Classification problems in the topology of high-dimensional manifolds

Tibor Macko

Habilitation thesis defence FMFI UK

Bratislava 2020

Manifolds

Definition

A topological manifold M of dimension $d \ge 0$ is a second countable hausdorff locally euclidean space of dimension d.

The structure set

Definition

 $S^{TOP,s}(M)$ = the simple structure set of a manifold M:

- $(N, f), f: N \xrightarrow{\simeq_s} M$
- $(N, f) \sim (N', f')$ if exists $h: N \xrightarrow{\cong} N'$ s.t. $f' \circ h \simeq f$.

Definition

 $\mathcal{S}^{\mathsf{TOP},s}_{\partial}(M \times D^k) = \mathsf{the}\ k\text{-th higher simple structure set of a manifold } M$:

- $(N, f), f: (N, \partial N) \xrightarrow{(\simeq_s, \cong)} (M \times D^k, M \times \partial D^k)$
- $(N, f) \sim (N', f')$ if exists $h: N \xrightarrow{\cong} N'$ s.t. $f' \circ h \simeq f$ rel ∂N .

Classification problems

Definition (automorphism spaces)

$$\begin{split} \widetilde{\mathcal{S}}^{\mathsf{TOP},s}(M)_k &= \{h \colon N \xrightarrow{\simeq_s} M \times \Delta^k \mid h(N(\sigma)) \subseteq M \times \sigma, \ \forall \sigma \in \Delta^k \}, \\ \mathsf{TOP}(M)_k &= \{h \colon M \times \Delta^k \xrightarrow{\cong} M \times \Delta^k \mid h \text{ is over } \Delta^k \}, \\ \mathsf{G}^s(M)_k &= \{h \colon M \times \Delta^k \xrightarrow{\simeq_s} M \times \Delta^k \mid h \text{ is over } \Delta^k \}, \\ \widetilde{\mathsf{TOP}}(M)_k &= \{h \colon M \times \Delta^k \xrightarrow{\cong} M \times \Delta^k \mid h(M \times \sigma) \subseteq M \times \sigma, \ \forall \sigma \in \Delta^k \}, \\ \widetilde{\mathsf{G}}^s(M)_k &= \{h \colon M \times \Delta^k \xrightarrow{\simeq_s} M \times \Delta^k \mid h(M \times \sigma) \subseteq M \times \sigma, \ \forall \sigma \in \Delta^k \}. \end{split}$$

Relations

The surgery exact sequence

Theorem (Browder-Novikov-Sullivan-Wall \sim [1966])

For an *n*-manifold M with $n \ge 5$ we have

$$\cdots \to \mathcal{N}_{\partial}^{\mathsf{TOP}}(M \times I) \xrightarrow{\theta} L_{n+1}^{s}(\mathbb{Z}G) \xrightarrow{\partial} \mathcal{S}^{\mathsf{TOP},s}(M) \xrightarrow{\eta} \mathcal{N}^{\mathsf{TOP}}(M) \xrightarrow{\theta} L_{n}^{s}(\mathbb{Z}G),$$

where $G = \pi_1(M)$.

Explanation

- ullet $\mathcal{N}^{\mathsf{TOP}}(M)$ normal cobordism gen. cohomology theory
- $L_n^s(\mathbb{Z}G)$ Witt group of quadratic forms
- \bullet θ the surgery obstruction map

Cobordism

Definition

An (oriented) cobordism $(W; M_0, M_1)$ between M_0 and M_1 is a compact (d+1)-dim (oriented) manifold W such that

$$\partial W \cong M_0^- \coprod M_1.$$

Cobordism:

Surgery

Definition

Let M be a closed d-dim manifold and let $h: S^k \times D^{d-k} \hookrightarrow M$. The manifold M' is obtained from M by surgery along h:

$$M' := (M \setminus h(S^k \times D^{d-k})) \cup_{\partial h} D^{k+1} \times S^{d-k-1}.$$

The trace of the surgery on M along h is the (d+1)-dim mfd

$$W := M \times [0,1] \cup_h D^{k+1} \times D^{d-k}$$
 with $\partial W = M \coprod M'$.

