Complex Analysis II. — Homework 2
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1. Let C be the unit circle and D its interior, i.e. the disk with radius 1. Investigate what happens
when we apply the Cauchy Integral Formula to the function 1/z, which has a pole at zero.
a) Find

1
z) = jimdg, for |z] # 1.

Hint: Compute the residues of the function 1/{({ — z) at points 0 and z or use the decomposition
1/¢(¢ —2) = 1(1/(¢ — 2) — 1/¢). Treat the cases |z| < 1 and |z| > 1 separately.

b) For ¢ lying on the unit circle we have 1/¢ = . Use the generalized Cauchy integral formula for
the function ¢g(z) = z. Deduce the following identity:

—71'2:// dS, for |z < 1.
p¢—=z

2. (AF 2.6.8) Find the d (dbar) derivative of the function 2z (that is r2). Verify the generalizeed
Cauchy formula inside a circle of radius R by reducing to the identity:
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where Dp is a disk of radius R (see problem 1; note that the value of the integral does not depend on
the radius R). Verify by a direct calculation that such equality indeed holds.
Hint: Transform the integral I to polar coordinates ¢ = & + in = re*?, and find
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In the 6 integral change the variables to uv = €, and use du = ie?df, leading to fo% 0)do =

1 fcl 24 where C1 is the unit circle. The residue calculus can be used to evaluate such 1ntegrals or
we can mtegrate along small circles around the poles (u = 0 and u = z/r, compare with problem 1, or

section 2.5 in AF)
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Show that we have
where H(z) = {1 if x > 0, 0 if z < 0} (this corresponds to the condition z € D,.). Then show that
I = —7|2|?/2 = —7Z as is required.

3. (AF 2.6.10) In Cauchy’s Integral Formula, take the contour to be a circle of unit radius centered
at the origin. Let ¢ = e to deduce

2
0= [ 1,

where z lies inside the circle. Explain why we have
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and use ¢ = 1/¢ to show

whereupon, using the plus sign

A== \ZI )



(a) Deduce the “Poisson formula” for the real part of f(2), Re f = u(r, ¢), where z = rei®

1 [%" 1—r2
u(r, @) = o /0 u(®) [1 —2rcos(¢p — 0) + 2] b,

where u(0) = u(1,0).
(b) If we use the minus sign in the formula for f(z) above, show that

1 2 1472 — 2rei(®=9)
1) = %/0 o) (1 — 2rcos(¢p — 0) —|—r2> d9

and by taking the imaginary part

B 1 2 rsin(¢ — 0)
v(r,¢) =C+ — /O u(®) [1—2rcos(p —0) + Tz]de’

where C' = ;- 027T v(1,0)d0 = v(r = 0).

(c) Show that

2r sin(¢ — 0) _1 (1—r2+2irsin(¢>—9)>
1—2rcos(¢p—0)+r2 o 1472 —2rcos(¢ —0)
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and therefore the result for u(r, ¢) and v(r, ¢) from parts (a) and (b) may be expressed as

27
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This example illustrates that prescribing the real part of (an analytic) f(z) on |z| = 1 determines

uniquely (a) the real part of f(z) everywhere inside the circle and (b) the imaginary part of f(z) inside
circle to within a constant. We cannot arbitrarily specify both the real and imaginary parts of an analytic
function on |z| = 1.

Try (without much of a computation) to determine which analytic function corresponds to u(1,6) =
Re(1/2) from the Problem 1.



