk , some k ≤ 6
[Menezes et al. 1993]. Such curves can be ruled out a priori for the reason
stated.

There is also the so-called Semaev–Smart–Satoh–Araki attack, when the
order is #E = p, based on p-adic arithmetic. (The 1998 announcement in
[Smart 1999] caused a noticeable ripple in the cryptography field, although
the theoretical knowledge is older than the announcement; see [Semaev 1998],
[Satoh and Araki 1998].) More modern attacks, some of which involve the
real-timing of elliptic ladders, are discussed in may references; for example,
see V. Müller’s site [Müller 2004].

Incidentally, the question of how one finds elliptic curves of prime order
(and so having elements of prime order) is itself interesting. One approach is
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just to generate random curves and assess their orders via Algorithm 7.5.6.
Another is to use Algorithm 7.5.9 or 7.5.10 to generate possible orders, and
when a prime order is found, go ahead and specify a curve with that order.
But there are clever variants of these basic approaches (see Exercise 8.27). It
should be remarked that some cryptographers accept curves of order #E = fr,
where f may consist of small prime factors while r is a large prime. For such
curves, one still prefers to find points of the prime order r, and this can be
done very simply:

Algorithm 8.1.7 (Find a point of prime order). Given an elliptic curve
Ea,b(Fp) of order #E = fr, where r is prime, this algorithm endeavors to find a
point P ∈ E of order r.

1. [Find starting point]
Choose a random point P ∈ E, via Algorithm 7.2.1;

2. [Check multiple]
Q = [f ]P ;
if(Q == O) goto [Find starting point];
return Q; // A point of prime order r.

The algorithm is admittedly almost trivial, but important in cryptography
applications. One such application is elliptic signature. There is a standard
elliptic-curve digital signature scheme that runs like so, with the prerequisite
of a point of prime order evident right at the outset:

Algorithm 8.1.8 (Elliptic curve digital signature algorithm (ECDSA)).
This algorithm provides functions for key generation, signing, and verification
of messages. A message is generally denoted by M , an integer, and it is assumed
that a suitable hash function h is in hand.

1. [Alice generates key]
Alice chooses a curve E, whose order #E = fr with r a “large” prime;
Alice finds point P ∈ E of order r, via Algorithm 8.1.7;
Alice chooses random d ∈ [2, r − 2];
Q = [d]P ;
Alice publishes public key (E,P, r,Q); // Private key is d.

2. [Alice signs]
Alice chooses random k ∈ [2, r − 2];
(x1, y1) = [k]P ;
R = x1 mod r; // Note that R = 0.
s = k−1(h(M) + Rd) mod r;
if(s == 0) goto [Alice signs];
Alice’s signature is the pair (R, s), transmitted with message M ;

3. [Bob verifies]
Bob obtains Alice’s public key (E,P, r,Q);
w = s−1 mod r;
u1 = h(M)w mod r;
u2 = Rw mod r;
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(x0, y0) = [u1]P + [u2]Q;
v = x0 mod r;
if(v == R) Bob accepts signature;

else Bob rejects signature;

This algorithm is modeled on an older DSA standard, and amounts to the
natural elliptic-curve variant of DSA. Modern details and issues are discussed
in [Johnson et al. 2001]. The hash value h(M) is, technically speaking,
supposed to be effected via another standard, the SHA-1 hash function [Jurǐsić
and Menezes 1997]. Those authors also discuss the interesting issue of security.
They conclude that a 1024-bit DSA system is about as secure as a 160-bit
ECDSA system. If valid, such an observation shows once again that, on our
current knowledge, the EDL problem is about as hard as a computational
number-theoretical problem can be.

The current record for an EDL computation pertains to the “Certicom
Challenge,” for which an EDL was solved in 2002 by C. Monico et al. for
an elliptic curve over Fp with p being a 109-bit prime. The next challenge
of this type on the list is a 131-bit prime, but under current knowledge of
EDL difficulty, the 131-bit case is perhaps two thousand times harder than
the 109-bit case.

Incidentally, there is a different way to effect a signature scheme with
elliptic curves, which is the El Gamal scheme. We do not write out the
algorithm—it is less standard than the above ECDSA scheme (but no less
interesting))—but the essentials lie in Algorithm 8.1.10. Also, the theoretical
ideas are found in [Koblitz 1987].

We have mentioned, in connection with RSA encryption, the practical
expedient of using the sophisticated methods (RSA, ECC) for a key exchange,
then using the mutually understood key in a rapid block cipher, such as DES,
say. But there is another fascinating way to proceed with a kind of “direct”
ECC scheme, based on the notion of embedding plaintext as points on elliptic
curves. In this fashion, all encryption/decryption proceeds with nothing but
elliptic algebra at all phases.

Theorem 8.1.9 (Plaintext-embedding theorem). For prime p > 3 let E
denote an elliptic curve over Fp, with governing cubic

y2 = x3 + ax + b.

Let X be any integer in [0, p − 1]. Then X is either an x-coordinate of some
point on E, or on the twist curve E′ whose governing cubic is gy2 = x3+ax+b,
for some g with

(
g
p

)
= −1. Furthermore, if p ≡ 3 (mod 4), and we assign

s = X3 + aX + b mod p,

Y = s(p+1)/4 mod p,

then (X, Y ) is a point on either E,E′, respectively, as

Y 2 ≡ s, −s (mod p),
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where in the latter case we take the governing cubic for E′ to be −y2 =
x3 + ax + b.

This theorem is readily proved via the same twist algebra that we encountered
in Theorem 7.5.2 and Exercise 7.16, and leads to the following algorithm for
direct-embedding encryption:

Algorithm 8.1.10 (Direct-embedding ECC encryption). This algorithm
allows encryption/decryption using exclusively elliptic algebra, i.e., with no in-
termediary cipher, via the direct embedding of plaintext onto curves. We assume
that Alice and Bob have agreed upon a public curve Ea,b(Fp) with its twist curve
E′, on which lie respectively public points P, P ′. In addition, it is assumed that
Bob has generated respective public keys PB = [KB]P, P ′

B = [KB]P ′, as in Al-
gorithm 8.1.6. We denote by X a parcel of plaintext (an integer in [0, . . . , p− 1])
that Alice wishes to encrypt for Bob.

1. [Alice embeds plaintext X]
Alice determines the curve E or E′ on which X is a valid x-coordinate (and,

if y-coordinates are relevant, computes such number Y ) via Theorem
8.1.9, taking the curve to be E if X is on both curves;

// See Exercise 8.5.
Depending respectively on which curve E,E′ is in force, Alice sets

respectively:
d = 0 or 1; // Curve-selecting bit.
Q = P or P ′;
QB = PB or P ′

B.
Alice chooses random r ∈ [2, p − 2];
U = [r]QB + (X, Y ); // Elliptic add, to obfuscate plaintext.
C = [r]Q; // The “clue” for undoing the obfuscation.
Alice transmits a parcel (encrypted message, clue, bit) as (U, C, d);

2. [Bob decrypts to get plaintext X]
Bob inspects d to determine on which curve elliptic algebra will proceed;
(X, Y ) = U − [KB]C; // Private key applied with elliptic subtract.
Bob now recovers the plaintext as the x-coordinate X;

This method will be recognized as an El Gamal embedding scheme, where
we have made some improvements over previous renditions [Koblitz 1987],
[Kaliski 1988]. Note that the last part of Theorem 8.1.9 allows Algorithm
8.1.10 to proceed efficiently when the field characteristic has p ≡ 3 (mod 4).
In practical implementations of Algorithm 8.1.10, there are two further
substantial improvements one may invoke. First, the y-coordinates are not
needed if one uses Montgomery coordinates (Algorithm 7.2.7) throughout
and carefully applies Algorithm 7.2.8 at the right junctures. Second, the
“clue” point C of the algorithm effectively doubles the transmitted data size.
This, too, can be avoided by carefully setting up a random number exchange
protocol, so that the random number r itself is deterministically kept in
synchrony by the two parties. (The authors are indebted to B. Garst for
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this observation, which in fact has led to a U. S. Patent [Crandall and Garst
2001].) See Exercise 8.3 for more detail on such enhancements. If properly
done, one obtains a fairly efficient, elegant direct-embedding scheme with—
asymptotically speaking—no data expansion.

8.1.4 Coin-flip protocol

In cryptography, a protocol is essentially an algorithm specifying—in a certain
order—the steps that involved parties must take. We have seen key-exchange
and related protocols already. Here we investigate an intriguing cultural
application of number-theoretical protocols. How can one toss a coin, fairly,
over the telephone? Or play poker among n individuals, playing “blind” on a
network? We assume the worst: That no party trusts any other, yet a decision
has to be reached, as one would so reach it via a coin toss, with one party
calling heads or tails. It turns out that such a remote tossing is indeed possible,
using properties of certain congruences.

Incidentally, the motivation for even having a coin-flip protocol is obvious,
when one imagines a telephone conversation—say between two hostile parties
involved in a lawsuit—in which some important result accrues on the basis of
a coin flip, meaning a random bit whose statistics cannot be biased by either
party. Having one party claim they just flipped a head, and therefore won
the toss, is clearly not good enough. Everyone must be kept honest, and this
can be done via adroit application of congruences involving primes or certain
composites. Here is one way to proceed, where we have adapted some ideas
from [Bressoud and Wagon 2000] on simple protocols:

Algorithm 8.1.11 (Coin-flip protocol). Alice and Bob wish to “flip a fair
coin,” using only a communication channel. They have agreed that if Bob guesses
correctly, below, then Bob wins, otherwise Alice wins.

1. [Alice selects primes]
Alice chooses two large primes p < q, forms the number n = pq, and

chooses a random prime r such that
(
n
r

)
= −1;

2. [Alice sends Bob partial information]
Alice sends Bob n and r;

3. [Bob chooses]
Bob makes a choice between “the smaller prime factor of n is a quadratic

residue mod r” and “the larger prime factor of n is a quadratic residue
mod r” and sends this choice to Alice;

4. [Alice announces winner]
Alice announces whether Bob is correct or not, and sends him the primes

p, q so that Bob can see for himself that she is not cheating;

It is interesting to investigate the cryptographic integrity of this algorithm;
see Exercise 8.8. Though we have cast the above algorithm in terms of winner
and loser, it is clear that Alice and Bob could use the same method just to
establish a random bit, say “0” if Alice wins and “1” if Bob wins. There
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are many variants to this kind of coin-flip protocol. For example, there is a
protocol in [Schneier 1996] in which four square roots of a number n = pq
are generated by Alice and sent to Bob, with Bob having generated a random
square modulo n. This scenario is not as simple as Algorithm 8.1.11, but it is
replete with interesting issues; e.g., one can extend it to handle the peculiar
Micali scenario in which Bob intentionally loses [Schroeder 1999]. There are
also algorithms based on Blum integers and, generally, the fact of a product
pq allowing multiple roots (see Exercise 8.7). These ideas can be extended in
a natural way to a poker-playing protocol in which a number of players claim
what poker hands they possess, and so on [Goldwasser and Micali 1982].

8.2 Random-number generation

The problem of generating random numbers goes back, of course, to the dawn
(1940s, say) of the computer age. It has been said that to generate random
numbers via machine arithmetic is to live, in the words of J. von Neumann,
“in a state of sin.” Though machines can ensure nearly random statistics in
many senses, there is the problem that conventional machine computation
is deterministic, so the very notion of randomness is suspect in the world
of Turing machines and serial programs. If the reader wonders what kind
of technology could do better in the matter of randomness (though still
not “purely” random in the sense of probability theory), here is one exotic
example: Aim a microwave receiving dish at the remote heavens, listening to
the black-body “fossil” radiation from the early cosmos, and digitize that
signal to create a random bitstream. We are not claiming the cosmos is
truly “random,” but one does expect that a signal from remote regions is
as “unknowable” as can be.

In modern times, the question of true randomness has more import than
ever, as cryptographic systems in particular often require numbers that are as
random, or as seemingly random, as can be. A deterministic generator that
generates what looks to an eavesdropper like random numbers can be used
to build a simple cryptosystem. Create a random bitstream. To encrypt a
message, take the logical exclusive-or of bits of the message with bits of the
random bitstream. To decrypt, do the exclusive-or operation again, against
the same random bitstream. This cryptosystem is unbreakable, unless certain
weaknesses are present—such as, the message is longer than the random
stream, or the same random stream is reused on other messages, or the
eavesdropper has special knowledge of the generator, and so on. In spite of such
practical pitfalls, the scheme illustrates a fundamental credo of cryptography:
Somehow, use something an eavesdropper does not know.

It seems that just as often as a new random-number generator is developed,
so, too, is some older scheme shown to be nonrandom enough to be, say,
“insecure,” or yield misleading results in Monte Carlo simulations. We shall
give a brief tour of random number generation, with a view, as usual, to the
involvement of prime numbers.
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8.2.1 Modular methods

The veritable workhorse of the random number generation industry has been
the linear-congruential generator. This method uses an integer iteration

xn+1 = (axn + b) mod m,

where a, b, m are integer constants with m > 1, which recursion is to be
ignited by an initial “seed,” say x0. To this day there continue to appear
research results on the efficacy of this and related generators. One variant is
the multiplicative congruential generator, with recursion

xn+1 = (cxn) mod m,

where in this case the seed x0 is assumed coprime to m. In applications
requiring a random() function that returns samples out of the real interval
[0, 1), the usual expedient is simply to use xn/m.

Recurrences, like the two above, are eventually periodic. For random
number generation it is desirable to use a recursion of some long period. It is
easy to see that the linear-congruential generator has period at most m and
the multiplicative congruential generator has period at most m−1. The linear
case can—under certain constraints on the parameters—have the full period
m for the sequence (xn), while the multiplicative variety can have period
m − 1. Fundamental rules for the behavior of such generators are embodied
in the following theorem:

Theorem 8.2.1 (Lehmer). The linear-congruential generator determined
by

xn+1 = (axn + b) mod m

has period m if and only if

(1) gcd(b, m) = 1,
(2) p|a − 1 whenever prime p|m,
(3) 4|a − 1 if 4|m.

Furthermore, the multiplicative congruential generator determined by

xn+1 = (cxn) mod m

has period m − 1 if and only if

(1) m is prime,
(2) c is a primitive root of m,
(3) x0 ≡ 0 (mod m).

Many computer systems still provide the linear scheme, even though there are
certain flaws, as we shall discuss.

First we give an explicit, standard linear-congruential generator:
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Algorithm 8.2.2 (32-bit random-number generator (Knuth, Lewis)).
This algorithm provides seeding and random functions for a certain generator
known to have fairly good statistical behavior. We take M = 232 as the genera-
tor modulus, and will speedily effect operations modulo M by logical “and” (&)
with M −1. One first calls the seed() procedure, then calls random() successively
to get random numbers.

1. [Procedure seed]
seed() {

Choose starting seed x; // x is an integer in [0, M − 1].
return;

}
2. [Function random]

random() {
x = (1664525x + 1013904223) & (M − 1);
return x; // New random number.

}

Note that the “and” operation with M − 1 is simply the taking of the low 32
bits of the number involved. Along similar lines, the popular generator

xn+1 = (16807xn) mod M31,

where M31 = 231 − 1 is a Mersenne prime, has enjoyed a certain success in
passing many (but not all) experimental tests [Park and Miller 1988], [Press
et al. 1996].

An interesting optimization of certain congruential generators has been
forwarded in [Wu 1997]. The recursion is

xn+1 =
(
(230 − 219)xn

)
mod M61,

where the fact of M61 being a Mersenne prime allows some rapid arithmetic.

Algorithm 8.2.3 (Fast, 61-bit random generator). This algorithm provides
seeding and random functions for the Wu generator, modulus M = 261 − 1 and
multiplier c = 230 − 219. Though modular multiplications occur in principle, the
explicit operations below are relegated to addition/subtraction, left/right shifts
(<< / >>, respectively), and logical “and” (&) which acts as a certain mod
operation.

1. [Procedure seed]
seed() {

Choose starting seed x; // x is an integer in [1, M − 1].
return;

}
2. [Function random]

random() {
x = (x >> 31) + ((x << 30)&M) − (x >> 42) − ((x << 19)&M);
if(x < 0) x = x + M ;
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return x; // New random number.
}

Thanks to the shifts and “and” operations, this algorithm involves no explicit
multiplication or division. Furthermore, the generator fares well under some
established statistical tests [Wu 1997]. Of course, this generator can be
generalized, yet as with any machine generator, caution should be taken in
choosing the parameters; for example, the parameters c, M should be chosen
so that c is a primitive root for the prime M to achieve long period. We
should also add an important caution: Very recent experiments and analyses
have uncovered weaknesses in the generator of the type in Algorithm 8.2.3.
Whereas this kind of generator evidently does well on spectral tests, there
are certain bit-population statistics with respect to which such generators
are unsatisfactory [L’Ecuyer and Simard 1999]. Even so, there are still good
reasons to invoke such a generator, such as its very high speed, ease of
implementation, and good performance on some, albeit not all, statistical
tests.

Variants to these congruential generators abound. One interesting devel-
opment concerns generators with extremely long periods. A result along such
lines concerns random number generation via matrix–vector multiplication.
If T is a k × k matrix, and �x a k-component vector, we may consider the
next vector in a generator’s iteration to be �x = T�x, say, with some rule for
extracting bits or values from the current vector.

Theorem 8.2.4 (Golomb). For prime p, denote by Mk(p) the group of
nonsingular k × k matrices (mod p), and let �x be a nonzero vector in Zk

p.
Then the iterated sequence

�x, T�x, T2�x, . . .

has period pk − 1 if and only if the order of T ∈ Mk(p) is pk − 1.

This elegant theorem can be applied in the same fashion as we have
constructed the previous iterative generators. However, as [Golomb 1982] and
[Marsaglia 1991] point out, there are much more efficient ways to provide
extreme periods. In this case it is appropriate for the key theorem to follow
the algorithm description, because of the iterative nature of the generator.

Algorithm 8.2.5 (Long-period random generator).
This algorithm assumes input integers b ≥ 2 and r > s > 0 and produces an
iterative sequence of pseudorandom integers, each calculated from r previous
values and a running carry bit c. We start with a (vector) seed/carry entity �v with
its first r components assumed in [0, b − 1], and last component c = 0 or 1.

1. [Procedure seed]
seed() {

Choose parameters b ≥ 2 and r > s > 0;
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Initialize a seed vector/carry: �v = (v1, . . . , vr, c);
return;

}
2. [Function random]

random() {
x = vs − vr − c; // Get new x as function of previous values.
if(x < 0) {

x = x + b;
c = 1; // A ’borrow’ has occurred.

} else c = 0;
�v = (x, v1, . . . , vr−1, c); // Shift the old vr into oblivion.
return x; // New random number.

}

In practice, this algorithm can be impressive, to say the least. For example,
using input parameters b = 264, r = 30, s = 6, so that we shall iterate

x0 = v6 − v30 − c,

with mod, carry, and shift understood from Algorithm 8.2.5, the period turns
out to be

P ≈ 10578,

which is one of myriad striking examples of the following theorem:

Theorem 8.2.6 (Marsaglia). The random-number generator of Algorithm
8.2.5 has period

P = ϕ(br − bs + 1).

Thus, the period for our previous explicit example is really

ϕ
(
264·30 − 264·6 + 1

)
= 264·30 − 264·6 ≈ 10578,

the argument of ϕ being prime. Note that a number produced by the generator
can repeat without the subsequent number repeating; it is the vector �v internal
to the algorithm that is key to the length of the period. As there are on
the order of br possible vectors �v, the Marsaglia theorem above makes some
intuitive sense.

Another iterative generator is the discrete exponential generator (also
known as the power generator) determined by

xn+1 = gxn (mod N),

for given g, x0, N . It has been studied by [Blum et al. 1986], [Lagarias 1990],
[Friedlander et al. 2001], [Kurlberg and Pomerance 2004] and some rigorous
results pertaining to security are known. It is often of interest to generate a
secure random bit with as little computation as possible. It had been known
that if just one bit is chosen from each xn, then this is in a sense secure, but
at the cost of much computation to generate each bit. In [Patel and Sundaram
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1998], it is shown that most of the bits of xn can be kept, and the result is
still cryptographically secure. There is thus much less computation per bit.

There are many other generators in current use, such as shift-register,
chaotic, and cellular-automata (CA) generators. Some generators have been
cryptographically “broken,” notably the simpler congruential ones, even if
the linear congruence is replaced with higher polynomial forms [Lagarias
1990]. One dilemma that besets researchers in this field is that the generators
that may well be quite “secure,” such as the discrete exponential variety
that in turn depends on the DL problem for its security, are sluggish.
Incidentally, there are various standard randomness tests, especially as regard
random generation of binary bits, which can often be invoked to demolish—
alternatively to bestow some measure of confidence upon—a given generator
[Menezes et al. 1997].

On the issue of security, an interesting idea due to V. Miller is to use
a linear-congruential generator, but with elliptic addition. Given an elliptic
curve E over a finite field, one might choose integer a and point B ∈ E and
iterate

Pn+1 = [a]Pn + B, (8.1)

where the addition is elliptic addition and now the seed will be some initial
point P0 ∈ E. One might then use the x-coordinate of Pn as a random
field element. This scheme is not as clearly breakable as is the ordinary
linear congruential scheme. It is of interest that certain multipliers a, such as
powers of two, would be relatively efficient because of the implied simplicity
of the elliptic multiplication ladder. Then, too, one could perhaps use reduced
operations inherent in Algorithm 7.2.8. In other words, use only x-coordinates
and live with the ambiguity in [a]P ± B, never actually adding points per se,
but having to take square roots.

Incidentally, a different approach to the use of elliptic curves for random
generators appears in [Gong et al. 1999], where the older ideas of shift registers
and codewords are generalized to curves over F2m (see Exercise 8.29).

Along the same lines, let us discuss for a moment the problem of random
bit generation. Surely, one can contemplate using some bit—such as the lowest
bit—of a “good” random-number generator. But one wonders, for example,
whether the calculation of Legendre symbols appropriate to point-finding on
elliptic curves, (

x3 + ax + b

p

)
= ±1,

with x running over consecutive integers in an interval and with the (rare)
zero value thrown out, say, constitute a statistically acceptable random walk
of ±1 values. And one wonders further whether the input of x into a Legendre-
symbol machine, but from a linear-congruential or other generator, provides
extra randomness in any statistical sense.

Such attempts at random bit streams should be compared statistically to
the simple exclusive-or bit generators. An example given in [Press et al. 1996]
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is based on the primitive polynomial (mod 2)

x18 + x5 + x2 + x + 1.

(A polynomial over a finite field F is primitive if it is irreducible and if a root
is a cyclic generator for the multiplicative group of the finite field generated
by the root.) If one has a “current” bit x−1, and labels the previous 17 bits
x−2, x−3, . . . , x−18, then the shifting logic appropriate to the given polynomial
is to form a new bit x0 according to the logic

x0 = x−18,

x−5 = x−5 ∧ x0,

x−2 = x−2 ∧ x0,

x−1 = x−1 ∧ x0,

where “∧” is the exclusive-or operator (equivalent to addition in the even-
characteristic field). Then all of the indices are shifted so that the new
x−1—the new current bit—is the x0 from the above operations. An explicit
algorithm is the following:

Algorithm 8.2.7 (Simple and fast random-bit generator). This algorithm
provides seeding and random functions for a random-bit generator based on the
polynomial x18 + x5 + x2 + x + 1 over F2.

1. [Procedure seed]
seed() {

h = 217; // 100000000000000000 binary.
m = 20 + 21 + 24; // Mask is 10011 binary.
Choose starting integer seed x in [1, 218];
return;

}
2. [Function random returning 0 or 1]

random() {
if((x & h) = 0) { // The bitwise “and”of x, h is compared to 0.

x = ((x ∧ m) << 1) | 1; // “Exclusive-or” (∧) and “or” (|) taken.
return 1;

}
x = x << 1;
return 0;

}

The reference [Press et al. 1996] has a listing of other polynomials (mod 2)
for selected degrees up through 100.

In any comprehensive study of random number generation, one witnesses
the conceptual feedback involving prime numbers. Not only do many
proposed random-number generators involve primes per se, but many of the
algorithms—such as some of the ones appearing in this book—use recourse
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to suitable random numbers. But if one lifts the requirement of statistically
testable randomness as it is usually invoked, there is quite another way to
use random sequences. It is to these alternatives—falling under the rubric of
quasi-Monte Carlo (qMC)—to which we next turn.

8.3 Quasi-Monte Carlo (qMC) methods

Who would have guessed, back in the times of Gauss, Euler, Legendre, say,
that primes would attain some practical value in the financial-market analysis
of the latter twentieth century? We refer here not to cryptographic uses—
which certainly do emerge whenever money is involved—but quasi-Monte
Carlo science which, loosely speaking, is a specific form of Monte Carlo (i.e.,
statistically motivated) analysis. Monte Carlo calculations pervade the fields
of applied science.

The essential idea behind Monte Carlo calculation is to sample some large
continuous (or even discrete, if need be) space—in doing a multidimensional
integral, say—with random samples. Then one hopes that the “average” result
is close to the true result one would obtain with the uncountable samples
theoretically at hand. It is intriguing that number theory—in particular prime-
number study—can be brought to bear on the science of quasi-Monte Carlo
(qMC). The techniques of qMC differ from traditional Monte Carlo in that one
does not seek expressly random sequences of samples. Instead, one attempts to
provide quasirandom sequences that do not, in fact, obey the strict statistical
rules of randomness, but instead have certain uniformity features attendant
on the problem at hand.

Although it is perhaps overly simplistic, a clear way to envision the
difference between random and qMC is this: Random points when dropped can
be expected to exhibit “clumps” and “gaps,” whereas qMC points generally
avoid each other to minimize clumping and tend to occupy previous gaps. For
these reasons qMC points can be—depending on the spatial dimension and
precise posing of the problem—superior for certain tasks such as numerical
integration, min–max problems, and statistical estimation in general.

8.3.1 Discrepancy theory

Say that one wants to know the value of an integral over some D-dimensional
domain R, namely

I =
∫ ∫

· · ·
∫

R

f(�x) dD�x,

but there is no reasonable hope of a closed-form, analytic evaluation. One
might proceed in Monte Carlo fashion, by dropping a total of N “random”
vectors �x = (x1, . . . , xD) into the integration domain, then literally adding up
the corresponding integrand values to get an average, and then multiplying
by the measure of R to get an approximation, say I ′, for the exact integral
I. On the general variance principles of statistics, we can expect the error to
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behave no better than

|I ′ − I| = O

(
1√
N

)
,

where of course, the implied big-O constant depends on the dimension D, the
integrand f , and the domain R. It is interesting that the power law N−1/2,
though, is independent of D. By contrast, a so-called “grid” method, in which
we split the domain R into grid points, can be expected to behave no better
than

|I ′ − I| = O

(
1

N1/D

)
,

which growth can be quite unsatisfactory, especially for large D. In fact, a grid
scheme—with few exceptions—makes practical sense only for 1- or perhaps 2-
dimensional numerical integration, unless there is some special consideration
like well-behaved integrand, extra reasons to use a grid, and so on. It is easy
to see why Monte Carlo methods using random point sets have been used for
decades on numerical integration problems in D ≥ 3 dimensions.

But there is a remarkable way to improve upon direct Monte Carlo, and
in fact obtain errors such as

|I ′ − I| = O

(
lnD N

N

)
,

or sometimes with lnD−1 powers appearing instead, depending on the
implementation (we discuss this technicality in a moment). The idea is to
use low-discrepancy sequences, a class of quasi-Monte Carlo (qMC) sequences
(some authors define a low-discrepancy sequence as one for which the behavior
of |I ′ − I| is bounded as above; see Exercise 8.32). We stress again, an
important observation is that qMC sequences are not random in the classical
sense. In fact, the points belonging to qMC sequences tend to avoid each other
(see Exercise 8.12).

We start our tour of qMC methods with a definition of discrepancy, where
it is understood that vectors drawn out of regions R consist of real-valued
components.

Definition 8.3.1. Let P be a set of at least N points in the (unit D-cube)
region R = [0, 1]D. The discrepancy of P with respect to a family F of
Lebesgue-measurable subregions of R is defined (neither DN nor D∗

N is to
be confused with dimension D) by

DN (F ; P ) = sup
φ∈F

∣∣∣∣χ(φ;P )
N

− µ(φ)
∣∣∣∣ ,

where χ(φ;P ) is the number of points of P lying in φ, and µ denotes Lebesgue
measure. Furthermore, the extreme discrepancy of P is defined by

DN (P ) = DN (G; P ),
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where G is the family of subregions of the form
∏D

i=1[ui, vi). In addition, the
star discrepancy of P is defined by

D∗
N (P ) = DN (H; P ),

where H is the family of subregions of the form
∏D

i=1[0, vi). Finally, if S ⊂ R
is a countably infinite sequence S = (�x1, �x2, . . .), we define the various
discrepancies DN (S) always in terms of the first N points of S.

The definition is somewhat notation-heavy, but a little thought reveals what
is being sought, an assessment of “how fairly” a set P samples a region.
One might have thought on the face of it that a simple equispaced grid of
points would have optimal discrepancy, but in more than one dimension such
intuition is misleading, as we shall see. One way to gain insight into the
meaning of discrepancy is to contemplate the theorem: A countably infinite
set S is equidistributed in R = [0, 1]D if and only if the star discrepancy
(alternatively, the extreme discrepancy) vanishes as N → ∞. It is also the
case that the star and extreme discrepancies are not that different; in fact, it
can be shown that for any P of the above definition we have

D∗
N (P ) ≤ DN (P ) ≤ 2DD∗

N (P ).

Such results can be found in [Niederreiter 1992], [Tezuka 1995].
The importance of discrepancy—in particular the star discrepancy D∗—is

immediately apparent on the basis of the following central result, which may
be taken to be the centerpiece of qMC integration theory. We shall refer here
to the Hardy–Krause bounded variation, which is an estimate H(f) on the
excursions of a function f . We shall not need the precise definition for H (see
[Niederreiter 1992]), since the computational aspect of qMC depends mainly
on the rest of the overall variation term:

Theorem 8.3.2 (Koksma–Hlawka). If a function f has bounded variation
H(f) on R = [0, 1]D, and S is as in Definition 8.3.1, then∣∣∣∣∣ 1

N

∑
�x∈S

f(�x) −
∫

�r∈R

f(�r) dD�r

∣∣∣∣∣ ≤ H(f)D∗
N (S).

What is more, this inequality is optimal in the following sense: For any N -
point S ⊂ R and any ε > 0, there exists a function f with H(f) = 1 such that
the left-hand side of the inequality is bounded below by D∗

N (S) − ε.

This beautiful result connects multidimensional integration errors directly to
the star discrepancy D∗

N . The quest for accurate qMC sequences will now
hinge on the concept of discrepancy. Incidentally, one of the many fascinating
theoretical results beyond Theorem 8.3.2 is the assessment of Wozniakowski of
“average” case error bounds on the unit cube. As discussed in [Wozniakowski
1991], the statistical ensemble average—in an appropriately rigorous sense—
of the integration error is closely related to discrepancy, verifying once and for
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all that discrepancy is of profound practical importance. Moreover, there are
some surprising new results that go some distance, as we shall see, to explain
why actual qMC experiments are sometimes fare much better—provide far
more accuracy—than the discrepancy bounds imply.

A qMC sequence S should generally be one of low D∗, and it is in the
construction of such S that number theory becomes involved. The first thing
we need to observe is that there is a subtle distinction between a point-set
discrepancy and the discrepancy of a sequence. Take D = 1 dimension for
example, in which case the point set

P =
{

1
2N

,
3

2N
, . . . , 1 − 1

2N

}

has D∗
N (P ) = 1/(2N). On the other hand, there exists no countably infinite

sequence S that enjoys the property D∗
N (S) = O(1/N). In fact, it was shown

by [Schmidt 1972] that if S is countably infinite, then for infinitely many N ,

D∗
N (S) ≥ c

lnN

N
,

where c is an absolute constant (i.e., independent of N and S). Actually, the
constant can be taken to be c = 3/50 [Niederreiter 1992], but the main point
is that the requirement of an infinite qMC sequence, from which a researcher
may draw arbitrarily large numbers of contiguous samples, gives rise to special
considerations of error. The point set P above with its discrepancy 1/(2N) is
allowed because, of course, the members of the sequence themselves depend
on N .

8.3.2 Specific qMC sequences

We are now prepared to construct some low-star-discrepancy sequences.
A primary goal will be to define a practical low-discrepancy sequence
for any given prime p, by counting in a certain clever fashion through
base-p representations of integers. We shall start with a somewhat more
general description for arbitrary base-B representations. For more than one
dimension, a set of pairwise coprime bases will be used.

Definition 8.3.3. For an integer base B ≥ 2, the van der Corput sequence
for base B is the sequence

SB = (ρB(n)) , n = 0, 1, 2, . . . ,

where ρB is the radical-inverse function, defined on nonnegative integers n,
with presumed base-B representation n =

∑
i niB

i, by:

ρB(n) =
∑

i

niB
−i−1
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These sequences are easy to envision and likewise easy to generate in practice;
in fact, their generation is easier than one might suspect. Say we desire the
van der Corput sequence for base B = 2. Then we simply count from n = 0,
in binary

n = 0, 1, 10, 11, 100, . . . ,

and form the reversals of the bits to obtain (also in binary)

S = (0.0, 0.10, 0.01, 0.11, 0.001, . . .).

To put it symbolically, if we are counting and happen to be at integer index

n = nknk−1 . . . n1n0,

then the term ρB(n) ∈ S is given by reversing the digits thus:

ρB(n) = 0.n0n1 . . . nk.

It is known that every van der Corput sequence has

D∗
N (SB) = O

(
lnN

N

)
,

where the implied big-O constant depends only on B. It turns out that B = 3
has the smallest such constant, but the main point affecting implementations
is that the constant generally increases for larger bases B [Faure 1981].

For D > 1 dimensions, it is possible to generate qMC sequences based on
the van der Corput forms, in the following manner:

Definition 8.3.4. Let B̄ = {B1, B2, . . . , BD} be a set of pairwise-coprime
bases, each Bi > 1. We define the Halton sequence for bases B̄ by

SB̄ = (�xn) , n = 0, 1, 2, . . . ,

where
�xn = (ρB1(n), . . . , ρBD

(n)).

In other words, a Halton sequence involves a specific base for each vector
coordinate, and the respective bases are to be pairwise coprime. Thus for
example, a qMC sequence of points in the (D = 3)-dimensional unit cube can
be generated by choosing prime bases {B1, B2, B3} = {2, 3, 5} and counting
n = 0, 1, 2, . . . in those bases simultaneously, to obtain

�x0 = (0, 0, 0),
�x1 = (1/2, 1/3, 1/5),
�x2 = (1/4, 2/3, 2/5),
�x3 = (3/4, 1/9, 3/5),

and so on. The manner in which these points deposit themselves in the unit
3-cube is interesting. We can see once again the basic, qualitative aspect
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of successful qMC sequences: The points tend to drop into regions where
“they have not yet been.” Contrast this to direct Monte Carlo methods,
whereby—due to unbiased randomness—points will not only sometimes
“clump” together, but sometimes leave “gaps” as the points accumulate in
the domain of interest.

The Halton sequences are just one family of qMC sequences, as we discuss
in the next section. For the moment, we exhibit a typical theorem that reveals
information about how discrepancy grows as a function of the dimension:

Theorem 8.3.5 (Halton discrepancy). Denote by SB̄ a Halton sequence for
bases B̄. Then the star discrepancy of the sequence satisfies

D∗
N (SB̄) <

D

N
+

1
N

D∏
i=1

(
Bi − 1
2 ln Bi

lnN +
Bi + 1

2

)
.

A rather intricate proof can be found in [Niederreiter 1992]. We observe that
the theorem provides an explicit upper bound for the implied big-O constant
in

D∗
N (SB̄) = O

(
lnD N

N

)
,

an error behavior foreshadowed in the introductory remarks of this section.
What is more, we can see the (unfortunate) effect of larger bases supposedly
contributing more to the discrepancy (we say supposedly because this is just
an upper bound); indeed, this effect for larger bases is seen in practice. We
note that there is a so-called N -point Hammersley point set, for which the
leading component of �xn is x0 = n/N , while the rest of �xn is a (D − 1)-
dimensional Halton vector. This set is now N -dependent, so that it cannot be
turned into an infinite sequence. However, the Hammersley set’s discrepancy
takes the slightly superior form

D∗
N = O

(
lnD−1 N

N

)
,

showing how N -dependent sets can offer a slight complexity reduction.

8.3.3 Primes on Wall Street?

Testing a good qMC sequence, say estimating the volume of the unit D-ball,
is an interesting exercise. The Halton qMC sequence gives good results for
moderate dimensions, say for D up to about 10. One advantage of the Halton
sequence is that it is easy to jump ahead, so as to have several or many
computers simultaneously sampling from disjoint segments of the sequence.
The following algorithm shows how one can jump in at the n-th term, and
how to continue sequentially from there. To make the procedure especially
efficient, the digits of the index in the various bases under consideration are
constantly updated as we proceed from one index to the next.
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Algorithm 8.3.6 (Fast qMC sequence generation). This algorithm gener-
ates D-dimensional Halton-sequence vectors. Let p1, . . . , pD denote the first D
primes. For starting index n, a seed() procedure creates �xn whose components are
for clarity denoted by �xn[1], . . . , �xn[D]. Then a random() function may be used
to generate subsequent vectors �xn+1, �xn+2, . . ., where we assume an upper bound
of N for all indices. For high efficiency, global digits (di,j) are initially seeded to
represent the starting index n, then upon subsequent calls to a random() func-
tion, are incremented in “odometer” fashion for subsequent indices exceeding n.

1. [Procedure seed]
seed(n) { // n is the desired starting index.

for(1 ≤ i ≤ D) {
Ki =

⌈
ln(N+1)

ln pi

⌉
; // A precision parameter.

qi,0 = 1;
k = n;
x[i] = 0; // �x is the vector �xn.
for(1 ≤ j ≤ Ki) {

qi,j = qi,j−1/pi; // qi,j = p−j
i .

di,j = k mod pi; // The di,j start as base-pi digits of n.
k = (k − di,j)/pi;
x[i] = x[i] + di,jqi,j ;

}
}
return; // �xn now available as (x[1], . . . , x[D]).

}
2. [Function random]

random() {
for(1 ≤ i ≤ D) {

for(1 ≤ j ≤ Ki) {
di,j = di,j + 1; // Increment the “odometer.”
x[i] = x[i] + qi,j ;
if(di,j < pi) break; // Exit loop when all carries complete.
di,j = 0;
x[i] = x[i] − qi,j−1;

}
}
return (x[1], . . . , x[D]); // The new �x.

}

It is plain upon inspection that this algorithm functions as an “odometer,”
with ratcheting of base-pm digits consistent with Definition 8.3.4. Note the
parameters Ki, where Ki is the maximum possible number of digits, in base pi,
for an integer index j. This Ki must be set in terms of some N that is at least
the value of any j that would ever be reached. This caution, or an equivalent
one, is necessary to limit the precision of the reverse-radix base expansions.
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Algorithm 8.3.6 is usually used in floating-point mode, i.e., with stored
floating-point inverse powers qi,j but integer digits ni,j . However, there is
nothing wrong in principle with an exact generator in which actual integer
powers are kept for the qi,j . In fact, the integer mode can be used for testing of
the algorithm, in the following interesting way. Take, for example, N = 1000,
so vectors �x0, . . . , �x999 are allowed, and choose D = 2 dimensions so that the
primes 2,3 are involved. Then call seed(701), which sets the variable x to be
the vector

�x701 = (757/1024, 719/729).

Now, calling random() exactly 9 times produces

�x710 = (397/1024, 674/729),

and sure enough, we can test the integrity of the algorithm by going back and
calling seed(710) to verify that starting over thus with seed value 701+9 gives
precisely the �x710 shown.

It is of interest that Algorithm 8.3.6 really is fast, at least in this
sense: In practice, it tends to be faster even than calling a system’s built-in
random-number function. And this advantage has meaning even outside the
numerical-integration paradigm. When one really wants an equidistributed,
random number in [0, 1), say, a system’s random function should certainly be
considered, especially if the natural tendency for random samples to clump
and separate is supposed to remain intact. But for many statistical studies,
one simply wants some kind if irregular “coverage” of [0, 1), one might say a
“fair” coverage that does not bias any particular subinterval, in which case
such a fast qMC algorithm should be considered.

Now we may get a multidimensional integral by calling, in a very simple
way, the procedures of Algorithm 8.3.6:

Algorithm 8.3.7 (qMC multidimensional integration). Given a dimension
D, and integrable function f : R → R, where R = [0, 1]D, this algorithm
estimates the multidimensional integral

I =
∫

�x∈R

f(�x) dD�x,

via the generation of N0 qMC vectors, starting with the n-th of a sequence
(�x0, �x1, . . . , �xn, . . . , �xn+N0−1, . . .). It is assumed that Algorithm 8.3.6 is initialized
with an index bound N ≥ n + N0.

1. [Initialize via Algorithm 8.3.6]
seed(n); // Start the qMC process, to set a global �x = �xn.
I = 0;

2. [Perform qMC integration]
// Function random() updates a global qMC vector (Algorithm 8.3.6).

for(0 ≤ j < N0) I = I + f(random());
return I/N0; // An estimate for the integral.
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Let us give an example of the application of such an algorithm. To assess the
volume of the unit D-ball, which is the ball of radius 1, we can take f in terms
of the Heaviside function θ (which is 1 for positive arguments, 0 for negative
arguments, and 1/2 at 0),

f(�x) = θ(1/4 − (�x − �y) · (�x − �y)),

with �y = (1/2, 1/2, . . . , 1/2), so that f vanishes everywhere outside a ball of
radius 1/2. (This is the largest ball that fits inside the cube R.) The estimate
of the unit D-ball volume will thus be 2DI, where I is the output of Algorithm
8.3.7 for the given, sphere-defining function f .

As we have intimated before, it is a wondrous thing to see firsthand
how much better a qMC algorithm of this type can do, when compared to
a direct Monte Carlo trial. One beautiful aspect of the fundamental qMC
concept is that parallelism is easy: In Algorithm 8.3.7, just start each of, say,
M machines at a different starting seed, ideally in such a way that some
contiguous sequence of NM total vectors is realized. This option is, of course,
the point of having a seed function in the first place. Explicitly, to obtain
a one-billion-point integration, each of 100 machines would use the above
algorithm as is with N = 107, except that machine 0 would start with n = 0
(and hence start by calling seed(0)), the second machine would start n = 1,
through machine 99, which would start with n = 99. The final integral would
be the average of the 100 machine estimates.

Here is a typical numerical comparison: We shall calculate the number π
with qMC methods, and compare with direct Monte Carlo. Noting that the
exact volume of the unit D-ball is

VD =
πD/2

Γ(1 + D/2)
,

let us denote by VD(N) the calculated volume after N vectors are generated,
and denote by πN the “experimental” value for π obtained by solving the
volume formula for π in terms of VD. We shall do two things at once: Display
the typical convergence and convey a notion of the inherent parallelism. For
primes p = 2, 3, 5, so that we are assessing the 3-ball volume, the result of
Algorithm 8.3.7 is displayed in Table 8.1.

What is displayed in the left-hand column is the total number of points
“dropped” into the unit D-cube, while the second column is the associated,
cumulative approximation to π. We say cumulative because one may have
run each interval of 106 counts on a separate machine, yet we display the
right-hand column as the answer obtained by combining the machines up to
that N value inclusive. For example, the result π5 can be thought of either as
the result after 5 · 106 points are generated, or equivalently, after 5 separate
machines each do 106 points. In the latter instance, one would have called
the seed(n) procedure with 5 different initial seeds to start each respective
machine’s interval. How do these data compare with direct Monte Carlo? The
rough answer is that one can expect the error in the last (N = 107) row of
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N/106 πN

1 3.14158
2 3.14154
3 3.14157
4 3.14157
5 3.14158
6 3.14158
7 3.14158
8 3.141590
9 3.14158
10 3.1415929

Table 8.1 Approximations to π via prime-based qMC (Halton) sequence, using
primes p = 2, 3, 5, the volume of the unit 3-ball is assessed for various cumulative
numbers of qMC points, N = 106 through N = 107. We have displayed decimal
digits only through the first incorrect digit.

a similar Monte Carlo table to be in the third or so digit to the right of the
decimal (because log10

√
N is about 3.5 in this case). This superiority of qMC

to direct methods—which is an advantage of several orders of magnitude—is
typical for “millions” of points and moderate dimensions.