Lens spaces

Definition

$$L_N(k_1,...,k_d) := S^{2d-1}/\sim = S(\mathbb{C}^d)/\sim$$

 $(z_1,...,z_d) \sim (z_1 \cdot e^{2\pi i k_1/N},...,z_d \cdot e^{2\pi i k_d/N}).$

Theorem [A1] 1.2

Let L_N^{2d-1} be a lens space with $\pi_1(L_N^{2d-1}) \cong \mathbb{Z}/N$ where $N = 2^K$, $d \geq 3$. Then for $c = \lfloor (d-1)/2 \rfloor$ we have

$$\mathcal{S}^s(L_N^{2d-1}) \cong \bar{\Sigma} \oplus \bar{\mathcal{T}} \cong \bar{\Sigma} \oplus \bigoplus_{i=1}^c \mathbb{Z}/2 \oplus \bigoplus_{i=1}^c \mathbb{Z}/2^{\min\{K,2i\}}$$

where $\bar{\Sigma}$ is a free abelian group of rank $\left\{ egin{align*} N/2-1 & d=2e+1 \\ N/2 & d=2e \end{array}
ight.$

Surgery exact sequence for lens spaces

Known results were

$$0 \to \widetilde{L}^s_{2d}(\mathbb{Z}G) \xrightarrow{\partial} \mathcal{S}^s(L^{2d-1}_N) \xrightarrow{\eta} \widetilde{\mathcal{N}}(L^{2d-1}_N) \to 0$$

$$\widetilde{L}_n^s(\mathbb{Z}G)\cong egin{cases} 4\cdot R_\mathbb{C}^+(G)/\langle reg
angle & n\equiv 0\ ({
m mod}\ 4)\ ({
m G-sign},\ {
m real}) \ 0 & n\equiv 1\ ({
m mod}\ 4) \ 4\cdot R_\mathbb{C}^-(G) & n\equiv 2\ ({
m mod}\ 4)\ ({
m G-sign},\ {
m imaginary}) \ 0\ {
m or}\ \mathbb{Z}/2 & n\equiv 3\ ({
m mod}\ 4)\ ({
m codimension}\ 1\ {
m Arf}) \end{cases}$$

$$\widetilde{\mathcal{N}}(L_N^{2d-1}) \cong \bigoplus_{i=1}^c \mathbb{Z}/N \oplus \bigoplus_{i=1}^c \mathbb{Z}/2, \quad \textit{where } c = \lfloor (d-1)/2 \rfloor.$$

The ρ -invariant

Definition [Atiyah-Singer-III(1968)]

Let N be a closed topological (2d-1)-dim manifold with a map $\lambda(N): N \to BG$ where G is a finite group. Define

$$\rho(N,\lambda(N)) := \frac{1}{r} \cdot \mathsf{G-sign}(\widetilde{Z}) \in \mathbb{Q} R^{(-1)^d}(G) / \langle \mathsf{reg} \rangle =: \mathbb{Q} R_{\widehat{G}}^{(-1)^d}$$

for some $r \in \mathbb{N}$ and $(Z, \partial Z)$ such that $\partial Z = r \cdot N$ and there is $\lambda(Z): Z \to BG$ restricting to $r \cdot \lambda(N)$ on ∂Z .

Useful formulas

$$f:=\frac{1+\chi}{1-\chi},\quad (1-\chi)^{-1}=-\frac{1}{N}(1+2\cdot\chi+3\cdot\chi^2+\cdots+N\cdot\chi^{(N-1)})\in\mathbb{Q}R_{\widehat{G}}.$$

The ρ -invariant is well defined

Proof

Key diagram

$$0 \longrightarrow \widetilde{L}_{2d}^{\mathfrak{s}}(\mathbb{Z}G) \xrightarrow{\partial} \mathcal{S}^{\mathfrak{s}}(L_{N}^{2d-1}) \xrightarrow{\eta} \widetilde{\mathcal{N}}(L_{N}^{2d-1}) \longrightarrow 0$$

$$\cong \downarrow_{G\text{-sign}} \qquad \downarrow_{\widetilde{\rho}} \qquad \downarrow_{[\widetilde{\rho}]}$$

$$0 \longrightarrow 4 \cdot R_{\widehat{G}}^{(-1)^{d}} \longrightarrow \mathbb{Q}R_{\widehat{G}}^{(-1)^{d}} \longrightarrow \mathbb{Q}R_{\widehat{G}}^{(-1)^{d}}/4 \cdot R_{\widehat{G}}^{(-1)^{d}} \longrightarrow 0$$

Observation

$$S^s(L^{2d-1}_N) \cong \operatorname{im} \widetilde{\rho} \oplus \ker([\widetilde{\rho}])$$

Key formula

$$d = 2e : [\widetilde{\rho}](t) = \sum_{i=1}^{e-1} 8 \cdot t_{4i} \cdot f^{d-2i-2} \cdot (f^2 - 1)$$

N odd and the higher structure sets

Theorem (Wall [1970]), cf Theorem [A3] 6.1

Let L_N^{2d-1} be a lens space with $\pi_1(L_N^{2d-1}) \cong \mathbb{Z}/N$ where N is odd, $d \geq 3$. Then

$$\mathcal{S}^s(L^{2d-1}_N)\cong\bar{\Sigma}$$

where $\bar{\Sigma}$ is a free abelian group of rank (N-1)/2.

