Classification problems in the topology of high-dimensional manifolds

Tibor Macko

Habilitation thesis defence FMFI UK

Bratislava 2020

Manifolds

Definition

A topological manifold M of dimension $d \geq 0$ is a second countable hausdorff locally euclidean space of dimension d.

The structure set

Definition

$\mathcal{S}^{\mathrm{TOP}, s}(M)=$ the simple structure set of a manifold M :

- $(N, f), f: N \xrightarrow{\simeq_{s}} M$
- $(N, f) \sim\left(N^{\prime}, f^{\prime}\right)$ if exists $h: N \xrightarrow{\cong} N^{\prime}$ s.t. $f^{\prime} \circ h \simeq f$.

Definition

$\mathcal{S}_{\partial}^{\text {TOP,s }}\left(M \times D^{k}\right)=$ the k-th higher simple structure set of a manifold M :

- $(N, f), f:(N, \partial N) \xrightarrow{\left(\simeq_{s}, \cong\right)}\left(M \times D^{k}, M \times \partial D^{k}\right)$
- $(N, f) \sim\left(N^{\prime}, f^{\prime}\right)$ if exists $h: N \xrightarrow{\cong} N^{\prime}$ s.t. $f^{\prime} \circ h \simeq f$ rel ∂N.

Classification problems

Definition (automorphism spaces)

$$
\begin{aligned}
\widetilde{\mathcal{S}}^{\mathrm{TOP}, s}(M)_{k} & =\left\{h: N \xrightarrow{\simeq_{s}} M \times \Delta^{k} \mid h(N(\sigma)) \subseteq M \times \sigma, \forall \sigma \in \Delta^{k}\right\}, \\
\operatorname{TOP}(M)_{k} & =\left\{h: M \times \Delta^{k} \xrightarrow{\rightrightarrows} M \times \Delta^{k} \mid h \text { is over } \Delta^{k}\right\}, \\
\mathrm{G}^{s}(M)_{k} & =\left\{h: M \times \Delta^{k} \xrightarrow{\simeq_{s}} M \times \Delta^{k} \mid h \text { is over } \Delta^{k}\right\}, \\
\widetilde{\operatorname{TOP}}(M)_{k} & =\left\{h: M \times \Delta^{k} \xrightarrow{\rightrightarrows} M \times \Delta^{k} \mid h(M \times \sigma) \subseteq M \times \sigma, \forall \sigma \in \Delta^{k}\right\}, \\
\widetilde{\mathrm{G}}^{s}(M)_{k} & =\left\{h: M \times \Delta^{k} \xrightarrow{\simeq_{s}} M \times \Delta^{k} \mid h(M \times \sigma) \subseteq M \times \sigma, \forall \sigma \in \Delta^{k}\right\} .
\end{aligned}
$$

Relations

homotopy

$$
\begin{aligned}
& \mathrm{TOP}(M) \xrightarrow{\text { alg K-thy }} \widetilde{\mathrm{TOP}}(M) \\
& \text { surgery } \\
& \rightarrow \mathrm{G}^{s}(M) \longrightarrow \widetilde{\mathrm{G}}^{s}(M)
\end{aligned}
$$

The surgery exact sequence

Theorem (Browder-Novikov-Sullivan-Wall ~ [1966])

For an n-manifold M with $n \geq 5$ we have
$\cdots \rightarrow \mathcal{N}_{\partial}^{\mathrm{TOP}}(M \times I) \xrightarrow{\theta} L_{n+1}^{s}(\mathbb{Z} G) \xrightarrow{\partial} \mathcal{S}^{\mathrm{TOP}, s}(M) \xrightarrow{\eta} \mathcal{N}^{\mathrm{TOP}}(M) \xrightarrow{\theta} L_{n}^{s}(\mathbb{Z} G)$, where $G=\pi_{1}(M)$.