Now to the matter of Wall Street, meaning the phenomenon of compu-
tational finance. If the notion of very large dimensions D for integration has
seemed fanciful, one need only cure that skepticism by observing the kind of
calculation that has been attempted in connection with risk management the-
ory and other aspects of computational finance. For example, 25-dimensional
integrals relevant to financial computation, of the form

I =
∫

· · ·
∫

�x∈R

cos |�x| e−�x·�x dD�x,

were analyzed in [Papageorgiu and Traub 1997], with the conclusion that,
surprisingly enough, qMC methods (in their case, using the Faure sequences)
would outperform direct Monte Carlo methods, in spite of the asymptotic
estimate O((lnD N)/N), which does not fare too well in practice against
O(1/

√
N) when D = 25. In other treatments, for example [Paskov and Traub

1995], integrals with dimension as high as D = 360 are tested. As those
authors astutely point out, their integrals (involving collateralized mortgage
obligation, or CMO in the financial language) are good test cases because the
integrand has a certain computational complexity and so—in their words—
“it is crucial to sample the integrand as few times as possible.” As intimated
in [Boyle et al. 1995] and by various other researchers, whether or not a
qMC is superior to a direct Monte Carlo in some high dimension D depends
very much on the actual calculation being performed. The general sentiment
is that numerical analysts not from the financial world per se tend to use
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integrals that present the more difficult challenge for the qMC methods. That
is, financial integrands are often “smoother” in practice.

Just as interesting as the qMC technique itself is the controversy that
has simmered in the qMC literature. Some authors believe that the Halton
sequence—the one on which we have focused as an example of prime-
based qMC—is inferior to, say, the Sobol [Bratley and Fox 1988] or Faure
[Niederreiter 1992] sequences. And as we have indicated above, this assessment
tends to depend strongly on the domain of application. Yet there is some
theoretical motivation for the inferiority claims; namely, it is a theorem [Faure
1982] that the star discrepancy of a Faure sequence satisfies

D∗
N ≤ 1

D!

(
p − 1
2 ln p

)D lnD N

N
,

where p is the least prime greater than or equal to D. Whereas a D-
dimensional Halton sequence can be built from the first D primes, and this
Faure bound involves the next prime, still the bound of Theorem 8.3.5 is
considerably worse. What is likely is that both bounding theorems are not
best-possible results. In any case, the prime numbers once again enter into
discrepancy theory and its qMC applications.

As has been pointed out in the literature, there is the fact that qMC’s
error growth of O

(
(lnD N)/N

)
is, for sufficiently large D, and sufficiently

small N , or practical combinations of D, N magnitudes, worse than direct
Monte Carlo’s O

(
1/

√
N
)
. Thus, some researchers do not recommend qMC

methods unconditionally. One controversial problem is that in spite of various
theorems such as Theorem 8.3.5 and the Faure bound above, we still do not
know how the “real-world” constants in front of the big-O terms really behave.
Some recent developments address this controversy. One such development is
the discovery of “leaped” Halton sequences. In this technique, one can “break”
the unfortunate correlation between coordinates for the D-dimensional Halton
sequence. This is done in two possible ways. First, one adopts a permutation on
the inverse-radix digits of integers, and second, if the base primes are denoted
by p0, . . . , pD−1, then one chooses yet another distinct prime pD and uses only
every pD-th vector of the usual Halton sequence. This is claimed to improve
the Halton sequence dramatically for high dimension, say D = 40 to 400
[Kocis and Whiten 1997]. It is of interest that these authors found a markedly
good distinct prime pD to be 409, a phenomenon having no explanation.
Another development, from [Crandall 1999a], involves the use of a reduced set
of primes—even when D is large—and using the resulting lower-dimensional
Halton sequence as a vector parameter for a D-dimensional space-filling curve.
In view of the sharply base-dependent bound of Theorem 8.3.5, there is reason
to believe that this technique of involving only small primes carries a distinct
statistical advantage in higher dimensions.

While the notion of discrepancy is fairly old, there always seem to appear
new ideas pertaining to the generation of qMC sets. One promising new
approach involves the so-called (t, m, s)-nets [Owen 1995, 1997a, 1997b],
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[Tezuka 1995], [Veach 1997]. These are point clouds that have “minimal fill”
properties. For example, a set of N = bm points in s dimensions is called a
(t, m, s)-net if every justified box of volume bt−m has exactly bt points. Yet
another intriguing connection between primes and discrepancy appears in the
literature (see [Joe 1999] and references therein). This notion of “number-
theoretical rules” involves approximations of the form

∫
[0,1]D

f(�x) dD�x ≈ 1
p

p−1∑
j=0

f

({
j �K

p

})
,

where here {�y} denotes the vector composed of the fractional parts of �y, and �K
is some chosen constant vector having each component coprime to p. Actually,
composite numbers can be used in place of p, but the analysis of what is called
L2 discrepancy, and the associated typical integration error, goes especially
smoothly for p prime. We have mentioned these new approaches to underscore
the notion that qMC is continually undergoing new development. And who
knows when or where number theory or prime numbers in particular will
appear in qMC theories of the future?

In closing this section, we mention a new result that may explain why
qMC experiments sometimes do “so well.” Take the result in [Sloan and
Wozniakowski 1998], in which the authors remark that some errors (such
as those in Traub’s qMC for finance in D = 360 dimensions) appear to have
O(1/N) behavior, i.e., independent of dimension D. What the authors actually
prove is that there exist classes of integrand functions for which suitable low-
discrepancy sequences provide overall integration errors of order O(1/Nρ) for
some real ρ ∈ [1, 2].

8.4 Diophantine analysis

Herein we discuss Diophantine analysis, which loosely speaking is the practice
of discovering integer solutions to various equations. We have mentioned
elsewhere Fermat’s last theorem (FLT), for which one seeks solutions to

xp + yp = zp,

and how numerical attacks alone have raised the lower bound on p into the
millions (Section 1.3.3, Exercise 9.68). This is a wonderful computational
problem—speaking independently, of course, of the marvelous FLT proof
by A. Wiles—but there are many other similar explorations. Many such
adventures involve a healthy mix of theory and computation.

For instance, there is the Catalan equation for p, q prime and x, y positive
integers,

xp − yq = 1,

of which the only known solution is the trivial yet attractive

32 − 23 = 1.
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Observe that in seeking Diophantine solutions here we are simply addressing
the problem of whether there exist higher instances of consecutive powers.
An accessible treatment of the history of the Catalan problem to the date of
its publication is [Ribenboim 1994], while more recent surveys are [Mignotte
2001] and [Metsänkylä 2004]. Using the theory of linear forms of logarithms
of algebraic numbers, R. Tijdeman showed in 1976 that the Catalan equation
has at most finitely many solutions; in fact,

yq < eeee730

,

as discussed in [Guy 1994]. Thus, the complete resolution of the Catalan
problem is reduced to a (huge!) computation. Shortly after Tijdeman’s great
theorem, M. Langevin showed that any solution must have the exponents
p, q < 10110. Over the years, this bound on the exponents continued to fall,
with other results pushing up from below. For example at the time the first
edition of the present book was published, it was known that min{p, q} > 107

and max{p, q} < 7.78 × 1016. Further, explicit easily checkable criteria on
allowable exponent pairs were known, for example the double Wieferich
condition of Mihăilescu: if p, q are Catalan exponents other than the pair
2, 3, then

pq−1 ≡ 1 (mod q2) and qp−1 ≡ 1 (mod p2).

It was hoped that such advances together with sufficiently robust calculations
might finish off the Catalan problem. In fact, the problem was indeed finished
off, but using much more cleverness than computation.

In [Mihăilescu 2004] a complete proof of the Catalan problem is presented,
and yes, 8 and 9 are the only pair of nontrivial consecutive powers. It is
interesting that we still don’t know whether there are infinitely many pairs of
consecutive powers that differ by 2, or any other fixed number larger than 1,
though it is conjectured that there are not. In this regard, see Exercise 8.20.

Related both to Fermat’s last theorem and the Catalan problem is the
Diophantine equation

xp + yq = zr, (8.2)

where x, y, z are positive coprime integers and exponents p, q, r are positive
integers with 1/p+1/q+1/r ≤ 1. The Fermat–Catalan conjecture asserts that
there are at most finitely many such powers xp, yq, zr in (8.2). The following
are the only known examples:

1p + 23 = 32 (p ≥ 7),
25 + 72 = 34,

132 + 73 = 29,

27 + 173 = 712,

35 + 114 = 1222,

338 + 15490342 = 156133,

14143 + 22134592 = 657,
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92623 + 153122832 = 1137,

177 + 762713 = 210639282,

438 + 962223 = 300429072.

(The latter five examples were found by F. Beukers and D. Zagier.) There is
a cash prize (the Beal Prize) for a proof of the conjecture of Tijdeman and
Zagier that (8.2) has no solutions at all when p, q, r ≥ 3; see [Bruin 2003] and
[Mauldin 2000]. It is known [Darmon and Granville 1995] that for p, q, r fixed
with 1/p+1/q+1/r ≤ 1, the equation (8.2) has at most finitely many coprime
solutions x, y, z. We also know that in some cases for p, q, r the only solutions
are those that appear in our small table. In particular, all of the triples with
exponents {2, 3, 7}, {2, 3, 8}, {2, 3, 9}, and {2, 4, 5} are in the above list. In
addition, there are many other triples of exponents for which it has been
proved that there are no nontrivial solutions. These results are due to many
people, including Bennett, Beukers, Bruin, Darmon, Ellenberg, Kraus, Merel,
Poonen, Schaefer, Skinner, Stoll, Taylor, and Wiles. For some recent papers
from which others may be tracked down, see [Bruin 2003] and [Beukers 2004].

The Fermat–Catalan conjecture is a special case of the notorious ABC
conjecture of Masser. Let γ(n) denote the largest squarefree divisor of n. The
ABC conjecture asserts that for each fixed ε > 0 there are at most finitely
many coprime positive integer triples a, b, c with

a + b = c, γ(abc) < c1−ε.

A recent survey of the ABC conjecture, including many marvelous conse-
quences, may be found in [Granville and Tucker 2002].

Though much work in Diophantine equations is extraordinarily deep, there
are many satisfying exercises that use such concepts as quadratic reciprocity
to limit Diophantine solutions. For example, one can prove that

y2 = x3 + k (8.3)

has no integral solutions whatever if k = (4n − 1)3 − 4m2, m = 0, and no
prime dividing m is congruent to 3 (mod 4) (see Exercise 8.13).

Aside from interesting analyses of specific equations, there is a profound
general theory of Diophantine equations. The saga of this decades-long
investigation is fascinating. A fundamental question, posed at the turn of
the last century as Hilbert’s “tenth problem,” asks for a general algorithm
that will determine the solutions to an arbitrary Diophantine equation. In
the attack on this problem, a central notion was that of a Diophantine set,
which is a set S of positive integers such that some multivariate polynomial
P (X, Y1, . . . , Yl) exists with coefficients in Z with the property that x ∈ S if
and only if P (x, y1, . . . , yl) = 0 has a positive integer solution in the yj . It is
not hard to prove the theorem of H. Putnam from 1960, see [Ribenboim 1996,
p. 189], that a set S of positive integers is Diophantine if and only if there is
a multivariate polynomial Q with integer coefficients such that the set of its
positive values at nonnegative integer arguments is exactly the set S.
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Armed with this definition of a Diophantine set, formal mathematicians
led by Putnam, Davis, Robinson, and Matijasevič established the striking
result that the set of prime numbers is Diophantine. That is, they showed
that there exists a polynomial P—with integer coefficients in some number of
variables—such that as its variables range over the nonnegative integers, the
set of positive values of P is precisely the set of primes.

One such polynomial given explicitly by Jones, Sato, Wada, and Wiens in
1976 (see [Ribenboim 1996]) is

(k + 2)
(
1 − (wz + h + j − q)2 − ((gk + 2g + k + 1)(h + j) + h − z)2

− (2n + p + q + z − e)2 −
(
16(k + 1)3(k + 2)(n + 1)2 + 1 − f2)2

−
(
e3(e + 2)(a + 1)2 + 1 − o2)2 −

(
a2y2 − y2 + 1 − x2)2

−
(
16r2y4(a2 − 1) + 1 − u2)2

−
(
((a + u4 − u2a)2 − 1)(n + 4dy)2 + 1 − (x + cu)2

)2

− (n + l + v − y)2 −
(
a2l2 − l2 + 1 − m2)2 − (ai + k + 1 − l − i)2

− (p + l(a − n − 1) + b(2an + 2a − n2 − 2n − 2) − m)2

− (q + y(a − p − 1) + s(2ap + 2a − p2 − 2p − 2) − x)2

− (z + pl(a − p) + t(2ap − p2 − 1) − pm)2
)
.

This polynomial has degree 25, and it conveniently has 26 variables, so that
the letters of the English alphabet can each be used! An amusing consequence
of such a prime-producing polynomial is that any prime p can be presented
with a proof of primality that uses only O(1) arithmetic operations. Namely,
supply the 26 values of the variables used in the above polynomial that gives
the value p. However, the number of bit operations for this verification can be
enormous.

Hilbert’s “tenth problem” was eventually solved—with the answer being
that there can be no algorithm as sought—with the final step being
Matijasevič’s proof that every listable set is Diophantine. But along the way,
for more than a half century, the set of primes was at center stage in the
drama [Matijasevič 1971], [Davis 1973].

Diophantine analysis, though amounting to the historical underpinning
of all of number theory, is still today a fascinating, dynamic topic among
mathematicians and recreationalists. One way to glimpse the generality of
the field is to make use of network resources such as [Weisstein 2005].
A recommended book on Diophantine equations from a computational
perspective is [Smart 1998].

8.5 Quantum computation

It seems appropriate to have in this applications chapter a brief discussion of
what may become a dominant computational paradigm for the 21st century.
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We speak of quantum computation, which is to be thought of as a genuine
replacement for computer processes as we have previously understood them.
The first basic notion is a distinction between classical Turing machines (TMs)
and quantum Turing machines (QTMs). The older TM model is the model
of every prevailing computer of today, with the possible exception of very
minuscule, tentative and experimental QTMs, in the form of small atomic
experiments and so on. (Although one could argue that nature has been
running a massive QTM for billions of years.) The primary feature of a TM is
that it processes “serially,” in following a recipe of instructions (a program)
in a deterministic fashion. (There is such a notion as a probabilistic TM
behaving statistically, but we wish to simplify this overview and will avoid
that conceptual pathway.) On the other hand, a QTM would be a device in
which a certain “parallelism” of nature would be used to effect computations
with truly unprecedented efficiency. That parallelism is, of course, nature’s
way of behaving according to laws of quantum mechanics. These laws involve
many counterintuitive concepts. As students of quantum theory know, the
microscopic phenomena in question do not occur as in the macroscopic world.
There is the particle–wave duality (is an electron a wave or a particle or
both?), the notion of amplitudes, probability, interference—not just among
waves but among actual parcels of matter—and so on. The next section is a
very brief outline of quantum computation concepts, intended to convey some
qualitative features of this brand new science.

8.5.1 Intuition on quantum Turing machines (QTMs)

Because QTMs are still overwhelmingly experimental, not having solved a
single “useful” problem so far, we think it appropriate to sketch, mainly
by analogy, what kind of behavior could be expected from a QTM. Think
of holography, that science whereby a solid three-dimensional object is cast
onto a planar “hologram.” What nature does is actually to “evaluate” a 3-
dimensional Fourier transform whose local power fluctuations determine what
is actually developed on the hologram. Because light moves about one foot
in a nanosecond (10−9 seconds), one can legitimately say that when a laser
light beam strikes an object (say a chess piece) and the reflections are mixed
with a reference beam to generate a hologram, “nature performed a huge
FFT in a couple of nanoseconds.” In a qualitative but striking sense, a known
O(N lnN) algorithm (where N would be sufficiently many discrete spatial
points to render a high-fidelity hologram, say) has turned into more like an
O(1) one. Though it is somewhat facetious to employ our big-O notation in
this context, we wish only to make the point that there is parallelism in the
light-wave-interference model that underlies holography. On the film plane of
the hologram, the final light intensity depends on every point on the chess
piece. This is the holographic, one could say “parallel,” aspect. And QTM
proposals are reminiscent of this effect.

We are not saying that a laboratory hologram setup is a QTM, for some
ingredients are missing in that simplistic scenario. For one thing, modern QTM
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theory has two other important elements beyond the principle of quantum
interference; namely, probabilistic behavior, and a theoretical foundation
involving operators such as unitary matrices. For another thing, we would like
any practical QTM to bear not just on optical experiments, but also on some
of the very difficult tasks faced by standard TMs—tasks such as the factoring
of large integers. As have been a great many new ideas, the QTM notion
was pioneered in large measure by the eminent R. Feynman, who observed
that quantum-mechanical model calculations tend, on a conventional TM, to
suffer an exponential slowdown. Feynman even devised an explicit model of
a QTM based on individual quantum registers [Feynman 1982, 1985]. The
first formal definition was provided by [Deutsch 1982, 1985], to which current
formal treatments more or less adhere. An excellent treatment—which sits
conveniently between a lay perspective and a mathematical one—is [Williams
and Clearwater 1998]. On the more technical side of the physics, and some
of the relevant number-theoretical ideas, a good reference is [Ekert and Jozsa
1996]. For a very accessible lay treatment of quantum computation, see [Hey
1999], and for course-level material see [Preskill 1999].

Let us add a little more quantum flavor to the idea of laser light calculating
an FFT, nature’s way. There is in quantum theory an ideal system called the
quantum oscillator. Given a potential function V (x) = x2, the Schrödinger
equation amounts to a prescription for how a wave packet ψ(x, t), where t
denotes time, moves under the potential’s influence. The classical analogue
is a simple mass-on-a-spring system, giving smooth oscillations of period τ ,
say. The quantum model also has oscillations, but they exhibit the following
striking phenomenon: After one quarter of the classical period τ , an initial
wave packet evolves into its own Fourier transform. This suggests that you
could somehow load data into a QTM as an initial function ψ(x, 0), and later
read off ψ(x, τ/4) as an FFT. (Incidentally, this idea underlies the discussion
around the Riemann-ζ representation (8.5).) What we are saying is that the
laser hologram scenario has an analogue involving particles and dynamics.
We note also that wave functions ψ are complex amplitudes, with |ψ|2 being
probability density, so this is how statistical features of quantum theory enter
into the picture.

Moving now somewhat more toward the quantitative, and to prepare for
the rest of this section, we presently lay down a few specific QTM concepts.
It is important right at the outset, especially when number-theoretical
algorithms are involved, to realize that an exponential number of quantities
may be “polynomially stored” on a QTM. For example, here is how we can
store in some fashion—in a so-called quantum register—every integer a ∈
[0, q − 1], in only lg q so-called qbits. At first this seems impossible, but recall
our admission that the quantum world can be notoriously counterintuitive.
A mental picture will help here. Let q = 2d, so that we shall construct a
quantum register having d qbits. Now imagine a line of d individual ammonia
molecules, each molecule being NH3 in chemical notation, thought of as a
tetrahedron formed by the three hydrogens and a nitrogen apex. The N apex
is to be thought of as “up” or “down,” 1 or 0, i.e., either above or below the
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three H’s. Thus, any d-bit binary number can be represented by a collective
orientation of the molecules. But what about representing all possible binary
strings of length d? This turns out to be easy, because of a remarkable quantum
property: An ammonia molecule can be in both 1, 0 states at the same time.
One way to think of this is that lowest-energy states—called ground states—
are symmetrical when the geometry is. A container of ammonia in its ground
state has each molecule somehow “halfway present” at each 0, 1 position.
In theoretical notation we say that the ground state of one ammonia qbit
(molecule, in this model) is given by:

φ =
1√
2

( | 0 〉 + | 1 〉 ),

where the “bra-ket” notation | 〉 is standard (see the aforementioned quantum-
theoretical references). The notation reminds us that a state belongs to
an abstract Hilbert space, and only an inner product can bring this back
to a measurable number. For example, given the ground state φ here, the
probability that we find the molecule in state | 0 〉 is the squared inner product

| 〈 0 | φ 〉 |2 =
∣∣∣∣ 1√

2
〈 0 | 0 〉

∣∣∣∣
2

=
1
2
,

i.e., 50 per cent chance that the nitrogen atom is measured to be “down.” Now
back to the whole quantum register of d qbits (molecules). If each molecule is
in the ground state φ, then in some sense every single d-bit binary string is
represented. In fact, we can describe the state of the entire register as [Shor
1999]

ψ =
1

2d/2

2d−1∑
a=0

| a 〉,

where now |a〉 denotes the composite state given by the molecular orientations
corresponding to the binary bits of a; for example, for d = 5 the state |10110〉
is the state in which the nitrogens are oriented “up, down, up, up, down.” This
is not so magical as it sounds, when one realizes that now the probability of
finding the entire register in a particular state a ∈ [0, 2d − 1] is just 1/2d. It
is this sense in which every integer a is stored—the collection of all a values
is a “superposition” in the register.

Given a state that involves every integer a ∈ [0, q − 1], we can imagine
acting on the qbits with unitary operators. For example, we might alter the
0-th and 7-th qbits by acting on the two states with a matrix operator.
An immediate physical analogy here would be the processing of two input
light beams, each possibly polarized up or down, via some slit interference
experiment (having polaroid filters within) in which two beams are output.
Such a unitary transformation preserves overall probabilities by redistributing
amplitudes between states.
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Using appropriate banks of unitary operators, it turns out that if q > n,
and x be a chosen residue (mod n), then one can also form the state

ψ′ =
1

2d/2

2d−1∑
a=0

| xa mod n 〉,

again as a superposition. The difference now is that if we ask for the probability
that the entire register be found in state | b 〉, that probability is zero unless
b is an a-th power residue modulo n.

We end this very brief conceptual sketch by noting that the sovereign of all
divide-and-conquer algorithms, namely the FFT, can be given a concise QTM
form. It turns out that by employing unitary operators, all of them pairwise
as above, in a specific order, one can create the state

ψ′′ =
1√
q

q−1∑
a=0

e2πiac/q | c 〉,

and this allows for many interesting algorithms to go through on QTMs—
at least in principle—with polynomial-time complexity. For the moment, we
remark that addition, multiplication, division, modular powering and FFT
can all be done in time O(dα), where d is the number of qbits in each of
(finitely many) registers and α is some appropriate power. The aforementioned
references have all the details for these fundamental operations. Though
nobody has carried out the actual QTM arithmetic—only a few atomic sites
have been built so far in laboratories—the literature descriptions are clear:
We expect nature to be able to perform massive parallelism on d-bit integers,
in time only a power of d.

8.5.2 The Shor quantum algorithm for factoring

Just as we so briefly overviewed the QTM concept, we now also briefly discuss
some of the new quantum algorithms that pertain to number-theoretical
problems. It is an astute observation in [Shor 1994, 1999] that one may factor
n by finding the exponent orders of random integers (mod n) via the following
proposition.

Proposition 8.5.1. Suppose the odd integer n > 1 has exactly k distinct
prime factors. For a randomly chosen member y of Z∗

n with multiplicative
order r, the probability that r is even and that yr/2 ≡ −1 (mod n) is at least
1 − 1/2k−1.

(See Exercise 8.22, for a slightly stronger result.) The implication of this
proposition is that one can—at least in principle—factor n by finding “a few”
integers y with corresponding (even) orders r. For having done that, we look
at

gcd(yr/2 − 1, n)
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for a nontrivial factor of n, which should work with good chance, since
yr−1 = (yr/2+1)(yr/2−1) ≡ 0 (mod n); in fact this will work with probability
at least 1 − 1/2k−1, and this expression is not less than 1/2, provided that n
is neither a prime nor a prime power.

So the Shor algorithm comes down to finding the orders of random
residues modulo n. For a conventional TM, this is a stultifying problem—
a manifestation of the discrete logarithm (DL) problem. But for a QTM, the
natural parallelism renders this residue-order determination not so difficult.
We paraphrase a form of Shor’s algorithm, drawing from the treatments of
[Williams and Clearwater 1998], [Shor 1999]. We stress that an appropriate
machine has not been built, but if it were the following algorithm is expected
to work. And, there is nothing preventing one trying the following on a
conventional Turing machine; and then, of course, experiencing an exponential
slowdown for which QTMs have been proposed as a remedy.

Algorithm 8.5.2 (Shor quantum algorithm for factoring). Given an odd
integer n that is neither prime nor a power of a prime, this algorithm attempts
to return a nontrivial factor of n via quantum computation.

1. [Initialize]
Choose q = 2d with n2 ≤ q < 2n2;
Fill a d-qbit quantum register with the state:

ψ1 =
1√
q

q−1∑
a=0

| a 〉 ;

2. [Choose a base]
Choose random x ∈ [2, n − 2] but coprime to n;

3. [Create all powers]
Using quantum powering on ψ1, fill a second register with

ψ2 =
1√
q

q−1∑
a=0

| xa mod n 〉 ;

4. [Perform a quantum FFT]
Apply FFT to the second quantum register, to obtain

ψ3 =
1
q

q−1∑
a=0

q−1∑
c=0

e2πiac/q | c 〉 | xa mod n 〉 ;

5. [Detect periodicity in xa]
Measure the state ψ3, and employ (classical TM) side calculations to infer

the period r as the minimum power enjoying xr ≡ 1 (mod n);
6. [Resolution]

if(r odd) goto [Choose a base];
Use Proposition 8.5.1 to attempt to produce a nontrivial factor of n. On

failure, goto [Choose a base];
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We have been intentionally brief in the final steps of the algorithm. The details
for these last stages are laid out splendidly in [Shor 1999]. The core idea
underlying the [Detect periodicity . . .] step is this: After the FFT step, the
machine should be found in a final state | c 〉| xk mod n 〉 with probability

Pc,k =

∣∣∣∣∣∣∣∣
1
q

q−1∑
a=0

xa≡xk (mod n)

e2πiac/q

∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
1
q


(q−k−1)/r�∑
b=0

e2πi(br+k)c/q

∣∣∣∣∣∣
2

. (8.4)

This expression, in turn, can be shown to exhibit “spikes” at certain r-
dependent values of c. From these spikes—which we presume would all show
up simultaneously upon measurement of the QTM machine’s state—one can
infer after a quick side calculation the period r. See Exercises 8.22, 8.23, 8.24,
8.36 for some more of the relevant details. As mentioned in the latter exercise,
the discrete logarithm (DL) problem also admits of a QTM polynomial-time
solution.

Incidentally, quantum computers are not the only computational engines
that enjoy the status of being talked about but not yet having been built to
any practical specification. Recently, A. Shamir described a “Twinkle” device
to factor numbers [Shamir 1999]. The proposed device is a special-purpose
optoelectronic processor that would implement either the QS method or the
NFS method. Yet another road on which future computing machines could
conceivably travel is the “DNA computing” route, the idea being to exploit
the undeniable processing talent of the immensely complex living systems that
have evolved for eons [Paun et al. 1998]. If one wants to know not so much the
mathematical but the cultural issues tied up in futuristic computing, a typical
lay collection of pieces concerning DNA, molecular, and quantum computing
is the May-June 2000 issue of the MIT magazine Technology Review.

8.6 Curious, anecdotal, and interdisciplinary references
to primes

Just as practical applications of prime numbers have emerged in the
cryptographic, statistical, and other computational fields, there are likewise
applications in such disparate domains as engineering, physics, chemistry, and
biology. Even beyond that, there are amusing anecdotes that collectively signal
a certain awareness of primes in a more general, we might say lay, context.
Beyond the scientific connections, there are what may be called the “cultural”
connections. Being cognizant of the feasibility of filling an entire separate
volume with interdisciplinary examples, we elect to close this chapter with a
very brief mention of some exemplary instances of the various connections.

One of the pioneers of the interdisciplinary aspect is M. Schroeder, whose
writings over the last decade on many connections between engineering
and number theory continue to fascinate [Schroeder 1999]. Contained in
such work are interdisciplinary examples. To name just a few, fields Fq as
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they pertain to the technology of error-correcting codes, discrete Fourier
transforms (DFTs) over fields relevant to acoustics, the use of the Möbius
µ and other functions in science, and so on. To convey a hint of how
far the interdisciplinary connections can reach, we hereby cite Schroeder’s
observation that certain astronomical experiments to verify aspects of
Einstein’s general relativity involved such weak signals that error-correcting
codes (and hence finite fields) were invoked. This kind of argument shows how
certain cultural or scientific achievements do depend, at some level, on prime
numbers. A pleasingly recreational source for interdisciplinary prime-number
investigations is [Caldwell 1999].

In biology, prime numbers appear in contexts such as the following one,
from [Yoshimura 1997]. We quote the author directly in order to show how
prime numbers can figure into a field or a culture, without much of the
standard number-theoretical language, rather with certain intuitive inferences
relied upon instead:

Periodical cicadas (Magicicada spp.) are known for their strikingly
synchronized emergence, strong site tenacity, and unusually long (17- and
13-yr) life cycles for insects. Several explanations have been proposed for
the origin and maintenance of synchronization. However, no satisfactory
explanations have been made for the origins of the prime-numbered life
cycles. I present an evolutionary hypothesis of a forced developmental delay
due to climate cooling during ice ages. Under this scenario, extremely low
adult densities, caused by their extremely long juvenile stages, selected
for synchronized emergence and site tenacity because of limited mating
opportunities. The prime numbers (13 and 17) were selected for as life
cycles because these cycles were least likely to coemerge, hybridize, and
break down with other synchronized cycles.

It is interesting that the literature predating Yoshimura is fairly involved, with
at least three different explanations of why prime-numbered life cycles such
as 13 and 17 years would evolve. Any of the old and new theories should, of
course, exploit the fact of minimal divisors for primes, and indeed the attempts
to do this are evident in the literature (see, for example, the various review
works referenced in [Yoshimura 1997]). To convey a notion of the kind of
argument one might use for evolution of prime life cycles, imagine a predator
with a life cycle of 2 years—an even number—synchronized, of course, to the
solar-driven seasons, with periodicity of those 2 years in most every facet of
life such as reproduction and death. Because this period does not divide a 13-
or 17-year one, the predators will from time to time go relatively hungry. This
is not the only type of argument—for some such arguments do not involve
predation whatsoever, rather depend on the internal competition and fitness
of the prime-cycle species itself—but the lack of divisibility is always present,
as it should be, in any evolutionary argument. In a word, such lines of thought
must explain among other things why a life cycle with a substantial number
of divisors has led to extinction.
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Another appearance of the noble primes—this time in connection with
molecular biology—is in [Yan et al. 1991]. These authors infer that certain
amino acid sequences in genetic matter exhibit patterns expected of (binary
representations of) prime numbers. In one segment they say:

Additively generated numbers can be primes or nonprimes. Multiplica-
tively generated numbers are nonprimes (“composites” in number theory
terminology). Thus, prime numbers are more creative than nonprimes . . . .
The creativeness and indivisibility of prime numbers leads one to infer that
primes smaller than 64 are the number equivalents of amino acids; or that
amino acids are such Euclid units of living molecules.

The authors go on to suggest Diophantine rules for their theory. The present
authors do not intend to critique the interdisciplinary notion that composite
numbers somehow contain less information (are less profound) than the
primes. Rather, we simply point out that some thought has gone into this
connection with genetic codes.

Let us next mention some involvements of prime numbers in the particular
field of physics. We have already touched upon the connection of quantum
computation and number-theoretical problems. Aside from that, there is the
fascinating history of the Hilbert–Pólya conjecture, saying in essence that
the behavior of the Riemann zeta function on the critical line Re(s) = 1/2
depends somehow on a mysterious (complex) Hermitian operator, of which
the critical zeros would be eigenvalues. Any results along these lines—even
partial results—would have direct implications about prime numbers, as we
saw in Chapter 1. The study of the distribution of eigenvalues of certain
matrices has been a strong focus of theoretical physicists for decades. In the
early 1970s, a chance conversation between F. Dyson, one of the foremost
researchers on the physics side of random matrix work, and H. Montgomery,
a number theorist investigating the influence of critical zeros of the zeta
function on primes, led them to realize that some aspects of the distribution
of eigenvalues of random matrices are very close to those of the critical zeros.
As a result, it is widely conjectured that the mysterious operator that would
give rise to the properties of ζ is of the Gaussian unitary ensemble (GUE)
class. A relevant n × n matrix G in such a theory has Gaa = xaa

√
2 and for

a > b, Gab = xab + iyab, together with the Hermitian condition Gab = G∗
ba;

where every xab, yab is a Gaussian random variable with unit variance, mean
zero. The works of [Odlyzko 1987, 1992, 1994, 2005] show that the statistics
of consecutive critical zeros are in many ways equivalent—experimentally
speaking—to the theoretical distribution of eigenvalues of a large such matrix
G. In particular, let {zn : n = 1, 2, . . .} be the collection of the (positive)
imaginary parts of the critical zeros of ζ, in increasing order. It is known from
the deeper theory of the ζ function that the quantity

δn =
zn+1 − zn

2π
ln

zn

2π
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has mean value 1. But computer plots of the histogram of δ values show
a remarkable agreement for the same (theoretically known) statistic on
eigenvalues of a GUE matrix. Such comparisons have been done on over
108 zeros neighboring zN where N ≈ 1020 (though the work of [Odlyzko
2005] involves 1010 zeros of even greater height). The situation is therefore
compelling: There may well be an operator whose eigenvalues are precisely the
Riemann critical zeros (scaled by the logarithmic factor). But the situation is
not as clean as it may appear. For one thing, Odlyzko has plotted the Fourier
transform

N+40000∑
N+1

eixzn ,

and it does not exhibit the decay (in x) expected of GUE eigenvalues. In
fact, there are spikes reported at x = pk, i.e., at prime-power frequencies.
This is expected from a number-theoretical perspective. But from the
physics perspective, one can say that the critical zeros exhibit “long-range
correlation,” and it has been observed that such behavior would accrue if the
critical zeros were not random GUE eigenvalues per se, but eigenvalues of
some unknown Hamiltonian appropriate to a chaotic-dynamical system. In
this connection, a great deal of fascinating work—by M. Berry and others—
under the rubric of “quantum chaology” has arisen [Berry 1987].

There are yet other connections between the Riemann ζ and concepts from
physics. For example, in [Borwein et al. 2000] one finds mention of an amusing
connection between the Riemann ζ and quantum oscillators. In particular, as
observed by Crandall in 1991, there exists a quantum wave function ψ(x, 0)—
smooth, devoid of any zero crossings on the x axis—that after a finite time T of
evolution under the Schrödinger equation becomes a “crinkly” wave function
ψ(x, T ) with infinitely many zero crossings, and these zeros are precisely the
zeros of ζ(1/2 + ix) on the critical line. In fact, for the wave function at the
special time T in question, the specific eigenfunction expansion evaluates as

ψ(x, T ) = f

(
1
2

+ ix

)
ζ

(
1
2

+ ix

)
= e−x2/(2a2)

∞∑
n=0

cn(−1)nH2n(x/a), (8.5)

for some positive real a and a certain sequence (cn) of real coefficients
depending on a, with Hm being the standard Hermite polynomial of order
m. Here, f(s) is an analytic function of s having no zeros. It is amusing that
one may truncate the n-summation at some N , say, and numerically obtain—
now as zeros of a degree-2N polynomial—fairly accurate critical zeros. For
example, for N = 27 (so polynomial degree is 54) an experimental result
appears in [Borwein et al. 2000] in which the first seven critical zeros are
obtained, the first of which being to 10 good decimals. In this way one can
in principle approximate arbitrarily closely the Riemann critical zeros as the
eigenvalues of a Hessenberg matrix (which in turn are zeros of a particular
polynomial). A fascinating phenomenon occurs in regard to the Riemann
hypothesis, in the following way. If one truncates the Hermite sum above,
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say at n = N , then one expects 2N complex zeros of the resulting, degree-
2N polynomial in x. But in practice, only some of these 2N zeros are real
(i.e., such that 1

2 + ix is on the Riemann critical line). For large N , and
again experimentally, the rest of the polynomial’s zeros are “expelled” a good
distance away from the critical line. The Riemann hypothesis, if it is to be
cast in language appropriate to the Hermite expansion, must somehow address
this expulsion of nonreal polynomial zeros away from the real axis. Thus
the Riemann hypothesis can be cast in terms of quantum dynamics in some
fashion, and it is not out of the question that this kind of interdisciplinary
approach could be fruitful.

An anecdote cannot be resisted here; this one concerns the field of
engineering. Peculiar as it may seem today, the scientist and engineer van
der Pol did, in the 1940s, exhibit tremendous courage in his “analog”
manifestation of an interesting Fourier decomposition. An integral used by
van der Pol was a special case (σ = 1/2) of the following relation, valid for
s = σ + it, σ ∈ (0, 1) [Borwein et al. 2000]:

ζ(s) = s

∫ ∞

−∞
e−σω (�eω� − eω) e−iωt dω.

Van der Pol actually built and tested an electronic circuit to carry out the
requisite transform in analog fashion for σ = 1/2, [van der Pol 1947]. In today’s
primarily digital world it yet remains an open question whether the van der
Pol approach can be effectively used with, say, a fast Fourier transform to
approximate this interesting integral. In an even more speculative tone, one
notes that in principle, at least, there could exist an analog device—say an
extremely sophisticated circuit—that sensed the prime numbers, or something
about such numbers, in this fashion.

At this juncture of our brief interdisciplinary overview, a word of caution
is in order. One should not be led into a false presumption that theoretical
physicists always endeavor to legitimize the prevailing conjectural models of
the prime numbers or of the Riemann ζ function. For example, in the study
[Shlesinger 1986], it is argued that if the critical behavior of ζ corresponds to
a certain “fractal random walk” (technically, if the critical zeros determine a
Levy flight in a precise, stochastic sense), then fundamental laws of probability
are violated unless the Riemann hypothesis is false.

In recent years there has been a flurry of interdisciplinary activity—
largely computational—relating the structure of the primes to the world
of fractals. For example, in [Ares and Castro 2004] an attempt is made to
explain hidden structure of the primes in terms of spin-physics systems and
the Sierpiński gasket fractal; see also Exercise 8.26. A fascinating approach
to a new characterization of the primes is that of [van Zyl and Hutchinson
2003], who work out a quantum potential whose eigenvalues (energy levels)
are the prime numbers. Then they find that the fractal dimension of said
potential is about 1.8, which indicates surprising irregularity. We stress that
such developments certainly sound theoretical on the face of it, and some of
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the research is indeed abstract, but it is modern computation that appears to
drive such interdisciplinary work.

Also, one should not think that the appearance of primes in physics is
relegated to studies of the Riemann ζ function. Indeed, [Vladimirov et al.
1994] authored an entire volume on the subject of p-adic field expansions in
theoretical physics. They say:

Elaboration of the formalism of mathematical physics over a p-adic number
field is an interesting enterprise apart from possible applications, as it
promotes deeper understanding of the formalism of standard mathematical
physics. One can think there is the following principle. Fundamental
physical laws should admit of formulation invariant under a choice of a
number field.

(The italics are theirs.) This quotation echoes the cooperative theme
of the present section. Within this interesting reference one can find
further references to p-adic quantum gravity and p-adic Einstein-relativistic
equations.

Physicists have from time to time even performed “prime number
experiments.” For example, [Wolf 1997] takes a signal, call it x =
(x0, x1, . . . , xN−1), where a component xj is the count of primes over some
interval. Specifically,

xj = π((j + 1)M) − π(jM),

where M is some fixed interval length. Then is considered the DFT

Xk =
N−1∑
j=0

xje
−2πijk/N ,

of which the zeroth Fourier component is

X0 = π(MN).

The interesting thing is that this particular signal exhibits the spectrum (the
behavior in the index k) of “1/f” noise—actually, we could call it “pink”
noise. Specifically, Wolf claims that

|Xk|2 ∼ 1
kα

(8.6)

with exponent α ∼ 1.64 . . . . This means that in the frequency domain (i.e.,
behavior in Fourier index k) the power law involves, evidently, a fractional
power. Wolf suggests that perhaps this means that the prime numbers are
in a “self-organized critical state,” pointing out that all possible (even) gaps
between primes conjecturally occur so that there is no natural “length” scale.
Such properties are also inherent in well-known complex systems that are
also known to exhibit 1/kα noise. Though the power law may be imperfect
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in some asymptotic sense, Wolf finds it to hold over a very wide range of
M,N . For example, M = 216, N = 238 gives a compelling and straight line
on a (ln |Xk|2, ln k) plot with slope ≈ −1.64. Whether or not there will be
a coherent theory of this exponent law (after all, it could be an empirical
accident that has no real meaning for very large primes), the attractive idea
here is to connect the behavior of complex systems with that of the prime
numbers (see Exercise 8.33).

As for cultural (nonscientific, if you will) connections, there exist many
references to the importance of very small primes such as 2, 3, 5, 7; such
references ranging from the biblical to modern, satirical treatments. As just
one of myriad examples of the latter type of writing, there is the piece in
[Paulos 1995], from Forbes financial magazine, called “High 5 Jive,” being
about the number 5, humorously laying out misconceptions that can be traced
to the fact of five fingers on one hand. The number 7 also receives a great
deal of airplay, as it were. In a piece by [Stuart 1996] in, of all things, a
medical journal, the “magic of seven” is touted; for example, “The seven ages
of man, the seven seas, the seven deadly sins, the seven league boot, seventh
heaven, the seven wonders of the world, the seven pillars of wisdom, Snow
White and the seven dwarves, 7-Up . . . .” The author goes on to describe
how the Hippocratic healing tradition has for eons embraced the number 7
as important, e.g., in the number of days to bathe in certain waters to regain
good health. It is of interest that the very small primes have, over thousands
of years, provided fascination and mystique to all peoples, regardless of their
mathematical persuasions. Of course, much the same thing could be said about
certain small composites, like 6, 12. However, it would be interesting to know
once and for all whether fascination with primes per se has occurred over the
millennia because the primes are so dense in low-lying regions, or because the
general population has an intuitive understanding of the special stature of the
primes, thus prompting the human imagination to seize upon such numbers.

And there are numerous references to prime numbers in music theory and
musicology, sometimes involving somewhat larger primes. For example, from
the article [Warren 1995] we read:

Sets of 12 pitches are generated from a sequence of five consecutive prime
numbers, each of which is multiplied by each of the three largest numbers
in the sequence. Twelve scales are created in this manner, using the
prime sequences up to the set (37, 41, 43, 47, 53). These scales give
rise to pleasing dissonances that are exploited in compositions assisted
by computer programs as well as in live keyboard improvisations.

And here is the abstract of a paper concerning musical correlations
between primes and Fibonacci numbers [Dudon 1987] (note that the mention
below of Fibonacci numbers is not the standard one, but closely related to it):

The Golden scale is a unique unequal temperament based on the Golden
number. The equal temperaments most used, 5, 7, 12, 19, 31, 50, etc., are
crystallizations through the numbers of the Fibonacci series, of the same
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universal Golden scale, based on a geometry of intervals related in Golden
proportion. The author provides the ratios and dimensions of its intervals
and explains the specific intonation interest of such a cycle of Golden fifths,
unfolding into microtonal coincidences with the first five significant prime
numbers ratio intervals (3:5:7:11:13).

From these and other musicology references it appears that not just the
very smallest primes, rather also some two-digit primes, play a role in music
theory. Who can tell whether larger primes will one day appear in such
investigations, especially given how forcefully the human–machine–algorithm
interactions have emerged in modern times?