Theorem [A4] 1.2

Let L_N^{2d-1} be a lens space with $\pi_1(L_N^{2d-1}) \cong \mathbb{Z}/N$, $N=2^K$, $d=2e \geq 3$. Then for $c=\lfloor (d-1)/2 \rfloor$ we have

$$\mathcal{S}^s_{\partial}(L_N^{2d-1}\times D^{4l})\cong \bar{\Sigma}\oplus \mathbb{Z}\oplus \bar{T}\cong \bar{\Sigma}\oplus \mathbb{Z}\oplus \bigoplus_{i=1}^c \mathbb{Z}/2\oplus \bigoplus_{i=1}^c \mathbb{Z}/2^{\min\{K,2i\}}$$

where $\bar{\Sigma}$ is a free abelian group of rank N/2.

Algebraic surgery exact sequence (Ranicki)

Symmetric structure on a chain complex C

$$n- \mathsf{cycle} \colon \varphi \in W^{\%}(C) := \mathsf{Hom}_{\mathbb{Z}[\mathbb{Z}_2]}(W, C \otimes_R C).$$

Key ideas

Cobordism groups of quadratic chain cplxs in cats with chain duality.

GSES → ASES

$$L_{n+1}(\mathbb{Z}[\pi]) \xrightarrow{\partial} \mathcal{S}^{\mathsf{TOP}}(X) \xrightarrow{} \mathcal{N}^{\mathsf{TOP}}(X) \xrightarrow{\mathsf{qsign}} L_n(\mathbb{Z}[\pi])$$

$$\downarrow = \qquad \cong \downarrow \mathsf{qsign}_X \qquad \cong \downarrow \mathsf{qsign}_X \qquad \downarrow =$$

$$L_{n+1}(\mathbb{Z}[\pi]) \xrightarrow{\partial} \mathbb{S}_{n+1}(X) \xrightarrow{} H_n(X; \mathbf{L}_{\bullet}\langle 1 \rangle) \xrightarrow{\mathsf{asmb}} L_n(\mathbb{Z}[\pi])$$

The additivity of the ρ -invariant

Theorem [B1] 1.1

Let M be a closed oriented topological manifold of dim $2d-1 \geq 5$ with a map $\lambda(M): M \to BG$ where G is a finite group. Then

$$\widetilde{\rho} \colon \mathcal{S}(M) \longrightarrow \mathbb{Q}R_{\widehat{G}}^{(-1)^d}$$
 given by $h \colon N \to M \mapsto \rho(N) - \rho(M)$

is a homomorphism of abelian groups.

Theorem [B1] 1.3

Let M be a closed oriented topological manifold of dim n with a map $\lambda(M): M \to BG$ for a finite group G, and let $n+l=2d-1 \geq 5$. Then

$$\widetilde{\rho}_{\partial}: \mathcal{S}_{\partial}(M \times D^{I}) \longrightarrow \mathbb{Q}R_{\widehat{G}}^{(-1)^{d}}$$

is a homomorphism of abelian groups.

Proof

Theorem [B1] 1.5

Let M be a closed topological manifold of dimension $(2d-1) \ge 5$ with a reference map $\lambda: M \to BG$ for a finite group G.

Then the following diagram commutes:

Manifold sets

Definition/Proposition

$$\mathcal{M}^{s}(M) := \{ N \mid N \simeq_{s} M \} / \cong \xrightarrow{\equiv} \mathcal{S}^{s}(M) / G^{s}(M)$$

where

$$\mathcal{S}^s(M) \times \mathsf{G}^s(M) \to \mathcal{S}^s(M), \quad ([f \colon N \to M], [g]) \mapsto [g \circ f \colon N \to M].$$

Theorem [B4] 1.4

If $\pi_1(M) = \{e\}$ and $n \geq 5$ then

$$|\mathcal{M}(M)| = \infty \iff |\mathcal{S}(M)| = \infty.$$

In such a case for some 0 < 4k < n the set $div_k(\mathcal{M}(M))$ is infinite.

h-cobordism and *s*-cobordism

h-Cobordism Theorem [Smale(1961)]

Every h-cobordism over a 1-ctd manifold M_0 with dim $(M_0) \ge 5$ is trivial.

$$K_1(\mathbb{Z}G) := \mathsf{GL}(\mathbb{Z}G)/[\mathsf{GL}(\mathbb{Z}G),\mathsf{GL}(\mathbb{Z}G)].$$

The Whitehead group of G is defined as

$$\mathsf{Wh}(G) := \mathsf{coker} \; (G \times \{\pm 1\} \to \mathsf{K}_1(\mathbb{Z}G)).$$

s-Cobordism Theorem [Milnor(1966)]

Let M_0 be a manifold of dim $n \ge 5$ with $\pi = \pi_1(M_0)$.