Explanation

- $\mathcal{N}^{\text {TOP }}(M)$ - normal cobordism - gen. cohomology theory
- $L_{n}^{s}(\mathbb{Z} G)$ - Witt group of quadratic forms
- θ - the surgery obstruction map

Cobordism

Definition

An (oriented) cobordism ($W ; M_{0}, M_{1}$) between M_{0} and M_{1} is a compact $(d+1)$-dim (oriented) manifold W such that

$$
\partial W \cong M_{0}^{-} \coprod M_{1} .
$$

Cobordism:

Surgery

Definition

Let M be a closed d-dim manifold and let $h: S^{k} \times D^{d-k} \hookrightarrow M$. The manifold M^{\prime} is obtained from M by surgery along h :

$$
M^{\prime}:=\left(M \backslash h\left(S^{k} \times D^{d-k}\right)\right) \cup_{\partial h} D^{k+1} \times S^{d-k-1} .
$$

The trace of the surgery on M along h is the $(d+1)$-dim mfd

$$
W:=M \times[0,1] \cup_{h} D^{k+1} \times D^{d-k} \quad \text { with } \quad \partial W=M \coprod M^{\prime} .
$$

Surgery:

Lens spaces

Definition

$$
\begin{aligned}
L_{N}\left(k_{1}, \ldots, k_{d}\right): & =S^{2 d-1} / \sim=S\left(\mathbb{C}^{d}\right) / \sim \\
\left(z_{1}, \ldots, z_{d}\right) & \sim\left(z_{1} \cdot e^{2 \pi i k_{1} / N}, \ldots, z_{d} \cdot e^{2 \pi i k_{d} / N}\right) .
\end{aligned}
$$

Theorem [A1] 1.2

Let $L_{N}^{2 d-1}$ be a lens space with $\pi_{1}\left(L_{N}^{2 d-1}\right) \cong \mathbb{Z} / N$ where $N=2^{K}, d \geq 3$. Then for $c=\lfloor(d-1) / 2\rfloor$ we have

$$
\mathcal{S}^{s}\left(L_{N}^{2 d-1}\right) \cong \bar{\Sigma} \oplus \bar{T} \cong \bar{\Sigma} \oplus \bigoplus_{i=1}^{c} \mathbb{Z} / 2 \oplus \bigoplus_{i=1}^{c} \mathbb{Z} / 2^{\min \{K, 2 i\}}
$$

where $\bar{\Sigma}$ is a free abelian group of rank $\left\{\begin{array}{ll}N / 2-1 & d=2 e+1 \\ N / 2 & d\end{array}=2 e . ~\right.$.

Surgery exact sequence for lens spaces

Known results were

$$
\begin{gathered}
0 \rightarrow \tilde{L}_{2 d}^{s}(\mathbb{Z} G) \xrightarrow{\partial} \mathcal{S}^{s}\left(L_{N}^{2 d-1}\right) \xrightarrow{\eta} \tilde{\mathcal{N}}\left(L_{N}^{2 d-1}\right) \rightarrow 0 \\
\tilde{L}_{n}^{s}(\mathbb{Z} G) \cong \begin{cases}4 \cdot R_{\mathbb{C}}^{+}(G) /\langle r e g\rangle & n \equiv 0(\bmod 4)(G-\text { sign, real }) \\
0 & n \equiv 1(\bmod 4) \\
4 \cdot R_{\mathbb{C}}^{-}(G) & n \equiv 2(\bmod 4)(G-\text { sign, imaginary }) \\
0 \text { or } \mathbb{Z} / 2 & n \equiv 3(\bmod 4)(\text { codimension } 1 \text { Arf })\end{cases} \\
\tilde{\mathcal{N}}\left(L_{N}^{2 d-1}\right) \cong \bigoplus_{i=1}^{c} \mathbb{Z} / N \oplus \bigoplus_{i=1}^{c} \mathbb{Z} / 2, \quad \text { where } c=\lfloor(d-1) / 2\rfloor .
\end{gathered}
$$

The ρ-invariant

Definition [Atiyah-Singer-III(1968)]

Let N be a closed topological $(2 d-1)$-dim manifold with a map $\lambda(N): N \rightarrow B G$ where G is a finite group. Define

$$
\rho(N, \lambda(N)):=\frac{1}{r} \cdot \mathrm{G}-\operatorname{sign}(\widetilde{Z}) \in \mathbb{Q} R^{(-1)^{d}}(G) /\langle\mathrm{reg}\rangle=: \mathbb{Q} R_{\widehat{G}}^{(-1)^{d}}
$$

for some $r \in \mathbb{N}$ and $(Z, \partial Z)$ such that $\partial Z=r \cdot N$ and there is $\lambda(Z): Z \rightarrow B G$ restricting to $r \cdot \lambda(N)$ on ∂Z.