8.7 Exercises

8.1. Explain quantitatively what R. Brent meant when he said that to
remember the digits of 65537, you recite the mnemonic

“Fermat prime, maybe the largest.”

Along the same lines, to which factor of which Fermat number does the
following mnemonic of J. Pollard apply?

“I am now entirely persuaded to employ rho method, a handy trick, on
gigantic composite numbers.”

8.2. Over the years many attacks on the RSA cryptosystem have been
developed, some of these attacks being elementary but some involving deep
number-theoretical notions. Analyze one or more RSA attacks as follows:
(1) Say that a security provider wishes to live easily, dishing out the same

modulus N = pq for each of U users. A trusted central authority, say,
establishes for each user u ∈ [1, U ] a unique private key Du and public
key (N, Eu). Argue carefully exactly why the entire system is insecure.

(2) Show that Alice could fool (an unsuspecting) Bob into signing a bogus (say
harmful to Bob) message x, in the following sense. Referring to Algorithm
8.1.4, say that Alice chooses a random r and can get Bob to sign and
send back the “random” message x′ = rEBx mod NB. Show that Alice
can then readily compute an s such that sEB mod NB = x, so that Alice
would possess a signed version of the harmful x.

(3) Here we consider a small-private-exponent attack based on an analysis
in [Wiener 1990]. Consider an RSA modulus N = pq with q < p < 2q.
Assume the usual condition ED mod ϕ(N) = 1, but we shall restrict the
private exponent by D < N1/4/3. Show first that

|N − ϕ(N)| < 3
√

N.

Show then the existence of an integer k such that∣∣∣∣EN − k

D

∣∣∣∣ <
1

2D2 .
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Argue now that the private key D can be obtained (since you know the
public pair N, E) in polynomial effort (operation count bounded by a
power of lnN).

(4) So-called timing attacks have also been developed. If a machine calculates
numbers such as xD using a power ladder whose square and multiply
operations take different but fixed times, one can glean information about
the exponent D. Say that you demand of a cryptosystem the generation
of many signatures xD

i mod N for i running through some set, and that
you store the respective times Ti required for the signing system to give
the i-th signature. Then do the same timing experiment but for each x3

i ,
say. Describe how correlations between the sets {ti} and {Ti} can be used
to determine bits of the private exponent D.

We have given above just a smattering of RSA attack notions. There are
also attacks based on lattice reduction [Coppersmith 1997] and interesting
issues involving the (incomplete) relation between factoring and breaking RSA
[Boneh and Venkatesan 1998]. There also exist surveys on this general topic
[Boneh 1999]. We are grateful to D. Cao for providing some ideas for this
exercise.

8.3. We have noted that both y-coordinates and the “clue” point are not
fundamentally necessary in the transmission of embedded encryption from
Algorithm 8.1.10. With a view to Algorithm 7.2.8 and the Miller generator,
equation (8.1), work out an explicit, detailed algorithm for direct embedding
but with neither y-coordinates nor data expansion (except that one will still
need to transmit the sign bit d—an asymptotically negligible expansion). You
might elect to use a few more “parity bits,” for example in Algorithm 7.2.8
you may wish to specify one of two quadratic roots, and so on.

8.4. Describe how one may embed any plaintext integer X ∈ {0, . . . , p − 1}
on a single given curve, by somehow counting up from X as necessary, until
X3 + aX + b is a quadratic residue (mod p). One such scheme is described in
[Koblitz 1987].

8.5. In Algorithm 8.1.10 when is it the case that X is the x-coordinate of a
point on both curves E,E′?

8.6. Whenever we use Montgomery parameterization (Algorithm 7.2.7) in
any cryptographic mode, we do not have access to the precise Y -coordinate.
Actually, for the Montgomery (X, Z) pair we know that Y 2 = (X/Z)3 +
c(X/Z)2 + a(X/Z) + b, thus there can be two possible roots for Y . Explain
how, if Alice is to communicate to Bob a point (X, Y ) on the curve, then she
can effect so-called “point compression,” meaning that she can send Bob the
X coordinate and just a very little bit more.

But before she can send accurate information, Alice still needs to know
herself which is the correct Y root. Design a cryptographic scheme (e.g.,
key exchange) where Montgomery (X, Z) algebra is used but Y is somehow
recovered. (One reason to have Y present is simply that some current industry
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standards insist on such presence.) The interesting research of [Okeya and
Sakurai 2001] is relevant to this design problem. In fact such issues—usually
relating to casting efficient ECC onto chips or smart cards—abound in the
current literature. A simple Internet search on ECC optimizations now brings
up a great many very recent references. Just one place (of many) to get started
on this topic is [Berta and Mann 2002] and references therein.

8.7. Devise a coin-flip protocol based on the idea that if n is the product of
two different odd primes, then quadratic residues modulo n have 4 square roots
of the form ±a,±b. Further computing these square roots, given the quadratic
residue, is easy when one knows the prime factorization of n and, conversely,
when one has the 4 square roots, the factorization of n is immediate. Note in
this connection the Blum integers of Exercise 2.26, which integers are often
used in coin-flip protocols. References are [Schneier 1996] and [Bressoud and
Wagon 2000, p. 146].

8.8. Explore the possibility of cryptographic defects in Algorithm 8.1.11.
For example, Bob could cheat if he could quickly factor n, so the fairness
of the protocol, as with many others, should be predicated on the presumed
difficulty in factoring the number n that Alice sends. Is there any way for
Alice to cheat by somehow misleading Bob into preferring one of the primes
over the other? If Bob knows or guesses that Alice is choosing the primes
p, q, r at random in a certain range, is there some way for him to improve his
chances? Is there any way for either party to lose on purpose?

8.9. It is stated after Algorithm 8.1.11 that a coin-flip protocol can be
extended to group games such as poker. Choose a specific protocol (from the
text algorithm or such references as in Exercise 8.7), and write out explicitly
a design for “telephone poker,” in which there is, over a party-line phone
connection, a deal of say 5 cards per person, hands eventually claimed, and
so on. It may be intuitively clear that if flipping a coin can be done, so can
this poker game, but the exercise here is to be explicit in the design of a
full-fledged poker game.

8.10. Prove that the verification step of Algorithm 8.1.8 works, and discuss
both the probability of a false signature getting through and the difficulty of
forging.

8.11. Design a random-number generator based on a one-way function. It
turns out that any suitable one-way function can be used to this effect. One
reference is [H̊astad et al. 1999]; another is [Lagarias 1990].

8.12. Implement the Halton-sequence fast qMC Algorithm 8.3.6 for dimen-
sion D = 2, and plot graphically a cloud of some thousands of points in the
unit square. Comment on the qualitative (visual) difference between your plot
and a plot of simple random coordinates.
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8.13. Prove the claim concerning equation (8.3) under the stated conditions
on k. Start by analyzing the Diophantine equation (mod 4), concluding that
x ≡ 1 (mod 4), continuing on with further analysis (mod 4) until a Legendre
symbol

(−4m2

p

)
is encountered for p ≡ 3 (mod 4). (See, for example, [Apostol

1976, Section 9.8].)

8.14. Note that if c = an + bn, then x = ac, y = bc, z = c is a solution to
xn +yn = zn+1. Show more generally that if gcd(pq, r) = 1, then the Fermat–
Catalan equation xp + yq = zr has infinitely many positive solutions. Why is
this not a disproof of the Fermat–Catalan conjecture? Show that there are no
positive solutions when gcd(p, q, r) ≥ 3. What about the cases gcd(p, q, r) = 1
or 2? (The authors do not know the answer to this last question.)

8.15. Fashion an at least somewhat convincing heuristic argument for the
Fermat–Catalan conjecture. For example, here is one for the case that p, q, r
are all at least 4: Let S be the set of fourth and higher powers of positive
integers. Unless there is a cheap reason, as in Exercise 8.14, there should be
no particular tendency for the sum of two members of S to be equal to a
third member of S. Consider the expression a + b − c, where a ∈ S ∩ [t/2, t],
b ∈ S ∩ [1, t], c ∈ S ∩ [1, 2t] and gcd(a, b) = 1. This number a + b − c is in the
interval (−2t, 2t) and the probability that it is 0 ought to be of magnitude
1/t. Thus, the expected number of solutions to a+b = c for such a, b, c should
be at most S(t)2S(2t)/t, where S(t) is the number of members of S ∩ [1, t].
Now S(t) = O(t1/4), so this expected number is O(t−1/4). Now let t run over
powers of 2, getting that the total number of solutions is expected to be just
O(1).

8.16. As in Exercise 8.15, fashion an at least somewhat convincing heuristic
argument for the ABC conjecture.

8.17. Show that the ABC conjecture is false with ε = 0. In fact, show
that there are infinitely many coprime triples a, b, c of positive integers with
a + b = c and γ(abc) = o(c). (As before, γ(n) is the largest squarefree divisor
of n.)

8.18. [Tijdeman] Show that the ABC conjecture implies the Fermat–Catalan
conjecture.

8.19. [Silverman] Show that the ABC conjecture implies that there are
infinitely many primes p that are not Wieferich primes.

8.20. Say q1 < q2 < . . . is the sequence of powers. That is, q1 = 1, q2 = 4,
q3 = 8, q4 = 9, and so on. It is not known if the gaps qn+1 − qn tend to
infinity with n, but show that this is indeed the case if the ABC conjecture is
assumed. In fact, show on the ABC conjecture that for each ε > 0, we have
qn+1 − qn > n1/12−ε for all sufficiently large values of n.

8.21. Show that there is a polynomial in two variables with integer
coefficients whose values at positive integral arguments coincide with the set
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of positive composite numbers. Next, starting from the Lagrange theorem
that every positive integer is a sum of 4 squares (see Exercise 9.41), exhibit a
polynomial in 8 variables with integer coefficients such that its values at all
integral arguments constitute the set of positive composites.

8.22. Suppose the integer n of Proposition 8.5.1 has the distinct prime
factors p1, . . . , pk, where 2si‖pi − 1 and s1 ≤ · · · ≤ sk. Show that the relevant
probability is then

1 − 2−(s1+···+sk)
(

1 +
2s1k − 1
2k − 1

)

and that this expression is not less than 1 − 21−k. (Compare with Exercise
3.15.)

8.23. Complete one of the details for Shor factoring, as follows. We gave as
relation (8.4) the probability Pc,k of finding our QTM in the composite state
| c 〉| xk 〉. Explain quantitatively how the probability (for a fixed k, with c
the running variable) should show spikes corresponding to solutions d to the
Diophantine approximation ∣∣∣∣ cq − d

r

∣∣∣∣ ≤ 1
2q

.

Explain, then, how one can find d/r in lowest terms from (measured)
knowledge of appropriate c. Note that if gcd(d, r) happens to be 1, this
procedure gives the exact period r for the algorithm, and we know that two
random integers are coprime with probability 6/π2.

On the computational side, model (on a classical TM, of course) the
spectral behavior of the QTM occurring at the end of Algorithm 8.5.2, using
the following exemplary input. Take n = 77, so that the [Initialization] step
sets q = 8192. Now choose (we are using hindsight here) x = 3, for which
the period turns out to be r = 30 after the [Detect periodicity . . .] step. Of
course, the whole point of the QTM is to measure this period physically, and
quickly! To continue along and model the QTM behavior, use a (classical)
FFT to make a graphical plot of c versus the probability Pc,1 from formula
(8.4). You should see very strong spikes at certain c values. One of these values
is c = 273, for example. Now from the relation∣∣∣∣ 273

8192
− d

r

∣∣∣∣ ≤ 1
2q

one can derive the result r = 30 (the literature explains continued-fraction
methods for finding the relevant approximants d/r). Finally, extract a factor of
n via gcd(xr/2 −1, n). These machinations are intended show the flavor of the
missing details in the presentation of Algorithm 8.5.2; but beyond that, these
examples pave the way to a more complete QTM emulation (see Exercise 8.24).
Note the instructive phenomenon that even this small-n factoring emulation-
via-TM requires FFT lengths into the thousands; yet a true QTM might
require only a dozen or so qbits.
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8.24. It is a highly instructive exercise to cast Algorithm 8.5.2 into a detailed
form that incorporates our brief overview and the various details from the
literature (including the considerations of Exercise 8.23).

A second task that lives high on the pedagogical ladder is to emulate a
QTM with a standard TM program implementation, in a standard language.
Of course, this will not result in a polynomial-time factorer, but only because
the TM does what a QTM could do, yet the former involves an exponential
slowdown. For testing, you might start with input numbers along the lines of
Exercise 8.23. Note that one still has unmentioned options. For example, one
could emulate very deeply and actually model quantum interference, or one
could just use classical arithmetic and FFTs to perform the algebraic steps of
Algorithm 8.5.2.

8.8 Research problems

8.25. Prove or disprove the claim of physicist D. Broadhurst that the number

P =
29035682

514269

∫ ∞

0
dx

x906 sin(x ln 2)
sinh(πx/2)

(
1

cosh(πx/5)
+ 8 sinh2(πx/5)

)

is not only an integer, but in fact a prime number. This kind of integral
shows up in the theory of multiple zeta functions, which theory in turn has
application in theoretical physics, in fact in quantum field theory (and we
mean here physical fields, not the fields of algebra!).

Since the 1st printing of the present book, Broadhurst has used a publicly
available primality-proof package to establish that P is indeed prime. One
research extension, then, is to find—with proof—an even larger prime having
this kind of trigonometric-integral representation.

8.26. Here we explore a connection between prime numbers and fractals.
Consider the infinite-dimensional Pascal matrix P with entries

Pi,j =
(

i + j
i

)
,

for both i and j running through 0, 1, 2, 3, . . .; thus the classical Pascal
triangle of binomial coefficients has its apex packed into the upper-left corner
of P , like so:

P =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 · · ·
1 2 3 4 · · ·
1 3 6 10 · · ·
1 4 10 20 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ .

There are many interesting features of this P matrix (see [Higham 1996, p.
520]), but for this exercise we concentrate on its fractal structure modulo
primes.

Define the matrix Qn = P mod n, where the mod operation is taken
elementwise. Now imagine a geometrical object created by coloring each zero
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element of Qn black, and all nonzero elements white. Imagine further that this
object is the full infinite-dimensional Qn matrix, but compressed into a finite
planar square, so that we get, if you will, a kind of “snowflake” with many
holes of black within a fabric of white. Now, argue that for prime modulus p,
so that the mod matrix is Qp, the fractal dimension of the “snowflake” object
is given by

δ =
ln(p(p + 1)/2)

ln p
.

Technically, this is a “box dimension,” and for this and other dimension
definitions one source is [Crandall 1994b] and references therein. (Hint: The
basic method for getting δ is to count how many nonzero elements there
are in an upper-left pk × pk submatrix of Qp, and see how this scales with
the submatrix size p2k.) Thus for example, the Pascal triangle modulo 2
has dimension δ = (ln 3)/(ln 2) and the triangle modulo 3 has dimension
δ = (ln 6)/(ln 3). The case p = 2 here gives the famous Sierpiński gasket, a
well-studied object in the theory of fractals. It is sometimes said that such a
“gasket” amounts to “more than a line but less than the plane.” Clarify this
vague statement in quantitative terms, by looking at the numerical magnitude
of the dimension δ.

Extensions to this fractal-dimension exercise abound. For example, one
finds that for prime p, in the upper-left p × p submatrix of Qp, the number
of nonzero elements is always a triangular number. (A triangular number is
a number of the form 1 + 2 + . . . + n = n(n + 1)/2.) Question is, for what
composite n does the upper-left n × n submatrix have a triangular number
of nonzero elements? And here is an evidently tough question: What is the
fractal dimension if we consider the object in “gray-scale,” that is, instead
of white/black pixels that make up the gasket object, we calculate δ using
proper weight of an element of Qp not as binary but as its actual residue in
[0, p − 1]?

8.27. In the field of elliptic curve cryptography (ECC) it is important to be
able to construct elliptic curves of prime order. Describe how to adapt the
Schoof method, Algorithm 7.5.6, so that it “sieves” curve orders, looking for
such a prime order. In other words, curve parameters a, b would be chosen
randomly, say, and small primes L would be used to “knock out” a candidate
curve as soon as p+1−t is ascertained as composite. Assuming that the Schoof
algorithm has running time O

(
lnk p

)
, estimate the complexity of this sieving

scheme as applied to finding just one elliptic curve of prime order. Incidentally,
it may not be efficient overall to use maximal prime powers L = 2a, 3b, etc.
(even though as we explained these do work in the Schoof algorithm) for such
a sieve. Explain why that is. Note that some of the complexity issues herein
are foreshadowed in Exercise 7.29 and related exercises of that chapter.

If one did implement a “Schoof sieve” to find a curve of prime order, the
following example would be useful in testing the software:

p = 2113 − 133, a = −3, b = 10018.
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Now, for the following moduli (we give here some prime-power L values even
though, as we said, that is not necessarily an efficient approach)

7, 11, 13, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43,

the curve order #E = p + 1 − t has values t mod L as

2, 10, 3, 4, 6, 11, 14, 9, 26, 1, 1, 10, 8, 8,

leading to the prime curve order

#E = 10384593717069655112027224311117371.

Note that the task of finding curves for which both the order p+1− t and the
twist order p + 1 + t are prime is more difficult, not unlike the task of finding
twin primes as opposed to primes. A research problem: Prove via the methods
of analytic number theory that there is a positive constant c such that for most
primes p there are at least c

√
p/ ln2 p integers t with 0 < t < 2

√
p, such that

p + 1 ± t are both prime.

8.28. Work out software that very stringently tests random-number gen-
erators. The basic idea is simple: Assume an input stream of integers, say.
But the implementation is hard: There are spectral tests, collision tests, gen-
eral statistical tests, normality tests, and so on. The idea is that the software
would give a “score” to the generated stream, and thereby select “good”
random number generators. Of course, goodness itself could even be context-
dependent. For example, a good random generator for numerical integration
in computational physics might be a cryptographically bad generator, and so
on. One thing to note during such a research program is the folklore that
chaos-based generators are cryptographically risky. To this end, one might
consider the measurement of fractal dimension and Lyapunov exponents of
generated pseudorandom sequences as something to add to one’s test arsenal.

8.29. Investigate elliptic-curve-based random generation. Possible research
directions are indicated in the text after iteration (8.1), including the
possibility of casting the Gong–Berson–Stinson generator scheme ([Gong et
al. 1999]) into a form suitable for curves over odd-characteristic fields.

8.30. Investigate possibilities for random generators that have even longer
periods than the Marsaglia example of the text. For example, [Brent 1994]
notes that, for any Mersenne prime Mq = 2q − 1 with q ≡ ±1 (mod 8), there
may be a primitive trinomial of degree Mq, giving rise to a Fibonacci generator
with period at least Mq. A known working example is q = 132049, giving a
long period indeed!

8.31. Though Definition 8.3.1 is rather technical, and though the study of
discrepancies DN , D∗

N remains difficult and incomplete to this day, there do
exist some interesting discrepancy bounds of a general character. One such is
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the Leveque theorem on sequences P = (x0, x1, . . .) of points, each xj ∈ [0, 1].
The elegant statement is [Kuipers and Niederreiter 1974]

DN ≤

⎛
⎝ 6

π2

∞∑
h=1

1
h2

∣∣∣∣∣ 1
N

N−1∑
n=0

e2πihxn

∣∣∣∣∣
2
⎞
⎠

1/3

.

One notes that this bound is, remarkably, best possible in one sense: The
sequence P = (0, 0, . . . , 0) actually gives equality. A research problem is to
find interesting or useful sequences for which the Leveque bound can actually
be computed. For example, what happens in the Leveque formula if the
P sequence is generated by a linear-congruential generator (with each xn

normalized, say, via division by the modulus)? It is of interest that knowledge
of Fourier sums can be brought to bear in this way on quasi-Monte Carlo
studies.

8.32. An interesting and difficult open problem in the qMC field is the
following. Whereas low-discrepancy qMC sequences are characterized by the
bound

D∗
N = O

(
lnD N

N

)
,

the best that is known as a lower bound for large general dimension D is
[Veach 1997]

D∗
N ≥ C(D)

(
lnD/2 N

N

)
.

The hard problem is to endeavor to close the gap between the powers lnD/2

and lnD. This work is important, since for very high dimensions D the ln error
factors can be prohibitive.

8.33. Work out a theory to explain the experiments in [Wolf 1997] by
attempting to derive Wolf’s power law (8.6). (Note that there is no a priori
guarantee that some deep theory is at work; the claimed law could be an
artifact based on the particular numerical regions studied!) Consider, for
example, the (large-k) asymptotic behavior of the following integral as a
continuous approximation to the discrete transform:

I(k) =
∫ b

a

eikx

ln(c + x)
dx,

where a, b, c are fixed positive real constants. Can one explain the experimental
1/k1.64 power law (which would be for |I|2) in this way?

8.34. Here we indicate some very new directions indicated in recent
literature pertaining to the Riemann hypothesis (RH). The research options
below could have appeared in Chapter 1, where we outlined some consequences
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of the RH, but because of a strong interdisciplinary flavor in what follows, the
description belongs here just as well.

Consider these RH equivalences as research directions, primarily compu-
tational but always potentially theoretical:
(1) There is an older, Riesz condition [Titchmarsh 1986, Section 14.32] that

is equivalent to the RH, namely,

∞∑
n=1

(−x)n

ζ(2n)(n − 1)!
= O

(
x1/4+ε

)
.

Note the interesting feature that only integer arguments of ζ appear.
One question is this: Can there be any value whatsoever in numerical
evaluations of the sum? If there be any value at all, methods for so-
called “recycled” evaluations of ζ come into play. These are techniques
for evaluating huge sets of ζ values having the respective arguments in
arithmetic progression [Borwein et al. 2000].

(2) The work of [Balazard et al. 1999] proves that

I =
∫

ln |ζ(s)|
|s|2 ds = 2π

∑
Re(ρ)>1/2

ln
∣∣∣ ρ

1 − ρ

∣∣∣,
where the line integral is carried out over the critical line, and ρ denotes
any zero in the critical strip, but to the right of the critical line as indicated,
counting multiplicity. Thus the simple statement “I = 0” is equivalent to
the RH. One task is to plot the behavior of I(T ), which is the integral I
restricted to Im(s) ∈ [−T, T ], and look for evident convergence I(T ) → 0,
possibly giving a decay estimate. Another question mixes theory and
computation: If there is a single errant zero ρ = σ + it with σ > 1/2
(and its natural reflections), and if the integral is numerically computed
to some height T and with some appropriate precision, what, if anything,
can be said about the placement of that single zero? A challenging question
is: Even if the RH is true, what is a valid positive α such that

I(T ) = O(T−α) ?

It has been conjectured [Borwein et al. 2000] that α = 2 is admissible.
(3) Some new equivalences of the RH involve the standard function

ξ(s) =
1
2
s(s − 1)π−s/2Γ(s/2)ζ(s).

The tantalizing result in [Pustyl’nikov 1999] says that a condition
applicable at a single point s = 1/2 as

dnξ

dsn

(
1
2

)
> 0,
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for every n = 2, 4, 6, . . ., is equivalent to the RH. The interesting
computational exercise would be to calculate some vast number of such
derivatives. A single negative derivative would destroy the RH. Yet
another criterion equivalent to the RH is that of [Lagarias 1999]:

Re
(

ξ′(s)
ξ(s)

)
> 0

whenever Re(s) > 1/2. Again some graphical or other computational
means of analysis is at least interesting. Then there is the work in [Li
1997], [Bombieri and Lagarias 1999] to the effect that the RH is equivalent
to the positivity property

λn =
∑

ρ

(
1 −

(
1 − 1

ρ

)n)
> 0

holding for each n = 1, 2, 3, . . . . The λn constants can be cast in terms
of derivatives of ln ξ(s), but this time, all such evaluated at s = 1. Again
various computational avenues are of interest.

Further details, some computational explorations of these, and yet other new
RH equivalences appear in [Borwein et al. 2000].

8.35. It is not clear what the search limit is for coprime positive solutions
to the Fermat–Catalan equation xp + yq = zr when 1/p+1/q +1/r ≤ 1. This
search limit certainly encompasses the known 10 solutions mentioned in the
chapter, but maybe it is not much higher. Extend the search for solutions,
where the highest of the powers, namely zr, is allowed to run up to 1025

or perhaps even higher. To aid in this computation, one should not consider
triples p, q, r where we know there are no solutions. For example, if 2 and
3 are in {p, q, r}, then we may assume the third member is at least 10. See
[Beukers 2004] and [Bruin 2003] for an up-to-date report on those exponent
triples for which no search is necessary. Also, see [Bernstein 2004c] for a neat
way to search for solutions in the most populous cases.

8.36. Investigate alternative factoring and discrete-logarithm algorithms for
quantum Turing machines (QTMs). Here are some (unguaranteed) ideas.

The Pollard–Strassen method of Section 5.5 uses fast algorithms to
deterministically uncover factors of N in O(N1/4) operations. However, the
usual approach to the required polynomial evaluations is FFT-like, and in
practice often does involve FFTs. Is there a way to go deeper into the Pollard–
Strassen method, using the inherent massive parallelism of QTMs in order to
effect an interesting deterministic algorithm?

Likewise, we have seen exercises involving parallelization of Pollard-rho,
ECM, QS, NFS factoring, and it is a good rule that whenever parallelism
reveals itself, there is some hope of a QTM implementation.

As for DL problems, the rho and lambda methods admit of parallelism;
indeed, the DL approach in [Shor 1999] is very much like the collision methods
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we have toured. But there could be a variant that is easier to implement.
For example, it is not unreasonable to presume that the very first working
QTM DL/factoring solvers might make use of one of the currently less-
popular methods, in favor of simplicity. Observe that rho methods involve
very little beyond modular squaring and adding. (As with many factoring
algorithm candidates for QTM implementation, the eventual gcd operations
could just be classical.) What is more, at the very heart of rho methods lives
the phenomenon of periodicity, and as we have seen, QTMs are periodicity
detectors par excellence.



Chapter 9

FAST ALGORITHMS FOR LARGE-INTEGER
ARITHMETIC

In this chapter we explore the galaxy of “fast” algorithms that admit of
applications in prime number and factorization computations. In modern
times, it is of paramount importance to be able to manipulate multiple-
precision integers, meaning integers that in practice, on prevailing machinery,
have to be broken up into pieces, with machine operations to involve those
pieces, with a view to eventual reassembly of desired results. Although
multiple-precision addition and subtraction of integers is quite common in
numerical studies, we assume that notions of these very simple fundamental
operations are understood, and start with multiplication, which is perhaps
the simplest arithmetic algorithm whose classical form admits of genuine
enhancements.

9.1 Tour of “grammar-school” methods

9.1.1 Multiplication

One of the most common technical aspects of our culture is the classical,
or shall we say “grammar-school,” method of long multiplication. Though we
shall eventually concentrate on fast, modern methods of remarkable efficiency,
the grammar-school multiply remains important, especially when the relevant
integers are not too large, and itself allows some speed enhancements. In the
typical manifestation of the algorithm, one simply writes out, one below the
other, the two integers to be multiplied, then constructs a parallelogram of
digitwise products. Actually, the parallelogram is a rhombus, and to complete
the multiply we need only add up the columns of the rhombus, with carry. If
each of x, y to be multiplied has D digits in some given base B (also called
the “radix”), then the total number of operations required to calculate xy is
O(D2), because that is how many entries appear in the rhombus. Here, an
“operation” is either a multiply or an add of two numbers each of size B. We
shall refer to such a fundamental, digitwise, multiply as a “size-B multiply.”

A formal exposition of grammar-school multiply is simple but illuminating,
especially in view of later enhancements. We start with two definitions:

Definition 9.1.1. The base-B representation of a nonnegative integer x
is the shortest sequence of integer digits (xi) such that each digit satisfies
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0 ≤ xi < B, and

x =
D−1∑
i=0

xiB
i.

Definition 9.1.2. The balanced base-B representation of a nonnegative
integer x is the shortest sequence of integer digits (xi) such that each digit
satisfies −�B/2� ≤ xi ≤ �(B − 1)/2�, and

x =
D−1∑
i=0

xiB
i.

Say we wish to calculate a product z = xy for x, y both nonnegative. Upon
contemplation of the grammar-school rhombus, it becomes evident that given
x, y in base-B representation, say, we end up summing columns to construct
integers

wn =
∑

i+j=n

xiyj , (9.1)

where i, j run through all indices in the respective digit lists for x, y. Now the
sequence (wn) is not generally yet the base-B representation of the product
z. What we need to do, of course, is to perform the wn additions with carry.
The carry operation is best understood the way we understood it in grammar
school: A column sum wn affects not only the final digit zn, but sometimes
higher-order digits beyond this. Thus, for example, if w0 is equal to B + 5,
then z0 will be 5, but a 1 must be added into z1; that is, a carry occurs.

These notions of carry are, of course, elementary, but we have stated them
because such considerations figure strongly into modern enhancements to this
basic multiply. In actual experience, the carry considerations can be more
delicate and, for the programmer, more troublesome than any other part of
the algorithm.

9.1.2 Squaring

From the computational perspective, the connection between multiplication
and squaring is interesting. We expect the operation xx to involve generally
more redundancy than an arbitrary product xy, so that squaring should
be easier than general multiplication. Indeed, this intuition turns out to be
correct. Say that x has D digits in base B representation, and note that (9.1)
can be rewritten for the case of squaring as

wn =
n∑

i=0

xixn−i, (9.2)

where n ∈ [0, D − 1]. But this sum for wn generally has reflection symmetry,
and we can write

wn = 2

n/2�∑
i=0

xixn−i − δn, (9.3)
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where δn is 0 for n odd, else x2
n/2 for n even. It is clear that each column

component wn involves about half the size-B multiplies required for the
general multiplication algorithm. Of course, final carry operations must be
performed on the wn, to get the final digits zn of the product z = x2, but
in most practical instances, this squaring is indeed roughly twice as fast as a
multiple-precision multiply. There exist in the literature some very readable
expositions of the squaring algorithm and related algorithms. See, for example,
[Menezes et al. 1997].

There is an elegant, if simple, argument showing that general multipli-
cation has no more than twice the complexity of squaring. One invokes the
identity

4xy = (x + y)2 − (x − y)2, (9.4)

which indicates that a multiplication can be effected by two squarings and a
divide by four, this final divide presumed trivial (as, say, a right-shift by two
bits). This observation is not just academic, for in certain practical scenarios
this algebraic rule may be exploited (see Exercise 9.6).

9.1.3 Div and mod

Div and mod operations are omnipresent in prime-number and factorization
studies. These operations often occur in combination with multiplication, in
fact, this symbiosis is exploited in some of the algorithms we shall describe.
It is quite common that one spends computation effort on operations such as
xy (mod p), for primes p, or in factorization studies xy (mod N) where N is
to be factored.

It is a primary observation that the mod operation can hinge on the
div operation. We shall use, as before, the notation x mod N to denote the
operation that results in the least nonnegative residue of x (mod N), while
the greatest integer in x/N , denoted by �x/N�, is the div result. (In some
computer languages these operations are written “x%N” and “x div N ,”
respectively, while in others the integer divide “x/N” means just div, while
in yet others the div is “Floor[x/N ],” and so on.) For integers x and positive
integers N , a basic relation in our present notation is

x mod N = x − N�x/N�. (9.5)

Note that this relation is equivalent to the quotient–remainder decomposition
x = qN + r, with q, r being respectively the div and mod results under
consideration. So the div operation begets the mod, and we can proceed with
algorithm descriptions for div.

Analogous to “grammar-school” multiplication is, of course, the elemen-
tary method of long division. It is fruitful to contemplate even this simple
long division algorithm, with a view to enhancements. In the normal execu-
tion of long division in a given base B, the divisor N is first justified to the
left, with respect to the dividend x. That is to say, a power Bb of the base
is found such that m = BbN ≤ x < Bb+1N . Then one finds �x/m�, which
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quotient is guaranteed to be in the interval [1, B − 1]. The quotient here is,
of course, the leading base-B digit of the final div result. One then replaces x
with x − m�x/m�, and divides m by B, that is, shifts m down by one digit,
and so on recursively. This sketch shows us right off that for certain bases
B, things are relatively simple. In fact, if one adopts binary representations
(B = 2), then a complete div algorithm can be effected such that there are
no multiplies at all. The method can actually be of practical interest, es-
pecially on machinery that has addition, subtraction, bit-shifting (left-shift
means multiply-by-2, right-shift means divide-by-2), but little else in the way
of operations. Explicitly, we proceed as follows:

Algorithm 9.1.3 (Classical binary divide). Given positive integers x ≥ N ,
this algorithm performs the div operation, returning �x/N�. (See Exercise 9.7 for
the matter of also returning the value x mod N .)

1. [Initialize]
Find the unique integer b such that 2bN ≤ x < 2b+1N ;

// This can be done by successive left-shifts of the binary representation
of N , or better, by comparing the bit lengths of x, N and possibly
doing an extra shift.

m = 2bN ; c = 0;

2. [Loop over b bits]
for(0 ≤ j ≤ b) {

c = 2c;
a = x − m;
if(a ≥ 0) {

c = c + 1;
x = a;

}
m = m/2;

}
return c;

A similar binary approach can be used to effect the common “mul-mod”
operation (xy) mod N , where we have adapted the treatment in [Arazi 1994]:

Algorithm 9.1.4 (Binary mul-mod). We are given positive integers x, y
with 0 ≤ x, y < N . This algorithm returns the composite operation (xy) mod N .
We assume the base-2 representation of Definition 9.1.1 for x, so that the binary
bits of x are (x0, . . . , xD−1), with xD−1 > 0 being the high bit.

1. [Initialize]
s = 0;

2. [Loop over D bits]
for(D − 1 ≥ j ≥ 0) {

s = 2s;
if(s ≥ N) s = s − N ;
if(xj == 1) s = s + y;
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if(s ≥ N) s = s − N ;
}
return s;

The binary divide and mul-mod algorithms, though illuminating, suffer
from a basic practical shortcoming: One is not taking due advantage of
multiple-bit arithmetic as is commonly available on any reasonably powerful
computer. One would like to perform multiple-bit operations within machine
registers, rather than just operating one bit at a time. For this reason, larger
bases than B = 2 are usually used, and many modern div implementations
invoke “Algorithm D,” see [Knuth 1981, p. 257], which is a finely tuned version
of the classical long division. That algorithm is a good example of one that
has more pseudocode complexity than does our binary Algorithm (9.1.3), yet
amounts to a great deal of optimization in actual programs.

9.2 Enhancements to modular arithmetic

The classical div and mod algorithms discussed in Section 9.1.3 all involve
some sort of explicit divide operation. For the binary algorithms given, this
division is trivial; that is, if 0 ≤ a < 2b, then �a/b� is of course either 0
or 1. In the case of Knuth’s Algorithm D for higher bases than B = 2,
one is compelled to estimate small div results. But there exist more modern
algorithms for which no explicit division of any kind is required. The advantage
of these methods to the computationalist is twofold. First, complete number-
theoretical programs can be written without relatively complicated long
division; and second, the optimization of all the arithmetic can be focused
onto just one aspect, namely multiplication.

9.2.1 Montgomery method

An observation in [Montgomery 1985] has turned out to be important
in the computational field, especially in situations where modular powers
(xy) mod N are to be calculated with optimal speed (and, as we see later, the
operands are not too overwhelmingly large). Observe, first of all, that “naive”
multiply-mod takes one multiply and one divide (not counting subtractions),
and so the spirit of the Montgomery method—as with other methods discussed
in this chapter—is to lower or, if we are lucky, remove the difficulty of the
divide step.

The Montgomery method, which is a generalization of an old method of
Hensel for computing inverses of 2-adic numbers, stems from the following
theorem, leading to efficient means for the computation of quantities
(xR−1) mod N , for certain conveniently chosen R:

Theorem 9.2.1 (Montgomery). Let N, R be coprime positive integers, and
define N ′ = (−N−1) mod R. Then for any integer x, the number

y = x + N((xN ′) mod R)
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is divisible by R, with
y/R ≡ xR−1 (mod N). (9.6)

Furthermore, if 0 ≤ x < RN , the difference y/R − ((xR−1) mod N) is either
0 or N .

As we shall see, Theorem 9.2.1 will be most useful when there are several
or many multiplications modulo N to be performed, such as in a powering
ladder, in which case the computation of the auxiliary number N ′ is only a
one-time charge for the entire calculation. When N is odd and R is a power
of 2, which is often the case in applications, the “mod R” operation is trivial,
as is the division by R to get y. In addition, there is an alternative way to
compute N ′ using Newton’s method; see Exercise 9.12. It may help in the
case N odd and R a power of 2 to cast the basic Montgomery operation in
the language of bit operations. Let R = 2s, let & denote the bitwise “and”
operation, and let >> c denote “right-shift by c bits.” Then the left-hand side
of equation (9.6) can be cast as

y/R = (x + N ∗ ((x ∗ N ′)&(R − 1))) >> s, (9.7)

in which the two required multiplies are explicit.
So now, for 0 ≤ x < RN , we have a way to calculate (xR−1) mod N with a

small number (two) of multiplies. This is not quite the mod result x mod N of
course, but the Montgomery method applies well to the calculation of powers
(xy) mod N . The reason is that multiplication by R−1 or R on the residue
system of {x : 0 ≤ x < N} results in a complete residue system (mod N).
Thus, powering arithmetic can be performed in a different residue system,
with one initial multiply-mod operation and successive calls to a Montgomery
multiplication, to yield results (mod N). To make these ideas precise, we adopt
the following definition:

Definition 9.2.2. For gcd(R,N) = 1 and 0 ≤ x < N , the (R,N)-residue of
x is x = (xR) mod N .

Definition 9.2.3. The Montgomery product of two integers a, b is
M(a, b) = (abR−1) mod N .

Then the required facts can be collected in the following theorem:

Theorem 9.2.4 (Montgomery rules). Let R,N be as in Definition 9.2.2,
and 0 ≤ a, b < N . Then a mod N = M(a, 1) and M(a, b) = ab.

This theorem gives rise to the Montgomery powering technique. For example,
an example corollary of the theorem is that

M(M(M(x, x), x), 1) = x3 mod N. (9.8)

To render the notion of general Montgomery powering explicit, we next give
the relevant algorithms.
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Algorithm 9.2.5 (Montgomery product). This algorithm returns M(c, d)
for integers 0 ≤ c, d < N , with N odd, and R = 2s > N .

1. [Montgomery mod function M ]
M(c, d) {

x = cd;
z = y/R; // From Theorem 9.2.1.

2. [Adjust result]
if(z ≥ N) z = z − N ;
return z;

}

The [Adjust result] step in this algorithm always works because cd < RN by
hypothesis. The only importance of the choice that R be a power of two is
that fast arithmetic may be employed in the evaluation of z = y/R.

Algorithm 9.2.6 (Montgomery powering). This algorithm returns
xy mod N , for 0 ≤ x < N , y > 0, and R chosen as in Algorithm 9.2.5. We
denote by (y0, . . . , yD−1) the binary bits of y.

1. [Initialize]
x = (xR) mod N ; // Via some divide/mod method.
p = R mod N ; // Via some divide/mod method.

2. [Power ladder]
for(D − 1 ≥ j ≥ 0) {

p = M(p, p); // Via Algorithm 9.2.5.
if(yj == 1) p = M(p, x);

} // Now p is xy.

3. [Final extraction of power]
return M(p, 1);

Later in this chapter we shall have more to say about general power ladders;
the ladder here is exhibited primarily to show how one may call the M()
function to advantage.

The speed enhancements of an eventual powering routine all center on the
M() function, in particular on the computation of z = y/R. We have noted
that to get z, two multiplies are required, as in equation (9.7). But the story
does not end here; in fact, the complexity of the Montgomery mod operation
can be brought (asymptotically, large N) down to that of one size-N multiply.
(To state it another way, the composite operation M(x ∗ y) asymptotically
requires two size-N multiplies, which can be thought of as one for the “∗”
operation.) The details of the optimizations are intricate, involving various
manifestations of the inner multiply loops of the M() function [Koç et al.
1996], [Bosselaers et al. 1994]. But these details stem at least in part from
a wasted operation in equation (9.7): The right-shifting effectively destroys
some of the bits generated by the two multiplies. We shall see this shifting
phenomenon again in the next section. In actual program implementations
of Montgomery’s scheme, one can assign a word-size base B = 2b, so that
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a convenient value R = Bk may be used, whence the z value in Algorithm
9.2.5 can be obtained by looping k times and doing arithmetic (mod B) that
is particularly convenient for the machine. Explicit word-oriented loops that
achieve the optimal asymptotic complexity are laid out nicely in [Menezes et
al. 1997].

9.2.2 Newton methods

We have seen in Section 9.1 that the div operation may be effected via
additions, subtractions, and bit-shifts, although, as we have also seen, the
algorithm can be bested by moving away from the binary paradigm into the
domain of general base representations. Then we saw that the technique of
Montgomery mod gives us an asymptotically efficient means for powering with
respect to a fixed modulus. It is interesting, perhaps at first surprising, that
general div and mod may be effected via multiplications alone; that is, even
the small div operations attendant to optimized div methods are obviated, as
are the special precomputations of the Montgomery method.

One approach to such a general div and mod scheme is to realize that the
classical Newton method for solving equations may be applied to the problem
of reciprocation. Let us start with reciprocation in the domain of real numbers.
If one is to solve f(x) = 0, one proceeds with an (adroit) initial guess for x,
call this guess x0, and iterates

xn+1 = xn − f(xn)/f ′(xn), (9.9)

for n = 0, 1, 2 . . ., whence—if the initial guess x0 is good enough—the sequence
(xn) converges to the desired solution. So to reciprocate a real number a > 0,
one is trying to solve 1/x − a = 0, so that an appropriate iteration would be

xn+1 = 2xn − ax2
n. (9.10)

Assuming that this Newton iteration for reciprocals is successful (see Exercise
9.13), we see that the real number 1/a can be obtained to arbitrary accuracy
with multiplies alone. To calculate a general real division b/a, one simply
multiplies b by the reciprocal 1/a, so that general division in real numbers
can be done in this way via multiplies alone.

But can the Newton method be applied to the problem of integer div?
Indeed it can, provided that we proceed with care in the definition of a
generalized reciprocal for integer division. We first introduce a function B(N),
defined for nonnegative integers N as the number of bits in the binary
representation of N , except that B(0) = 0. Thus, B(1) = 1, B(2) = B(3) = 2,
and so on. Next we establish a generalized reciprocal; instead of reciprocals
1/a for real a, we consider a generalized reciprocal of integer N as the integer
part of an appropriate large power of 2 divided by N .

Definition 9.2.7. The generalized reciprocal R(N) is defined for positive
integers N as �4B(N−1)/N�.
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The reason for the particular power in the definition is to allow our
eventual general div algorithm to function. Next, we give a method for rapid
computation of R(N), based on multiplies, adds, and subtracts alone:

Algorithm 9.2.8 (Generalized reciprocation). This algorithm returns R(N)
for positive integer N .

1. [Initialize]
b = B(N − 1); r = 2b; s = r;

2. [Perform discrete Newton iteration]
r = 2r − �N�r2/2b�/2b�;
if(r ≤ s) goto [Adjust result];
s = r;
goto [Perform discrete Newton iteration];

3. [Adjust result]
y = 4b − Nr;
while(y < 0) {

r = r − 1;
y = y + N ;

}
return r;

Note that Algorithm 9.2.8 involves a possible “repair” of the final return value,
in the form of the while(y < 0) loop. This is a key to making the algorithm
precise, as we see in the proof of the following theorem:

Theorem 9.2.9 (Generalized reciprocal iteration). The reciprocation Al-
gorithm 9.2.8 works; that is, the returned value is R(N).

Proof. We have
2b−1 < N ≤ 2b.