Then the Whitehead torsion defines a bijection

$$\tau: \{h - \operatorname{cobs}(W; M_0, M_1) \text{ over } M_0\} / \cong \xrightarrow{\cong} \operatorname{Wh}(\pi).$$

Algebraic K-theory

Definitions (Quillen, Waldhausen [1970-1980])

$$\mathsf{K}(R) := \mathsf{K}_0(R) \times \mathsf{BGL}(R)^+ \longrightarrow R - \mathsf{ring}$$
 $\mathsf{K}(\mathbb{A}) := \mathsf{K}_0(\mathbb{A}) \times \mathsf{BGL}(\mathbb{A})^+ \longrightarrow \mathbb{A} - \mathsf{ring}$ spectrum
 $\mathsf{A}(M) := \mathsf{K}(\mathbb{S}[\Omega M]) \longrightarrow \pi_0 \mathbb{S}[\Omega M] = \mathbb{Z}[\pi_1 M]$
 $M_+ \wedge \mathsf{A}(*) \to \mathsf{A}(M) \to \mathsf{Wh}^{\mathsf{TOP}}(M)$

Theorem (SPHCT) [Waldhausen-Jahren-Rognes (2013)]

$$\mathcal{H}^{\mathsf{TOP}}(M) \simeq \Omega \mathsf{Wh}^{\mathsf{TOP}}(M).$$

Theorem [Weiss-Williams (1988)]

$$\widetilde{\mathsf{TOP}}(M)/\mathsf{TOP}(M) \xrightarrow{\sim (n/3)-\mathsf{ctd}} \Omega^{\infty}[\mathcal{H}^{\mathsf{TOP}}(M)_{h\mathbb{Z}/2}]$$

Algebraic K-theory of $X \times S^1$

Theorem [Bass-Heller-Swan (1964)]

$$\mathsf{K}(\mathbb{Z}[\pi \times \mathbb{Z}]) \simeq \mathsf{K}(\mathbb{Z}[\pi]) \times \mathsf{BK}(\mathbb{Z}[\pi]) \times \mathsf{NK}(\mathbb{Z}[\pi]) \times \mathsf{NK}(\mathbb{Z}[\pi])$$

NK(R) is defined using nilpotent matrices over R

Theorem [HKVWW (2001)]

$$A(X \times S^1) \simeq A(X) \times BA(X) \times NA(X) \times NA(X)$$

Theorem [Farrell (1977)]

 $\pi_* \, NK(R)$ are either trivial or not finitely generated as abelian groups.

$$\iota_n \colon R[t^n] \hookrightarrow R[t] \begin{cases} \leadsto & (\iota_n)^* \colon \mathsf{K}(R[t]) \to \mathsf{K}(R[t^n]) \\ \leadsto & (\iota_n)_* \colon \mathsf{K}(R[t^n]) \to \mathsf{K}(R[t]) \end{cases}$$

Nil terms in A-theory

Theorem [C1] 1.2

For p an odd prime there is a (4p-7)-connected map

$$\bigvee_{\pm n \in \mathbb{N}_{\times}} \Sigma^{2p-2} \mathbb{HF}_{p} \wedge (S^{1}(\pm n)_{+}) \longrightarrow \mathsf{NA}_{\pm}(*)^{\wedge}_{p}.$$

Theorem [C1] 1.3

The $\mathbb{Z}_p[\mathbb{N}_\times]$ -module $\pi_{2p-2} \operatorname{NA}_{\pm}(*)_p^{\wedge}$ is (finitely) generated by $\beta_{\pm 1}$, and the $\mathbb{Z}_p[\mathbb{N}_\times]$ -module $\pi_{2p-1} \operatorname{NA}_{\pm}(*)_p^{\wedge}$ is not finitely generated.

Application

For M neg curved, dim $= n \ge 10$, $1 \le j < \varphi(n)$, with $\varphi(n) \sim n/3$, we have

$$\pi_j \mathsf{TOP}(M) \cong \bigoplus_{\tau} \pi_{j+2} \, \mathsf{NA}(*)$$