Useful formulas
$f:=\frac{1+\chi}{1-\chi}, \quad(1-\chi)^{-1}=-\frac{1}{N}\left(1+2 \cdot \chi+3 \cdot \chi^{2}+\cdots+N \cdot \chi^{(N-1)}\right) \in \mathbb{Q} R_{\widehat{G}}$.

The ρ-invariant is well defined

Proof

Key diagram

$$
\begin{aligned}
& 0 \longrightarrow \widetilde{L}_{2 d}^{s}(\mathbb{Z} G) \xrightarrow{\partial} \mathcal{S}^{s}\left(L_{N}^{2 d-1}\right) \xrightarrow{\eta} \tilde{\mathcal{N}}\left(L_{N}^{2 d-1}\right) \longrightarrow \\
& \cong \text { G-sign } \downarrow \tilde{\rho} \quad \downarrow[\tilde{\rho}] \\
& 0 \longrightarrow 4 \cdot R_{\widehat{G}}^{(-1)^{d}} \longrightarrow \mathbb{Q} R_{\widehat{G}}^{(-1)^{d}} \longrightarrow \mathbb{Q} R_{\widehat{G}}^{(-1)^{d}} / 4 \cdot R_{\widehat{G}}^{(-1)^{d}} \longrightarrow 0
\end{aligned}
$$

Observation

$$
\mathcal{S}^{s}\left(L_{N}^{2 d-1}\right) \cong \operatorname{im} \widetilde{\rho} \oplus \operatorname{ker}([\tilde{\rho}])
$$

Key formula

$$
d=2 e:[\widetilde{\rho}](t)=\sum_{i=1}^{e-1} 8 \cdot t_{4 i} \cdot f^{d-2 i-2} \cdot\left(f^{2}-1\right)
$$

N odd and the higher structure sets

Theorem (Wall [1970]), cf Theorem [A3] 6.1
Let $L_{N}^{2 d-1}$ be a lens space with $\pi_{1}\left(L_{N}^{2 d-1}\right) \cong \mathbb{Z} / N$ where N is odd, $d \geq 3$. Then

$$
\mathcal{S}^{s}\left(L_{N}^{2 d-1}\right) \cong \bar{\Sigma}
$$

where $\bar{\Sigma}$ is a free abelian group of $\operatorname{rank}(N-1) / 2$.

Theorem [A4] 1.2

Let $L_{N}^{2 d-1}$ be a lens space with $\pi_{1}\left(L_{N}^{2 d-1}\right) \cong \mathbb{Z} / N, N=2^{K}, d=2 e \geq 3$. Then for $c=\lfloor(d-1) / 2\rfloor$ we have

$$
\mathcal{S}_{\partial}^{s}\left(L_{N}^{2 d-1} \times D^{4 \prime}\right) \cong \bar{\Sigma} \oplus \mathbb{Z} \oplus \bar{T} \cong \bar{\Sigma} \oplus \mathbb{Z} \oplus \bigoplus_{i=1}^{c} \mathbb{Z} / 2 \oplus \bigoplus_{i=1}^{c} \mathbb{Z} / 2^{\min \{K, 2 i\}}
$$

where $\bar{\Sigma}$ is a free abelian group of rank $N / 2$.

Algebraic surgery exact sequence (Ranicki)

Symmetric structure on a chain complex C

$$
n \text { - cycle: } \varphi \in W^{\%}(C):=\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W, C \otimes_{R} C\right) \text {. }
$$

Key ideas

Cobordism groups of quadratic chain cplxs in cats with chain duality.