Let c = 4b/N , so that R(N) = �c�. Let

f(r) = 2r −
⌊

N

2b

⌊
r2

2b

⌋⌋
,

and let g(r) = 2r − Nr2/4b = 2r − r2/c. Since deleting the floor functions in
the definition of f(r) gives us g(r), and since N/2b ≤ 1, we have

g(r) ≤ f(r) < g(r) + 2

for every r.
Since g(r) = c − (c − r)2/c, we have

c − (c − r)2/c ≤ f(r) < c − (c − r)2/c + 2.

We conclude that f(r) < c + 2 for all r. Further, if r < c, then

f(r) ≥ g(r) = 2r − r2/c > r.
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Thus, the sequence of iterates 2b, f(2b), f(f(2b)), . . . that the algorithm
produces is strictly increasing until a value s is reached with c ≤ s < c + 2.
The number r sent to Step [Adjust result] is r = f(s). If c ≥ 4, we also have
c ≤ r < c+2. But c ≥ 4 unless N = 1 or 2. In these cases, in fact whenever N
is a power of 2, the algorithm terminates immediately with the value r = N .
Thus, the algorithm always terminates with the number �c�, as claimed. �

We remark that the number of steps through the Newton iteration in
Algorithm 9.2.8 is O(ln(b + 1)) = O(ln ln(N + 2)). In addition, the number of
iterations for the while loop in step [Adjust result] is at most 2.

Armed with the iteration for the generalized reciprocal, we can proceed to
develop a mod operation that itself involves only multiplies, adds, subtracts,
and binary shifts.

Algorithm 9.2.10 (Division-free mod). This algorithm returns x mod N
and �x/N�, for any nonnegative integer x. The only precalculation is to have
established the generalized reciprocal R = R(N). This precalculation may be
done via Algorithm 9.2.8.

1. [Initialize]
s = 2(B(R) − 1);
div = 0;

2. [Perform reduction loop]
d = �xR/2s�;
x = x − Nd;
if(x ≥ N) {

x = x − N ;
d = d + 1;

}
div = div + d;
if(x < N) return (x, div); // x is the mod, div is the div.
goto [Perform reduction loop];

This algorithm is essentially the Barrett method [Barrett 1987], although it is
usually stated for a commonly encountered range on x, namely, 0 ≤ x < N2.
But we have lifted this restriction, by recursively using the basic formula

x mod N ∼ x − N�xR/2s�, (9.11)

where by “∼” we mean that for appropriate choice of s, the error in this
relation is a small multiple of N . There are many enhancements possible to
Algorithm 9.2.10, where we have chosen a specific number of bits s by which
one is to right-shift. There are other interesting choices for s; indeed, it has
been observed [Bosselaers et al. 1994] that there are certain advantages to
“splitting up” the right-shifts like so:

x mod N ∼ x − N�R�x/2b−1�/2b+1�, (9.12)
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where b = B(R) − 1. In particular, such splitting can render the relevant
multiplications somewhat simpler. In fact, one sees that⌊

R
⌊
x/2b−1⌋ /2b+1⌋ = �x/N� − j (9.13)

for j = 0, 1, or 2. Thus using the left-hand side for d in Algorithm 9.2.10
involves at most two passes through the while loop. And there is an apparent
savings in time, since the length of x can be about 2b, and the length of R
about b. Thus the multiplication xR in Algorithm 9.2.10 is about 2b × b
bits, while the multiplication inherent in (9.12) is only about b × b bits.
Because a certain number of the bits of xR are destined to be shifted into
oblivion (a shift completely obscures the relevant number of lower-order bits),
one can intervene into the usual grammar-school multiply loop, effectively
cutting the aforementioned rhombus into a smaller tableau of values. With
considerations like this, it can be shown that for 0 ≤ x < N2, the complexity
of the x mod N operation is asymptotically (large N) the same as a size-N
multiply. Alternatively, the complexity of the common operation (xy) mod N ,
where 0 ≤ x, y < N , is that of two size-N multiplies.

Studies have been carried out for the classical long divide, (Algorithm
D [Knuth 1981]), Montgomery and Barrett methods [Bosselaers et al. 1994],
[Montgomery 1985], [Arazi 1994], [Koç et al. 1996]. There would seem to
be no end to new div-mod algorithms; for example, there is a sign estimation
technique of [Koç and Hung 1997], suitable for cryptographic operations (such
as exponentiation) when operands are large. While both the Montgomery
and (properly refined) Barrett methods are asymptotically of the same
complexity, specific implementations of the methods reveal ranges of operands
for which a particular approach is superior. In cryptographic applications,
the Montgomery method is sometimes reported to be slightly superior to
the Barrett method. One reason for this is that reaching the asymptotically
best complexity for the Montgomery method is easier than for the Barrett
method, the latter requiring intervention into the loop detail. However,
there are exceptions; for example, [De Win et al. 1998] ended up adopting
the Barrett method for their research purposes, presumably because of its
ease of implementation (at the slightly suboptimal level), and its essential
competitive equality with the Montgomery method. It is also the case that
the inverses required in the Montgomery method can be problematic for very
large operands. There is also the fact that if one wants just one mod operation
(as opposed to a long exponentiation ladder), the Montgomery method is
contraindicated. It would appear that a very good choice for general, large-
integer arithmetic is the symbiotic combination of our Algorithms 9.2.8 and
9.2.10. In factorization, for example, one usually performs (xy) mod N so very
often for a stable N , that a single calculation of the generalized reciprocal
R(N) is all that is required to set up the division-free mod operations.

We mention briefly some new ideas in the world of divide/mod algorithms.
One idea is due to G. Woltman, who found ways to enhance the Barrett
divide Algorithm 9.2.10 in the (practically speaking) tough case when x is
much greater than a relatively small N . One of his enhancements is to change
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precision modes in such cases. Another new development is an interesting
Karatsuba-like recursive divide, in [Burnikel and Ziegler 1998]. The method
has the interesting property that the complexities of finding the div or just a
mod result are not quite the same.

Newton methods apply beyond the division problem. Just one example
is the important computation of �

√
N�. One may employ a (real domain)

Newton iteration for
√

a in the form

xn+1 =
xn

2
+

a

2xn
, (9.14)

to forge an algorithm for integer parts of square roots:

Algorithm 9.2.11 (Integer part of square root). This algorithm returns
�
√

N� for positive integer N .

1. [Initialize]
x = 2�B(N)/2�;

2. [Perform Newton iteration]
y = �(x + �N/x�)/2�;
if(y ≥ x) return x;
x = y;
goto [Perform Newton iteration];

We may use Algorithm 9.2.11 to test whether a given positive integer N
is a square. After x = �

√
N� is computed, we do one more step and check

whether x2 = N . This equation holds if and only if N is a square. Of course,
there are other ways to rule out very quickly whether N is a perfect square,
for example to test instances of (N

p ) for various small primes p, or the residue
of N modulo 8.

It can be argued that Algorithm 9.2.11 requires O(ln lnN) iterations
to terminate. There are many interesting complexity issues with this and
other Newton method applications. Specifically, it is often lucrative to change
dynamically the working precision as the Newton iteration progresses, or to
modify the very Newton loops (see Exercises 9.14 and 4.11).

9.2.3 Moduli of special form

Considerable efficiency in the mod operation can be achieved when the
modulus N is of special form. The Barrett method of the previous section
is fast because it exploits mod 2q arithmetic. In this section we shall see that
if the modulus N is close to a power of 2, one can exploit the binary nature of
modern computers and carry out the arithmetic very efficiently. In particular,
forms

N = 2q + c,

where |c| is in some sense “small” (but c is allowed to be negative), admit
efficient mod N operations. These enhancements are especially important in
the studies of Mersenne primes p = 2q − 1 and Fermat numbers Fn = 22n

+1,
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although the techniques we shall describe apply equally well to general moduli
2q ±1, any q. That is, whether or not the modulus N has additional properties
of primality or special structure is of no consequence for the mod algorithm
of this section. A relevant result is the following:

Theorem 9.2.12 (Special-form modular arithmetic). For N = 2q +c, c an
integer, q a positive integer, and for any integer x,

x ≡ (x mod 2q) − c�x/2q� (mod N). (9.15)

Furthermore, in the Mersenne case c = −1, multiplication by 2k modulo N is
equivalent to left-circular shift by k bits (so if k < 0, this is right-circular shift).
For the Fermat case c = +1, multiplication by 2k, k positive, is equivalent to
(−1)
k/q� times the left-circular shift by k bits, except that the excess shifted
bits are to be negated and carry-adjusted.

As they are easiest to analyze, let us discuss the final statements of the theorem
first. Since

2k = 2k mod q2q
k/q�,

and also 2q ≡ −c (mod N), the statements are really about k ∈ [1, q − 1]
and negatives of such k. As examples, take N = 217 − 1 = 131071 =
111111111111111112, x = 8977 = 100011000100012, and consider the
product 25x (mod N). This will be the left-circular shift of x by 5 bits, or
1100010001000102 = 25122, which is the correct result. Incidentally, these
results on multiplication by powers of 2 are relevant for certain number-
theoretical transforms and other algorithms. In particular, discrete Fourier
transform arithmetic in the ring Zn with n = 2m + 1 can proceed—on the
basis of shifting rather than explicit multiplication—when the root in question
is a power of 2.

The first result of Theorem 9.2.12 allows us to calculate x mod N very
rapidly, on the basis of the “smallness” of c. Let us first give an example of
the computation of x = 13000 modulo the Mersenne prime N = 27 −1 = 127.
It is illuminating to cast in binary: 13000 = 110010110010002, then proceed
via the theorem to split up x easily into two parts whenever it exceeds N (all
congruences here are with respect to modulus N):

x ≡ 11001011001000 mod 10000000 + �11001011001000/10000000�

≡ 1001000 + 1100101 ≡ 10101101 ≡ 101101 + 1 ≡ 101110.

As the result 1011102 = 46 < N , we have achieved the desired value of
13000 mod 127 = 46. The procedure is thus especially simple for the Mersenne
cases N = 2q − 1; namely, one takes the “upper” bits of x (meaning the bits
from the 2q position and up, inclusive) and adds these to the “lower” bits
(meaning the lower q bits of x). The general procedure runs as follows, where
we adopt for convenience the bitwise “and” operator & and right-shift >>,
left-shift << operators:
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Algorithm 9.2.13 (Fast mod operation for special-form moduli). Assume
modulus N = 2q + c, with B(|c|) < q. This algorithm returns x mod N for
x > 0. The method is generally more efficient for smaller |c|.
1. [Perform reduction]

while(B(x) > q) {
y = x >> q; // Right-shift does �x/2q�.
x = x − (y << q); // Or x = x&(2q − 1), or x = x mod 2q.
x = x − cy;

}
if(x == 0) return x;

2. [Adjust]
s = sgn(x); // Defined as −1, 0, 1 as x <,=, > 0.
x = |x|;
if(x ≥ N) x = x − N ;
if(s < 0) x = N − x;
return x;

It is not hard to show that this algorithm terminates and gives the result
x mod N .

Because the method involves nothing but “small” multiplications (by c),
applications are widespread. Modern discoveries of new Mersenne primes have
used this mod method in the course of extensive Lucas–Lehmer primality
testing. There is even a patented encryption scheme based on elliptic curves
over fields Fpk , where p = 2q + c, and if extra efficiency is desired, p ≡ −1
(mod 4) (for example, p can be any Mersenne prime, or a prime 2q +7, and so
on), with elliptic algebra performed on the basis of essentially negligible mod
operations [Crandall 1994a]. Such fields have been called optimal extension
fields (OEFs), and further refinements can be achieved by adroit choice of the
exponent k and irreducible polynomial for the Fpk arithmetic. It is also true of
such elliptic curves that curve order can be assessed more quickly by virtue of
the fast mod operation. Yet another application of the special mod reduction
is in the factorization of Fermat numbers. The method has been used in the
recent discoveries of new factors of the Fn for n = 13, 15, 16, 18 [Brent et al.
2000]. For such large Fermat numbers, machine time is so extensive that any
algorithmic enhancements, whether for mod or other operations, are always
welcome. In recent times the character of even larger Fn has been assessed
in this way, where now the Pepin primality test involves a great many (mod
Fn) operations. The proofs that F22, F24 are composite used the special-form
mod of this section [Crandall et al. 1995], [Crandall et al. 1999], together with
fast multiplication discussed later in the chapter.

It is interesting that one may generalize the special-form fast arithmetic
yet further. Consider numbers of the Proth form:

N = k · 2q + c.

We next give a fast modular reduction technique from [Gallot 1999], which is
suitable in cases where k and c are low-precision (e.g., single-word) parameters:
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Algorithm 9.2.14 (Fast mod operation for Proth moduli). Assume modu-
lus N = k · 2q + c, with bit length B(|c|) < q (and c can be negative or zero).
This algorithm returns x mod N for 0 < x < N2. The method is generally more
efficient for smaller k, |c|.
1. [Define a useful shift-add function n]

n(y) {
return Ny; // But calculate rapidly, as: Ny = ((ky) << q) + cy.

}
2. [Approximate the quotient]

y = �x>>q
k �;

t = n(y);
if(c < 0) goto [Polarity switch];
while(t > x) {

t = n(y);
y = y − 1;

}
return x − t;

3. [Polarity switch]
while(t ≤ x) {

y = y + 1;
t = n(y);

}
y = y − 1;
t = n(y);
return x − t;

This kind of clever reduction is now deployed in software that has achieved
significant success in the discoveries of, as just two examples, new factors of
Fermat numbers, and primality proofs for Proth primes.

9.3 Exponentiation

Exponentiation, or powering, is especially important in prime number and
factorization studies, for the simple reason that so many known theorems
involve the operation xy, or most commonly xy (mod N). In what follows, we
give various algorithms that efficiently exploit the structure of the exponent y,
and sometimes the structure of x. We have glimpsed already in Section 2.1.2,
Algorithm 2.1.5, an important fact: While it is certainly true that something
like (xy) mod N can be evaluated with (y − 1) successive multiplications
(mod N), there is generally a much better way to compute powers. This
is to use what is now a commonplace computational technique, the powering
ladder, which can be thought of as a nonrecursive (or “unrolled”) realization
of equivalent, recursive algorithms. But one can do more, via such means as
preprocessing the bits of the exponent, using alternative base expansions for
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the exponent, and so on. Let us first summarize the categories of powering
ladders:
(1) Recursive powering ladder (Algorithm 2.1.5).
(2) Left-right and right-left “unrolled” binary ladders.
(3) Windowing ladders, to take advantage of certain bit patterns or of

alternative base expansions, a simple example of which being what is
essentially a ternary method in Algorithm 7.2.7, step [Loop over bits . . .],
although one can generally do somewhat better [Müller 1997], [De Win et
al. 1998], [Crandall 1999b].

(4) Fixed-x ladders, to compute xy for various y but fixed x.
(5) Addition chains and Lucas ladders, as in Algorithm 3.6.7, interesting

references being such as [Montgomery 1992b], [Müller 1998].
(6) Modern methods based on actual compression of exponent bit-streams, as

in [Yacobi 1999].
The current section starts with basic binary ladders (and even for these,
various options exist); then we turn to the windowing, alternative-base, and
fixed-x ladders.

9.3.1 Basic binary ladders

We next give two forms of explicit binary ladders. The first, a “left-right”
form (equivalent to Algorithm 2.1.5), is comparable in complexity (except
when arguments are constrained in certain ways) to a second, “right-left”
form.

Algorithm 9.3.1 (Binary ladder exponentiation (left-right form)).
This algorithm computes xy. We assume the binary expansion (y0, . . . , yD−1)
of y > 0, where yD−1 = 1 is the high bit.

1. [Initialize]
z = x;

2. [Loop over bits of y, starting with next-to-highest]
for(D − 2 ≥ j ≥ 0) {

z = z2; // For modular arithmetic, do modN here.
if(yj == 1) z = zx; // For modular arithmetic, do modN here.

}
return z;

This algorithm constructs the power xy by running through the bits of the
exponent y. Indeed, the number of squarings is (D − 1), and the number of
operations z = z ∗ x is clearly one less than the number of 1 bits in the
exponent y. Note that the operations turn out to be those of Algorithm 2.1.5.
A mnemonic for remembering which of the left-right or right-left ladder forms
is equivalent to the recursive form is to note that both Algorithms 9.3.1 and
2.1.5 involve multiplications exclusively by the steady multiplier x.
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But there is a kind of complementary way to effect the powering. This
alternative is exemplified in the relation

x13 = x ∗ (x2)2 ∗ (x4)2,

where there are again 2 multiplications and 3 squarings (because x4 was
actually obtained as the middle term (x2)2). In fact, in this example we see
more directly the binary expansion of the exponent. The general formula
would be

xy = x
∑

yj2j

= xy0(x2)y1(x4)y2 · · · , (9.16)

where the yj are the bits of y. The corresponding algorithm is a “right-left”
ladder in which we keep track of successive squarings of x:

Algorithm 9.3.2 (Binary ladder exponentiation (right-left form)).
This algorithm computes xy. We assume the binary expansion (y0, . . . , yD−1)
of y > 0, where yD−1 = 1 is the high bit.

1. [Initialize]
z = x; a = 1;

2. [Loop over bits of y, starting with lowest]
for(0 ≤ j < D − 1) {

if(yj == 1) a = za; // For modular arithmetic, do modN here.
z = z2; // For modular arithmetic, do modN here.

}
return az; // For modular arithmetic, do modN here.

This scheme can be seen to involve also (D − 1) squarings, and (except for
the trivial multiply when a = z ∗ 1 is first invoked) has the same number of
multiplies as did the previous algorithm.

Even though the operation counts agree on the face of it, there is a certain
advantage to the first form given, Algorithm 9.3.1, for the reason that the
operation z = zx involves a fixed multiplicand, x. Thus for example, if x = 2
or some other small integer, as might be the case in a primality test where
we raise a small integer to a high power (mod N), the multiply step can be
fast. In fact, for x = 2 we can substitute the operation z = z + z, avoiding
multiplication entirely for that step of the algorithm. Such an advantage is
most telling when the exponent y is replete with binary 1’s.

These observations lead in turn to the issue of asymptotic complexity
for ladders. This is a fascinating—and in many ways open—field of study.
Happily, though, most questions about the fundamental binary ladders above
can be answered. Let us adopt the heuristic notation that S is the complexity
of squaring (in the relevant algebraic domain for exponentiation) and M is
the complexity of multiplication. Evidently, the complexity C of one of the
above ladders is asymptotically

C ∼ (lg y)S + HM,
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where H denotes the number of 1’s in the exponent y. Since we expect about
“half 1’s” in a random exponent, the average-case complexity is thus

C ∼ (lg y)S + (1
2 lg y)M.

Note that using (9.4) one can often achieve S ∼ M/2 so reducing the
expression for the average-case complexity of the above ladders to C ∼
(lg y)M . The estimate S ∼ M/2 is not a universal truth. For one thing,
such an estimate assumes that modular arithmetic is not involved, just
straight nonmodular squaring and multiplication. But even in the nonmodular
world, there are issues. For example, with FFT multiplication (for very large
operands, as described later in this chapter), the S/M ratio can be more
like 2/3. With some practical (modular, grammar-school) implementations,
the ratio S/M is about 0.8, as reported in [Cohen et al. 1998]. Whatever
subroutines one uses, it is of course desirable to have fewer arithmetic
operations to perform. As we shall see in the following section, it is possible
to achieve further operation reduction.

9.3.2 Enhancements to ladders

In factorization studies and cryptography it is a rule of thumb that power
ladders are used much of the time. In factorization, the so-called stage
one of many methods involves almost nothing but exponentiation (in the
case of ECM, elliptic multiplication is the analogue to exponentiation).
In cryptography, the generation of public keys from private ones involves
exponentiation, as do digital signatures and so on. It is therefore important
to optimize powering ladders as much as possible, as these ladder operations
dominate the computational effort in the respective technologies.

One interesting method for ladder enhancement is sometimes referred to
as “windowing.” Observe that if we expand not in binary but in base 4, and
we precompute powers x2, x3, then every time we encounter two bits of the
exponent y, we can multiply by one of 1 = x0, x1, x2, x3 and then square twice
to shift the current register to the left by two bits. Consider for example the
task of calculating x79, knowing that 79 = 10011112 = 10334. If we express
the exponent y = 79 in base 4, we can do the power as

x79 =
(
x42

x3
)4

x3,

which takes 6S +2M (recall nomenclature S, M for square and multiply). On
the other hand, the left-right ladder Algorithm 9.3.1 does the power this way:

x79 =

(((
x23

x
)2

x

)2

x

)2

x,

for a total effort of 6S + 4M , more than the effort for the base-4 method. We
have not counted the time to precompute x2, x3 in the latter method, and so



9.3 Exponentiation 461

the benefit is not so readily apparent. But a benefit would be seen in most
cases if the exponent 79 were larger, as in many cryptographic applications.

There are many detailed considerations not yet discussed, but before we
touch upon those let us give a fairly general windowing ladder that contains
most of the applicable ideas:

Algorithm 9.3.3 (Windowing ladder). This algorithm computes xy. We
assume a base-(B = 2b) expansion (as in Definition 9.1.1), denoted by
(y0, . . . , yD−1) of y > 0, with high digit yD−1 = 0, so each digit satisfies
0 ≤ yi < B. We also assume that the values {xd : 1 < d < B; d odd}
have been precomputed.

1. [Initialize]
z = 1;

2. [Loop over digits]
for(D − 1 ≥ i ≥ 0) {

Express yi = 2cd, where d is odd or zero;
z = z(xd)2

c

; // xd from storage.
if(i > 0) z = z2b

;
}
return z;

To give an example of why only odd powers of x need to be precomputed, let
us take the example of y = 262 = 4068. Looking at this base-8 representation,
we see that

x262 =
((

x4)8
)8

x6,

but if x3 has been precomputed, we can insert that x3 at the proper juncture,
and Algorithm 9.3.3 tells us to exponentiate like so:

x262 =
(((

x4)8
)4

x3
)2

.

Thus, the precomputation is relegated to odd powers only. Another way to
exemplify the advantage is in base 16 say, for which each of the 4-bit sequences:
1100, 0110, 0011 in any exponent can be handled via the use of x3 and the
proper sequencing of squarings.

Now, as to further detail, it is possible to allow the “window”—essentially
the base B—to change as we go along. That is, one can look ahead during
processing of the exponent y, trying to find special strings for a little extra
efficiency. One “sliding-window” method is presented in [Menezes et al. 1997].
It is also possible to use our balanced-base representation, Definition 9.1.2, to
advantage. If we constrain the digits of exponent y to be

−�B/2� ≤ yi ≤ �(B − 1)/2�,

and precompute odd powers xd where d is restricted within the range of these
digit values, then significant advantages accrue, provided that the inverse
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powers are available. In the case of elliptic multiplication, let us say we
desire “exponentiation” [k]P , where P is a point, k the exponent. We need to
precompute, then, only the multiples

{[d]P : 1 < d < �B/2�; d odd},

because negations [−d]P are immediate, by the rules of elliptic algebra.
In this way, one can fashion highly efficient windowing schemes for elliptic
multiplication. See Exercise 9.77 for yet more considerations.

Ignoring precomputation, it can be inferred that in Algorithm 9.3.3 with
base B = 2b the asymptotic (large-y) requirement is Db ∼ lg y squarings (i.e.,
one squaring for each binary bit of y). This is, of course, no gain over the
squarings required in the basic binary ladders. But the difference lies in the
multiplication count. Whereas in the basic binary ladders the (asymptotic)
number of multiplications is the number of 1’s, we now only need at most one
multiplication per b bits; in fact, we only need 1 − 2−b of these on average,
because of the chance of a zero digit in random base-B expansions. Thus, the
average-case asymptotic complexity for the windowing algorithm is

C ∼ (lg y)S + (1 − 2−b)
lg y

b
M,

which when b = 1 is equivalent to the previous estimate C ∼ (lg y)S +
( 1
2 lg y)M for the basic binary ladders. Note though as the window size b

increases, the burden of multiplications becomes negligible. It is true that
precomputation considerations are paramount, but in practice, a choice of
b = 3 or b = 4 will indeed reduce noticeably the ladder computations.

Along the lines of the previous remarks concerning precomputation, an
interesting ladder enhancement obtains in the case that the number x is to be
reused. That is, say we wish to exponentiate xy for many different y values,
with x fixed. We can compute and store fixed powers of the fixed x, and use
them to advantage.

Algorithm 9.3.4 (Fixed-x ladder for xy). This algorithm computes xy. We
assume a base-B (not necessarily binary) expansion (y0, . . . , yD−1) of y > 0, with
high digit yD−1 > 0. We also assume that the (total of (B − 1)(D − 1)) values

{xiBj

: i ∈ [1, B − 1]; j ∈ [1, D − 1]}
have been precomputed.

1. [Initialize]
z = 1;

2. [Loop over digits]
for(0 ≤ j < D) z = zxyjBj

;
return z;

This algorithm clearly requires, beyond precomputation, an operation count

C ∼ DM ∼ lg y

lg B
M,
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so the fact of a “stable” value for x really can yield high efficiency, because of
the (lg B)−1 factor. Depending on precise practical setting and requirements,
there exist yet further enhancements, including the use of less extensive
lookup tables (i.e., using only the stored powers such as xBj

), loosening of
the restrictions on the ranges of the for() loops depending on the range of
values of the y digits in base B (in some situations not every possible digit
will occur), and so on. Note that if we do store only the reduced set of powers
xBj

, the Step [Loop over digits] will have nested for() loops. There also exist
fixed-y algorithms using so-called addition chains, so that when the exponent
is stable some enhancements are possible. Both fixed-x and fixed-y forms
find applications in cryptography. If public keys are generated as fixed x
values raised to secret y values, for example, the fixed-x enhancements can be
beneficial. Similarly, if a public key (as x = gh) is to be raised often to a key
power y, then the fixed-y methods may be invoked for extra efficiency.

9.4 Enhancements for gcd and inverse

In Section 2.1.1 we discussed the great classical algorithms for gcd and inverse.
Here we explore more modern methods, especially methods that apply when
the relevant integers are very large, or when some operations (such as shifts)
are relatively efficient.

9.4.1 Binary gcd algorithms

There is a genuine enhancement of the Euclid algorithm worked out by
D. Lehmer in the 1930s. The method exploits the fact that not every implied
division in the Euclid loop requires full precision, and statistically speaking
there will be many single-precision (i.e., small operand) div operations. We
do not lay out the Lehmer method here (for details see [Knuth 1981]), but
observe that Lehmer showed how to enhance an old algorithm to advantage
in such tasks as factorization.

In the 1960s it was observed by R. Silver and J. Terzian [Knuth 1981], and
independently in [Stein 1967], that a gcd algorithm can be effected in a certain
binary fashion. The following relations indeed suggest an elegant algorithm:

Theorem 9.4.1 (Silver, Terzian, and Stein). For integers x, y,
If x, y are both even, then gcd(x, y) = 2 gcd(x/2, y/2);
If x is even and y is not, then gcd(x, y) = gcd(x/2, y);
(As per Euclid) gcd(x, y) = gcd(x − y, y);
If u, v are both odd, then |u − v| is even and less than max{u, v}.

These observations give rise to the following algorithm:

Algorithm 9.4.2 (Binary gcd). The following algorithm returns the greatest
common divisor of two positive integers x, y. For any positive integer m, let
v2(m) be the number of low-order 0’s in the binary representation of m; that
is, we have 2v2(m)‖m. (Note that m/2v2(m) is the largest odd divisor of m, and
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can be computed with a shift into oblivion of the low-order zeros; note also for
theoretical convenience we may as well take v2(0) = ∞.)

1. [2’s power in gcd]
β = min{v2(x), v2(y)}; // 2β‖ gcd(x, y)
x = x/2v2(x);
y = y/2v2(y);

2. [Binary gcd]
while(x = y) {

(x, y) = (min{x, y}, |y − x|/2v2(|y−x|));
}
return 2βx;

In actual practice on most machinery, the binary algorithm is often faster
than the Euclid algorithm; and as we have said, Lehmer’s enhancements may
also be applied to this binary scheme.

But there are other, more modern, enhancements; in fact, gcd enhance-
ments seem to keep appearing in the literature. There is a “k-ary” method
due to Sorenson, in which reductions involving k > 2 as a modulus are per-
formed. There is also a newer extension of the Sorenson method that is claimed
to be, on a typical modern machine that possesses hardware multiply, more
than 5 times faster than the binary gcd we just displayed [Weber 1995]. The
Weber method is rather intricate, involving several special functions for non-
standard modular reduction, yet the method should be considered seriously
in any project for which the gcd happens to be a bottleneck. Most recently,
[Weber et al. 2005] introduced a new modular GCD algorithm that could be
an ideal choice for certain ranges of operands.

It is of interest that the Sorenson method has variants for which the
complexity of the gcd is O(n2/ lnn) as opposed to the Euclidean O(n2)
[Sorenson 1994]. In addition, the Sorenson method has an extended form for
obtaining not just gcd but inverse as well.

One wonders whether this efficient binary technique can be extended in the
way that the classical Euclid algorithm can. Indeed, there is also an extended
binary gcd that provides inverses. [Knuth 1981] attributes the method to
M. Penk:

Algorithm 9.4.3 (Binary gcd, extended for inverses). For positive integers
x, y, this algorithm returns an integer triple (a, b, g) such that ax + by = g =
gcd(x, y). We assume the binary representations of x, y, and use the exponent β
as in Algorithm 9.4.2.

1. [Initialize]
x = x/2β ; y = y/2β ;
(a, b, h) = (1, 0, x);
(v1, v2, v3) = (y, 1 − x, y);
if(x even) (t1, t2, t3) = (1, 0, x);

else {
(t1, t2, t3) = (0,−1,−y);
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goto [Check even];
}

2. [Halve t3]
if(t1, t2 both even) (t1, t2, t3) = (t1, t2, t3)/2;

else (t1, t2, t3) = (t1 + y, t2 − x, t3)/2;

3. [Check even]
if(t3 even) goto [Halve t3];

4. [Reset max]
if(t3 > 0) (a, b, h) = (t1, t2, t3);

else (v1, v2, v3) = (y − t1,−x − t2,−t3);
5. [Subtract]

(t1, t2, t3) = (a, b, h) − (v1, v2, v3);
if(t1 < 0) (t1, t2) = (t1 + y, t2 − x)
if(t3 = 0) goto [Halve t3];
return (a, b, 2βh);

Like the basic binary gcd algorithm, this one tends to be efficient in actual
machine implementations. When something is known as to the character of
either operand (for example, say y is prime) this and related algorithms can
be enhanced (see Exercises).

9.4.2 Special inversion algorithms

Variants on the inverse-finding, extended gcd algorithms have appeared over
the years, in some cases depending on the character of the operands x, y. One
example is the inversion scheme in [Thomas et al. 1986] for x−1 mod p, for
primes p. Actually, the algorithm works for unrestricted moduli (returning
either a proper inverse or zero if the inverse does not exist), but the authors
were concentrating on moduli p for which a key quantity �p/z� within the
algorithm can be easily computed.

Algorithm 9.4.4 (Modular inversion). For modulus p (not necessarily
prime) and x ≡ 0 (mod p), this algorithm returns x−1 mod p.

1. [Initialize]
z = x mod p;
a = 1;

2. [Loop]
while(z = 1) {

q = −�p/z�; // Algorithm is best when this is fast.
z = p + qz;
a = (qa) mod p;

}
return a; // a = x−1 mod p.

This algorithm is conveniently simple to implement, and furthermore (for
some ranges of primes), is claimed to be somewhat faster than the extended
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Algorithm 2.1.4. Incidentally, the authors of this algorithm also give an
interesting method for rapid calculation of �p/z� when p = 2q−1 is specifically
a Mersenne prime.

Yet other inversion methods focus on the specific case that p is a Mersenne
prime. The following is an interesting attempt to exploit the special form of
the modulus:

Algorithm 9.4.5 (Inversion modulo a Mersenne prime). For p = 2q − 1
prime and x ≡ 0 (mod p), this algorithm returns x−1 mod p.

1. [Initialize]
(a, b, y, z) = (1, 0, x, p);

2. [Relational reduction]
Find e such that 2e‖y;
y = y/2e; // Shift off trailing zeros.
a = (2q−ea) mod p; // Circular shift, by Theorem 9.2.12.
if(y == 1) return a;
(a, b, y, z) = (a + b, a, y + z, y);
goto [Relational reduction];

9.4.3 Recursive-gcd schemes for very large operands

It turns out that the classical bit-complexity O(ln2 N) for evaluating the gcd of
two numbers, each of size N , can be genuinely reduced via recursive reduction
techniques, as first observed in [Knuth 1971]. Later it was established that such
recursive approaches can be brought down to complexity

O(M(lnN) ln lnN),

where M(b) denotes the bit-complexity for multiplication of two b-bit integers.
With the best-known bound for M(b), as discussed later in this chapter, the
complexity for these recursive gcd algorithms is thus

O
(
lnN(ln lnN)2 ln ln lnN

)
.

Studies on the recursive approach span several decades; references include
[Schönhage 1971], [Aho et al. 1974, pp. 300–310], [Bürgisser et al. 1997,
p. 98], [Cesari 1998], [Stehlé and Zimmermann 2004]. For the moment, we
observe that like various other algorithms we have encountered—such as pre-
conditioned CRT—the recursive-gcd approach cannot really use grammar-
school multiplication to advantage.

We shall present in this section two recursive-gcd algorithms, the original
one from the 1970s that, for convenience, we call the Knuth–Schönhage gcd
(or KSgcd)—–and a very new, pure-binary one by Stehlé–Zimmermann (called
the SZgcd). Both variants turn out to have the same asymptotic complexity,
but differ markedly in regard to implementation details.

One finds in practice that recursive-gcd schemes outperform all known
alternatives (such as the binary gcd forms with or without Lehmer enhance-
ments) when the input arguments x, y are sufficiently large, say in the region
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of tens of thousands of bits (although this “breakover” threshold depends
strongly on machinery and on various options such as the choice of an alter-
native classical gcd algorithm at recursion bottom). As an example applica-
tion, recall that for inversionless ECM, Algorithm 7.4.4, we require a gcd. If
one is attempting to find a factor of the Fermat number F24 (nobody has yet
been successful in that) there will be gcd arguments of about 16 million bits,
a region where recursive gcds with the above complexity radically dominate,
performance-wise, all other alternatives. Later in this section we give some
specific timing estimates.

The basic idea of the KSgcd scheme is that the remainder and quotient
sequences of a classical gcd algorithm differ radically in the following sense.
Let x, y each be of size N . Referring to the Euclid Algorithm 2.1.2, denote
by (rj , rj+1) for j ≥ 0 the pairs that arise after j passes of the loop. So a
remainder sequence is defined as (r0 = x, r1 = y, r2, r3, . . .). Similarly there
is an implicit quotient sequence (q1, q2, . . .) defined by

rj = qj+1rj+1 + rj+2.

In performing the classical gcd one is essentially iterating such a quotient-
remainder relation until some rk is zero, in which case the previous remainder
rk−1 is the gcd. Now for the radical difference between the q and r sequences:
As enunciated elegantly by [Cesari 1998], the total number of bits in the
remainder sequence is expected to be O(ln2 N), and so naturally any gcd
algorithm that refers to every rj is bound to admit, at best, of quadratic
complexity. On the other hand, the quotient sequence (q1, . . . , qk−1) tends to
have relatively small elements. The recursive notion stems from the fact that
knowing the qj yields any one of the rj in nearly linear time [Cesari 1998].

Let us try an example of remainder-quotient sequences. (We choose
moderately large inputs x, y here for later illustration of the recursive idea.)
Take

(r0, r1) = (x, y) = (31416, 27183),

whence

r0 = q1r1 + r2 = 1 · r1 + 4233,

r1 = q2r2 + r3 = 6 · r2 + 1785,

r2 = q3r3 + r4 = 2 · r3 + 663,

r3 = q4r4 + r5 = 2 · r4 + 459,

r4 = q5r5 + r6 = 1 · r5 + 204,

r5 = q6r6 + r7 = 2 · r6 + 51,
r6 = q7r7 + r8 = 4 · r7 + 0.

Evidently, gcd(x, y) = r7 = 51, but notice the quotient sequence goes
(1, 6, 2, 2, 1, 2, 4); in fact these are the elements of the simple continued fraction
for the rational x/y. The trend is typical: Most quotient elements are expected
to be small.
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To formalize how remainder terms can be gotten from known quotient
terms, we can use the matrix-vector identity, valid for i < j,(

rj

rj+1

)
=

(
0 1
1 −qj

)
· · ·

(
0 1
1 −qi+1

)(
ri

ri+1

)
.

Now the idea is to use the typically small q values to compute a matrix G
such that the vector G(x, y)T is some column vector (rj , rj+1)T where the
bit-length of rj is roughly half that of x. Then one recurses on this theme,
until the relevant operands can be dealt with swiftly, via a classical gcd. In the
algorithm to follow, when the main function rgcd() is called, there is eventually
a call (in Step [Reduce arguments]) to a procedure hgcd() that updates a
matrix G so that the resulting product G(u, v)T is a column vector with
significantly smaller components. To illustrate in our baby example above, if
we go about half-way through the development, we have that

G =
(

0 1
1 −2

)(
0 1
1 −2

)(
0 1
1 −6

)(
0 1
1 −1

)
=

(
12 −15

−32 37

)

and

G

(
r0
r1

)
=

(
12 −15

−32 37

)(
31416
27183

)
=

(
663
459

)
=

(
r4
r5

)
.

In this way we jump significantly down the remainder chain with just one
call to the hgcd() procedure. For the particular example, we might then go
to a classical gcd with the smaller operands r4 and r5. For very large initial
operands, it would take some number of recursive passes to move sufficiently
down the remainder chain, with the basic bit-length of an rj being roughly
halved on each pass.

For the next pseudocode display, we have drawn on an implementation in
[Buhler 1991]. (Note: As with various modern software packages, we denote
gcd(0, 0) = 0 for convenience.)

Algorithm 9.4.6 (Recursive gcd). For nonnegative integers x, y this algo-
rithm returns gcd(x, y). The top-level function rgcd() calls a recursive hgcd()
which in turn calls a “small-gcd” function shgcd(), with a classical (such as a
Euclid or binary) function cgcd() invoked at recursion bottom. There is a global
matrix G, other interior variables being local (in the usual sense for recursive
procedures).

1. [Initialize]
lim = 2256; // Breakover threshold for cgcd(); adjust for efficiency.
prec = 32; // Breakover bit length for shgcd(); adjust for efficiency.

2. [Set up small-gcd function shgcd to return a matrix]
shgcd(x, y) { // Short gcd, with variables u, v, q, A local.

A =
(

1 0
0 1

)
;

(u, v) = (x, y);
while(v2 > x) {
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q = �u/v�;
(u, v) = (v, u mod v);

A =
(

0 1
1 −q

)
A;

}
return A;

}
3. [Set up recursive procedure hgcd to modify global matrix G]

hgcd(b, x, y) { // Variables u, v, q, m, C are local.
if(y == 0) return;
u = �x/2b�;
v = �y/2b�;
m = B(u); // B is as usual the bit-length function.
if(m < prec) {

G = shgcd(u, v);
return;

}
m = �m/2�;
hgcd(m, u, v); // Recurse.
(u, v)T = G(u, v)T ; // Matrix-vector multiply.
if(u < 0) (u, G11, G12) = (−u, −G11,−G12);
if(v < 0) (v, G21, G22) = (−v,−G21,−G22);
if(u < v) (u, v, G11, G12, G21, G22) = (v, u, G21, G22, G11, G12);
if(v = 0) {

(u, v) = (v, u);
q = �v/u�;
G =

(
0 1
1 −q

)
G; // Matrix-matrix multiply.

v = v − qu;
m = �m/2�;
C = G;
hgcd(m, u, v); // Recurse.
G = GC;

}
return;

}
4. [Establish the top-level function rcgcd.]

rgcd(x, y) { // Top-level function, with variables u, v local.
(u, v) = (x, y);

5. [Reduce arguments]
(u, v) = (|u|, |v|); // Absolute-value each component.
if(u < v) (u, v) = (v, u);
if(v < lim) goto [Branch];

G =
(

1 0
0 1

)
;
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hgcd(0, u, v);
(u, v)T = G(u, v)T ;
(u, v) = (|u|, |v|);
if(u < v) (u, v) = (v, u);
if(v < lim) goto [Branch];
(u, v) = (v, u mod v);
goto [Reduce arguments];

6. [Branch]
return cgcd(u, v); // Recursion done, branch to alternative gcd.

}

To clarify the practical application of the algorithm, one chooses the
“breakover” parameters lim and prec, whence the greatest common divisor of
x, y is to be calculated by calling the overall function rgcd(x, y). We remark
that G. Woltman has managed to implement Algorithm 9.4.6 in a highly
memory-efficient way, essentially by reusing certain storage and carrying out
other careful bookkeeping. He reported in year 2000 the ability to effect a
random gcd with respect to the Fermat number F24 in under an hour on a
modern PC, while a classical gcd of such magnitude would consume days of
machine time. This was at the time one of the very first practical successes
of the recursive approach. So the algorithm, though intricate, certainly has
its rewards, especially in the search for factors of very large numbers, say
arguments as large as some interesting “genuine composites” like the Fermat
number F20 and beyond.

An alternative recursive approach—the SZgcd—is a very new develop-
ment. It is a binary-recursive gcd involving little more than binary shifts and
large-integer multiplies. This spectacular discovery has the same theoretical
complexity as Algorithm 9.4.6, yet [Zimmerman 2004] reports that a GNU
MP implementation of the algorithm below performs a gcd of two numbers
of 224 bits each in about 45 seconds, on a modern PC. The year 2000 timing
for Algorithm 9.4.6 comes down, via modern (2004) machinery, to more like
several minutes, so this new SZgcd is quite a performer. We remind ourselves,
however, that the theoretical complexity as enunciated at the beginning of this
section applies to both algorithms—the fact of simple, rapid binary operations
for the newer algorithm yields a smaller effective big-O constant. (There is
also the observation [Stehlé and Zimmermann 2004] that it is much easier to
be rigorous with the complexity theory, for the SZgcd.)

The basic idea of the SZgcd is to expand a rational number in a continued
fraction whose elements are not taken from the usual positive integers, rather
from a set

(±1/2,±1/4,±3/4,±1/8,±3/8,±5/8,±7/8,±1/16,±3/16, . . .).

So a typical fraction development is exemplified like so for the rational 525/266
(an example publicized by D. Bernstein):

525 = (1/2)266 + 392;
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266 = (−3/4)392 + 560;
392 = (−1/2)560 + 672;
560 = (−1/2)672 + 896;
672 = (3/4)896 + 0.

Now gcd(525, 266) is seen to be the odd part of 896, namely 7. At each step
we choose the fractional “quotient” so that the 2-power in the remainder
increases. Thus the algorithm below is entirely 2-adic, and is especially suited
for machinery with fast binary operations, such as vector-shift and so on. Note
that the divbin procedure in Algorithm 9.4.7 is merely a single iteration of the
above type, and that one always arranges to apply it when the first integer is
not divisible by as high a power of 2 as the second integer.

Following Stehlé–Zimmermann, we employ a signed modular reduction
x cmod m defined as the unique residue of x modulo m that lies in [−�m/2�+
1, �m/2�]. The function v2, returning the number of trailing zero bits, is as
in Algorithm 9.4.2. As with previous algorithms, B(n) denotes the number of
bits in the binary representation of a nonnegative integer n.

Algorithm 9.4.7 (Stehlé–Zimmermann binary-recursive gcd). For nonne-
gative integers x, y this algorithm returns gcd(x, y). The top-level function
SZgcd() calls a recursive, half-binary function hbingcd(), with a classical binary
gcd invoked when operands have sufficiently decreased.

1. [Initialize]
thresh = 10000; // Tunable breakover threshold for binary gcd.

2. [Set up top-level function that returns the gcd]
SZgcd(x, y) { // Variables u, v, k, q, r, G are local.

