Complex Analysis II. — Homework 3

Submission date: October 14, 2014

1. (AF 4.3.1) a) Use principal value integrals to show that
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b) Let k = 2 and m = 0 to deduce that
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Could this integral be evaluated by some other method?

2. (following AF 4.3.5) Consider a function F'(z)
1 f(Q)
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where C' is a contour, typically infinite (e.g. the real axis) or closed (e.g. a circle). Then the “plus” and
“minus” projections of F(z) at z = (y are defined by the following limit:
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where (o lies on C, lim__, .+ denotes the limit from points z inside (4) or left (+) of the contour C,

similarly for the “minus” limit from outside (-) or right (-).
By a direct computation find F*(¢) for f(¢) = 1/(¢?> + 1) and C being the real axis (—oo, o). Use
the theory from the lecture as necessary.

3. (following AF 4.3.15) In the last homework we deduced the formula
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where u(6) is given on the unit circle and the harmonic conjugate to u(r, ¢), v(r, ¢) is determined by the
formula above. Let ¢ = re’®. Show that as r — 1 we get
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this can be rewritten into
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This formula relates the boundary values, on the circle, between imaginary and real parts of a function
f(2) = u+ iv, which is analytic inside the circle.
Explain what would we get if we tried to establish similar limit (r — 1) for
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4. (AF 7.2.4) Show that the change of variables
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maps a Cauchy type integral over the real axis 7 in the ¢ plane,
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to a Cauchy type integral over the unit circle ¢ in the z plane
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JgC(—Cz) d¢, with some issues at ¢ = 1.

Note: More precisely, we have F(z) =
5. (AF 7.2.5) Consider the integral
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where u is a real function. This integral is usually referred to as a Schwarz type integral. Establish the
following relationship between Schwarz type and Cauchy type integrals
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where C denotes the unit circle.
(See problem 7.2.6 as well and the connection with the Poisson formula)