GSES \rightsquigarrow ASES

$$
\begin{aligned}
& L_{n+1}(\mathbb{Z}[\pi]) \xrightarrow{\partial} \mathcal{S}^{\text {TOP }}(X) \longrightarrow \mathcal{N}^{\text {TOP }}(X) \xrightarrow{\text { qsign }} L_{n}(\mathbb{Z}[\pi])
\end{aligned}
$$

$$
\begin{aligned}
& L_{n+1}(\mathbb{Z}[\pi]) \xrightarrow{\partial} \mathbb{S}_{n+1}(X) \longrightarrow H_{n}(X ; \mathbf{L} .\langle 1\rangle)^{\text {asmb }} L_{n}(\mathbb{Z}[\pi])
\end{aligned}
$$

The additivity of the ρ-invariant

Theorem [B1] 1.1

Let M be a closed oriented topological manifold of $\operatorname{dim} 2 d-1 \geq 5$ with a map $\lambda(M): M \rightarrow B G$ where G is a finite group. Then

$$
\widetilde{\rho}: \mathcal{S}(M) \longrightarrow \mathbb{Q} R_{\widehat{G}}^{(-1)^{d}} \quad \text { given by } \quad h: N \rightarrow M \mapsto \rho(N)-\rho(M)
$$

is a homomorphism of abelian groups.
Theorem [B1] 1.3
Let M be a closed oriented topological manifold of $\operatorname{dim} n$ with a map $\lambda(M): M \rightarrow B G$ for a finite group G, and let $n+I=2 d-1 \geq 5$. Then

$$
\widetilde{\rho}_{\partial}: \mathcal{S}_{\partial}\left(M \times D^{\prime}\right) \longrightarrow \mathbb{Q} R_{\widehat{G}}^{(-1)^{d}}
$$

is a homomorphism of abelian groups.

Proof

Theorem [B1] 1.5
Let M be a closed topological manifold of dimension $(2 d-1) \geq 5$ with a reference map $\lambda: M \rightarrow B G$ for a finite group G.
Then the following diagram commutes:

Manifold sets

Definition/Proposition

$$
\mathcal{M}^{s}(M):=\left\{N \mid N \simeq_{s} M\right\} / \cong \xlongequal{\equiv} \mathcal{S}^{s}(M) / G^{s}(M)
$$

where

$$
\mathcal{S}^{s}(M) \times G^{s}(M) \rightarrow \mathcal{S}^{s}(M), \quad([f: N \rightarrow M],[g]) \mapsto[g \circ f: N \rightarrow M] .
$$

Theorem [B4] 1.4
If $\pi_{1}(M)=\{e\}$ and $n \geq 5$ then

$$
|\mathcal{M}(M)|=\infty \Leftrightarrow|\mathcal{S}(M)|=\infty
$$

In such a case for some $0<4 k<n$ the set $\operatorname{div}_{k}(\mathcal{M}(M))$ is infinite.

h-cobordism and s-cobordism

h-Cobordism Theorem [Smale(1961)]

Every h-cobordism over a 1 -ctd manifold M_{0} with $\operatorname{dim}\left(M_{0}\right) \geq 5$ is trivial.

$$
K_{1}(\mathbb{Z} G):=G L(\mathbb{Z} G) /[G L(\mathbb{Z} G), G L(\mathbb{Z} G)] .
$$

The Whitehead group of G is defined as

$$
\mathrm{Wh}(G):=\operatorname{coker}\left(G \times\{ \pm 1\} \rightarrow K_{1}(\mathbb{Z} G)\right)
$$

s-Cobordism Theorem [Milnor(1966)]
Let M_{0} be a manifold of $\operatorname{dim} n \geq 5$ with $\pi=\pi_{1}\left(M_{0}\right)$.
Then the Whitehead torsion defines a bijection

$$
\tau:\left\{h-\operatorname{cobs}\left(W ; M_{0}, M_{1}\right) \text { over } M_{0}\right\} / \cong \cong \cong \mathrm{Wh}(\pi) .
$$