(u, v) = (x, y);
if(v2(v) < v2(u)) (u, v) = (v, u);
if(v2(v) == v2(u)) (u, v) = (u, u + v);
if(v == 0) return u;
k = v2(u);
(u, v) = (u/2k, v/2k);

3. [Reduce]
if((B(u) or B(v) < thresh) return 2k gcd(u, v); // Algorithm 9.4.2.
G = hbingcd(�B(u)/2�, u, v); // G is a 2-by-2 matrix.
(u, v)T = G(u, v)T ; // Matrix-vector multiplication.
if(v == 0) return 2k−v2(u)u;
(q, r) = divbin(u, v);
(u, v) = (v/2v2(v), r/2v2(v));
if(v == 0) return 2ku;
goto [Reduce];

}
4. [Half-binary divide function]

divbin(x, y) { // A 2-vector is returned. Variables q, r are local.
r = x;
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q = 0;
while(v2(r) ≤ v2(y)) {

q = q − 2v2(r)−v2(x);
r = r − 2v2(r)−v2(y)y;

}
q = q cmod 2v2(y)−v2(x)+1;
r = x + qy/2v2(y)−v2(x);
return (q, r);

}
5. [Half-binary gcd function (recursive)]

hbingcd(k, x, y) { // Matrix returned; G, u, v, k1, k2, k3, q, r are local.

G =
(

1 0
0 1

)
;

if(v2(y) > k) return G;
k1 = �k/2�;
k3 = 22k1+1;
u = x mod k3;
v = y mod k3;
G = hbingcd(k1, u, v); // Recurse.
(u, v)T = G(x, y)T ;
k2 = k − v2(v);
if(k2 < 0) return G;
(q, r) = divbin(u, v);
k3 = 2v2(v)−v2(u);

G =
(

0 k3
k3 q

)
G;

k3 = 22k2+1;
u =

(
v2−v2(v)

)
mod k3;

v =
(
r2−v2(v)

)
mod k3;

G = hbingcd(k2, u, v)G;
return G;

}

See the last part of Exercise 9.20 for some implicit advice on what operations
in Algorithm 9.4.7 are relevant to good performance. In addition, note that
to achieve the remarkably low complexity of either of these recursive gcds,
the implementor should make sure to have an efficient large-integer multiply.
Whether the multiply occurs in a matrix multiplication, or anywhere else, the
use of breakover techniques should be in force. That is, for small operands
one uses grammar-school multiply, then for larger operands one may employ
a Karatsuba or Toom–Cook approach, but use one of the optimal, FFT-based
options for very large operands. In other words, the multiplication complexity
M(N) appearing in the complexity formula atop the present section needs
be taken seriously upon implementation. These various fast multiplication
algorithms are discussed later in the chapter (Sections 9.5.1 and 9.5.2).
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It is natural to ask whether there exist extended forms of such recursive-
gcd algorithms, along the lines, say, of Algorithm 2.1.4 or Algorithm 9.4.3, to
effect asymptotically fast modular inversion. The answer is yes, as explained
in [Stehlé and Zimmermann 2004] and [Cesari 1998].

9.5 Large-integer multiplication

When numbers have, say, hundreds or thousands (even millions) of decimal
digits, there are modern methods for multiplication. In practice, one finds
that the classical “grammar-school” methods just cannot effect multiplication
in certain desired ranges. This is because, of course, the bit complexity of
grammar-school multiply of two size-N numbers is O

(
ln2 N

)
. It turns out that

by virtue of modern transform and convolution techniques, this complexity
can be brought down to

O(lnN(ln lnN)(ln ln lnN)),

as we discuss in more detail later in this section.
The art of large-integer arithmetic has, especially in modern times,

sustained many revisions. Just as with the fast Fourier transform (FFT)
engineering literature itself, there seems to be no end to the publication of
new approaches, new optimizations, and new applications for computational
number theory. The forest is sufficiently thick that we have endeavored in
this section to render an overview rather than an encyclopedic account of this
rich and exotic field. An interesting account of multiplication methods from
a theoretical point of view is [Bernstein 1997], and modern implementations
are discussed, with historical references, in [Crandall 1994b, 1996a].

9.5.1 Karatsuba and Toom–Cook methods

The classical multiplication methods can be applied on parts of integers to
speed up large-integer multiplication, as observed by Karatsuba. His recursive
scheme assumes that numbers be represented in split form

x = x0 + x1W,

with x0, x1 ∈ [0, W − 1], which is equivalent to base-W representation, except
that here the base will be about half the size of x itself. Note that x is
therefore a “size-W 2” integer. For two integers x, y of this approximate size,
the Karatsuba relation is

xy =
t + u

2
− v +

t − u

2
W + vW 2, (9.17)

where
t = (x0 + x1)(y0 + y1),

u = (x0 − x1)(y0 − y1),

v = x1y1,
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and we obtain xy, which is originally a size-W 2 multiply, for the price of only
three size-W multiplies (and some final carry adjustments, to achieve base-W
representation of the final result). This is in principle an advantage, because
if grammar-school multiply is invoked throughout, a size-W 2 multiply should
be four, not three times as expensive as a size-W one. It can be shown that if
one applies the Karatsuba relation to t, u, v themselves, and so on recursively,
the asymptotic complexity for a size-N multiply is

O
(
(lnN)ln 3/ ln 2

)
bit operations, a theoretical improvement over grammar-school methods.
We say “theoretical improvement” because computer implementations will
harbor so-called overhead, and the time to arrange memory and recombine
subproducts and so on might rule out the Karatsuba method as a viable
alternative. Still, it is often the case in practice that the Karatsuba approach
does, in fact, outperform the grammar-school approach over a machine- and
implementation-dependent range of operands.

But a related method, the Toom–Cook method, reaches the theoretical
boundary of O

(
ln1+ε N

)
bit operations for the multiplicative part of size-N

multiplication—that is, ignoring all the additions inherent in the method.
However, there are several reasons why the method is not the final word
in the art of large-integer multiply. First, for large N the number of
additions is considerable. Second, the complexity estimate presupposes that
multiplications by constants (such as 1/2, which is a binary shift, and so on)
are inexpensive. Certainly multiplications by small constants are so, but the
Toom–Cook coefficients grow radically as N increases. Still, the method is
of theoretical interest and does have its practical applications, such as fast
multiplication on machines whose fundamental word multiply is especially
sluggish with respect to addition. The Toom–Cook method hinges on the idea
that given two polynomials

x(t) = x0 + x1t + . . . + xD−1t
D−1, (9.18)

y(t) = y0 + y1t + . . . + yD−1t
D−1, (9.19)

the polynomial product z(t) = x(t)y(t) is completely determined by its values
at 2D−1 separate t values, for example by the sequence of evaluations (z(j)),
j ∈ [1 − D, D − 1]:

Algorithm 9.5.1 (Symbolic Toom–Cook multiplication). Given D, this al-
gorithm generates the (symbolic)Toom–Cook scheme for multiplication of (D-
digit)-by-(D-digit) integers.

1. [Initialize]
Form two symbolic polynomials x(t), y(t) each of degree (D − 1), as in

equation (9.18);

2. [Evaluation]
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Evaluate symbolically z(j) = x(j)y(j) for each j ∈ [1 − D, D − 1], so that
each z(j) is cast in terms of the original coefficients of the x and y
polynomials;

3. [Reconstruction]
Solve symbolically for the coefficients zj in the following linear system of

(2D − 1) equations:
z(t) =

∑2D−2
k=0 zktk, t ∈ [1 − D, D − 1];

4. [Report scheme]
Report a list of the (2D − 1) relations, each relation casting zj in terms of

the original x, y coefficients;

The output of this algorithm will be a set of formulae that give the coefficients
of the polynomial product z(t) = x(t)y(t) in terms of the coefficients of
the original polynomials. But this is precisely what is meant by integer
multiplication, if each polynomial corresponds to a D-digit representation in
a fixed base B.

To underscore the Toom–Cook idea, we note that all of the Toom–Cook
multiplies occur in the [Evaluation] step of Algorithm 9.5.1. We give next
a specific multiplication algorithm that requires five such multiplies. The
previous, symbolic, algorithm was used to generate the actual relations of
this next algorithm:

Algorithm 9.5.2 (Explicit D = 3 Toom–Cook integer multiplication).
For integers x, y given in base B as

x = x0 + x1B + x2B
2,

y = y0 + y1B + y2B
2,

this algorithm returns the base-B digits of the product z = xy, using the
theoretical minimum of 2D − 1 = 5 multiplications for acyclic convolution of
length-3 sequences.

1. [Initialize]
r0 = x0 − 2x1 + 4x2;
r1 = x0 − x1 + x2;
r2 = x0;
r3 = x0 + x1 + x2;
r4 = x0 + 2x1 + 4x2;
s0 = y0 − 2y1 + 4y2;
s1 = y0 − y1 + y2;
s2 = y0;
s3 = y0 + y1 + y2;
s4 = y0 + 2y1 + 4y2;

2. [Toom–Cook multiplies]
for(0 ≤ j < 5) tj = rjsj ;

3. [Reconstruction]
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z0 = t2;
z1 = t0/12 − 2t1/3 + 2t3/3 − t4/12;
z2 = −t0/24 + 2t1/3 − 5t2/4 + 2t3/3 − t4/24;
z3 = −t0/12 + t1/6 − t3/6 + t4/12;
z4 = t0/24 − t1/6 + t2/4 − t3/6 + t4/24;

4. [Adjust carry]
carry = 0;
for(0 ≤ n < 5) {

v = zn + carry;
zn = v mod B;
carry = �v/B�;

}
return (z0, z1, z2, z3, z4, carry);

Now, as opposed to the Karatsuba method, in which a size-B2 multiply is
brought down to that of three size-B ones for, let us say, a “gain” of 4/3,
Algorithm 9.5.2 does a size-B3 multiply in the form of five size-B ones, for a
gain of 9/5. When either algorithm is used in a recursive fashion (for example,
the Step [Toom–Cook multiplies] is done by calling the same, or another,
Toom–Cook algorithm recursively), the complexity of multiplication of two
size-N integers comes down to

O
(
(lnN)ln(2D−1)/ ln D

)
,

small multiplies (meaning of a fixed size independent of N), which complexity
can, with sufficiently high Toom–Cook degree d = D − 1, be brought down
below any given complexity estimate of O

(
ln1+ε N

)
small multiplies. However,

it is to be noted forcefully that this complexity ignores the addition count, as
well as the constant-coefficient multiplies (see Exercises 9.37, 9.78 and Section
9.5.8).

The Toom–Cook method can be recognized as a scheme for acyclic
convolution, which together with other types of convolutions, we address later
in this chapter. For more details on Karatsuba and Toom–Cook methods, the
reader may consult [Knuth 1981], [Crandall 1996a], [Bernstein 1997].

9.5.2 Fourier transform algorithms

Having discussed multiplication methods that enjoy complexities as low as
O

(
ln1+ε N

)
small fixed multiplications (but perhaps unfortunate addition

counts), we shall focus our attention on a class of multiplication schemes
that enjoy low counts of all operation types. These schemes are based on the
notion of the discrete Fourier transform (DFT), a topic that we now cover in
enough detail to render the subsequent multiply algorithms accessible.

At this juncture we can think of a “signal” simply as a sequence of
elements, in order to forge a connection between transform theory and the
field of signal processing. Throughout the remainder of this chapter, signals
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might be sequences of polynomial coefficients, or sequences in general, and
will be denoted by x = (xn), n ∈ [0, D − 1] for some “signal length” D.

The first essential notion is that multiplication is a kind of convolution.
We shall make that connection quite precise later, observing for the moment
that the DFT is a natural transform to employ in convolution problems. For
the DFT has the unique property of converting convolution to a less expensive
dyadic product. We start with a definition:

Definition 9.5.3 (The discrete Fourier transform (DFT)). Let x be a sig-
nal of length D consisting of elements belonging to some algebraic domain
in which D−1 exists, and let g be a primitive D-th root of unity in that do-
main; that is, gk = 1 if and only if k ≡ 0 (mod D). Then the discrete Fourier
transform of x is that signal X = DFT (x) whose elements are

Xk =
D−1∑
j=0

xjg
−jk, (9.20)

with the inverse DFT−1(X) = x given by

xj =
1
D

D−1∑
k=0

Xkgjk. (9.21)

That the transform DFT−1 is well-defined as the correct inverse is left as an
exercise. There are several important manifestations of the DFT:

Complex-field DFT: x, X ∈ CD, g a primitive D-th root of 1 such as e2πi/D;

Finite-field DFT: x, X ∈ FD
pk , g a primitive D-th root of 1 in the same field;

Integer-ring DFT: x, X ∈ ZD
N , g a primitive D-th root of 1 in the ring,

D−1, g−1 exist.

It should be pointed out that the above are common examples, yet there are
many more possible scenarios. As just one extra example, one may define a
DFT over quadratic fields (see Exercise 9.50).

In the first instance of complex fields, the practical implementations
involve floating-point arithmetic to handle complex numbers (though when
the signal has only real elements, significant optimizations apply, as we shall
see). In the second, finite-field, cases one uses field arithmetic with all terms
reduced (mod p). The third instance, the ring-based DFT, is sometimes
applied simultaneously for N = 2n − 1 and N ′ = 2n + 1, in which cases
the assignments g = 2 and D = n, D′ = 2n, respectively, can be made when
n is coprime to both N, N ′.

It should be said that there exists a veritable menagerie of alternative
transforms, many of them depending on basis functions other than the
complex exponential basis functions of the traditional DFT; and often, such
alternatives admit of fast algorithms, or assume real signals, and so on.
Though such transforms lie beyond the scope of the present book, we observe
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that some of them are also suited for the goal of convolution, so we name a
few: The Walsh–Hadamard transform, for which one needs no multiplication,
only addition; the discrete cosine transform (DCT), which is a real-signal,
real-multiplication analogue to the DFT; various wavelet transforms, which
sometimes admit of very fast (O(N) rather than O(N lnN)) algorithms; real-
valued FFT, which uses either cos or sin in real-only summands; the real-
signal Hartley transform, and so on. Various of these options are discussed in
[Crandall 1994b, 1996a].

Just to clear the air, we hereby make explicit the almost trivial difference
between the DFT and the celebrated fast Fourier transform (FFT). The
FFT is an operation belonging to the general class of divide-and-conquer
algorithms, and which calculates the DFT of Definition 9.5.3. The FFT will
typically appear in our algorithm layouts in the form X = FFT (x), where
it is understood that the DFT is being calculated. Similarly, an operation
FFT−1(x) returns the inverse DFT. We make the distinction explicit because
“FFT” is in some sense a misnomer: The DFT is a certain sum—an algebraic
quantity—yet the FFT is an algorithm. Here is a heuristic analogy to the
distinction: In this book, the equivalence class x (mod N) are theoretical
entities, whereas the operation of reducing x modulo p we have chosen to
write a little differently, as x mod p. By the same token, within an algorithm
the notation X = FFT (x) means that we are performing an FFT operation
on the signal X; and this operation gives, of course, the result DFT (x). (Yet
another reason to make the almost trivial distinction is that we have known
students who incorrectly infer that an FFT is some kind of “approximation”
to the DFT, when in fact, the FFT is sometimes more accurate then a literal
DFT summation, in the sense of roundoff error, mainly because of reduced
operation count for the FFT.)

The basic FFT algorithm notion has been traced all the way back to
some observations of Gauss, yet some authors ascribe the birth of the modern
theory to the Danielson–Lanczos identity, applicable when the signal length
D is even:

DFT (x) =
D−1∑
j=0

xjg
−jk =

D/2−1∑
j=0

x2j

(
g2)−jk

+ g−k

D/2−1∑
j=0

x2j+1
(
g2)−jk

.

(9.22)
A beautiful identity indeed: A DFT sum for signal length D is split into two
sums, each of length D/2. In this way the Danielson–Lanczos identity ignites
a recursive method for calculating the transform. Note the so-called twiddle
factors g−k, which figure naturally into the following recursive form of FFT.
In this and subsequent algorithm layouts we denote by len(x) the length of
a signal x. In addition, when we perform element concatenations of the form
(aj)j∈J we mean the result to be a natural, left-to-right, element concatenation
as the increasing index j runs through a given set J . Similarly, U ∪ V is a
signal having the elements of V appended to the right of the elements of U .
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Algorithm 9.5.4 (FFT, recursive form). Given a length-(D = 2d) signal x
whose DFT (Definition 9.5.3) exists, this algorithm calculates said transform via
a single call FFT (x). We employ the signal-length function len(), and within the
recursion the root g of unity is to have order equal to current signal length.

1. [Recursive FFT function]
FFT (x) {

n = len(x);
if(n == 1) return x;
m = n/2;
X = (x2j)m−1

j=0 ; // The even part of x.
Y = (x2j+1)m−1

j=0 ; // The odd part of x.
X = FFT (X);
Y = FFT (Y ); // Two recursive calls of half length.
U = (Xk mod m)n−1

k=0 ;
V = (g−kYk mod m)n−1

k=0 ; // Use root g of order n.
return U + V ; // Realization of identity (9.22).

}

A little thought shows that the number of operations in the algebraic domain
of interest is

O(D lnD),

and this estimate holds for both multiplies and add/subtracts. The D lnD
complexity is typical of divide-and-conquer algorithms, another example of
which would be the several methods for rapid sorting of elements in a list.
This recursive form is instructive, and does have its applications, but the
overwhelming majority of FFT implementations use a clever loop structure
first achieved in [Cooley and Tukey 1965]. The Cooley–Tukey algorithm uses
the fact that if the elements of the original length-(D = 2d) signal x are
given a certain “bit-scrambling” permutation, then the FFT can be carried
out with convenient nested loops. The scrambling intended is reverse-binary
reindexing, meaning that xj gets replaced by xk, where k is the reverse-binary
representation of j. For example, for signal length D = 25, the new element
x5 after scrambling is the old x20, because the binary reversal of 5 = 001012
is 101002 = 20. Note that this bit-scrambling of indices could in principle be
carried out via sheer manipulation of indices to create a new, scrambled list;
but it is often more efficient to do the scrambling in place, by using a certain
sequence of two-element transpositions. It is this latter scheme that appears
in the next algorithm.

A most important observation is that the Cooley–Tukey scheme actually
allows the FFT to be performed in place, meaning that an original signal x
is replaced, element by element, with the DFT values. This is an extremely
memory-efficient way to proceed, accounting for a great deal of the popularity
of the Cooley–Tukey and related forms. With bit-scrambling properly done,
the overall Cooley–Tukey scheme yields an in-place, in-order (meaning natural
DFT order) FFT. Historically, the phrase “decimation in time” is attributed to
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the Cooley–Tukey form, the phrase meaning that as in the Danielson–Lanczos
splitting identity (9.22), we cut up (decimate) the time domain—the index on
the original signal. The Gentleman–Sande FFT falls into the “decimation in
frequency” class, for which a similar game is played on the k index of the
transform elements Xk.

Algorithm 9.5.5 (FFT, in-place, in-order loop forms with bit-scramble).
Given a (D = 2d)-element signal x, the functions herein perform an FFT via
nested loops. The two essential FFTs are laid out as decimation-in-time (Cooley–
Tukey) and decimation-in-frequency (Gentleman–Sande) forms. Note that these
forms can be applied symbolically, or in number-theoretical transform mode, by
identifying properly the root of unity and the ring or field operations.

1. [Cooley–Tukey, decimation-in-time FFT]
FFT (x) {

scramble(x);
n = len(x);
for(m = 1; m < n; m = 2m) { // m ascends over 2-powers.

for(0 ≤ j < m) {
a = g−jn/(2m);
for(i = j; i < n; i = i + 2m)

(xi, xi+m) = (xi + axi+m, xi − axi+m);
}

}
return x;

}
2. [Gentleman–Sande, decimation-in-frequency FFT]

FFT (x) {
n = len(x);
for(m = n/2; m ≥ 1; m = m/2) { // m descends over 2-powers.

for(0 ≤ j < m) {
a = g−jn/(2m);
for(i = j; i < n; i = i + 2m)

(xi, xi+m) = (xi + xi+m, a(xi − xi+m));
}

}
scramble(x);
return x;

}
3. [In-place scramble procedure]

scramble(x) { // In-place, reverse-binary element scrambling.
n = len(x);
j = 0;
for(0 ≤ i < n − 1) {

if(i < j) (xi, xj) = (xj , xi); // Swap elements.
k = �n/2�;
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while(k ≤ j) {
j = j − k;
k = �k/2�;

}
j = j + k;

}
return;
}

It is to be noted that when one performs a convolution in the manner we shall
exhibit later, the scrambling procedures are not needed, provided that one
performs required FFTs in a specific order.

Correct is Gentleman–Sande form (with scrambling procedure omitted)
first, Cooley–Tukey form (without initial scrambling) second. This works out
because, of course, scrambling is an operation of order two.

Happily, in cases where scrambling is not desired, or when contiguous
memory access is important (e.g., on vector computers), there is the Stockham
FFT, which avoids bit-scrambling and also has an innermost loop that runs
essentially consecutively through data memory. The cost of all this is that
one must use an extra copy of the data. The typical implementations of
the Stockham FFT are elegant [Van Loan 1992], but there is a particular
variant that has proved quite useful on modern vector machinery. This special
variant is the “ping-pong” FFT, because one goes back and forth between the
original data and a separate copy. The following algorithm display is based
on a suggested design of [Papadopoulos 1999]:

Algorithm 9.5.6 (FFT, “ping-pong” variant, in-order, no bit-scramble).
Given a (D = 2d)-element signal x, a Stockham FFT is performed, but with
the original x and external data copy y used in alternating fashion. We interpret
X, Y below as pointers to the (complex) signals x, y, respectively, but operating
under the usual rules of pointer arithmetic; e.g., X[0] is the first complex datum
of x initially, but if 4 is added to pointer X, then X[0] = x4, and so on. If
exponent d is even, pointer X has the FFT result, else pointer Y has it.

1. [Initialize]
J = 1;
X = x; Y = y; // Assign memory pointers.

2. [Outer loop]
for(d ≥ i > 0) {

m = 0;
while(m < D/2) {

a = e−2πim/D;
for(J ≥ j > 0) {

Y [0] = X[0] + X[D/2];
Y [J ] = a(X[0] − X[D/2]);
X = X + 1;
Y = Y + 1;
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}
Y = Y + J ;
m = m + J ;

}
J = 2 ∗ J ;
X = X − D/2;
Y = Y − D;
(X, Y ) = (Y, X); // Swap pointers!

}
3. [Make ping-pong parity decision]

if(d even) return (complex data at X);
return (complex data at Y );

The useful loop aspect of this algorithm is the fact that the loop variable j
runs contiguously (from J down), and so on a vector machine one may process
chunks of data all at once, by picking up, then putting back, data as vectors.

Incidentally, to perform an inverse FFT is extremely simple, once the
forward FFT is implemented. One approach is simply to look at Definition
9.5.3 and observe that the root g can be replaced by g−1, with a final overall
normalization 1/D applied to an inverse FFT. But when complex fields are
used, so that g−1 = g∗, the procedure for FFT−1 can be, if one desires, just
a sequence:

x = x∗; // Conjugate the signal.
X = FFT (x); // The usual FFT, with usual root g.
X = X∗/D; // Final conjugate and normalize.

Though these Cooley–Tukey and Gentleman–Sande FFTs are most often
invoked over the complex numbers, so that the root is g = e2πi/D, say, they
are useful also as number-theoretical transforms, with operations carried out
in a finite ring or field. In either the complex or finite-field cases, it is common
that a signal to be transformed has all real elements, in which case we call
the signal “pure-real.” This would be so for complex signal x ∈ CD but such
that xj = aj + 0i for each j ∈ [0, D − 1]. It is important to observe that the
analogous signal class can occur in certain fields, for example Fp2 when p ≡ 3
(mod 4). For in such fields, every element can be represented as xj = aj + bji,
and we can say that a signal x ∈ FD

p2 is pure-real if and only if every bj is zero.
The point of the pure-real signal class designation is that in general, an FFT
for pure-real signals has about 1/2 the usual complexity. This makes sense
from an information-theoretical standpoint: Indeed, there is “half as much”
data in a pure-real signal. A basic way to cut down thus the FFT complexity
for pure-real signals is to embed half of a pure-real signal in the imaginary
parts of a signal of half the length, i.e., to form a complex signal

yj = xj + ixj+D/2

for j ∈ [0, D/2 − 1]. Note that signal y now has length D/2. One then
performs a full, half-length, complex FFT and then uses some reconstruction



9.5 Large-integer multiplication 483

formulae to recover the correct DFT of the original signal x. An example of
this pure-real signal approach for number-theoretical transforms as applied to
cyclic convolution is embodied in Algorithm 9.5.22, with split-radix symbolic
pseudocode given in [Crandall 1997b] (see Exercise 9.51 for discussion of the
negacyclic scenario).

Incidentally, there are yet lower-complexity FFTs, called split-radix FFTs,
which employ an identity more complicated than the Danielson–Lanczos
formula. And there is even a split-radix, pure-real-signal FFT due to Sorenson
that is quite efficient and in wide use [Crandall 1994b]. The vast “FFT forest”
is replete with specially optimized FFTs, and whole texts have been written
in regard to the structure of FFT algorithms; see, for example, [Van Loan
1992].

Even at the close of the 20th century there continue to be, every year, a
great many published papers on new FFT optimizations. Because our present
theme is the implementation of FFTs for large-integer arithmetic, we close this
section with one more algorithm: a “parallel,” or “piecemeal,” FFT algorithm
that is quite useful in at least two practical settings. First, when signal data
are particularly numerous, the FFT must be performed in limited memory. In
practical terms, a signal might reside on disk memory, and exceed a machine’s
physical random-access memory. The idea is to “spool” pieces of the signal
off the larger memory, process them, and combine in just the right way to
deposit a final FFT in storage. Because computations occur in large part on
separate pieces of the transform, the algorithm can also be used in a parallel
setting, with each separate processor handling a respective piece of the FFT.
The algorithm following has been studied by various investigators [Agarwal
and Cooley 1986], [Swarztrauber 1987], [Ashworth and Lyne 1988], [Bailey
1990], especially with respect to practical memory usage. It is curious that
the essential ideas seem to have originated with [Gentleman and Sande 1966].
Perhaps, in view of the extreme density and proliferation of FFT research,
one might forgive investigators for overlooking these origins for two decades.

The parallel-FFT algorithm stems from the observation that a length-
(D = WH) DFT can be performed by tracking over rows and columns of an
H × W (height times width) matrix. Everything follows from the following
algebraic reduction of the DFT X of x:

X = DFT (x) =

⎛
⎝D−1∑

j=0

xjg
−jk

⎞
⎠

D−1

k=0

=

(
W−1∑
J=0

H−1∑
M=0

xJ+MW g−(J+MW )(K+NH)

)D−1

K+NH=0

=

(
W−1∑
J=0

(
H−1∑
M=0

xJ+MW g−MK
H

)
g−JKg−JN

W

)D−1

K+NH=0

,
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where g, gH , gW are roots of unity of order WH, H, W , respectively, and the
indices (K + NH) have K ∈ [0, H − 1], N ∈ [0, W − 1]. The last double sum
here can be seen to involve the FFTs of rows and columns of a certain matrix,
as evidenced in the explicit algorithm following:

Algorithm 9.5.7 (Parallel, “four-step” FFT). Let x be a signal of length
D = WH. For algorithmic efficiency we consider the input signal x to be a
matrix T arranged in “columnwise order”; i.e., for j ∈ [0, W − 1] the j-th
column of T contains the (originally contiguous) H elements (xjH+M )H−1

M=0. Then,
conveniently, each FFT operation of the overall algorithm occurs on some row of
some matrix (the k-th row vector of a matrix U will be denoted by U (k)). The
final DFT resides likewise in columnwise order.

1. [H in-place, length-W FFTs, each performed on a row of T ]
for(0 ≤ M < H) T (M) = DFT

(
T (M)

)
;

2. [Transpose and twist the matrix]
(TJK) = (TKJg−JK);

3. [W in-place, length-H FFTs, each performed on a row of the new T ]
for(0 ≤ J < W ) T (J) = DFT

(
T (J)

)
;

4. [Return DFT (x) as elements in columnwise order]
return T ; // TMJ is now DFT (x)JH+M .

Note that whatever scheme is used for the transpose (see Exercise 9.53) can
also be used to convert lexicographically arranged input data x into the
requisite columnwise format, and likewise for converting back at algorithm’s
end to lexicographic DFT format. In other words, if the input data is assumed
to be stored initially lexicographically, then two more transpositions can be
placed, one before and one after the algorithm, to render Algorithm 9.5.7 a
standard length-WH FFT. A small worked example is useful here. Algorithm
9.5.7 wants, for a length-N = 4 = 2 · 2 FFT, and so primitive fourth root of
unity g = e2πi/4 = i, the input data in columnwise order like so:

T =
(

x0 x2
x1 x3

)
.

The first algorithm step is to do (H = 2) row FFTs each of length (W = 2),
to get

T =
(

x0 + x2 x0 − x2
x1 + x3 x1 − x3

)
.

Then we transpose, and twist via dyadic multiply by the phase matrix

(g−JK) =
(

1 1
1 −i

)

to yield

T =
(

x0 + x2 x1 + x3
x0 − x2 −i(x1 − x3)

)
,
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whence a final set of row FFTs gives

T =
(

X0 X2
X1 X3

)

where Xk =
∑

j xjg
−jk are the usual DFT components, and we note that the

final form here for T is again in columnwise order.
Incidentally, if one wonders how this differs from a two-dimensional FFT

such as an FFT in the field of image processing, the answer to that is simple:
This four-step (or six-step, if pre- and post transposes are invoked to start
with and end up with standard row-ordering) format involves that internal
“twist,” or phase factor, in step [Transpose and twist the matrix]. A two-
dimensional FFT does not involve the phase-factor twisting step; instead, one
simply takes FFTs of all rows in place, then all columns in place.

Of course, with respect to repeated applications of Algorithm 9.5.7 the
efficient option is simply this: Always store signals and their transforms in
the columnwise format. Furthermore, one can establish a rule that for signal
lengths N = 2n, we factor into matrix dimensions as W = H =

√
N = 2n/2 for

n even, but W = 2H = 2(n+1)/2 for n odd. Then the matrix is square or almost
square. Furthermore, for the inverse FFT, in which everything proceeds as
above but with FFT−1 calls and the twisting phase uses g+JK , with a final
division by N , one can conveniently assume that the width and height for
this inverse case satisfy W ′ = H ′ or H ′ = 2W ′, so that in such as convolution
problems the output matrix of the forward FFT is what is expected for the
inverse FFT, even when said matrix is nonsquare. Actually, for convolutions
per se there are other interesting optimizations due to J. Papadopoulos, such
as the use of DIF/DIT frameworks and bit-scrambled powers of g; and a very
fast large-FFT implementation of Mayer, in which one never transposes, using
instead a fast, memory-efficient columnwise FFT stage; see [Crandall et al.
1999].

One interesting byproduct of this approach is that one is moved to study
the basic problem of matrix transposition. The treatment in [Bailey 1989] gives
an interesting small example of the algorithm in [Fraser 1976] for efficient
transposition of a stored matrix, while the paper [Van Loan 1992, p. 138]
indicates how active, really, is the ongoing study of fast transpose. Such an
algorithm has applications in other aspects of large-integer arithmetic, for
example see Section 9.5.7.

We next turn to a development that has enjoyed accelerated importance
since its discovery by pioneers A. Dutt and V. Rokhlin. A core result in their
seminal paper [Dutt and Rokhlin 1993] involves a length-D, nonuniform FFT
of the type

Xk =
D−1∑
j=0

xje
−2πikωj/D, (9.23)

where all we know a priori about the (possibly nonuniform) frequencies ωj

is that they all lie in [0, D). This form for Xk is to be compared with the
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standard DFT (9.20) for root g = e−2πi/D; in the latter case we have the
uniform scenario, ωj = j. The remarkable development—already a decade old
but as we say emerging in importance—is that such nonuniform FFTs can be
calculated to absolute precision ε in

O

(
D lnD + D ln

1
ε

)

operations. In a word: This nonuniform FFT method is “about as efficient”
as a standard, uniform FFT. This efficient algorithm has found application in
such disparate fields as N -body gravitational dynamics (after all, multibody
gravity forces can be evaluated as a kind of convolution) and Riemann zeta-
function computations (see, e.g., Exercise 1.62).

For the following algorithm display, we have departed from the literature
in several ways. First, we force indicial sums like (9.23) to run for j, k ∈
[0, D − 1], for book consistency; indeed, many of the literature references
involve equivalent sums for j or k ∈ [−D/2, D/2−1]. Secondly, we have chosen
an algorithm that is fast and robust (in the sense of guaranteed accuracy even
under radical behavior of the input signal), but not necessarily of minimum
complexity. Robustness is, of course, important for rigorous calculations in
computational number theory. Third, we have chosen this particular algorithm
because it does not rely upon special-function evaluations such as Gaussians
or windowing functions. The penalty for all of this streamlining is that we
are required to perform a certain number of standard, length-D FFTs, this
number of FFTs depending only logarithmically on desired accuracy

In what follows, the “error” ε means that the true DFT (9.23) Xk and the
calculated one X ′

k from the algorithm below differ according to

|Xk − X ′
k| ≤ ε

D−1∑
j=0

|xj |.

We next present an algorithm that computes Xk in (9.23) to within error
ε < 2−b, that is to b-bit precision, in

O

(
b

lg b
D lnD

)
(9.24)

operations. The algorithm is based on the observation that

2πB

8BB!
< 2−b for B =

⌈
2b

lg b

⌉
. (9.25)

Such an inequality allows us to rigorously bound the error ε for this algorithm.
(See Exercise 9.54.)

Algorithm 9.5.8 (Nonuniform FFT). Let x be a signal of length D ≡
0 (mod 8), and assume real-valued (not necessarily integer) frequencies (ωj ∈
[0, D) : j ∈ [0, D−1]). For a given bit-precision b (so the relative error is ε < 2−b),
this algorithm returns an approximation X ′

k to the true DFT (9.23).
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1. [Initialize]

B =
⌈

2b
lg b

⌉
;

for(j ∈ [0, D − 1]) {
µj =

⌊
ωj + 1

2

⌋
;

θj = ωj − µj ; // And so |θj | ≤ 1/2.
}

2. [Perform a total of 8B standard FFTs]
for(K ∈ [0, 7]) {

for(β ∈ [0, B − 1]) {
s = (0)D−1

0 ; // Zero signal of length D.
for(j ∈ [0, D − 1]) {

µ = µj mod D;
sµ = sµ + xje

−2πiKωj/8θβ
j .

}
FK,β = FFT (s); // So (FK,β,m : m ∈ [0, D − 1]) is a transform.

}
}

3. [Create the transform approximation]

X ′ = ∪7
K=0

(∑B−1
β=0 FK,β,m(−2πim/D)β 1

β!

)D/8−1

m=0
return X ′; // Approximation to the nonuniform DFT (9.23).

Algorithm 9.5.8 is written above in rather compact form, but a typical
implementation on a symbolic processor looks much like this pseudocode.
Note that the signal union at the end—being the left-right concatenation
of length-(D/8) signals—can be effected in some programming languages
about as compactly as we have. Incidentally, though the symbolics mask
somewhat the reason why the algorithm works, it is not hard to see that
the Taylor expansion of e−2πi(µj+θj)k/D in powers of θj , together with adroit
manipulation of indices, brings success. It is a curious and happy fact that
decimating the transform-signal length by the fixed factor of 8 suffices for all
possible input signals x to the algorithm. Such is the utility of the inequality
(9.25). In summary, the number of standard FFTs we require, to yield b-bit
accuracy, is about 16b/ lg b. This is a “worst-case” FFT count, in that practical
applications often enjoy far better than b-bit accuracy when a particular b
parameter is passed to Algorithm 9.5.8.

Since the pioneering work of Dutt–Rokhlin, various works such as [Ware
1998], [Nguyen and Liu 1999] have appeared, revealing somewhat better
accuracy, or slightly improved execution speed, or other enhancements. There
has even been an approach that minimizes the worst-case error for input
signals of unit norm [Fessler and Sutton 2003]. But all the way from the
Dutt–Rokhlin origins to the modern fringe, the basic idea remains the same:
Transform the calculation of X ′ to that of obtaining a set of uniform and
standard FFTs of only somewhat wasteful overall length.
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We close this FFT section by mentioning some new developments in regard
to “gigaelement” FFTs that have now become possible at reasonable speed.
For example, [Crandall et al. 2004] discusses theory and implementation for
each of these gigaelement cases:

Length-230, one-dimensional FFT (effected via Algorithm 9.5.7);
215 × 215, two-dimensional FFT;
210 × 210 × 210, three-dimensional FFT.

With such massive signal sizes come the difficult yet fascinating issues of
fast matrix transposition, cache-friendly memory action, and vectorization
of floating-point arithmetic. The bottom line as regards performance is that
the one-dimensional, length-230 case takes less than one minute on a modern
hardware cluster, if double-precision floating-point is used. (The two- and
three-dimensional cases are about as fast; in fact the two-dimensional case is
usually fastest, for technical reasons.)

For computational number theory, these new results mean this: On a
hardware cluster that fits into a closet, say, numbers of a billion decimal
digits can be multiplied together in roughly a minute. Such observations
depend on proper resolution of the following problem: The errors in such
“monster” FFTs can be nontrivial. There are just so many terms being
added/multiplied that one deviates from the truth, so to speak, in a kind
of random walk. Interestingly, a length-D FFT can be modeled as a random
walk in D dimensions, having O(lnD) steps. The paper [Crandall et al. 2004]
thus reports quantitative bounds on FFT errors, such bounds having been
pioneered by E. Mayer and C. Percival.

9.5.3 Convolution theory

Let x denote a signal (x0, x1, . . . , xD−1), where for example, the elements of
x could be the digits of Definitions (9.1.1) or (9.1.2) (although we do not a
priori insist that the elements be digits; the theory to follow is fairly general).
We start by defining fundamental convolution operations on signals. In what
follows, we assume that signals x, y have been assigned the same length (D)
of elements. In all the summations of this next definition, indices i, j each run
over the set {0, . . . , D − 1}:

Definition 9.5.9. The cyclic convolution of two length-D signals x, y is a
signal denoted z = x × y having D elements given by

zn =
∑

i+j≡n (mod D)

xiyj ,

while the negacyclic convolution of x, y is a signal v = x ×− y having D
elements given by

vn =
∑

i+j=n

xiyj −
∑

i+j=D+n

xiyj ,
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and the acyclic convolution of x, y is a signal u = x ×A y having 2D elements
given by

un =
∑

i+j=n

xiyj ,

for n ∈ {0, . . . , 2D − 2}, together with the assignment u2D−1 = 0. Finally, the
half-cyclic convolution of x, y is the length-D signal x ×H y consisting of the
first D elements of the acyclic convolution u.

These fundamental convolutions are closely related, as is seen in the following
result. In such statements we interpret the sum of two signals c = a + b in
elementwise fashion; that is, cn = an + bn for relevant indices n. Likewise,
a scalar-signal product qa, with q a number and a a signal, is the signal
(qan). We shall require the notion of the splitting of signals (of even length)
into halves, so we denote by L(a), H(a), respectively, the lower-indexed and
higher-indexed halves of a. That is, from c = a ∪ b the natural, left-right,
concatenation of two signals of equal length, we shall have L(c) = a and
H(c) = b.

Theorem 9.5.10. Let signals x, y have the same length D. Then the various
convolutions are related as follows (it is assumed that in the relevant domain
to which signal elements belong, 2−1 exists):

x ×H y =
1
2
((x × y) + (x ×− y)).

Furthermore,

x ×A y = (x ×H y) ∪ 1
2
((x × y) − (x ×− y)).

Finally, if the length D is even and xj , yj = 0 for j ≥ D/2, then

L(x) ×A L(y) = x × y = x ×− y.

These interrelations allow us to use certain algorithms more universally.
For example, a pair of algorithms for cyclic and negacyclic can be used to
extract both the half-cyclic or the acyclic, and so on. In the final statement
of the theorem, we have introduced the notion of “zero padding,” which in
practice amounts to appending D zeros to signals already of length D, so that
the signals’ acyclic convolution is identical to the cyclic (or the negacyclic)
convolution of the two padded sequences.

The connection between convolution and the DFT of the previous section
is evident in the following celebrated theorem, wherein we refer to the dyadic
operator ∗, under which a signal z = x ∗ y has elements zn = xnyn:

Theorem 9.5.11 (Convolution theorem). Let signals x, y have the same
length D. Then the cyclic convolution of x, y satisfies

x × y = DFT−1(DFT (x) ∗ DFT (y)),
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which is to say

(x × y)n =
1
D

D−1∑
k=0

XkYk gkn.

Armed with this mighty theorem we can effect the cyclic convolution of
two signals with three transforms (one of them being the inverse transform),
or the cyclic convolution of a signal with itself with two transforms. As the
known complexity of the DFT is O(D lnD) operations in the field, the dyadic
product implicit in Theorem 9.5.11, being O(D), is asymptotically negligible.

A direct and elegant application of FFTs for large-integer arithmetic is
to perform the DFTs of Theorem 9.5.11 in order to effect multiplication via
acyclic convolution. This essential idea—pioneered by Strassen in the 1960s
and later optimized in [Schönhage and Strassen 1971] (see Section 9.5.6)—runs
as follows. If an integer x is represented as a length-D signal consisting of the
(base-B) digits, and the same for y, then the integer product xy is an acyclic
convolution of length 2D. Though Theorem 9.5.11 pertains to the cyclic, not
the acyclic, we nevertheless have Theorem 9.5.10, which allows us to use zero-
padded signals and then perform the cyclic. This idea leads, in the case of
complex field transforms, to the following scheme, which is normally applied
using floating-point arithmetic, with DFT’s done via fast Fourier transform
(FFT) techniques:

Algorithm 9.5.12 (Basic FFT multiplication). Given two nonnegative in-
tegers x, y, each having at most D digits in some base B (Definition 9.1.1), this
algorithm returns the base-B representation of the product xy. (The FFTs nor-
mally employed herein would be of the floating-point variety, so one must beware
of roundoff error.)

1. [Initialize]
Zero-pad both of x, y until each has length 2D, so that the cyclic

convolution of the padded sequences will contain the acyclic convolution
of the unpadded ones;

2. [Apply transforms]
X = DFT (x); // Perform transforms via efficient FFT algorithm.
Y = DFT (y);

3. [Dyadic product]
Z = X ∗ Y ;

4. [Inverse transform]
z = DFT−1(Z);

5. [Round digits]
z = round(z); // Elementwise rounding to nearest integer.

6. [Adjust carry in base B]
carry = 0;
for(0 ≤ n < 2D) {

v = zn + carry;
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zn = v mod B;
carry = �v/B�;

}
7. [Final digit adjustment]

Delete leading zeros, with possible carry > 0 as a high digit of z;
return z;

This algorithm description is intended to be general, conveying only the
principles of FFT multiplication, which are transforming, rounding, carry
adjustment. There are a great many details left unsaid, not to mention a great
number of enhancements, some of which we address later. But beyond these
minutiae there is one very strong caveat: The accuracy of the floating-point
arithmetic must always be held suspect. A key step in the general algorithm
is the elementwise rounding of the z signal. If floating-point errors in the
FFTs are too large, an element of the convolution z could get rounded to an
incorrect value.

One immediate practical enhancement to Algorithm 9.5.12 is to employ
the balanced representation of Definition 9.1.2. It turns out that floating-
point errors are significantly reduced in this representation [Crandall and
Fagin 1994], [Crandall et al. 1999]. This phenomenon of error reduction is
not completely understood, but certainly has to do with the fact of generally
smaller magnitude for the digits, plus, perhaps, some cancellation in the DFT
components because the signal of digits has a statistical mean (in engineering
terms, “DC component”) that is very small, due to the balancing.