Algebraic K-theory
Definitions (Quillen, Waldhausen [1970-1980])

$$
\begin{aligned}
\mathrm{K}(R):= & K_{0}(R) \times \mathrm{BGL}(R)^{+} \quad \rightsquigarrow \quad R \text { - ring } \\
\mathrm{K}(\mathbb{A}):= & K_{0}(\mathbb{A}) \times \mathrm{BGL}(\mathbb{A})^{+} \rightsquigarrow \quad \mathbb{A}-\text { ring spectrum } \\
A(M):= & \mathrm{K}(\mathbb{S}[\Omega M]) \quad \pi_{0} \mathbb{S}[\Omega M]=\mathbb{Z}\left[\pi_{1} M\right] \\
& M_{+} \wedge A(*) \rightarrow A(M) \rightarrow \mathrm{Wh}^{\text {TOP }}(M)
\end{aligned}
$$

Theorem (SPHCT) [Waldhausen-Jahren-Rognes (2013)]

$$
\mathcal{H}^{\mathrm{TOP}}(M) \simeq \Omega \mathbf{W h}^{\mathrm{TOP}}(M)
$$

Theorem [Weiss-Williams (1988)]

$$
\widetilde{\mathrm{TOP}}(M) / \mathrm{TOP}(M) \xrightarrow{\sim(n / 3)-\mathrm{ctd}} \Omega^{\infty}\left[\mathcal{H}^{\mathrm{TOP}}(M)_{h \mathbb{Z} / 2}\right]
$$

Algebraic K-theory of $X \times S^{1}$

Theorem [Bass-Heller-Swan (1964)]

$$
\mathrm{K}(\mathbb{Z}[\pi \times \mathbb{Z}]) \simeq \mathrm{K}(\mathbb{Z}[\pi]) \times B \mathrm{~K}(\mathbb{Z}[\pi]) \times \mathrm{NK}(\mathbb{Z}[\pi]) \times \mathrm{NK}(\mathbb{Z}[\pi])
$$

$N K(R)$ is defined using nilpotent matrices over R
Theorem [HKVWW (2001)]

$$
A\left(X \times S^{1}\right) \simeq A(X) \times B A(X) \times N A(X) \times N A(X)
$$

Theorem [Farrell (1977)]
$\pi_{*} \mathrm{NK}(R)$ are either trivial or not finitely generated as abelian groups.
$\iota_{n}: R\left[t^{n}\right] \hookrightarrow R[t] \begin{cases}\rightsquigarrow & \left(\iota_{n}\right)^{*}: \mathrm{K}(R[t]) \rightarrow \mathrm{K}\left(R\left[t^{n}\right]\right) \\ \rightsquigarrow & \left(\iota_{n}\right)_{*}: \mathrm{K}\left(R\left[t^{n}\right]\right) \rightarrow \mathrm{K}(R[t])\end{cases}$

Nil terms in A-theory

Theorem [C1] 1.2
For p an odd prime there is a $(4 p-7)$-connected map

$$
\bigvee_{ \pm n \in \mathbb{N}_{\times}} \Sigma^{2 p-2} \mathbb{H}_{p} \wedge\left(S^{1}(\pm n)_{+}\right) \longrightarrow \mathrm{NA}_{ \pm}(*)_{p}^{\wedge}
$$

Theorem [C1] 1.3

The $\mathbb{Z}_{p}\left[\mathbb{N}_{\times}\right]$-module $\pi_{2 p-2} \mathrm{NA}_{ \pm}(*)_{p}^{\wedge}$ is (finitely) generated by $\beta_{ \pm 1}$, and the $\mathbb{Z}_{p}\left[\mathbb{N}_{\times}\right]$-module $\pi_{2 p-1} N A_{ \pm}(*)_{p}^{\wedge}$ is not finitely generated.

Application

For M neg curved, $\operatorname{dim}=n \geq 10,1 \leq j<\varphi(n)$, with $\varphi(n) \sim n / 3$, we have

$$
\pi_{j} \mathrm{TOP}(M) \cong \bigoplus_{T} \pi_{j+2} \mathrm{NA}(*)
$$