Before we move on to algorithmic issues such as further enhancements to
the FFT multiply and the problem of pure-integer convolution, we should
mention that convolutions can appear in number-theoretical work quite
outside the large-integer arithmetic paradigm. We give two examples to end
this subsection; namely, convolutions applied to sieving and to regularity
results on primes.

Consider the following theorem, which is reminiscent of (although
obviously much less profound than) the celebrated Goldbach conjecture:

Theorem 9.5.13. Let N = 2 ·3 ·5 · · · pm be a product of consecutive primes.
Then every sufficiently large even n is a sum n = a+b with each of a, b coprime
to N .

It is intriguing that this theorem can be proved, without too much trouble,
via convolution theory. (We should point out that there are also proofs using
CRT ideas, so we are merely using this theorem to exemplify applications of
discrete convolution methods (see Exercise 9.40).) The basic idea is to consider
a special signal y defined by yj = 1 if gcd(j, N) = 1, else yj = 0, with the
signal given some cutoff length D. Now the acyclic convolution y×A y will tell
us precisely which n < D of the theorem have the a + b representations, and
furthermore, the n-th element of the acyclic is precisely the number of such
representations of n.
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As a brief digression, we should note here that the original Goldbach
conjecture is true if a different signal of infinite length, namely

G = (1, 1, 1, 0, 1, 1, 0, 1, 1, 0, . . .),

where the 1’s occur at indices (p−3)/2 for the odd primes p = 3, 5, 7, 11, 13, . . .,
has the property that the acyclic G×AG has no zero elements. In this case the
n-th element of the acyclic is precisely the number of Goldbach representations
of 2n + 6.

Back to Theorem 9.5.13: It is advantageous to study the length-N DFT
Y of the aforementioned signal y. This DFT turns out to be a famous sum:

Yk(N) = cN (k) =
∑

gcd(j,N)=1

e±2πijk/N , (9.26)

where j is understood to run over those elements in the interval [0, N −1] that
are coprime to N , so the sign choice in the exponent doesn’t matter, while
cN (k) is the standard notation for the Ramanujan sum, which sum is already
known to enjoy intriguing multiplicative properties [Hardy and Wright 1979].
In fact, the appearance of the Ramanujan sum in Section 1.4.4 suggests that
it makes sense for cN also to have some application in discrete convolution
studies. We leave the proof of Theorem 9.5.13 to the reader (see Exercise 9.40),
but wish to make several salient points. First, the sum in relation (9.26) can
itself be thought of as a result of “sieving” out finite sums corresponding to
the divisors of N . This gives rise to interesting series algebra. Second, it is
remarkable that the cyclic length-N convolution of y with itself can be given
a closed form. The result is

(y × y)n = ϕ2(N, n) =
∏
p|N

(p − θ(n, p)), (9.27)

where θ(n, p) is 1 if p|n, else 2. Thus, for 0 ≤ n < N , this product expression is
the exact number of representations of either n or n+N as a+b with both a, b
coprime to N . As discussed in the exercises, to complete this line of reasoning
one must invoke negacyclic convolution ideas (or some other means such as
sieving) to show that the representations of n + N are, for an appropriate
range n, less than those of n itself. These observations will, after some final
arguments, prove Theorem 9.5.13.

Now to yet another application of convolution. In 1847 E. Kummer
discovered that if p > 2 is a regular prime, then Fermat’s last theorem, that

xp + yp = zp

has no Diophantine solution with xyz = 0, holds. (We note in passing that
FLT is now a genuine theorem of A. Wiles, but the techniques here predated
that work and still have application to such remaining open problems as the
Vandiver conjecture.) Furthermore, p is regular if it does not divide any of
the numerators of the even-index Bernoulli numbers

B2, B4, . . . , Bp−3.
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There is an elegant relation due to Shokrollahi in 1994; see [Buhler et al. 2000],
that gives a congruence for precisely these Bernoulli numbers:

Theorem 9.5.14. Let g be a primitive root of the odd prime p, and set:

cj =
⌊

(g−1 mod p)(gj mod p)
p

⌋
g−j

for j ∈ [0, p − 2]. Then for k ∈ [1, (p − 3)/2] we have

p−2∑
j=0

cjg
2kj ≡

(
1 − g2k

) B2k

2kg
(mod p). (9.28)

We see that Shokrollahi’s relation involves a length-(p − 1) DFT, with the
operant field being Fp. One could proceed with an FFT algorithm, except
that there are two problems with that approach. First, the best lengths for
standard FFTs are powers of two; and second, one cannot use floating-point
arithmetic, especially when the prime p is large, unless the precision is extreme
(and somehow guaranteed). But we have the option of performing a DFT
itself via convolution (see Algorithm 9.6.6), so the Shokrollahi procedure for
determining regular primes; indeed, for finding precise irregularity indices of
any prime, can be effected via power-of-two length convolutions. As we shall
see later, there are “symbolic FFT” means to do this, notably in Nussbaumer
convolution, which avoids floating-point arithmetic and so is suitable for pure-
integer convolution. These approaches—Shokrollahi identity and Nussbaumer
convolution—have been used together to determine all regular primes p <
12000000 [Buhler et al. 2000].

9.5.4 Discrete weighted transform (DWT) methods

One variant of DFT-based convolution that has proved important for modern
primality and factorization studies (and when the relevant integers are large,
say in the region of 21000000 and beyond) is the discrete weighted transform
(DWT). This transform is defined as follows:

Definition 9.5.15 (Discrete weighted transform (DWT)). Let x be a sig-
nal of length D, and let a be a signal (called the weight signal) of the
same length, with the property that every aj is invertible. Then the discrete
weighted transform X = DWT (x, a) is the signal of elements

Xk =
D−1∑
j=0

(a ∗ x)jg
−jk, (9.29)

with the inverse DWT−1(X, a) = x given by

xj =
1

Daj

D−1∑
k=0

Xkgjk. (9.30)
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Furthermore, the weighted cyclic convolution of two signals is the signal
z = x ×a y having

zn =
1
an

∑
j+k≡n (mod D)

(a ∗ x)j(a ∗ y)k. (9.31)

It is clear that the DWT is simply the DFT of the dyadic product signal a ∗x
consisting of elements ajxj . The considerable advantage of the DWT is that
particular weight signals give rise to useful alternative convolutions. In some
cases, the DWT eliminates the need for the zero padding of the standard FFT
multiplication Algorithm 9.5.12. We first state an important result:

Theorem 9.5.16 (Weighted convolution theorem). Let signals x, y and
weight signal a have the same length D. Then the weighted cyclic convolu-
tion of x, y satisfies

x ×a y = DWT−1(DWT (x, a) ∗ DWT (y, a), a),

that is to say,

(x ×a y)n =
1

Dan

D−1∑
k=0

(X ∗ Y )kgkn.

Thus FFT algorithms may be applied now to weighted convolution. In
particular, one may compute not just the cyclic, but also the negacyclic,
convolution in this manner, because the specific choice of weight signal

a =
(
Aj

)
, j ∈ [0, D − 1]

yields, when A is a primitive 2D-th root of unity in the field, the identity:

x ×− y = x ×a y, (9.32)

which means that the weighted cyclic in this case is the negacyclic. Note that
when the D-th root g has a square root in the field, as is the case with the
complex field arithmetic, we can simply assign A2 = g to effect the negacyclic.
Another interesting instance of generator A, namely when A is a primitive 4D-
th root of unity, gives the so-called right-angle convolution [Crandall 1996a].

These observations lead in turn to an important algorithm that has been
used to advantage in modern factorization studies. By using the DWT, the
method obviates zero padding entirely. Consider the problem of multiplication
of two numbers, modulo a Fermat number Fn = 22n

+ 1. This operation can
happen, of course, a great number of times in attempts to factor an Fn. There
are at least three ways to attempt (xy) mod Fn via convolution of length-D
signals where D and a power-of-two base B are chosen such that Fn = BD +1:

(1) Zero-pad each of x, y up to length 2D, perform cyclic convolution, do carry
adjust as necessary, take the result (mod Fn).
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(2) Perform length-D weighted convolution, with weight generator A a
primitive (2D)-th root of unity, do carry adjust as necessary.

(3) Create length-(D/2) “fold-over” signals, as x′ = L(x) + iH(x) and
similarly for a y′, employ a weighted convolution with generator A a
primitive (4D)-th root of unity, do carry adjust.

Method (1) could, of course, involve Algorithm 9.5.12, with perhaps a
fast Fermat-mod of Section 9.2.3; but one could instead use a pure-
integer Nussbaumer convolution discussed later. Method (2) is the negacyclic
approach, in which the weighted convolution can be seen to be multiplication
(mod Fn); that is, the mod operation is “free” (see Exercises). Method (3)
is the right-angle convolution approach, which also gives the mod operation
for free (see Exercises). Note that neither method (2) nor method (3) involves
zero-padding, and that method (3) actually halves the signal lengths (at the
expense of complex arithmetic). We focus on method (3), to state the following
algorithm, which, as with Algorithm 9.5.12, is often implemented in a floating-
point paradigm:

Algorithm 9.5.17 (DWT multiplication modulo Fermat numbers). For a
given Fermat number Fn = 22n

+ 1, and positive integers x, y ≡ −1 (mod Fn),
this algorithm returns (xy) mod Fn. We choose B, D such that Fn = BD + 1,
with the inputs x, y interpreted as length-D signals of base-B digits. We assume
that there exists a primitive 4D-th root of unity, A, in the field.

1. [Initialize]
E = D/2; // Halve the signal length and “fold-over” the signals.
x = L(x) + iH(x); // Length-E signals.
y = L(y) + iH(y);
a =

(
1, A, A2, . . . , AE−1

)
; // Weight signal.

2. [Apply transforms]
X = DWT (x, a); // Via an efficient length-E FFT algorithm.
Y = DWT (y, a);

3. [Dyadic product]
Z = X ∗ Y ;

4. [Inverse transform]
z = DWT−1(Z, a);

5. [Unfold signal]
z = Re(z) ∪ Im(z); // Now z will have length D.

6. [Round digits]
z = round(z); // Elementwise rounding to nearest integer.

7. [Adjust carry in base B]
carry = 0;
for(0 ≤ n < D) {

v = zn + carry;
zn = v mod B;
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carry = �v/B�;
}

8. [Final modular adjustment]
Include possible carry > 0 as a high digit of z;
z = z mod Fn;

// Via another ’carry’ loop or via special-form mod methods.
return z;

Note that in the steps [Adjust carry in base B] and [Final modular
adjustment] the logic depends on the digits of the reconstructed integer z
being positive. We say this because there are efficient variants using balanced-
digit representation, in which variants care must be taken to interpret negative
digits (and negative carry) correctly.

This algorithm was used in the discoveries of new factors of F13, F15, F16,
and F18 [Brent et al. 2000] (see the Fermat factor tabulation in Section
1.3.2), and also to establish the composite character of F22, F24, and of
various cofactors for other Fn [Crandall et al. 1995], [Crandall et al. 1999]. In
more recent times, [Woltman 2000] has implemented the algorithm to forge
highly efficient factoring software for Fermat numbers (see remarks following
Algorithm 7.4.4).

Another DWT variant has been used in the discovery of eight Mersenne
primes 21398269−1, 22976221−1, 23021377−1, 26972593−1, 213466917−1, 220996011−
1, 224036583 −1, 225964951 −1 (see Table 1.2), the last of which being the largest
known explicit prime as of the present writing. For these discoveries, a network
of volunteer users ran extensive Lucas–Lehmer tests that involve vast numbers
of squarings modulo p = 2q − 1. The algorithm variant in question has been
called the irrational-base discrete weighted transform (IBDWT) [Crandall and
Fagin 1994], [Crandall 1996a] for the reason that a special digit representation
reminiscent of irrational-base expansion is used, which representation amounts
to a discrete rendition of an attempt to expand in an irrational base. Let
p = 2q − 1 and observe first that if an integer x be represented in base B = 2
as

x =
q−1∑
j=0

xj2j ,

equivalently, x is the length-q signal (xj); and similarly for an integer y, then
the cyclic convolution x×y has, without carry, the digits of (xy) mod p. Thus,
in principle, the standard FFT multiply could be effected in this way, modulo
Mersenne primes, without zero-padding. However, there are two problems with
this approach. First, the arithmetic is merely bitwise, not exploiting typical
machine advantages of word arithmetic. Second, one would have to invoke a
length-q FFT. This can certainly be done (see Exercises), but power-of-two
lengths are usually more efficient, definitely more prevalent.

It turns out that both of the obstacles to a not-zero-padded Mersenne
multiply-mod can be overcome, if only we could somehow represent integers
x in the irrational base B = 2q/D, with 1 < D < q being some power of two.
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This is because the representation

x =
D−1∑
j=0

xj2qj/D,

and similarly for y (where the digits in base B are generally irrational also),
leads to the equivalence, without carry, of (xy) mod p and x× y. But now the
signal lengths are powers of two, and the digits, although not integers, are
some convenient word size. It turns out to be possible to mimic this irrational
base expansion, by using a certain variable-base representation according to
the following theorem:

Theorem 9.5.18 (Crandall). For p = 2q − 1 (p not necessarily prime) and
integers 0 ≤ x, y < p, choose signal length 1 < D < q. Interpret x as the
signal (x0, . . . , xD−1) from the variable-base representation

x =
D−1∑
j=0

xj2�qj/D� =
D−1∑
j=0

xj2
∑j

i=1
di ,

where
di = �qi/D� − �q(i − 1)/D�,

and each digit xj is in the interval [0, 2dj+1 − 1], and all of this similarly for
y. Define a length-D weight signal a by

aj = 2�qj/D�−qj/D.

Then the weighted cyclic convolution x ×a y is a signal of integers, equivalent
without carry to the variable base representation of (xy) mod p.

This theorem is proved and discussed in [Crandall and Fagin 1994], [Crandall
1996a], the only nontrivial part being the proof that the elements of
the weighted convolution x ×a y are actually integers. The theorem leads
immediately to

Algorithm 9.5.19 (IBDWT multiplication modulo Mersenne numbers).
For a given Mersenne number p = 2q − 1 (need not be prime), and positive
integers x, y, this algorithm returns—via floating-point FFT—the variable-base
representation of (xy) mod p. Herein we adopt the nomenclature of Theorem
9.5.18, and assume a signal length D = 2k such that �2q/D� is an acceptable
word size (small enough that we avoid unacceptable numerical error).

1. [Initialize base representations]
Create the signal x as the collection of variable-base digits (xj), as in

Theorem 9.5.18, and do the same for y;
Create the weight signal a, also as in Theorem 9.5.18;

2. [Apply transforms]
X = DWT (x, a); // Perform via floating-point length-D FFT algorithm.
Y = DWT (y, a);
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3. [Dyadic product]
Z = X ∗ Y ;

4. [Inverse transform]
z = DWT−1(Z, a);

5. [Round digits]
z = round(z); // Elementwise rounding to nearest integer.

6. [Adjust carry in variable base]
carry = 0;
for(0 ≤ n < len(z)) {

B = 2dn+1 ; // Size of place-n digits.
v = zn + carry;
zn = v mod B;
carry = �v/B�;

}
7. [Final modular adjustment]

Include possible carry > 0 as a high digit of z;
z = z mod p; // Via carry loop or special-form mod.
return z;

As this scheme is somewhat intricate, an example is appropriate. Consider
multiplication modulo the Mersenne number p = 2521 − 1. We take q = 521
and choose signal length D = 16. Then the signal d of Theorem 9.5.18 can be
seen to be

d = (33, 33, 32, 33, 32, 33, 32, 33, 33, 32, 33, 32, 33, 32, 33, 32),

and the weight signal will be

a =
(
1, 27/16, 27/8, 25/16, 23/4, 23/16, 25/8, 21/16, 21/2, 215/16,

23/8, 213/16, 21/4, 211/16, 21/8, 29/16).
In a typical floating-point FFT implementation, this a signal is, of course,
given inexact elements. But in Theorem 9.5.18 the weighted convolution (as
calculated approximately, just prior to the [Round digits] step of Algorithm
9.5.19) consists of exact integers. Thus, the game to be played is to choose
signal length D to be as small as possible (the smaller, the faster the FFTs
that do the DWT), while not allowing the rounding errors to give incorrect
elements of z. Rigorous theorems on rounding error are hard to come by,
although there are some observations—some rigorous and some not so—in
[Crandall and Fagin 1994] and references therein. More modern treatments
include the very useful book [Higham 1996] and the paper [Percival 2003] on
generalized IBDWT; see Exercise 9.48.

9.5.5 Number-theoretical transform methods

The DFT of Definition 9.5.3 can be defined over rings and fields other than the
traditional complex field. Here we give some examples of transforms over finite
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rings and fields. The primary observation is that over a ring or field, the DFT
defining relations (9.20) and (9.21) need no modification whatever, as long
as we understand the requisite operations to occur (legally) in the algebraic
domain at hand. In particular, a number-theoretical DFT of length D supports
cyclic convolution of length D, via the celebrated convolution Theorem 9.5.11,
whenever both D−1 and g, a primitive D-th root of unity, exist in the algebraic
domain. With these constraints in mind, number-theoretical transforms have
attained a solid niche, in regard to fast algorithms in the field of digital signal
processing. Not just raw convolution, but other interesting applications of
such transforms can be found in the literature. A typical example is the use of
number-theoretical transforms for classical algebraic operations [Yagle 1995],
while yet more applications are summarized in [Madisetti and Williams 1997].

Our first example will be the case that the relevant domain is Fp. For a
prime p and some divisor d|p − 1 let the field be Fp and consider the relevant
transform to be

Xk =
(p−1)/d−1∑

j=0

xjh
−jk mod p, (9.33)

where h is an element of multiplicative order (p − 1)/d in Fp. Note that the
mod operation can in principle be taken either after individual summands, or
for the whole sum, or in some combination of these, so that for convenience
we simply append the symbols “mod p” to indicate that a transform element
Xk is to be reduced to lie in the interval [0, p−1]. Now the inverse transform is

xj = −d

(p−1)/d−1∑
k=0

Xkhjk mod p, (9.34)

whose prefactor is just ((p − 1)/d)−1 mod p ≡ −d. These transforms can be
used to provide increased precision for convolutions. The idea is to establish
each convolution element (mod pr) for some convenient set of primes {pr},
whence the exact convolution can be reconstructed using the Chinese remain-
der theorem.

Algorithm 9.5.20 (Integer convolution on a CRT prime set). Given
two signals x, y each of length N = 2m having integer elements bounded by
0 ≤ xj , yj < M , this algorithm returns the cyclic convolution x × y via the CRT
with distinct prime moduli p1, p2, . . . , pq.

1. [Initialize]
Find a set of primes of the form pr = arN + 1 for r = 1, . . . , q such that∏

pr > NM2;
for(1 ≤ r ≤ q) {

Find a primitive root gr of pr;
hr = gar

r mod pr; // hr is an N -th root of 1.
}

2. [Loop over primes]
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for(1 ≤ r ≤ q) {
h = hr; p = pr; d = ar; // Preparing for DFTs.
X(r) = DFT (x); // Via relation (9.33).
Y (r) = DFT (y);

3. [Dyadic product]
Z(r) = X(r) ∗ Y (r);

4. [Inverse transforms]
z(r) = DWT−1(Z(r)); // Via relation (9.34).

}
5. [Reconstruct elements]

From the now known relations zj ≡ z
(r)
j (mod pr) find each (unambiguous)

element zj in [0, NM2) via CRT reconstruction, using such as Algorithm
2.1.7 or 9.5.26;

return z;

What this algorithm does is allow us to invoke length-2m FFTs for the DFT
and its inverse, except that only integer arithmetic is to be used in the usual
FFT butterflies (and of course the butterflies are continually reduced (mod pr)
during the FFT calculations). This scheme has been used to good effect in
[Montgomery 1992a] in various factorization implementations. Note that if
the forward DFT (9.33) is performed with a decimation-in-frequency (DIF)
algorithm, and the reverse DFT (9.34) with a DIT algorithm, there is no
need to invoke the scramble function of Algorithm 9.5.5 in either of the FFT
functions shown there.

A second example of useful number-theoretical transforms has been called
the discrete Galois transform (DGT) [Crandall 1996a], with relevant field Fp2

for p = 2q − 1 a Mersenne prime. The delightful fact about such fields is that
the multiplicative group order is

|F∗
p2 | = p2 − 1 = 2q+1(2q−1 − 1),

so that in practice, one can find primitive roots of unity of orders N = 2k as
long as k ≤ q + 1. We can thus define discrete transforms of such lengths, as

Xk =
N−1∑
j=0

xjh
−jk mod p, (9.35)

where now all arithmetic is presumed, due to the known structure of Fp2 for
primes p ≡ 3 (mod 4), to involve complex (Gaussian) integers (mod p) with

N = 2k,

xj = Re(xj) + i Im(xj),
h = Re(h) + i Im(h),

the latter being an element of multiplicative order N in Fp2 , with the
transform element Xk itself being a Gaussian integer (mod p). Happily, there
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is a way to find immediately an element of suitable order, thanks to the
following result of [Creutzburg and Tasche 1989]:

Theorem 9.5.21 (Creutzburg and Tasche). Let p = 2q − 1 be a Mersenne
prime with q odd. Then

g = 22q−2
+ i(−3)2

q−2

is an element of order 2q+1 in F∗
p2 .

These observations lead to the following integer convolution algorithm, in
which we indicate the enhancements that can be invoked to reduce the
complex arithmetic. In particular, we exploit the fact that integer signals
are real, so the imaginary components of their elements vanish in the field,
and thus the transform lengths are halved:

Algorithm 9.5.22 (Convolution via DGT (Crandall)). Given two signals
x, y each of length N = 2k ≥ 2 and whose elements are integers in the interval
[0, M ], this algorithm returns the integer convolution x × y. The method used is
convolution via “discrete Galois transform” (DGT).

1. [Initialize]
Choose a Mersenne prime p = 2q − 1 such that p > NM2 and q > k;
Use Theorem 9.5.21 to find an element g of order 2q+1;
h = g2q+2−k

; // h is now an element of order N/2.

2. [Fold signals to halve their lengths]
x =

(
x2j + ix2j+1

)
, j = 0, . . . , N/2 − 1;

y =
(
y2j + iy2j+1

)
, j = 0, . . . , N/2 − 1;

3. [Length-N/2 transforms]
X = DFT (x); // Via, say, split-radix FFT (mod p), root h.
Y = DFT (y);

4. [Special dyadic product]
for(0 ≤ k < N/2) {

Zk = (Xk + X∗
−k)(Yk + Y ∗

−k) + 2(XkYk − X∗
−kY ∗

−k) − h−k(Xk −
X∗

−k)(Yk − Y ∗
−k);

}
5. [Inverse length-N/2 transform]

z = 1
4DFT−1(Z); // Via split-radix FFT (mod p) with root h.

6. [Unfold signal to double its length]
z =

(
(Re(zj), Im(zj))

)
, j = 0, . . . , N/2 − 1;

return z;

To implement this algorithm, one needs only a complex (integer only!) FFT
(mod p), complex multiplication (mod p), and a binary ladder for powering in
the field. The split-radix FFT indicated in the algorithm, though it is normally
used in reference to standard floating-point FFT’s, can nevertheless be used
because “i” is defined [Crandall 1997b].
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There is one more important aspect of the DGT convolution: All mod
operations are with respect to Mersenne primes, and so an implementation
can enjoy the considerable speed advantage we have previously encountered
for such special cases of the modulus.

9.5.6 Schönhage method

The pioneering work in [Schönhage and Strassen 1971], [Schönhage 1982],
based on Strassen’s ideas for using FFTs in large-integer multiplication,
focuses on the fact that a certain number-theoretical transform is possible—
using exclusively integer arithmetic—in the ring Z2m+1. This is sometimes
called a Fermat number transform (FNT) (see Exercise 9.52) and can be used
within a certain negacyclic convolution approach as follows (we are grateful
to P. Zimmermann for providing a clear exposition of the method, from which
description we adapted our rendition here):

Algorithm 9.5.23. [Fast multiplication (mod 2n + 1) (Schönhage)] Given
two integers 0 ≤ x, y < 2n +1, this algorithm returns the product xy mod (2n +
1).
1. [Initialize]

Choose FFT size D = 2k dividing n;
Writing n = DM , set a recursion length n′ ≥ 2M + k such that D divides

n′, i.e., n′ = DM ′;
2. [Decomposition]

Split x and y into D parts of M bits each, and store these parts, considered
as residues modulo (2n′

+1), in two respective arrays A0, . . . , AD−1 and
B0, . . . , BD−1, taking care that an array element could in principle have
n′ + 1 bits later on;

3. [Prepare DWT by weighting the A, B signals]
for(0 ≤ j < D) {

Aj = (2jM ′
Aj) mod (2n′

+ 1);
Bj = (2jM ′

Bj) mod (2n′
+ 1);

}
4. [In-place, symbolic FFTs]

A = DFT (A); // Use 22M ′
as D-th root mod(2n′

+ 1).
B = DFT (B);

5. [Dyadic stage]
for(0 ≤ j < D) Aj = AjBj mod (2n′

+ 1);
6. [Inverse FFT]

A = DFT (A); // Inverse via index reversal, next loop.

7. [Normalization]
for(0 ≤ j < D) { // AD defined as A0.

Cj = AD−j/2k+jM ′
mod (2n′

+ 1); // Reverse and twist.

8. [Adjust signs]
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if(Cj > (j + 1)22M ) Cj = Cj − (2n′
+ 1);

} // Cj now possibly negative.

9. [Composition]
Perform carry operations as in steps [Adjust carry in base B] for B = 2M

(the original decomposition base) and [Final modular adjustment] of
Algorithm 9.5.17 to return the desired sum:
xy mod (2n + 1) =

∑D−1
j=0 Cj2jM mod (2n + 1);

Note that in the [Decomposition] step, AD−1 or BD−1 may equal 2M and
have M + 1 bits in the case where x or y equal 2n. In Step [Prepare
DWT . . .], each multiply can be done using shifts and subtractions only, as
2n′ ≡ −1(mod2n′

+1). In Step [Dyadic stage], one can use any multiplication
algorithm, for example a grammar-school stage, Karatsuba algorithm, or this
very Schönhage algorithm recursively. In Step [Normalization], the divisions
by a power of two again can be done using shifts and subtractions only. Thus
the only multiplication per se is in Step [Dyadic stage], and this is why the
method can attain, in principle, such low complexity. Note also that the two
FFTs required for the negacyclic result signal C can be performed in the order
DIF, DIT, for example by using parts of Algorithm 9.5.5 in proper order, thus
obviating the need for any bit-scrambling procedure.

As it stands, Algorithm 9.5.23 will multiply two integers modulo any
Fermat number, and such application is an important one, as explained in
other sections of this book. For general multiplication of two integers x and
y, one may call the Schönhage algorithm with n ≥ �lg x� + �lg y�, and zero-
padding x, y accordingly, whence the product xy mod 2n+1 equals the integer
product. (In a word, the negacyclic convolution of appropriately zero-padded
sequences is the acyclic convolution—the product in essence. ) In practice,
Schönhage suggests using what he calls “suitable numbers,” i.e., n = ν2k

with k − 1 ≤ ν ≤ 2k − 1. For example, 688128 = 21 · 215 is a suitable number.
Such numbers enjoy the property that if k = �n/2� + 1, then n′ = � ν+1

2 �2k

is also a suitable number; here we get indeed n′ = 11 · 28 = 2816. Of course,
one loses a factor of two initially with respect to modular multiplication, but
in the recursive calls all computations are performed modulo some 2M +1, so
the asymptotic complexity is still that reported in Section 9.5.8.

9.5.7 Nussbaumer method

It is an important observation that a cyclic convolution of some even length
D can be cast in terms of a pair of convolutions, a cyclic and a negacyclic,
each of length D. The relevant identity is

2(x × y) = [(u+ × v+) + (u− ×− v−)] ∪ [(u+ × v+) − (u− ×− v−)], (9.36)

where u, v signals depend in turn on half-signals:

u± = L(x) ± H(x),

v± = L(y) ± H(y).
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This recursion formula for cyclic convolution can be proved via polynomial
algebra (see Exercise 9.42). The recursion relation together with some astute
algebraic observations led [Nussbaumer 1981] to an efficient convolution
scheme devoid of floating-point transforms. The algorithm is thus devoid of
rounding-error problems, and often, therefore, is the method of choice for
rigorous machine proofs involving large-integer arithmetic.

Looking longingly at the previous recursion, it is clear that if only we
had a fast negacyclic algorithm, then a cyclic convolution could be done
directly, much like that which an FFT performs via decimation of signal
lengths. To this end, let R denote a ring in which 2 is cancelable; i.e., x = y
whenever 2x = 2y. (It is intriguing that this is all that is required to “ignite”
Nussbaumer convolution.) Assume a length D = 2k for negacyclic convolution,
and that D factors as D = mr, with m|r. Now, negacyclic convolution is
equivalent to polynomial multiplication (mod tD + 1) (see Exercises), and as
an operation can in a certain sense be “factored” as specified in the following:

Theorem 9.5.24 (Nussbaumer). Let D = 2k = mr, m|r. Then negacyclic
convolution of length-D signals whose elements belong to a ring R is
equivalent, in the sense that polynomial coefficients correspond to signal
elements, to multiplication in the polynomial ring

S = R[t]/
(
tD + 1

)
.

Furthermore, this ring is isomorphic to

T [t]/ (z − tm) ,

where T is the polynomial ring

T = R[z]/ (zr + 1) .

Finally, zr/m is an m-th root of −1 in T .

Nussbaumer’s idea is to use the root of −1 in a manner reminiscent of our
DWT, to perform a negacyclic convolution.

Let us exhibit explicit polynomial manipulations to clarify the import of
Theorem 9.5.24. Let

x(t) = x0 + x1t + · · · + xD−1t
D−1,

and similarly for signal y, with the xj , yj in R. Note that x×− y is equivalent
to multiplication x(t)y(t) in the ring S. Now decompose

x(t) =
m−1∑
j=0

Xj(tm)tj ,

and similarly for y(t), and interpret each of the polynomials Xj , Yj as an
element of ring T ; thus

Xj(z) = xj + xj+mz + · · · + xj+m(r−1)z
r−1,
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and similarly for the Yj . It is evident that the (total of) 2m X,Y polynomials
can be stored in two arrays that are (r,m)-transpositions of x, y arrays
respectively. Next we multiply x(t)y(t) by performing the cyclic convolution

Z = (X0, X1, . . . , Xm−1, 0, . . . , 0) × (Y0, Y1, . . . , Ym−1, 0, . . . , 0) ,

where each operand signal here has been zero-padded to total length 2m. The
key point here is that Z can be evaluated by a symbolic DFT, using what we
know to be a primitive 2m-th root of unity, namely zr/m. What this means is
that the usual FFT butterfly operations now involve mere shuttling around
of polynomials, because multiplications by powers of the primitive root just
translate coefficient polynomials. In other words the polynomial arithmetic
now proceeds along the lines of Theorem 9.2.12, in that multiplication by a
power of the relevant root is equivalent to a kind of shift operation.

At a key juncture of the usual DFT-based convolution method, namely the
dyadic (elementwise) multiply step, the dyadic operations can be seen to be
themselves length-r negacyclic convolutions. This is evident on the observation
that each of the polynomials Xj , Yj has degree (r − 1) in the variable z = tm,
and so zr = tD = −1. To complete the Z convolution, a final, inverse DFT,
with root z−r/m, is to be used. The result of this zero-padded convolution is
seen to be a product in the ring S:

x(t)y(t) =
2m−2∑
j=0

Zj(tm)tj , (9.37)

from which we extract the negacyclic elements of x ×− y as the coefficients of
the powers of t.

Algorithm 9.5.25 (Nussbaumer convolution, cyclic and negacyclic).
Assume length-(D = 2k) signals x, y whose elements belong to a ring R, which
ring also admits of cancellation-by-2. This algorithm returns either the cyclic
(x×y) or negacyclic (x×− y) convolution. Inside the negacyclic function neg is a
“small” negacyclic routine smallneg, for example a grammar-school or Karatsuba
version, which is called below a certain length threshold.

1. [Initialize]
r = 2�k/2�;
m = D/r; // Now m divides r.
blen = 16; // Tune this small-negacyclic breakover length to taste.

2. [Cyclic convolution function cyc, recursive]
cyc(x, y) {

By calling half-length cyclic and negacyclic convolutions, return the
desired cyclic, via identity (9.36);

}
3. [Negacyclic convolution function neg, recursive]

neg(x, y) {
if(len(x) ≤ blen) return smallneg(x, y);
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4. [Transposition step]
Create a total of 2m arrays Xj , Yj each of length r;
Zero-pad the X, Y collections so each collection has 2m polynomials;
Using root g = zr/m, perform (symbolically) two length-2m DFTs to

get the transforms X̂, Ŷ ;

5. [Recursive dyadic operation]
for(0 ≤ h < 2m) Ẑh = neg(X̂h, Ŷh);

6. [Inverse transform]
Using root g = z−r/m, perform (symbolically) a length-(2m) inverse

DWT on Ẑ to get Z;

7. [Untranspose and adjust]
Working in the ring S (i.e., reduce polynomials according to tD = −1)

find the coefficients zn of tn, n ∈ [0, D − 1], from equation (9.37);
return (zn); // Return the negacyclic of x, y.

}

Detailed implementation of Nussbaumer’s remarkable algorithm can be
found in [Crandall 1996a], where enhancements are discussed. One such
enhancement is to obviate the zero-padding of the X, Y collections (see
Exercise 9.66). Another is to recognize that the very formation of the Xj , Yj

amounts to a transposition of a two-dimensional array, and memory can be
reduced significantly by effective such transposition “in place.” [Knuth 1981]
has algorithms for in-place transposition. Also of interest is the algorithm
[Fraser 1976] mentioned in connection with Algorithm 9.5.7.

9.5.8 Complexity of multiplication algorithms

In order to summarize the complexities of the aforementioned fast multiplica-
tion methods, let us clarify the nomenclature. In general, we speak of operands
(say x, y) to be multiplied, of size N = 2n, or n binary bits, or D digits, all
equivalently in what follows. Thus for example, if the digits are in base B = 2b,
we have

Db ≈ n

signifying that the n bits of an operand are split into D signal elements.
This symbolism is useful because we need to distinguish between bit- and
operation-complexity bounds.

Recall that the complexity of grammar-school, Karatsuba, and Toom–
Cook multiplication schemes all have the form O (nα) = O (lnα N) bit
operations for all the involved multiplications. (We state things this way
because in the Toom–Cook case one must take care to count bit operations
due to the possibly significant addition count.) So for example, α = 2 for
grammar-school methods, Karatsuba and Toom–Cook methods lower this α
somewhat, and so on.

Then we have the basic Schönhage–Strassen FFT multiplication Algo-
rithm 9.5.12. Suddenly, the natural description has a different flavor, for we
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know that the complexity must be

O(D lnD)

operations, and as we have said, these are usually, in practice, floating-
point operations (both adds and multiplies are bounded in this fashion).
Now the bit complexity is not O((n/b) ln(n/b))—that is, we cannot just
substitute D = n/b in the operation-complexity estimate—because floating-
point arithmetic on larger digits must, of course, be more expensive. When
these notions are properly analyzed we obtain the Strassen bound of

O(n(C lnn)(C ln lnn)(C ln ln lnn) · · ·)

bit operations for the basic FFT multiply, where C is a constant and the
ln ln · · · chain is understood to terminate when it falls below 1. Before we
move ahead with other estimates, we must point out that even though this bit
complexity is not asymptotically optimal, some of the greatest achievements
in the general domain of large-integer arithmetic have been achieved with this
basic Schönhage–Strassen FFT, and yes, using floating-point operations.

Now, the Schönhage Algorithm 9.5.23 gets neatly around the problem
that for a fixed number of signal digits D, the digit operations (small
multiplications) must get more complex for larger operands. Analysis of
the recursion within the algorithm starts with the observation that at top
recursion level, there are two DFTs (but very simple ones—only shifting and
adding occur) and the dyadic multiply. Detailed analysis yields the best-known
complexity bound of

O(n(lnn)(ln lnn))

bit operations, although the Nussbaumer method’s complexity, which we
discuss next, is asymptotically equivalent.

Next, one can see that (as seen in Exercise 9.67) the complexity of
Nussbaumer convolution is

O(D lnD)

operations in the R ring. This is equivalent to the complexity of floating-point
FFT methods, if ring operations are thought of as equivalent to floating-point
operations. However, with the Nussbaumer method there is a difference: One
may choose the digit base B with impunity. Consider a base B ∼ n, so that
b ∼ lnn, in which case one is effectively using D = n/ lnn digits. It turns out
that the Nussbaumer method for integer multiplication then takes O(n ln lnn)
additions and O(n) multiplications of numbers each having O(lnn) bits. It
follows that the complexity of the Nussbaumer method is asymptotically that
of the Schönhage method, i.e., O(n lnn ln lnn) bit operations. Such complexity
issues for both Nussbaumer and the original Schönhage–Strassen algorithm
are discussed in [Bernstein 1997].
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Algorithm optimal B complexity
Basic FFT, fixed-base . . . Oop(D ln D)

Basic FFT, variable-base O(ln n) O(n(C ln n)(C ln ln n) . . .)
Schönhage O(n1/2) O(n ln n ln ln n)

Nussbaumer O(n/ ln n) O(n ln n ln ln n)

Table 9.1 Complexities for fast multiplication algorithms. Operands to be
multiplied have n bits each, which during top recursion level are split into D = n/b
digits of b bits each, so the digit size (the base) is B = 2b. All bounds are for bit
complexity, except that Oop means operation complexity.

9.5.9 Application to the Chinese remainder theorem

We described the Chinese remainder theorem in Section 2.1.3, and there
gave a method, Algorithm 2.1.7, for reassembling CRT data given some
precomputation. We now describe a method that not only takes advantage
of preconditioning, but also fast multiplication methods.

Algorithm 9.5.26 (Fast CRT reconstruction with preconditioning).
Using the nomenclature of Theorem 2.1.6, we assume fixed moduli m0, . . . , mr−1
whose product is M , but with r = 2k for computational convenience. The goal
of the algorithm is to reconstruct n from its given residues (ni). Along the way,
tableaux (qij) of partial products and (nij) of partial residues are calculated. The
algorithm may be reentered with a new n if the mi remain fixed.

1. [Precomputation]
for(0 ≤ i < r) { // Generate the Mi and inverses.

Mi = M/mi;
vi = M−1

i mod mi;
}
for(0 ≤ j ≤ k) { // Generate partial products.

for(0 ≤ i ≤ r − 2j) qij =
∏i+2j−1

a=i ma;
}

2. [Reentry point for given input residues (ni)]
for(0 ≤ i < r) ni0 = vini;

3. [Reconstruction loop]
for(1 ≤ j ≤ k) {

for(i = 0; i < r; i = i+2j) nij = ni,j−1qi+2j−1,j−1+ni+2j−1,j−1qi,j−1;
}

4. [Return the unique n in [0, M − 1]]
return n0k mod q0k;

Note that the first, precomputation, phase of the algorithm can be done
just once, with a particular input of residues (ni) used for the first time
at the initialization phase. Note also that the precomputation of the (qij)
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can itself be performed with a fast divide-and-conquer algorithm of the type
discussed in Chapter 8.8 (for example, Exercise 9.74). As an example of the
operation of Algorithm 9.5.26, let us take r = 8 = 23 and eight moduli:
(m1, . . . , m8) = (3, 5, 7, 11, 13, 17, 19, 23). Then we use these moduli along with
the product M =

∏8
i=1 mi = 111546435, to obtain at the [Precomputation]

phase M1, . . . , M8, which are, respectively,

37182145, 22309287, 15935205, 10140585, 8580495, 6561555, 5870865, 4849845,

(v1, . . . , v8) = (1, 3, 6, 3, 1, 11, 9, 17),

and the tableau

(q00, . . . , q70) = (3, 5, 7, 11, 13, 17, 19, 23),
(q01, . . . , q61) = (15, 35, 77, 143, 221, 323, 437),
(q02, . . . , q42) = (1155, 5005, 17017, 46189, 96577),

q03 = 111546435,

where we recall that for fixed j there exist qij for i ∈ [0, r−2j ]. It is important
to note that all of the computation up through the establishment of the q
tableau can be done just once—as long as the CRT moduli mi are not going
to change in future runs of the algorithm. Now, when specific residues ni of
some mystery n are to be processed, let us say

(n1, . . . , n8) = (1, 1, 1, 1, 3, 3, 3, 3),

we have after the [Reconstruction loop] step, the value

n0k = 878271241,

which when reduced mod q03 is the correct result n = 97446196. Indeed, a
quick check shows that

97446196 mod (3, 5, 7, 11, 13, 17, 19, 23) = (1, 1, 1, 1, 3, 3, 3, 3).

The computational complexity of Algorithm 9.5.26 is known in the
following form [Aho et al. 1974, pp. 294–298], assuming that fast multiplication
is used. If each of the r moduli mi has b bits, then the complexity is

O(br ln r ln(br) ln ln(br))

bit operations, on the assumption that all of the precomputation for the
algorithm is in hand.

9.6 Polynomial arithmetic

It is an important observation that polynomial multiplication/division is
not quite the same as large-integer multiplication/division. However, ideas
discussed in the previous sections can be applied, in a somewhat different
manner, in the domain of arithmetic of univariate polynomials.
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9.6.1 Polynomial multiplication

We have seen that polynomial multiplication is equivalent to acyclic
convolution. Therefore, the product of two polynomials can be effected via
a cyclic and a negacyclic. One simply constructs respective signals having the
polynomial coefficients, and invokes Theorem 9.5.10. An alternative is simply
to zero-pad the signals to twice their lengths and perform a single cyclic (or
single negacyclic).

But there exist interesting—and often quite efficient—means of multiply-
ing polynomials if one has a general integer multiply algorithm. The method
amounts to placing polynomial coefficients strategically within certain large
integers, and doing all the arithmetic with one high-precision integer multiply.
We give the algorithm for the case that all polynomial coefficients are nonneg-
ative, although this constraint is irrelevant for multiplication in polynomial
rings (mod p):

Algorithm 9.6.1 (Fast polynomial multiplication: Binary segmentation).
Given two polynomials x(t) =

∑D−1
j=0 xjt

j and y(t) =
∑E−1

k=0 yktk with all coef-
ficients integral and nonnegative, this algorithm returns the polynomial product
z(t) = x(t)y(t) in the form of a signal having the coefficients of z.

1. [Initialize]
Choose b such that 2b > max{D, E} max{xj} max{yk};

2. [Create binary segmentation integers]
X = x

(
2b
)
;

Y = y
(
2b
)
;

// These X, Y can be constructed by arranging a binary array of
sufficiently many 0’s, then writing in the bits of each coefficient,
justified appropriately.

3. [Multiply]
u = XY ; // Integer multiplication.

4. [Reassemble coefficients into signal]
for(0 ≤ l < D + E − 1) {

zl = �u/2bl� mod 2b; // Extract next b bits.
}
return z =

∑D−E−2
l=0 zlt

l; // Base-b digits of u are desired coefficients.

The method is a good one in the sense that if a large-integer multiply is at
hand, there is not very much extra work required to establish a polynomial
multiply. It is not hard to show that the bit-complexity of multiplying two
degree-D polynomials in Zm[X], that is, all coefficients are reduced modulo
m, is

O
(
M

(
D ln

(
Dm2))) ,

where M(n) is as elsewhere the bit-complexity for multiplying two integers of
n bits each.
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Incidentally, if polynomial multiplication in rings is done via fast integer
convolution (recall that acyclic convolution is sufficient, and so zero-padded
cyclic will do), then one may obtain a different expression for the complexity
bound. For the Nussbaumer Algorithm 9.5.25 one requires O(M(lnm)D lnD)
bit operations, where M is the usual integer-multiplication complexity. It is
interesting to compare these various estimates for polynomial multiplication
(see Exercise 9.70).

9.6.2 Fast polynomial inversion and remaindering

Let x(t) =
∑D−1

j=0 xjt
j be a polynomial. If x0 = 0, there is a formal inversion

1/x(t) = 1/x0 − (x1/x2
0)t + (x2

1/x3
0 − x2/x2

0)t
2 + · · ·

that admits of rapid evaluation, by way of a scheme we have already invoked
for reciprocation, the celebrated Newton method. We describe the scheme in
the case that x0 = 1, from which case generalizations are easily inferred. In
what follows, the notation

z(t) mod tk

is a polynomial remainder (which we cover later), but in this setting it is
simple truncation: The result of the mod operation is a polynomial consisting
of the terms of polynomial z(t) through order tk−1 inclusive. Let us define,
then, a truncated reciprocal,

R[x, N ] = x(t)−1 mod tN+1

as the series of 1/x(t) through degree tN , inclusive.

Algorithm 9.6.2 (Fast polynomial inversion). Let x(t) be a polynomial
with first coefficient x0 = 1. This algorithm returns the truncated reciprocal
R[x, N ] through a desired degree N .

1. [Initialize]
g(t) = 1; // Degree-zero polynomial.
n = 1; // Working degree precision.

2. [Newton loop]
while(n < N + 1) {

n = 2n; // Double the working degree precision.
if(n > N + 1) n = N + 1;
h(t) = x(t) mod tn; // Simple truncation.
h(t) = h(t)g(t) mod tn;
g(t) = g(t)(2 − h(t)) mod tn; // Newton iteration.

}
return g(t);

One point that should be stressed right off is that in principle, an operation
f(t)g(t) mod tn is simple truncation of a product (the operands usually
themselves being approximately of degree n). This means that within



512 Chapter 9 FAST ALGORITHMS FOR LARGE-INTEGER ARITHMETIC

multiplication loops, one need not handle terms of degree higher than
indicated. In convolution-theory language, we are therefore doing “half-cyclic”
convolutions, so when transform methods are used, there is also gain to be
realized because of the truncation.

As is typical of Newton methods, the dynamical precision degree n
essentially doubles on each pass of the Newton loop. Let us give an example
of the workings of the algorithm. Take

x(t) = 1 + t + t2 + 4t3

and call the algorithm to output R[x, 8]. Then the values of g(t) at the end of
each pass of the Newton loop come out as

1 − t,

1 − t − 3t3,

1 − t − 3t3 + 7t4 − 4t5 + 9t6 − 33t7,

1 − t − 3t3 + 7t4 − 4t5 + 9t6 − 33t7 + 40t8,

and indeed, this last output of g(t) multiplied by the original x(t) is
1 + 43t9 − 92t10 + 160t11, showing that the last output g(t) is correct through
O(t8).

Polynomial remaindering (polynomial mod operation) can be performed
in much the same way as some of our mod algorithms for integers used a
“reciprocal.” However, it is not always possible to divide one polynomial by
another and get a unique and legitimate remainder: This can depend on the
ring of coefficients for the polynomials. However, if the divisor polynomial has
its high coefficient invertible in the ring, then there is no problem with divide
and remainder; see the discussion in Section 2.2.1. For simplicity, we shall
restrict to the case that the divisor polynomial is monic, that is, the high
coefficient is 1, since generalizing is straightforward. Assume that x(t), y(t)
are polynomials and that y(t) is monic. Then there are unique polynomials
q(t), r(t) such that

x(t) = q(t)y(t) + r(t),

and r = 0 or deg(r) < deg(x). We shall write

r(t) = x(t) mod y(t),

and view q(t) as the quotient and r(t) as the remainder. Incidentally, for some
polynomial operations one demands that coefficients lie in a field, for example
in the evaluation of polynomial gcd’s, but many polynomial operations do not
require field coefficients. Before exhibiting a fast polynomial remaindering
algorithm, we establish some nomenclature:

Definition 9.6.3 (Polynomial operations). Let x(t) =
∑D−1

j=0 xjt
j be a

polynomial. We define the reversal of x by degree d as the polynomial

rev(x, d) =
d∑

j=0

xd−jt
j ,
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where it is understood that xj = 0 for all j > D − 1. We also define a
polynomial index function as

ind(x, d) = min{j : j ≥ d; xj = 0},

or ind(x, d) = 0 if the stated set of j is empty.

For example,

rev(1 + 3t2 + 6t3 + 9t5 + t6, 3) = 6 + 3t + t3,

ind(1 + 3t2 + 6t3, 1) = 2.

A remaindering algorithm can now be given:

Algorithm 9.6.4 (Fast polynomial mod). Let x(t), y(t) be given polynomi-
als with y(t) monic (high coefficient is 1). This algorithm returns the polynomial
remainder x(t) mod y(t).
1. [Initialize]

if(deg(y) == 0) return 0;
d = deg(x) − deg(y);
if(d < 0) return x;

2. [Reversals]
X = rev(x,deg(x));
Y = rev(y, deg(y));

3. [Reciprocation]
q = R[Y, d]; // Via Algorithm 9.6.2.

4. [Multiplication and reduction]
q = (qX) mod td+1; // Multiply and truncate after degree d.
r = X − qY ;
i = ind(r, d + 1);
r = r/ti;
return rev(r, deg(x) − i);

The proof that this algorithm works is somewhat intricate, but it is clear
that the basic idea of the Barrett integer mod is at work here; the calculation
r = X − qY is similar to the manipulations done with generalized integer
reciprocals in the Barrett method.

As for the complexity of Algorithm 9.6.4, note that like the Barrett
method, the whole procedure is driven by polynomial multiplication. Thus,
polynomial mod performed in this way has the same complexity as polynomial
multiplication.

The challenge of fast polynomial gcd operations is an interesting one.
There is a direct analogue to the Euclid integer gcd algorithm, namely,
Algorithm 2.2.2. Furthermore, the complicated recursive Algorithm 9.4.6 is,
perhaps surprisingly, actually simpler for polynomials than for integers [Aho
et al. 1974, pp. 300–310]. We should point out also that some authors attribute
the recursive idea, originally for polynomial gcd’s, to the paper [Moenck 1973].
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Whatever method used for polynomial gcd, the fast polynomial remaindering
scheme of this section can be applied as desired for the internal polynomial
mod operations.

9.6.3 Polynomial evaluation

We next discuss polynomial evaluation techniques. The essential problem is
to evaluate a polynomial x(t) =

∑D−1
j=0 xjt

j at, say, each of n field values
t0, . . . , tn−1. It turns out that the entire sequence (x(t0), x(t1), . . . , x(tn−1))
can be evaluated in

O
(
n ln2 min{n, D}

)
field operations. We shall split the problem into three basic cases:

(1) The arguments t0, . . . , tn−1 lie in arithmetic progression.
(2) The arguments t0, . . . , tn−1 lie in geometric progression.
(3) The arguments t0, . . . , tn−1 are arbitrary.

Of course, case (3) covers the other two, but in (1), (2) it can happen that
special enhancements apply.

Algorithm 9.6.5 (Evaluation of polynomial on arithmetic progression).
Let x(t) =

∑D−1
j=0 xjt

j . This algorithm returns the n evaluations x(a), x(a +
d), x(a + 2d), . . . , x(a + (n − 1)d). (The method attains its best efficiency when
n is much greater than D.)

1. [Evaluate at first D points]
for(0 ≤ j < D) ej = x(a + jd);

2. [Create difference tableau]
for(1 ≤ q < D) {

for(D − 1 ≥ k ≥ q) ek = ek − ek−1;
}

3. [Operate over tableau]
E0 = e0;
for(1 ≤ q < n) {

Eq = Eq−1 + e1;
for(1 ≤ k < D − 1) ek = ek + ek+1;

}
return (Eq), q ∈ [0, n − 1];

A variant of this algorithm has been used in searches for Wilson primes (see
Exercise 9.73, where computational complexity issues are also discussed).

Next, assume that evaluation points lie in geometric progression, say
tk = T k for some constant T , so we need to evaluate every sum

∑
xjT

kj for
k ∈ [0, D − 1]. There is a so-called Bluestein trick, by which one transforms
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such sums according to

∑
j

xjT
kj = T−k2/2

∑
j

(
xjT

−j2/2
)

T (−k−j)2/2,

and thus calculates the left-hand sum via the convolution implicit in the right-
hand sum. However, in certain settings it is somewhat more convenient to
avoid halving the squares in the exponents, relying instead on properties of
the triangular numbers ∆n = n(n + 1)/2. Two relevant algebraic properties
of these numbers are

∆α+β = ∆α + ∆β + αβ,

∆α = ∆−α−1.

A variant of the Bluestein trick can accordingly be derived as∑
j

xjT
kj = T∆−k

∑
j

(
xjT

∆j
)
T−∆−(k−j) .

Now the implicit convolution can be performed using only integral powers
of the T constant. Moreover, we can employ an efficient, cyclic convolution
by carefully embedding the x signal in a longer, zero-padded signal and
reindexing, as in the following algorithm.

Algorithm 9.6.6 (Evaluation of polynomial on geometric progression).
Let x(t) =

∑D−1
j=0 xjt

j , and let T have an inverse in the arithmetic domain.
This algorithm returns the sequence of values

(
x(T k)

)
, k ∈ [0, D − 1].

1. [Initialize]
Choose N = 2n such that N ≥ 2D;
for(0 ≤ j < D) xj = xjT

∆j ; // Weight the signal x.
Zero-pad x = (xj) to have length N ;
y =

(
T−∆N/2−j−1

)
, j ∈ [0, N − 1]; // Create symmetrical signal y.

2. [Length-N cyclic convolution]
z = x × y;

3. [Final assembly of evaluation results]
return

(
x(T k)

)
=

(
T∆k−1zN/2+k−1

)
, k ∈ [0, D − 1];

We see that a single convolution serves to evaluate all of the values x(T k)
at once. It is clear that the complexity of the entire evaluation is O(D lnD)
field operations. One important observation is that an actual DFT is just
such an evaluation over a geometric progression; namely, the DFT of (xj)
is the sequence

(
x(g−k)

)
, where g is the appropriate root of unity for the

transform. So Algorithm 9.6.6 is telling us that evaluations over geometric
progressions are, except perhaps for the minor penalty of zero-padding and so
on, essentially of FFT complexity given only that g is invertible. It is likewise
clear that any FFT can be embedded in a convolution of power-of-two length,
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and so require at most three FFTs of that padded length (note that in some
scenarios the y signal’s symmetry allows further optimization).

The third, and most general, case of polynomial evaluation starts from
the observation that polynomial remaindering can be used to decimate the
evaluation procedure. Say that x(t) has degree D − 1 and is to be evaluated
at the points t0, t1, . . . , tD−1. Let us simplify by assuming that d is a power of
two. If we define two polynomials, each of essentially half the degree of x, by

y0(t) = (t − t0)(t − t1) . . . (t − tD/2−1),
y1(t) = (t − tD/2)(t − tD/2+1) . . . (t − tD−1),

then we can write the original polynomial in quotient–remainder form as

x(t) = q0(t)y0(t) + r0(t) = q1(t)y1(t) + r1(t).

But this means that a desired evaluation x(tj) is either r0(tj) (for j < D/2)
or r1(tj) (for j ≥ D/2). So the problem of evaluating the degree-(D − 1)
polynomial x comes down to two copies of the simpler problem: Evaluate a
degree-(about D/2) polynomial at about D/2 points. The recursive algorithm
runs as follows:

Algorithm 9.6.7 (Evaluation of a polynomial at arbitrary points).
Let x(t) =

∑D−1
j=0 xjt

j . This algorithm, via a recursive function eval, returns
all the values of x(tj) for arbitrary points t0, . . . , tD−1. Let T denote the se-
quence (t0, . . . , tD−1). For convenience, we assume D = 2k, yet simple options
will generalize to other D (see Exercise 9.76).

1. [Set breakover]
δ = 4; // Or whatever classical evaluation threshold is best.

2. [Recursive eval function]
eval(x, T ) {

d = len(x);
3. [Check breakover threshold for recursion exit]

// Next, use literal evaluation at the ti in small cases.
if(len(T ) ≤ δ) return (x(t0), x(t1), . . . , x(td−1));

4. [Split the signal into halves]
u = L(T ); // Low half of signal.
v = H(T ); // High half.

5. [Assemble half-polynomials]
w(t) =

∏d/2−1
m=0 (t − um);

z(t) =
∏d/2−1

m=0 (t − vm);
6. [Modular reduction]

a(t) = x(t) mod w(t);
b(t) = x(t) mod z(t);
return eval(a, u) ∪ eval(b, v);

}
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Note that in the calculations of w(t), z(t) the intent is that the product must
be expanded, to render w, z as signals of coefficients. The operations to expand
these products must be taken into account in any proper complexity estimate
for this evaluation algorithm (see Exercise 9.75). Along such lines, note that
an especially efficient way to implement Algorithm 9.6.7 is to preconstruct a
polynomial remainder tree; that is, to exploit the fact that the polynomials
in Step [Assemble half-polynomials] have been calculated from their own
respective halves, and so on.

To lend support to the reader who desires to try this general evaluation
Algorithm 9.6.7, let us give an example of its workings. Consider the task
of calculating the number 64! not by the usual, sequential multiplication of
successive integers but by evaluating the polynomial

x(t) = t(1 + t)(2 + t)(3 + t)(4 + t)(5 + t)(6 + t)(7 + t)
= 5040t + 13068t2 + 13132t3 + 6769t4 + 1960t5322t6 + 28t7 + t8

at the 8 points
T = (1, 9, 17, 25, 33, 41, 49, 57)

and then taking the product of the eight evaluations to get the factorial.
Since the algorithm is fully recursive, tracing is nontrivial. However, if we
assign b = 2, say, in Step [Set breakover] and print out the half-polynomials
w, z and polynomial-mod results a, b right after these entities are established,
then our output should look as follows. On the first pass of eval we obtain

w(t) = 3825 − 4628t + 854t2 − 52t3,

z(t) = 3778929 − 350100t + 11990t2 − 180t3 + t4,

a(t) = x(t) mod w(t)
= −14821569000 + 17447650500t − 2735641440t2 + 109600260t3,

b(t) = x(t) mod z(t)
= −791762564494440 + 63916714435140t − 1735304951520t2

+ 16010208900t3,

and for each of a, b there will be further recursive passes of eval. If we keep
tracing in this way, the subsequent passes reveal

w(t) = 9 − 10t + t2,

z(t) = 425 − 42t + t2,

a(t) = −64819440 + 64859760t,

b(t) = −808538598000 + 49305458160t,

and, continuing in recursive order,

w(t) = 1353 − 74t + t2,

z(t) = 2793 − 106t + t2,

a(t) = −46869100573680 + 1514239317360t,

b(t) = −685006261415280 + 15148583316720t.
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There are no more recursive levels (for our example choice b = 2) because
the eval function will break over to some classical method such as an easy
instance of Horner’s rule and evaluate these last a(t), b(t) values directly, each
one at four t = ti values. The final returned entity from eval turns out to be
the sequence

(x(t0), . . . , x(t7)) = (40320, 518918400, 29654190720, 424097856000,

3100796899200, 15214711438080, 57274321104000, 178462987637760).

Indeed, the product of these eight values is exactly 64!, as expected. One
should note that in such a “product” operation—where evaluations are
eventually all multiplied together—the last phase of the eval function need
not return a union of two signals, but may instead return the product
eval(a, u) ∗ eval(b, v). If that is the designer’s choice, then the step [Check
breakover threshold . . .] must also return the product of the indicated x(ti).

Incidentally, polynomial coefficients do not necessarily grow large as the
above example seems to suggest. For one thing, when working on such as a
factoring problem, one will typically be reducing all coefficients modulo some
N , at every level. And there is a clean way to handle the problem of evaluating
x(t) of degree D at some smaller number of points, say at t0, . . . , tn−1 with
n < D. One can simply calculate a new polynomial s as the remainder

s(t) = x(t) mod

⎛
⎝n−1∏

j=0

(t − tj)

⎞
⎠ ,

whence evaluation of s (whose degree is now about n) at the n given points
ti will suffice.

9.7 Exercises

9.1. Show that both the base-B and balanced base-B representations are
unique. That is, for any nonnegative integer x, there is one and only one
collection of digits corresponding to each definition.

9.2. Although this chapter has started with multiplication, it is worthwhile
to look at least once at simple addition and subtraction, especially in view of
signed arithmetic.
(1) Assuming a base-B representation for each of two nonnegative integers

x, y, give an explicit algorithm for calculating the sum x + y, digit by
digit, so that this sum ends up also in base-B representation.

(2) Invoke the notion of signed-integer arithmetic, by arguing that to get
general sums and differences of integers of any signs, all one needs is the
summation algorithm of (1), and one other algorithm, namely, to calculate
the difference x−y when x ≥ y ≥ 0. (That is, every add/subtract problem
can be put into one of two forms, with an overall sign decision on the
result.)
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(3) Write out complete algorithms for addition and subtraction of integers in
base B, with signs arbitrary.

9.3. Assume that each of two nonnegative integers x, y is given in balanced
base-B representation. Give an explicit algorithm for calculating the sum
x + y, digit by digit, but always staying entirely within the balanced base-B
representation for the sum. Then write out a such a self-consistent multiply
algorithm for balanced representations.

9.4. It is known to children that multiplication can be effected via addition
alone, as in 3 · 5 = 5 + 5 + 5. This simple notion can actually have
practical import in some scenarios (actually, for some machines, especially
older machines where word multiply is especially costly), as seen in the
following tasks, where we study how to use storage tricks to reduce the amount
of calculation during a large-integer multiply. Consider the multiplication of
D-digit, base-(B = 2b) integers of size 2n, so that n ≈ bD. For the tasks below,
define a “word” operation (word multiply or word add) as one involving two
size-B operands (each having b bits).
(1) Argue first that standard grammar-school multiply, whereby one con-

structs via word multiplies a parallelogram and then adds up the columns
via word adds, requires O(D2) word multiplies and O(D2) word adds.

(2) Noting that there can be at most B possible rows of the parallelogram,
argue that all possible rows can be precomputed in such a way that the
full multiply requires O(BD) word multiplies and O(D2) word adds.

(3) Now argue that the precomputation of all possible rows of the parallelo-
gram can be done with successive additions and no multiplies of any kind,
so that the overall multiply can be done in O(D2 + BD) word adds.

(4) Argue that the grammar-school paradigm of task (1) above can be done
with O(n) bits of temporary memory. What, then, are the respective
memory requirements for tasks (2), (3)?

If one desires to create an example program, here is a possible task: Express
large integers in base B = 256 = 28 and implement via machine task (2)
above, using a 256-integer precomputed lookup table of possible rows to create
the usual parallelogram. Such a scheme may well be slower than other large-
integer methods, but as we have intimated, a machine with especially slow
word multiply can benefit from these ideas.

9.5. Write out an explicit algorithm (or an actual program) that uses the
wn relation (9.3) to effect multiple-precision squaring in about half a multiple-
precision multiply time. Note that you do not need to subtract out the term
δn explicitly, if you elect instead to modify slightly the i sum. The basic point
is that the grammar-school rhombus is effectively cut (about) in half. This
exercise is not as trivial as it may sound—there are precision considerations
attendant on the possibility of huge column sums.
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9.6. Use the identity (9.4) to write a program that calculates any product
xy for each of x, y having at most 15 binary bits, using only table lookups,
add/subtracts, shifts, and involving no more than 221 bits of table storage.
(Hint: The identity of the text can be used after one computes a certain lookup
table.)

9.7. Modify the binary divide algorithm (9.1.3) so that the value x mod N
is also returned. Note that one could just use equation (9.5), but there is a
way to use the local variables of the algorithm itself, and avoid the multiply
by N .

9.8. Prove that Arazi’s prescription (Algorithm 9.1.4) for simple modular
multiplication indeed returns the value (xy) mod N .

9.9. Work out an algorithm similar to Algorithm 9.1.3 for bases B = 2k, for
k > 1. Can this be done without explicit multiplies?

9.10. Prove Theorem 9.2.1. Then prove an extension: that the difference
y/R − (xR−1) mod N is one of {0, N, 2N, . . . , (1 + �x/(RN)�)N}.

9.11. Prove Theorem 9.2.4. Then develop and prove a corollary for powering,
of which equation (9.8) would be the special case of cubing.

9.12. In using the Montgomery rules, one has to precompute the residue
N ′ = (−N−1) mod R. In the case that R = 2s and N is odd, show that the
Newton iteration (9.10) with a set at −N , with initial value −N mod 8, and
the iteration thought of as a congruence modulo R, quickly converges to N ′.
In particular, show how the earlier iterates can be performed modulo smaller
powers of 2, so that the total work involved, assuming naive multiplication and
squaring, can be effected with about 4/3 of an s-bit multiply and about 1/3 of
an s-bit square operation. Since part of each product involved is obliterated
by the mod reduction, show how the work involved can be reduced further.
Contrast this method with a traditional inverse calculation.

9.13. We have indicated that Newton iterations, while efficient, involve
adroit choices of initial values. For the reciprocation of real numbers, equation
(9.10), describe rigorously the range of initial guesses for a given positive real
a, such that the Newton iteration indeed causes x to converge to 1/a.

9.14. We have observed that with Newton iteration one may “divide using
multiplication alone.” It turns out that one may also take square roots in the
same spirit. Consider the coupled Newton iteration

x = y = 1;
do {

x = x/2 + (1 + a)y/2;
y = 2y − xy2;
y = 2y − xy2;

}
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where “do” simply means one repeats what is in the braces for some
appropriate total iteration count. Note that the duplication of the y iteration
is intentional! Show that this scheme formally generates the binomial series of√

1 + a via the variable x. How many correct terms obtain after k iterations
of the do loop?

Next, calculate some real-valued square roots in this way, noting the
important restriction that |a| cannot be too large, lest divergence occur (the
formal correctness of the resulting series in powers of a does not, of course,
automatically guarantee convergence).

Then, consider this question: Can one use these ideas to create an
algorithm for extracting integer square roots? This could be a replacement
for Algorithm 9.2.11; the latter, we note, does involve explicit division. On
this question it may be helpful to consider, for given n to be square-rooted,
such as

√
n/4q = 2−q

√
n or some similar construct, to keep convergence under

control.
Incidentally, it is of interest that the standard, real-domain, Newton

iteration for the inverse square root automatically has division-free form,
yet we appear to be compelled to invoke such as the above coupled-variable
expedient for a positive fractional power.

9.15. The Cullen numbers are Cn = n2n +1. Write a Montgomery powering
program specifically tailored to find composite Cullen numbers, via relations
such as 2Cn−1 ≡ 1 (mod Cn). For example, within the powering algorithm
for modulus N = C245 you would be taking say R = 2253 so that R > N .
You could observe, for example, that C141 is a base-2 pseudoprime in this way
(it is actually a prime). A much larger example of a Cullen prime is Wilfrid
Keller’s C18496. For more on Cullen numbers see Exercise 1.83.

9.16. Say that we wish to evaluate 1/3 using the Newton reciprocation of
the text (among real numbers, so that the result will be 0.3333 . . .). For initial
guess x0 = 1/2, prove that for positive n the n-th iterate xn is in fact

xn =
22n − 1
3 · 22n ,

in this way revealing the quadratic-convergence property of a successful
Newton loop. The fact that a closed-form expression can even be given for the
Newton iterates is interesting in itself. Such closed forms are rare—can you
find any others?

9.17. Work out the asymptotic complexity of Algorithm 9.2.8, in terms of
a size-N multiply, and assuming all the shifting enhancements discussed in
the text. Then give the asymptotic complexity of the composite operation
(xy) mod N , for 0 ≤ x, y < N , in the case that the generalized reciprocal is not
yet known. What is the complexity for (xy) mod N if the reciprocal is known?
(This should be asymptotically the same as the composite Montgomery
operation (xy) mod N if one ignores the precomputations attendant to the
latter.) Incidentally, in actual programs that invoke the Newton–Barrett ideas,
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one can place within the general mod routine a check to see whether the
reciprocal is known, and if it is not, then the generalized reciprocal algorithm
is invoked, and so on.

9.18. Work out the asymptotic complexity of Algorithm 9.2.13 for given
x, N in terms of a count of multiplications by integers c of various sizes. For
example, assuming some grammar-school variant for multiplication, the bit-
complexity of an operation yc would be O(ln y ln c). Answer the interesting
question: At what size of |c| (compared to N = 2q + c) is the special form
reduction under discussion about as wasteful as some other prevailing schemes
(such as long division, or the Newton–Barrett variants) for the mod operation?
Incidentally, the most useful domain of applicability of the method is the case
that c is one machine word in size.

9.19. Simplify algorithm 9.4.2 in the case that one does not need an extended
solution ax + by = g, rather needs only the inverse itself. (That is, not all the
machinations of the algorithm are really required.)

9.20. Implement the recursive gcd Algorithm 9.4.6. (Or, implement the
newer Algorithm 9.4.7; see next paragraph.) Optimize the breakover param-
eters lim and prec for maximum speed in the calculation of rgcd(x, y) for
each of x, y of various (approximately equal) sizes. You should be able to see
rgcd() outperforming cgcd() in the region of, very roughly speaking, thou-
sands of bits. (Note: Our display of Algorithm 9.4.6 is done in such a way
that if the usual rules of global variables, such as matrix G, and variables lo-
cal to procedures, such as the variables x, y in hgcd() and so on, are followed
in the computer language, then transcription from our notation to a working
program should not be too tedious.)

As for Algorithm 9.4.7, the reader should find that different optimization
issues accrue. For example, we found that Algorithm 9.4.6 typically runs faster
if there is no good way to do such as trailing-zero detection and bit-shifting
on huge numbers. On the other hand, when such expedients are efficient for
the programmer, the newer Algorithm 9.4.7 should dominate.

9.21. Prove that Algorithm 9.2.10 works. Furthermore, work out a version
that uses the shift-splitting idea embodied in the relation (9.12) and comments
following. A good source for loop constructs in this regard is [Menezes et al.
1997].

Also, investigate the conjecture in [Oki 2003] that one may more tightly
assign s = 2B(N − 1) in Algorithm 9.2.10.

9.22. Prove that Algorithm 9.2.11 works. It helps to observe that x is
definitely decreasing during the iteration loop. Then prove the O(ln lnN)
estimate for the number of steps to terminate. Then invoke the idea of
changing precision at every step, to show that the bit-complexity of a properly
tuned algorithm can be brought down to O

(
ln2 N

)
. Many of these ideas date

back to the treatment in [Alt 1979].
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9.23. How general can be the initialization of x in Algorithm 9.2.11?

9.24. Write out a (very) simple algorithm that uses Algorithm 9.2.11 to
determine whether a given integer N is a square. Note that there are much
more efficient ways of approaching the problem, for example first ruling out
the square property modulo some small primes [Cohen 2000].

9.25. Implement Algorithm 9.2.13 within a Lucas–Lehmer test, to prove or
disprove primality of various Mersenne numbers 2q − 1. Note that with the
special form mod reduction, one does not even need general multiplication for
Lucas–Lehmer tests; just squaring will do.

9.26. Prove that Algorithm 9.2.13 works; that is, it terminates with the
correct returned result.

9.27. Work out an algorithm for fast mod operation with respect to moduli
of the form

p = 2a + 2b + · · · + 1,

where the existing exponents (binary-bit positions) a, b, . . . are sparse; i.e.,
a small fraction of the bits of p are 1’s. Work out also a generalization in
which minus signs are allowed, e.g., p = 2a ± 2b ± · · · ± 1, with the existing
exponents still being sparse. You may find the relevant papers [Solinas 1999]
and [Johnson et al. 2001] of interest in this regard.

9.28. Some computations, such as the Fermat number transform (FNT)
and other number-theoretical transforms, require multiplication by powers of
two. On the basis of Theorem 9.2.12, work out an algorithm that for modulus
N = 2m+1, quickly evaluates (x2r) mod N for x ∈ [0, N−1] and any (positive
or negative) integer r. What is desired is an algorithm that quickly performs
the carry adjustments to which the theorem refers, rendering all bits of the
desired residue in standard, nonnegative form (unless, of course, one prefers
to stay with a balanced representation or some other paradigm that allows
negative digits).

9.29. Work out the symbolic powering relation of the type (9.16), but for
the scheme of Algorithm 9.3.1.

9.30. Prove that Algorithm 7.2.4 works. It helps to track through small
examples, such as n = 00112, for which m = 10012 (and so we have
intentionally padded n to have four bits). Compare the complexity with that of
a trivial modification, suitable for elliptic curve arithmetic, to the “left-right”
ladder, Algorithm 9.3.1, to determine whether there is any real advantage in
the “add-subtract” paradigm.

9.31. For the binary gcd and extended binary algorithms, show how to
enhance performance by removing some of the operations when, say, y is
prime and we wish to calculate x−1 mod y. The key is to note that after
the [Initialize] step of each algorithm, knowledge that y is odd allows the
removal of some of the internal variables. In this way, end up with an inversion
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algorithm that inputs x, y and requires only four internal variables to calculate
the inverse of x.

9.32. Can Algorithm 9.4.4 be generalized to composite p?

9.33. Prove that Algorithms 9.4.4 and 9.4.5 work. For the latter algorithm,
it may help to observe how one inverts a pure power of two modulo a Mersenne
prime.

9.34. In the spirit of the special-case mod Algorithm 9.2.13, which relied
heavily on bit shifting, recast Algorithm 9.4.5 to indicate the actual shifts
required in the various steps. In particular, not only the mod operation but
multiplication by a power of two is especially simple for Mersenne prime
moduli, so use these simplifications to rewrite the algorithm.

9.35. Can one perform a gcd on two numbers each of size N in polynomial
time (i.e., time proportional to some power lgα N), using a polynomial number
of parallelized processors (i.e., lgβ N of them)? An interesting reference is
[Cesari 1998], where it is explained that it is currently unknown whether such
a scheme is possible.

9.36. Write out a clear algorithm for a full integer multiplication using the
Karatsuba method. Make sure to show the recursive nature of the method,
and also to handle properly the problem of carry, which must be addressed
when any final digits overflow the base size.

9.37. Show that a Karatsuba-like recursion on the (D = 3) Toom–Cook
method (i.e., recursion on Algorithm 9.5.2) yields integer multiplication of
two size-N numbers in what is claimed in the text, namely, O((lnN)ln 5/ ln 3)
word multiplies. (All of this assumes that we count neither additions nor the
constant multiplies as they would arise in every recursive [Reconstruction]
step of Algorithm 9.5.2.)

9.38. Recast the [Initialize] step of Algorithm 9.5.2 so that the ri, si can be
most efficiently calculated.

9.39. We have seen that an acyclic convolution of length N can be effected
in 2N −1 multiplies (aside from multiplications by constants; e.g., a term such
as 4x can be done with left-shift alone, no explicit multiply). It turns out that
a cyclic convolution can be effected in 2N − d(N) multiplies, where d is the
standard divisor function (the number of divisors of n), while a negacyclic can
be effected in 2N − 1 multiplies. (These wonderful results are due chiefly to
S. Winograd; see the older but superb collection [McClellan and Rader 1979].)
Here are some explicit related problems:
(1) Show that two complex numbers a + bi, c + di may be multiplied via only

three real multiplies.
(2) Work out an algorithm that performs a length-4 negacyclic in nine

multiplies, but with all constant mul or div operations being by powers of
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two (and thus, mere shifts). The theoretical minimum is, of course, seven
multiplies, but such a nine-mul version has its advantages.

(3) Use Toom–Cook ideas to develop an explicit length-4 negacyclic scheme
that does require only seven multiplies.

(4) Can one use a length-(D > 2) negacyclic to develop a Karatsuba-like
multiply that is asymptotically better than O

(
(lnD)ln 3/ ln 2

)
?

(5) Show how to use a Walsh–Hadamard transform to effect a length-16 cyclic
convolution in 43 multiplies [Crandall 1996a]. Though the theoretical
minimum multiply count for this length is 27, the Walsh–Hadamard
scheme has no troublesome constant coefficients. The scheme also appears
to be a kind of bridge between Winograd complexities (linear in N) and
transform-based complexities (N lnN). Indeed, 43 is not even as large as
16 lg 16. Incidentally, the true complexity of the Walsh–Hadamard scheme
is still unknown.

9.40. Prove Theorem 9.5.13 by way of convolution ideas, along the following
lines. Let N = 2 · 3 · 5 · · · pm be a consecutive prime product, and define

rN (n) = #{(a, b) : a + b = n; gcd(a, N) = gcd(b, N) = 1; a, b ∈ [1, N − 1]},

that is, rN (n) is the number of representations we wish to bound below. Now
define a length-N signal y by yn = 1 if gcd(n, N) = 1, else yn = 0. Define the
cyclic convolution

RN (n) = (y × y)n,

and argue that for n ∈ [0, N − 1],

RN (n) = rN (n) + rN (N + n).

In other words, the cyclic convolution gives us the combined representations
of n and N + n. Next, observe that the Ramanujan sum Y (9.26) is the DFT
of y, so that

RN (n) =
1
N

N−1∑
k=0

Y 2
k e2πikn/N .

Now prove that R is multiplicative, in the sense that if N = N1N2 with N1, N2
coprime, then RN (n) = RN1(n)RN2(n). Conclude that

RN (n) = ϕ2(N, n),

where ϕ2 is defined in the text after Theorem 9.5.13. So now we have a closed
form for rN (n)+ rN (N +n). Note that ϕ2 is positive if n is even. Next, argue
that if a + b = n (i.e., n is representable) then 2N − n is also representable.
Conclude that if rN (n) > 0 for all even n ∈ [N/2+1, N−1], then all sufficiently
large even integers are representable. This means that all we have to show is
that for n even in [N/2 + 1, N − 1], rN (n + N) is suitably small compared to
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ϕ2(N, n). To this end, observe that a+ b = N +n implies b > n, and consider
the count

#{b ∈ [n, N ] : b ≡ 0, n (mod N)}.

By estimating that count, conclude that for a suitable absolute constant C
and even n ∈ [N/2 + 1, N − 1]

rN (n) ≥ C
n

(ln lnN)2
− 2m+1.

This settles Theorem 9.5.13 for large enough products N , and the smaller
cases one may require such as N = 2, 6, 30 can be handled by inspecting the
finite number of cases n < 2N .

We note that the theorem can be demonstrated via direct sieving
techniques. Another alternative is to use the Chinese remainder theorem with
some combinatorics, to get RN as the ϕ2 function. An interesting question
is: Can the argument above (for bounding rN (N + n)), which is admittedly
a sieve argument of sorts, be completely avoided, by doing instead algebraic
manipulations on the negacyclic convolution y ×− y? As we intimated in the
text, this would involve the analysis of some interesting exponential sums.
We are unaware of any convenient closed form for the negacyclic, but if one
could be obtained, then the precise number of representations n = a+b would
likewise be cast in closed form.

9.41. Interesting exact results involving sums of squares can be achieved
elegantly through careful application of convolution principles. The essential
idea is to consider a signal whose elements xn2 are 1’s, with all other elements
0’s. Let p be an odd prime, and start with the definition

x̂k =
(p−1)/2∑

j=0

(
1 − δ0j

2

)
e−2πij2k/p,

where δij = 1 if i = j and is otherwise 0. Show that x̂0 = p/2, while for
k ∈ [1, p − 1] we have

x̂k =
ωk

2
√

p,

where ωk =
(
k
p

)
,−i

(
k
p

)
, respectively, as p ≡ 1, 3 (mod 4). The idea is to

show all of this as a corollary to Theorem 2.3.7. (Note that the theory of
more general Gauss character sums connects with primality testing, as in our
Lemma 4.4.1 and developments thereafter.) Now for n ∈ [0, p−1] define Rm(n)
to be the count of m-squares representations

a2
1 + a2

2 + · · · + a2
m ≡ n (mod p)

in integers aj ∈ [0, (p − 1)/2], except that a representation is given a weight
factor of 1/2 for every zero component aj . For example, a representation
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02 + 32 + 02 is given a weight factor of 1/4. By considering an appropriate
m-fold convolution of a certain signal with itself, show that

R2(n) =
1
4

(
p +

(−1
p

)
(pδ0n − 1)

)
,

R3(n) =
1
8

(
p2 +

(−n

p

)
p

)
,

R4(n) =
1
16

(
p3 + p2δ0n − p

)
.

(A typical test case that can be verified by hand is for p = 23: R4(0) =
12673/16, and for any n ≡ 0 (mod p), R4(n) = 759.)

Now, from these exact relations, conclude:
(1) Any prime p ≡ 1 (mod 4) is a sum of two squares, while p ≡ 3 (mod 4)

cannot be (cf. Exercise 5.16).
(2) There exists 0 < m < p such that mp = a2 + b2 + c2 + d2.
The result (2) leads quickly to the classical Lagrange theorem that every
nonnegative integer is a sum of four squares. One would use, say, the Lagrange
descent argument to argue that the smallest m that satisfies the statement
(2) is m = 1, so that every prime is a sum of four squares. A final step then is
to prove that if any two integers a, b are representable via four squares, then
ab is. These finishing details can be found in [Hardy and Wright 1979].

What can be said about sums of three squares? An interesting challenge
would be to use convolution to establish the relatively difficult celebrated
theorem of Gauss that “num = ∆ + ∆ + ∆,” meaning every nonnegative
integer is a sum of three triangular numbers, i.e., numbers of the form
k(k + 1)/2, k ≥ 0. This is equivalent to the statement that every integer
congruent to 3 (mod 8) is a sum of three squares. (In fact the only numbers
not admitting of a three-square representation are those of the form 4a(8b+7).)
It is unclear how to proceed with such a challenge; for one thing, from the
relation above for R2, any p ≡ 7 (mod 8) enjoys, strangely enough, some
representation mp = a2 + b2 + c2 with m < p. (For example, 7 is not a sum of
three squares, but 14 is.)

9.42. Show that cyclic convolution of two length-D signals is equivalent to
multiplication of two polynomials; that is,

x × y ≡ x(t)y(t) (mod tD − 1),

where “≡” here means that the elements of the signal on the left correspond
to the coefficients of the polynomial on the right. Then show that negacyclic
convolution x ×− y is equivalent to multiplication (mod tD + 1). Using the
Chinese remainder theorem for polynomials, use these facts to establish the
identity (9.36) that is exploited in Nussbaumer convolution.

9.43. In the spirit of Exercise 9.42, give a polynomial description of the more
general weighted convolution x ×a y where a =

(
Aj

)
for some generator A.
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9.44. Implement Algorithm 9.5.19, with a view to proving that p = 2521 − 1
is prime via the Lucas–Lehmer test. The idea is to maintain the peculiar,
variable-base representation for everything, all through the primality test. (In
other words, the output of Algorithm 9.5.19 is ready-made as input for a
subsequent call to the algorithm.) For larger primes, such as the gargantuan
new Mersenne prime discoveries, investigators have used run lengths such
that q/D, the typical bit size of a variable-base digit, is roughly 16 bits or
less. Again, this is to suppress as much as possible the floating-point errors.

9.45. Implement Algorithm 9.5.17 to establish the character of various
Fermat numbers, using the Pepin test, that Fn is prime if and only if
3(Fn−1)/2 ≡ −1 (mod Fn). Alternatively, the same algorithm can be used in
factorization studies [Brent et al. 2000]. (Note: The balanced representation
error reduction scheme mentioned in Exercise 9.55 also applies to this
algorithm for arithmetic with Fermat numbers.) This method has been
employed for the resolution of F22 in 1993 [Crandall et al. 1995] and F24
[Crandall et al. 1999].

9.46. Implement Algorithm 9.5.20 to perform large-integer multiplication
via cyclic convolution of zero-padded signals. Can the DWT methods be
applied to do negacyclic integer convolution via an appropriate CRT prime
set?

9.47. Show that if the arithmetic field is equipped with a cube root of
unity, then for D = 3 · 2k one can perform a length-D cyclic convolution
by recombining three separate length-2k convolutions. (See Exercise 9.43 and
consider the symbolic factorization of tD − 1 for such D.) This technique has
actually been used by G. Woltman in the discovery of new Mersenne primes
(he has employed IBDWTs of length 3 · 2k).

9.48. Implement the ideas in [Percival 2003], where Algorithm 9.5.19 is
generalized for arithmetic modulo Proth numbers k ·2n ±1. The essential idea
is that working modulo a number a ± b can be done with good error control,
as long as the prime product

∏
p|ab p is sufficiently small. In the Percival

approach, one generalizes the variable-base representation of Theorem 9.5.18
to involve products over prime powers in the form

x =
D−1∑
j=0

xj

∏
pk‖a

p�kj/D� ∏
qm‖b

q�−mj/D�+mj/D,

for fast arithmetic modulo a − b.
Note that the marriage of such ideas with the fast mod operation of

Algorithm 9.2.14 would result in an efficient union for computations that
need to move away from the restricted theme of Mersenne/Fermat numbers.
Indeed, as evidenced in the generalized Fermat number searches described in
[Dubner and Gallot 2002], wedding bells have already sounded.
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9.49. In the FFT literature there exists an especially efficient real-signal
transform called the Sorenson FFT. This is a split-radix transform that
uses

√
2 and a special decimation scheme to achieve essentially the lowest-

complexity FFT known for real signals; although in modern times the issues
of memory, machine cache, and processor features are so overwhelming that
sheer complexity counts have fallen to a lesser status. Now, for the ring Zn

with n = 2m + 1 and m a multiple of 4, show that a square root of 2 is given
by √

2 = 23m/4 − 2m/4.

Then, determine whether a Sorenson transform modulo n can be done simply
by using what is now the standard Sorenson routine but with

√
2 interpreted

as above. (Detailed coding for a Sorenson real-signal FFT is found in [Crandall
1994b].)

9.50. Study the transform that has the usual DFT form

Xk =
N−1∑
j=0

xjh
−jk,

except that the signal elements xj and the root h of order N exist in the field
Q

(√
5
)
. This has been called a number-theoretical transform (NTT) over the

“golden section quadratic field,” because the golden mean φ =
(√

5 − 1
)
/2

is in the field. Assume that we restrict further to the ring Z[φ] so that the
signal elements and the root are of the form a + bφ with a, b integers. Argue
first that a multiplication in the domain takes three integer multiplies. Then
consider the field Fp

(√
5
)

and work out a theory for the possible length of
such transforms over that field, when the root is taken to be a power of the
golden mean φ. Then, consider the transform (N is even)

Xk =
N/2−1∑

j=0

H−jkxj

where the new signal vector is xj = (aj , bj) and where the original signal
component was xj = aj + bjφ in the field. Here, the matrix H is

H =
(

1 1
1 0

)
.

Describe in what sense this matrix transform is equivalent to the DFT
definition preceding, that the powers of H are given conveniently in terms
of Fibonacci numbers

Hn =
(

Fn+1 Fn

Fn Fn−1

)
,

and that this n-th power can be computed in divide-and-conquer fashion in
O(lnn) matrix multiplications. In conclusion, derive the complexity of this
matrix-based number-theoretical transform.
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This example of exotic transforms, being reminiscent of the discrete Galois
transform (DGT) of the text, appears in [Dimitrov et al. 1995], [Dimitrov et
al. 1998], and has actually been proposed as an idea for obtaining meaningful
spectra—in a discrete field, no less—of real-valued, real-world data.

9.51. Pursuant to Algorithm 9.5.22 for cyclic convolution, work out a similar
algorithm for negacyclic integer convolution via a combined DGT/DWT
method, with halved run length, meaning you want to convolve two real integer
sequences each of length D, via a complex DGT of length D/2. You would need
to establish, for a relevant weighted convolution of length D/2, a (D/2)-th
root of i in a field Fp2 with p a Mersenne prime. Details that may help in such
an implementation can be found in [Crandall 1997b].

9.52. Study the so-called Fermat number transform (FNT) defined by

Xk =
D−1∑
j=0

xjg
−jk (mod fn),

where fn = 2n + 1 and g has multiplicative order D in Zn. A useful choice is
g a power of two, in which case, what are the allowed signal lengths D? The
FNT has the advantage that the internal butterflies of a fast implementation
involve multiply-free arithmetic, but the distinct disadvantage of restricted
signal lengths. A particular question is: Are there useful applications of the
FNT in computational number theory, other than the appearance in the
Schönhage Algorithm 9.5.23?

9.53. In such as Algorithm 9.5.7 one may wish to invoke an efficient
transpose. This is not hard to do if the matrix is square, but otherwise, the
problem is nontrivial. Note that the problem is again trivial, for any matrix,
if one is allowed to copy the original matrix, then write it back in transpose
order. However this can involve long memory jumps, which are not necessary,
as well as all the memory for the copy.

So, work out an algorithm for a general in-place transpose, that is, no
matrix copy allowed, trying to keep everything as “local” as possible, meaning
you want in some sense minimal memory jumps. Some references are [Van
Loan 1992], [Bailey 1990].

9.54. By analyzing the respective complexities of the steps of Algorithm
9.5.8, (1) show that the complexity claim of the text holds for calculating
X ′

k; (2) give more precise information about the implied big-O constant in
the bound 9.24; and (3) prove the inequality (9.25); and 4) explain how the
inequality leads to the claimed complexity estimate for the algorithm.

The interested reader might investigate/improve on the clever aspect of
the original Dutt–Rokhlin method, which was to expand an oscillation eicz in
a Gaussian series [Dutt and Rokhlin 1993]. There have

9.55. Rewrite Algorithm 9.5.12 to employ balanced-digit representation
(Definition 9.1.2). Note that the important changes center on the carry
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adjustment step. Study the phenomenon raised in the text after the algorithm,
namely, that of reduced error in the balanced option. There exist some
numerical studies of this, together with some theoretical conjectures (see
[Crandall and Fagin 1994], [Crandall et al. 1999] and references therein), but
very little is known in the way of error bounds that are both rigorous and
pragmatic.

9.56. Show that if p = 2q − 1 with q odd and x ∈ {0, . . . , p − 1}, then
x2 mod p can be calculated using two size-(q/2) multiplies. Hint: Represent
x = a + b2(q+1)/2 and relate the result of squaring x to the numbers

(a + b)(a + 2b) and (a − b)(a − 2b).

This interesting procedure gives nothing really new—because we already know
that squaring (in the grammar-school range) is about half as complex as
multiplication—but the method here is a different way to get the speed
doubling, and furthermore does not involve microscopic intervention into the
squaring loops as discussed for equation (9.3).

9.57. Do there always exist primes p1, . . . , pr required in Algorithm 9.5.20,
and how does one find them?

9.58. Prove, as suggested by the statement of Algorithm 9.5.20, that any
convolution element of x × y in that algorithm is indeed bounded by NM2.
For application to large-integer multiplication, can one invoke balanced
representation ideas, that is, considering any integer (mod p) as lying in
[−(p + 1)/2, (p − 1)/2], to lower the bounding requirements, hence possibly
reducing the set of CRT primes?

9.59. For the discrete, prime-based transform (9.33) in cases where g has a
square root, h2 = g, answer precisely: What is a closed form for the transform
element Xk if the input signal is defined x =

(
hj2)

, j = 0, . . . , p − 1?
Noting the peculiar simplicity of the Xk, find an analogous signal x having
N elements in the complex domain, for which the usual, complex-valued FFT
has a convenient property for the magnitudes |Xk|. (Such a signal is called
a “chirp” signal and has high value in testing FFT routines, which must, of
course, exhibit a numerical manifestation of the special magnitude property.)

9.60. For the Mersenne prime p = 2127 − 1, exhibit an explicit primitive
64-th root of unity a + bi in F∗

p2 .

9.61. Show that if a+ bi is a primitive root of maximum order p2 −1 in F∗
p2

(with p ≡ 3 (mod 4), so that “i” exists), then a2 +b2 must be a primitive root
of maximum order p − 1 in F∗

p. Is the converse true?
Give some Mersenne primes p = 2q − 1 for which 6 + i is a primitive root

in F∗
p2 .

9.62. Prove that the DGT integer convolution Algorithm 9.5.22 works.
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9.63. If the Mersenne prime p = 289 − 1 is used in the DGT integer
convolution Algorithm 9.5.22 for zero-padded, large-integer multiply, and
the elements of signals x, y are interpreted as digits in base B = 216, how
large can x, y be? What if balanced digit representation (with each digit in
[−215, 215 − 1]) is used?

9.64. Describe how to use Algorithm 9.5.22 with a set of Mersenne primes
to effect integer convolution via CRT reconstruction, including the precise
manner of reconstruction. (Incidentally, CRT reconstruction for a Mersenne
prime set is especially straightforward.)

9.65. Analyze the complexity of Algorithm 9.5.22, with a view to the type
of recursion seen in the Schönhage Algorithm 9.5.23, and explain how this
compares to the entries of Table 9.1.

9.66. Describe how DWT ideas can be used to obviate the need for zero-
padding in Algorithm 9.5.25. Specifically, show how to use not a length-(2m)
cyclic, rather a length-m cyclic and a length-m negacyclic. This is possible
because we have a primitive m-th root of −1, so a DWT can be used for the
negacyclic. Note that this does not significantly change the complexity, but
in practice it reduces memory requirements.

9.67. Prove the complexity claim following the Nussbaumer Algorithm
9.5.25 for the O(D lnD) operation bound. Then analyze the somewhat
intricate problem of bit-complexity for the algorithm. One way to start on such
bit-complexity analysis is to decide upon the optimal base B, as intimated in
the complexity table of Section 9.5.8.

9.68. For odd primes p, the Nussbaumer Algorithm 9.5.25 will serve to
evaluate cyclic or negacyclic convolutions (mod p); that is, for ring R identified
with Fp. All that is required is to perform all R-element operations (mod p),
so the structure of the algorithm as given does not change. Use such a
Nussbaumer implementation to establish Fermat’s last theorem for some large
exponents p, by invoking a convolution to effect the Shokrollahi DFT. There
are various means for converting DFTs into convolutions. One method is to
invoke the Bluestein reindexing trick, another is to consider the DFT to be
a polynomial evaluation problem, and yet another is Rader’s trick (in the
case that signal length is a prime power). Furthermore, convolutions of not-
power-of-two length can be embedded in larger, more convenient convolutions
(see [Crandall 1996a] for a discussion of such interplay between transforms
and convolutions). You would use Theorem 9.5.14, noting first that the DFT
length can be brought down to (p − 1)/2. Then evaluate the DFT via a
cyclic convolution of power-of-two length by invoking the Nussbaumer method
(mod p). Aside from the recent and spectacular theoretical success of A. Wiles
in proving the “last theorem,” numerical studies have settled all exponents
p < 12000000 [Buhler et al. 2000]. Incidentally, the largest prime to have been
shown regular via the Shokrollahi criterion is p = 671008859 [Crandall 1996a].
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9.69. Implement Algorithm 9.6.1 for multiplication of polynomials with
coefficients (mod p). Such an implementation is useful in, say, the Schoof
algorithm for counting points on elliptic curves, for in that method, one has
not only to multiply large polynomials, but create powering ladders that rely
on the large-degree-polynomial multiplies.

9.70. Prove both complexity claims in the text following Algorithm 9.6.1.
Describe under what conditions, e.g., what D, p ranges, or what memory
constraints, and so on, which of the methods indicated—Nussbaumer
convolution or binary-segmentation method—would be the more practical.

For further analysis, you might consider the Shoup method for polynomial
multiplication [Shoup 1995], which is a CRT-convolution-based method, which
will have its own complexity formula. To which of the two above methods does
the Shoup method compare most closely, in complexity terms?

9.71. Say that polynomials x(t), y(t) have coefficients (mod p) and degrees
≈ N . For Algorithm 9.6.4, which calls Algorithm 9.6.2, what is the asymptotic
bit complexity of the polynomial mod operation x mod y, in terms of p
and N? (You need to make an assumption about the complexity of the
integer multiplication for products of coefficients.) What if one is, as in many
integer mod scenarios, doing many polynomial mods with the same modulus
polynomial y(t), so that one has only to evaluate the truncated inverse R[y, ]
once?

9.72. Here we explore another relation for Bernoulli numbers (mod p).
Prove the theorem that if p ≥ 5 is prime, a is coprime to p, and we define
d = −p−1 mod a, then for even m in [2, p − 3],

Bm

m
(am − 1) ≡

p−1∑
j=0

jm−1(dj mod a) (mod p).

Then establish the corollary that

Bm

m
(2−m − 1) ≡ 1

2

(p−1)/2∑
j=1

jm−1 (mod p).

Now achieve the interesting conclusion that if p ≡ 3 (mod 4), then B(p+1)/2
cannot vanish (mod p).

Such summation formulae have some practical value, but more computa-
tionally efficient forms exist, in which summation indices need cover only a
fraction of the integers in the interval [0, p − 1], see [Wagstaff 1978], [Tanner
and Wagstaff 1987].

9.73. Prove that Algorithm 9.6.5 works. Then modify the algorithm for
a somewhat different problem, which is to evaluate a polynomial given in
product form

x(t) = t(t + d)(t + 2d) · · · (t + (n − 1)d),



534 Chapter 9 FAST ALGORITHMS FOR LARGE-INTEGER ARITHMETIC

at a single given point t0. The idea is to choose some optimal G < n, and
start with a loop

for(0 ≤ j < G) aj =
∏G−1

q=0 (t0 + (q + Gj)d);

Arrive in this way at an algorithm that requires O(G2 + n/G) multiplies and
O(n + G2) adds to find x(t0). Show that by recursion on the partial product
in the for() loop above (which partial product is again of the type handled
by the overall algorithm), one can find x(t0) in O(nφ+ε) multiplies, where
φ =

(√
5 − 1

)
/2 is the golden mean. In this scenario, what is the total count

of adds?
Finally, use this sort of algorithm to evaluate large factorials, for example

to verify primality of some large p by testing whether (p − 1)! ≡ −1 (mod p).
The basic idea is that the evaluations of

(t + 1)(t + 2) · · · (t + m)

at points {0, m, 2m, . . . , (m − 1)m} do yield, when multiplied all together,(
m2

)
!. Searches for Wilson primes have used this technique with all arithmetic

performed (mod p2) [Crandall et al. 1997].

9.74. Say that a polynomial x(t) is known in product form, that is,

x(t) =
D−1∏
k=0

(t − tk),

with the field elements tk given. By considering the accumulation of pairwise
products, show that x can be expressed in coefficient form x(t) = x0 + x1t +
· · · + xD−1t

D−1 in O
(
D ln2 D

)
field operations.

9.75. Prove that Algorithm 9.6.7 works, and establish a complexity estimate
(expressed in terms of ring operations) if the partial polynomials and also the
polynomial mods are all effected in “grammar-school” fashion. Then, what
is a complexity estimate if the partial polynomials are generated via fast
multiplication (see Exercise 9.74) but the mods are still classical? Then, what
complexity accrues if fast polynomial multiply and mod (as in Algorithm
9.6.4) are both in force?

As an extension, investigate some striking new results in regard to
remainder trees (see Section 3.3) and—due to D. Bernstein—scaled remainder
trees for polynomials [Bernstein 2004a]. Such methods with appropriate
recasting of Algorithm 9.6.7 can result in complexity certainly as good as
O

(
D ln2+o(1) D

)
, with reductions in the implied big-O constant obtainable

via such as storage of key FFT operands during large-integer multiplication.

9.76. Investigate ways to relax the restriction that D be a power of two
in Algorithm 9.6.7. One way, of course, is just to assume that the original
polynomial has a flock of zero coefficients (and perforce, that the evaluation
point set T has power-of-two length), and pretend the degree of x is thus one
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less than a power of two. But another is to change the Step [Check breakover
threshold . . .] to test just whether len(T ) is odd. These kinds of approaches
will ensure that halving of signals can proceed during recursion.

9.8 Research problems

9.77. As we have intimated, the enhancements to power ladders can be
intricate, in many respects unresolved. In this exercise we tour some of the
interesting problems attendant on such enhancements.

When an inverse is in hand (alternatively, when point negations are
available in elliptic algebra), the add/subtract ladder options make the
situation more interesting. The add/subtract ladder Algorithm 7.2.4, for
example, has an interesting “stochastic” interpretation, as follows. Let x
denote a real number in (0, 1) and let y be the fractional part of 3x; i.e.,
y = 3x − �3x�. Then denote the exclusive-or of x, y by

z = x ∧ y,

meaning z is obtained by an exclusive-or of the bit streams of x and y
together. Now investigate this conjecture: If x, y are chosen at random, then
with probability 1, one-third of the binary bits of z are ones. If true, this
conjecture means that if you have a squaring operation that takes time S,
and a multiply operation that takes time M , then Algorithm 7.2.4 takes about
time (S + M/3)b, when the relevant operands have b binary bits. How does
this compare with the standard binary ladders of Algorithms 9.3.1, 9.3.2? How
does it compare with a base-(B = 3) case of the general windowing ladder
Algorithm 9.3.3? (In answering this you should be able to determine whether
the add/subtract ladder is equivalent or not to some windowing ladder.)

Next, work out a theory of precise squaring and addition counts for
practical ladders. For example, a more precise complexity estimate for he
left-right binary ladder is

C ∼ (b(y) − 1)S + (o(y) − 1)M,

where the exponent y has b(y) total bits, of which o(y) are 1’s. Such a theory
should be extended to the windowing ladders, with precomputation overhead
not ignored. In this way, describe quantitatively what sort of ladder would
be best for a typical cryptography application; namely, x, y have say 192 bits
each and xy is to be computed modulo some 192-bit prime.

Next, implement an elliptic multiplication ladder in base B = 16, which
means as in Algorithm 9.3.3 that four bits at a time of the exponent are
processed. Note that, as explained in the text following the windowing ladder
algorithm, you would need only the following point multiples: P, 3P, 5P, 7P . Of
course, one should be precomputing these small multiples also in an efficient
manner.

Next, study yet other ladder options (and this kind of extension to the
exercise reveals just how convoluted is this field of study) as described in
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[Müller 1997], [De Win et al. 1998], [Crandall 1999b] and references therein.
As just one example of attempted refinements, some investigators have
considered exponent expansions in which there is some guaranteed number of
0’s interposed between other digits. Then, too, there is the special advantage
inherent in highly compressible exponents [Yacobi 1999], such study being
further confounded by the possibility of base-dependent compressibility. It is
an interesting research matter to ascertain the precise relation between the
compressibility of an exponent and the optimal efficiency of powering to said
exponent.

9.78. In view of complexity results such as in Exercise 9.37, it would seem
that a large-D version of Toom–Cook could, with recursion, be brought down
to what is essentially an ideal bit complexity O

(
ln1+ε N

)
. However, as we

have intimated, the additions grow rapidly. Work out a theory of Toom–Cook
addition counts, and discuss the tradeoffs between very low multiplication
complexity and overwhelming complexity of additions. Note also the existence
of addition optimizations, as intimated in Exercise 9.38.

This is a difficult study, but of obvious practical value. For example, there
is nothing a priori preventing us from employing different, alternating Toom–
Cook schemes within a single, large recursive multiply. Clearly, to optimize
such a mixed scheme one should know something about the interplay of the
multiply and add counts, as well as other aspects of overhead. Yet another
such aspect is the shifting and data shuttling one must do to break up an
integer into its Toom–Cook coefficients.

9.79. How far should one be able to test numerically the Goldbach
conjecture by considering the acyclic convolution of the signal

G = (1, 1, 1, 0, 1, 1, 0, 1, 1, 0, . . .)

with itself? (Here, as in the text, the signal element Gn equals 1 if and only if
2n + 3 is prime.) What is the computational complexity for this convolution-
based approach for the settling of Goldbach’s conjecture for all even numbers
not exceeding x? Note that the conjecture has been settled for all even
numbers up to x = 4 · 1014 [Richstein 2001]. We note that explicit FFT-
based computations up to 108 or so have indeed been performed [Lavenier
and Saouter 1998]. Here is an interesting question: Can one resolve Goldbach
representations via pure-integer convolution on arrays of b-bit integers (say
b = 16 or 32), with prime locations signified by 1 bits, knowing in advance
that two prime bits lying in one integer is a relatively rare occurrence?

9.80. One can employ convolution ideas to analyze certain higher-order
additive problems in rings ZN , and perhaps in more complicated settings
leading into interesting research areas. Note that Exercise 9.41 deals with
sums of squares. But when higher powers are involved, the convolution and
spectral manipulations are problematic.

To embark on the research path intended herein, start by considering a k-
th powers exponential sum (the square and cubic versions appear in Exercise
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1.66), namely

Uk(a) =
N−1∑
x=0

e2πiaxk/N .

Denote by rs(n) the number of representations of n as a sum of s k-th powers
in ZN . Prove that whereas

N−1∑
n=0

rs(n) = Ns,

it also happens that

N−1∑
n=0

rs(n)2 =
1
N

N−1∑
a=0

|Uk(a)|2s.

It is this last relation that allows some interesting bounds and conclusions.
In fact, the spectral sum of powers |U |2s, if bounded above, will allow lower
bounds to be placed on the number of representable elements of ZN . In other
words, upper bounds on the spectral amplitude |U | effectively “control” the
representation counts across the ring, to analytic advantage.

Next, as an initial foray into the many research options, use the ideas and
results of Exercises 1.44, 1.66 to show that a positive constant c exists such
that for p prime, more than a fraction c of the elements of Zp are sums of two
cubes. Admittedly, we have seen that the theory of elliptic curves completely
settles the two-cube question—even for rings ZN with N composite—in the
manner of Exercise 7.20, but the idea of the present exercise is to use the
convolution and spectral notions alone. How high can you force c for, say,
sufficiently large primes p? One way to proceed is first to show from the
“p3/4” bound of Exercise 1.66 that every element of Zp is a sum of 5 cubes,
then to obtain sharper results by employing the best-possible ”p1/2” bound.
And what about this spectral approach for composite N? In this case one may
employ, for appropriate Fourier indices a, an “N2/3” bound (see for example
[Vaughan 1997, Theorem 4.2]).

Now try to find a simple proof of the theorem: If N is prime, then for
every k there exist positive constants ck, εk such that for a ≡ 0 (mod N) we
have

|Uk(a)| < ckN1−εk .

Then, show from this that for any k there is a fixed s (independent of
everything except k) such that every element of ZN , prime N , is a sum of
s k-th powers. Such bounds as the above on |U | are not too hard to establish,
using recursion on the Weyl expedient as used for the cubic case in Exercise
1.66. (Some of the references below explain how to do more work, to achieve
εk ≈ 1/k, in fact.)

Can you show the existence of the fixed s for composite N? Can you
establish explicit values for s for various k (recall the “4,5” dichotomy for the
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cubic case)? In such research, you would have to find upper bounds on general
U sums, and indeed these can be obtained; see [Vinogradov 1985], [Ellison and
Ellison 1985], [Nathanson 1996], [Vaughan 1997]. However, the hard part is
to establish explicit s, which means explicit bounding constants need to be
tracked; and many references, for theoretical and historical reasons, do not
bother with such detailed tracking.

One of the most fascinating aspects of this research area is the fusion of
theory and computation. That is, if you have bounding parameters ck, εk for
k-th power problems as above, then you will likely find yourself in a situation
where theory is handling the “sufficiently large” N , yet you need computation
to handle all the cases of N from the ground up to that theory threshold.
Computation looms especially important, in fact, when the constant ck is
large or, to a lesser extent, when εk is small. In this light, the great efforts
of 20th-century analysts to establish general bounds on exponential sums can
now be viewed from a computational perspective.

These studies are, of course, reminiscent of the literature on the celebrated
Waring conjecture, which conjecture claims representability by a fixed number
s of k-th powers, but among the nonnegative integers (e.g., the Lagrange
four-square theorem of Exercise 9.41 amounts to proof of the k = 2, s = 4
subcase of the general Waring conjecture). The issues in this full Waring
scenario are different, because for one thing the exponential sums are to
be taken not over all ring elements but only up to index x ≈ �N1/k� or
thereabouts, and the bounding procedures are accordingly more intricate.
In spite of such obstacles, a good research extension would be to establish
the classical Waring estimates on s for given k—which estimates historically
involve continuous integrals—using discrete convolution methods alone. (In
1909 D. Hilbert proved the Waring conjecture via an ingenious combinatorial
approach, while the incisive and powerful continuum methods appear in many
references, e.g., [Hardy 1966], [Nathanson 1996], [Vaughan 1997].) Incidentally,
many Waring-type questions for finite fields have been completely resolved;
see for example [Winterhof 1998].

9.81. Is there a way to handle large convolutions without DFT, by using
the kind of matrix idea that underlies Algorithm 9.5.7? That is, you would
be calculating a convolution in small pieces, with the usual idea in force: The
signals to be convolved can be stored on massive (say disk) media, while the
computations proceed in relatively small memory (i.e., about the size of some
matrix row/column).

Along these lines, design a standard three-FFT convolution for arbitrary
signals, except do it in matrix form reminiscent of Algorithm 9.5.7, yet do not
do unnecessary transposes. Hint: Arrange for the first FFT to leave the data
in such a state that after the usual dyadic (spectral) product, the inverse FFT
can start right off with row FFTs.

Incidentally, E. Mayer has worked out FFT schemes that do no transposes
of any kind; rather, his ideas involve columnwise FFTs that avoid common
memory problems. See [Crandall et al. 1999] for Mayer’s discussion.
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9.82. A certain prime suggested in [Craig-Wood 1998], namely

p = 264 − 232 + 1,

has advantageous properties in regard to CRT-based convolution. Investigate
some of these advantages, for example by stating the possible signal lengths
for number-theoretical transforms modulo p, exhibiting a small-magnitude
element of order 64 (such elements might figure well into certain FFT
structures), and so on.

9.83. Here is a surprising result: Length-8 cyclic convolution modulo a
Mersenne prime can be done via only eleven multiplies. It is surprising because
the Winograd bound would be 2 · 8 − 4 = 12 multiplies, as in Exercise 9.39.
Of course, the resolution of this paradox is that the Mersenne mod changes
the problem slightly.

To reveal the phenomenon, first establish the existence of an 8-th
root of unity in Fp2 , with p being a Mersenne prime and the root being
symbolically simple enough that DGTs can be performed without explicit
integer multiplications. Then consider the length-8 DGT, used to cyclically
convolve two integer signals x, y. Next, argue that the transforms X, Y have
sufficient symmetry that the dyadic product X ∗Y requires two real multiplies
and three complex multiplies. This is the requisite count of 11 muls.

An open question is: Are there similar “violations” of the Winograd bound
for lengths greater than eight?

9.84. Study the interesting observations of [Yagle 1995], who notes that
matrix multiplication involving n×n matrices can be effected via a convolution
of length n3. This is not especially surprising, since we cannot do an
arbitrary length-n convolution faster than O(n lnn) operations. However,
Yagle saw that the indicated convolution is sparse, and this leads to interesting
developments, touching, even, on number-theoretical transforms.



Appendix

BOOK PSEUDOCODE

All algorithms in this book are written in a particular pseudocode form
describable, perhaps, as a “fusion of English and C languages.” The
motivations for our particular pseudocode design have been summarized in
the Preface, where we have indicated our hope that this “mix” will enable all
readers to understand, and programmers to code, the algorithms. Also in the
Preface we indicated a network source for Mathematica implementations of
the book algorithms.

That having been said, the purpose of this Appendix is to provide not
a rigorous compendium of instruction definitions, for that would require
something like an entire treatise on syntactical rules as would be expected
to appear in an off-the-shelf C reference. Instead, we give below some explicit
examples of how certain pseudocode statements are to be interpreted.

English, and comments

For the more complicated mathematical manipulations within pseudocode,
we elect for English description. Our basic technical motivation for allowing
“English” pseudocode at certain junctures is evident in the following example.
A statement in the C language

if((n== floor(n)) && (j == floor(sqrt(j))*floor(sqrt(j)))) . . .,

which really means “if n is an integer and j is a square,” we might have cast
in this book as

if(n,
√

j ∈ Z) . . .

That is, we have endeavored to put “chalkboard mathematics” within
conditionals. We have also adopted a particular indentation paradigm. If we
had allowed (which we have not) such English as:

For all pseudoprimes in S, apply equation (X); Apply equation (Y);

then, to the aspiring programmer, it might be ambiguous whether equation
(Y) were to be applied for all pseudoprimes, or just once, after the loop on
equation (X). So the way we wish such English to appear, assuming the case
that equation (Y) is indeed applied only once after looping, is like so:

For all pseudoprimes in S, apply equation (X);
Apply equation (Y);
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Because of this relegation of English statements to their own lines, the
interpretation that equation (Y) is to be invoked once, after the pseudoprime
loop, is immediate. Accordingly, when an English statement is sufficiently long
that it wraps around, we have adopted reverse indentation, like so:

Find a random t ∈ [0, p − 1] such that t2 − a is a quadratic nonresidue
(mod p), via Algorithm 2.3.5;

x = (t +
√

t2 − a)(p+1)/2;
. . .;

In this last example, one continually chooses random integers t in the stated
range until one is found with the required condition, and then one goes to the
next step, which calls for a single calculation and the assignment of letter x
to the result of the calculation.

Also in English will be comments throughout the book pseudocode. These
take the following form (and are right-justified, unlike pseudocode itself):

x = (t +
√

t2 − a)(p+1)/2; // Use Fp2 arithmetic.

The point is, a comment prefaced with “//” is not to be executed as
pseudocode. For example, the above comment is given as a helpful hint,
indicating perhaps that to execute the instruction one would first want to have
a subroutine to do Fp2 arithmetic. Other comments clarify the pseudocode’s
nomenclature, or provide further information on how actually to carry out the
executable statement.

Assignment of variables, and conditionals

We have elected not to use the somewhat popular assignment syntax x := y,
rather, we set x equal to y via the simple expedient x = y. (Note that in
this notation for assignment used in our pseudocode, the symbol “=” does
not signify a symmetric relation: The assignment x = y is not the same
instruction as the assignment y = x.) Because assignment appears on the face
of it like equality, the conditional equality x == y means we are not assigning,
merely testing whether x and y are equal. (In this case of testing conditional
equality, the symbol “==” is indeed symmetric.) Here are some examples of
our typical assignments:

x = 2; // Variable x gets the value 2.
x = y = 2; // Both x and y get the value 2.
F = { }; // F becomes the empty set.
(a, b, c) = (3, 4, 5); // Variable a becomes 3, b becomes 4, c becomes 5.

Note the important rule that simultaneous (vector) assignment assumes first
the full evaluation of the vector on the right side of the equation, followed by
the forcing of values on the left-hand side. For example, the assignment

(x, y) = (y2, 2x);

means that the right-hand vector is evaluated for all components, then the
left-hand vector is forced in all components. That is, the example is equivalent
to the chain (technically, we assume neither of x, y invokes hidden functions)
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t = x; //Variable t is temporary here.
x = y2;
y = 2t;

and it is quite evident by comparison how visually efficient is the single-line
vector assignment. Note, too, that the composite assignments

x = y2;
y = 2x;

and

y = 2x;
x = y2;

are both different than the vector assignment, and different from each other.
Because our text adheres to the rule that ordered sequences are symbolized

by parentheses (as in (xn)) while sets use braces (as in {X, a, α}), we assign
sequences, vectors, and so on with a style consistent with the text; e.g.,
�v = (0, 1, 0) is an ordered assignment, whereas a set of three polynomials
might be assigned as S = {x2 + 1, x, x3 − x} and the order is unimportant.
Moreover, S = {x2 + 1, x, x, x3 − x} is exactly the same assignment, since
set notation does not record multiplicity. Note that the distinction between
sequence and set assignment is important, in view of the liberal use of braces
in modern languages. In the Mathematica language, braces denote “lists” and
these in turn can be manipulated as either vectors (sequences) or sets, with
vector-algebraic (such as matrix-vector) and set-theoretical (such as union,
intersection) operators available. Likewise, the C language allows assignment
of data records via braces, as in “float x[3] = {1.1, 2.2, 3.3};” which would fill
a vector x in ordered fashion. In this latter case, our pseudocode would say
instead x = (1.1, 2.2, 3.3).

The internal conditionals in if() statements often use classical mathemat-
ical notation, but not always. Let us exemplify conditional syntax like so:

if(x == y) task(); // Testing equality of x, y, without changing either.
if(x ≥ y) task(); // Testing whether x is greater than or equal to y.
if(x|y) task(); // Testing whether x divides y.
if(x ≡ y (mod p)) task(); // Testing whether x, y congruent modulo p.

Note that a congruence conditional does not take the form x ≡≡ y (mod p),
because there need not be any confusion with assignment in such cases.
However, it may be possible to have the construction x == y mod p, since as
is explained in the text, the notation y mod p refers to the integer y−p �y/p�.
Thus, it may be that x is equal to this integer, or it may be that we wish to
assign x this value (in which case we would write x = y mod p).

Another conditional form is the while() statement, exemplified by

while(x = 0) {
task1();
task2();
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. . .;
}

which means that x is checked for zero value upon entry of the whole loop,
then all the interior tasks are to be performed until, after some complete pass
of the interior tasks, x is found to be zero and that ends the while() looping.

Operations that change the value of a single variable include these:

x = x + c; // x is increased by c.
x = cx; // x is multiplied by c.
x = x << 3; // Shift (integer only) x left by 3 bits, same as x = 8x.
x = x >> 3; // Shift right, same as x = �x/8�.
x = x ∧ 37; // Exclusive-or bits of x with 0 . . . 0100101 binary.
x = x & 37; // And bits of x with 0 . . . 0100101 binary.

For() loops

The for() loop is ubiquitous in this book, in being our primary automaton for
executing tasks repeatedly. Again we defer to a set of examples, not trying
rigorously to exhaust all possible forms of English-C loops possible, rather,
covering some of the common styles appearing in the book.

for(a ≤ x < b) task(); // For all integers x ∈ [a, b), ascending order.
for(a ≥ x ≥ b) task(); // For all integers x ∈ [b, a], descending order.
for(x ∈ [a, b)) task(); // For all integers x ∈ [a, b), ascending order.

Note that the relative magnitudes of a, b in the above are assumed correct
to imply the ascending or descending order; e.g., if a loop starts for(a ≥ . . .),
then b should not exceed a (or if it does, the loop is considered empty). Note
also that the first and third for() examples above are equivalent; we are just
saying that the third form is allowed under our design rules. Note further that
neither a nor b is necessarily an integer. This is why we cannot have put in a
comment in the first for() example above like: “For x = a, a+1, a+2, . . . , b−1,”
although such a comment does apply if both a, b are integers with a < b. Along
such lines, an example of how for() conditionals get into more traditional
mathematical notation is

for(1 ≤ a and a2 ≤ m) task(); // Perform task for a = 1, 2, . . . �√m�.
of which Algorithm 7.5.8 is an example. Other examples of mixed English-C
are:

for(prime p|F ) task(); // Perform for all primes p dividing F .
//Note: p values are in ascending order, unless otherwise specified.

for(p ∈ P, p ∈ S) task(); // Perform for all primes p ∈ S; observe order.
for(odd j ∈ [1, C]) task(); // Perform for j = 1, 3, 5, . . . not exceeding C.

Algorithms 3.2.1, 4.1.7, 7.4.4 involve such for() constructs as those above. For
more general looping constraints, we have elected to adopt the standard C
syntax, especially when the running variable is supposed to jump by nontrivial
amounts. We exemplify this general case by
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for(j = q; j < B; j = j + p) task(); // C-style loop form.

Assuming q is an integer, the above loop means that j takes on the values
q, q + p, q + 2p, . . . , q + kp, where k is the largest integer strictly less than
(B−q)/p. Algorithm 3.2.1 is an example of the use of this more general C loop.
Incidentally, for nonprogrammers there is a good rule of thumb for dispelling
confusion on the question: Exactly when do the innards of this general loop
execute? Looking at the for() loop above, we can phrase the rule as: The task()
is never allowed to execute when the middle conditional is false, i.e. if j ≥ B
the loop innards will not execute for such a j value and the loop terminates.
Another rule is: The incrementing j = j + p occurs after a pass of the loop
innards (throughout our pseudocode we assume the innards do not further
modify the running variable). So one can see that after any pass of the loop’s
innards, j is increased by p, and then the middle conditional is checked.

Program control

Our pseudocode is to be executed starting at the top, although sometimes we
merely place callable functions/procedures there; in such cases the order of
placement is irrelevant, and we actually begin execution at the first obvious
label that occurs after functions/procedures are defined. In any case we intend
the pseudocode statements to follow labels that appear in brackets [ ], like so:

3. [Test p for primality]
Indented statement;
Indented statement;
. . .;

with the statements executed in serial, downward fashion (unless of course
there is a goto [Another label]; see below on “goto”). It is important to note
that in such a label as [Test p . . .] above, we do not intend execution to happen
right at the label itself. The label is never an executable statement. (This is
much the same as with comments set off by “//” in which tasks are described
rather than performed.) In the above example we expect primality testing to
occur somewhere below the label, via actual indented statements.

Thus we have given labels “in English,” intending them to be thematic of
the pseudocode to follow, up to the next label. The serial, downward order
is absolute; for example, the above label or any label for that matter can be
interpreted as [Next, test p . . .]; in the case of function/procedure definitions
a label means [Next, define a function/procedure].

In some instances the pseudocode has been simplified by the use of “goto”
statements, as in “goto [Test p . . .],” which directs us to the indicated label
where we start executing in downward order from that new label.

All of our pseudocode loops use braces { and } to denote begin/end of
the loop innards. This use of braces is independent of their use to denote
sets. Also the use of braces to indicate the operational block for a function or
procedure (see next section) is independent of the set notation.
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Functions and return/report values

Typically a customized function in our pseudocode is cast in the form

func(x) {
. . . ;
. . . ;
return y;

}
and the idea is the same as in most any modern language: One calls func(x)
in the same way one would call a trigonometric function or a square root,
with the attained value y. Similarly, a procedure (as opposed to a function)
has the same syntax, with no returned value, although certain variables are
usually set within a procedure. Also, a return statement is an exit statement,
e.g., a sequence

if(x = y) return x3;
return x4;

does not need an “else” structure for the x4 case, because we always assume
the current function/procedure exits immediately on any demand by the if()
statement here. Likewise, a return statement, when executed, immediately
causes exit from within any while() or for() loop.

Finally, we use report statements in the following way. Instead of returning
a value from a function/procedure, a report statement simply relays the
value—as in printing it, or reporting it to another program—on the fly, as
it were. Thus the following function exemplifies the use of report/return (the
function assumes a subroutine that evaluates the number-of-divisors function
d(n)):

mycustomπ(x) { //Report (and count!) all primes not exceeding x.
c = 0; //This c will be the primes count.
for(2 ≤ n ≤ x) {

if(d(n) == 2) {
c = c + 1;
report n; //As in “print” n, but keep looping.

}
}
return c;

}
Primes will be reported in ascending order, with the return value of function
mycustomπ(x) being the classical π(x).
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M. Shokrollahi. Irregular primes and cyclotomic invariants to 12 million.
J. Symbolic Comput., 11:1–8, 2000.

[Buhler et al. 1993] J. Buhler, H. Lenstra, Jr., and C. Pomerance. Factoring
integers with the number field sieve. In A. Lenstra and H. Lenstra, Jr.,
editors, The development of the number field sieve, volume 1554 of
Lecture Notes in Mathematics, pages 50–94. Springer–Verlag, 1993.

[Bürgisser et al. 1997] P. Bürgisser, M. Clausen, and M. Shokrollahi. Algebraic
Complexity Theory. Springer–Verlag, 1997.

[Burnikel and Ziegler 1998] C. Burnikel and J. Ziegler. Fast recursive division.
Max-Planck-Institut für Informatik Research Report MPI-I-98-1-022,
1998.
http:www.algorilla.de/Download/FastRecursiveDivision.ps.gz.

[Burthe 1996] R. Burthe. Further investigations with the strong probable prime
test. Math. Comp., 65:373–381, 1996.

[Burthe 1997] R. Burthe. Upper bounds for least witnesses and generating sets.
Acta Arith., 80:311–326, 1997.

[Caldwell 1999] C. Caldwell. Website for prime numbers, 1999.
http://primes.utm.edu/.

[Canfield et al. 1983] E. Canfield, P. Erdős, and C. Pomerance. On a problem of
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[Deléglise and Rivat 1998] M. Deléglise and J. Rivat. Computing ψ(x). Math.
Comp., 67:1691–1696, 1998.

[Deshouillers et al. 1998] J.-M. Deshouillers, H. te Riele, and Y. Saouter. New
experimental results concerning the Goldbach conjecture. In
[Buhler 1998], pages 204–215.

[Deuring 1941] M. Deuring. Die Typen der Multiplikatorenringe elliptischer
Funktionenkörper. Abh. Math. Sem. Hansischen Univ., 14:197–272, 1941.

[Deutsch 1982] D. Deutsch. Is there a fundamental bound on the rate at which
information can be processed? Phys. Rev. Lett., 42:286–288, 1982.

[Deutsch 1985] D. Deutsch. Quantum theory, the Church–Turing principle, and
the universal quantum computer. Proc. Roy. Soc. London Ser. A,
400:97–117, 1985.

[Dickson 1904] L. Dickson. A new extension of Dirichlet’s theorem on prime
numbers. Messenger of Math., 33:155–161, 1904.

[Diffie and Hellman 1976] W. Diffie and M. Hellman. New directions in
cryptography. IEEE Trans. Inform. Theory, 22:644–654, 1976.

[Dilcher 1999] K. Dilcher. Nested squares and evaluation of integer products, 1999.
http://www.mscs.dal.ca/˜dilcher/Preprints/nested.ps.

[Dimitrov et al. 1995] V. Dimitrov, T. Cooklev, and B. Donevsky. Number
theoretic transforms over the golden section quadratic field. IEEE Trans.
Sig. Proc., 43:1790–1797, 1995.

[Dimitrov et al. 1998] V. Dimitrov, G. Jullien, and W. Miller. A residue number
system implementation of real orthogonal transforms. IEEE Trans. Sig.
Proc., 46:563–570, 1998.

[Ding et al. 1996] C. Ding, D. Pei, and A. Salomaa. Chinese Remainder Theorem:
Applications in Computing, Coding, Cryptography. World Scientific, 1996.

[Dixon 1981] J. Dixon. Asymptotically fast factorization of integers. Math. Comp.,
36:255–260, 1981.

[Dress and Olivier 1999] F. Dress and M. Olivier. Polynômes prenant des valeurs
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[Erdős 1950] P. Erdős. On almost primes. Amer. Math. Monthly, 57:404–407, 1950.
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numération (en dimension s). Acta Arith., 41:337–351, 1982.

[Fessler and Sutton 2003] J. Fessler and B. Sutton. Nonuniform Fast Fourier
Transforms Using Min-Max Interpolation. IEEE Trans. Sig. Proc.,
51:560-574, 2003.

[Feynman 1982] R. Feynman. Simulating physics with computers. Intl. J. Theor.
Phys., 21(6/7):467–488, 1982.



REFERENCES 557

[Feynman 1985] R. Feynman. Quantum mechanical computers. Optics News,
II:11–20, 1985.

[Flajolet and Odlyzko 1990] P. Flajolet and A. Odlyzko. Random mapping
statistics. In Advances in cryptology, Eurocrypt ’89, volume 434 of
Lecture Notes in Comput. Sci., pages 329–354, Springer—Verlag, 1990.

[Flajolet and Vardi 1996] P. Flajolet and I. Vardi. Zeta Function Expansions of
Classical Constants, 1996.
http://pauillac.inria.fr/algo/flajolet/Publications/Landau.ps.

[Forbes 1999] T. Forbes. Prime k-tuplets, 1999.
http://www.ltkz.demon.co.uk/ktuplets.htm.

[Ford 2002] K. Ford. Vinogradov’s integral and bounds for the Riemann zeta
function. Proc. London Math. Soc. (3), 85:565–633, 2002.
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Möbius function µ, 36, 37, 39, 94,

155, 425
Moenck, R., 513
mole rule, 5
Monico, C., 394
Monier, L., 136, 151, 165
Monier–Rabin theorem, 151
Monte Carlo, 229, 397, 404, 405,

409, 412, 413
Montgomery

coordinates, 324, 370
curve, 374
method (for div/mod), 447
parameterization, 330, 370, 432
powering, 448

Montgomery, H., 43, 426
Montgomery, H. (with Niven et

al.), 282
Montgomery, P., x, 147, 238, 254,

256, 270, 273, 292, 299,
317, 321, 329, 330, 332,
340–343, 345, 346, 374,
375, 380, 383, 384, 395,



INDEX 589

432, 447–450, 453, 458,
500, 520, 521

Moore, W., x
Morain, F., 4, 77, 356–361, 368,

371–374, 376, 382
Morain, F. (with Couveignes et

al.), 356
Morain, F. (with Franke et al., 374
Moran, A. (with Pritchard et al.),

78
Morrison theorem, 182
Morrison, M., 28, 261, 307
MOV threshold, 392
Murphy, B., 297

Nagaraj, S., 142
Nagaraj, S. (with Coppersmith et

al.), 189
Namba, M., 375
Narkiewicz, W., 248
Nathanson, M., 48, 63, 538
Nebe, G., x
Nelson, H., 23
Neubauer, G., 39
new Mersenne conjecture, 25, 26,

79
Newman, M., 7
Newton

higher-rooting, 202, 220
method, 202, 220, 448, 450,

452, 454, 511, 512, 520,
521

reciprocation, 521
square-rooting, 107, 176, 178,

189, 202, 220, 521–523
Nguyen, N., 487
Nguyen, P., 292
Nicely, T., 15, 16
Niederreiter, H., 58, 406, 407, 409,

414, 439
Niven, I., 282
Noro, M. (with Izu et al.), 357
Norrie, C. (with Crandall et al.),

29, 456, 496, 528
Novarese, P., 23
Nowak, M., 23

Nowakowski, R., 7
number-theoretical transform meth-

ods, 498
Nussbaumer, H., 504–507, 532, 533
Nyman, B., 38

Odlyzko, A., x, 38, 39, 59, 67,
68, 77, 152, 158–161, 235,
255, 269, 270, 426, 427

Odlyzko, A. (with Brillhart et al.),
280, 310

Odlyzko, A. (with Lagarias et al.),
152, 155, 158

Okamoto, E., 382
Okamoto, T. (with Menezes et al.),

392
Okeya, K., 433
Oki, H., x, 522
Olivier, M., 53
Ono, T. (with Cohen et al.), 333,

460
optimal extension field (OEF), 456
Orem, F., x
Owen, A., 414

Padma, R., 367
Papadopoulos, J., x, 30, 217, 218,

481
Papadopoulos, J. (with Crandall

et al.), 30, 218, 219, 456,
485, 491, 496, 528, 531,
538

Papadopoulos, P., 485
Papageorgiu, A., 413
Papp, D., 14
Parberry, E., 149
Park, S., 399
Parnami, J. (with Rishi et al.), 367
Paskov, S., 413
Patel, S., 401
Patson, N., x
Paulos, J., 430
Paun, G., 424
Peetre, J., 80
Pei, D. (with Ding et al.), 87
Penk, M., 464



590 INDEX

Pentium computer chip, 17
Pepin test, 174, 218, 528
Pepin, T., 174
Peralta, R., 276, 382
Percival, C., 218, 488, 498, 528
Perez, A., x
perfect number, 24, 25, 56, 57
Perron formula, 158
Peterson, I., 5
Piatetski-Shapiro theorem, 59
Pila, J. (with Lenstra et al.), 302
Pinch, R., 134
Pintz, J., 37, 38
Pixar, 5
Pocklington theorem, 175, 213, 368
point at infinity, 320
Pollard

iteration, 251, 255
rho method, 230, 231, 233,

251, 256–258, 272, 304,
441

rho method (parallel), 235
sequence, 256, 257

Pollard, J., x, 28, 128, 229–233,
235, 236, 238, 251, 256,
259, 278, 431

Pollard, J. (with Lenstra et al.), 28,
299
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