Final exam, Discrete Mathematics I., 12.1.2010

1. (5 pt) Let $F_1 = 1, F_2 = 1, F_3 = 2, \dots$ be elements of the Fibonacci sequence. Show that:

$$nF_1 + (n-1)F_2 + \dots + 2F_{n-1} + F_n = F_{n+4} - (n+3).$$

2. (6 pt) Let T be a satisfiable set of propositions. Show that the set of propositions $T \cup \{\neg A\}$ is unsatisfiable if and only if the proposition A is a logical (tautological) consequence of the set of propositions T (i.e. $T \models A$).

3. a) (5 pt) Show that the following formula with quantifiers is logically true

$$((\exists x)(A(x) \Rightarrow B(x))) \Rightarrow (((\forall x)A(x)) \Rightarrow ((\exists x)B(x))).$$

b) (5 pt) Let $A, B \subseteq \mathcal{U}$ and A^c denote the complement of the set A with respect to \mathcal{U} . Show that:

$$(A^c \cap B) = (B^c \cap A)^c \Leftrightarrow B = A^c.$$

4. (5 pt) Denote the set of all finite subsets of \mathbb{N} as \mathcal{F} . Define a relation \sim on \mathcal{F} by: for $A, B \in \mathcal{F}$ is $A \sim B$ whenever $|A \cup B| = \max(|A|, |B|)$. Is \sim an equivalence relation?

5. (6 pt) For the following two statements decide whether they are true or false and justify your answer.

a) If the sets A and B have the same cardinality and $\phi: A \to B$ is injective then ϕ is surjective as well.

b) Intersection of two equivalence relations on A (as subsets of $A \times A$) is also an equivalence relation. **6.** (6 pt) Decide whether the cardinality of the set of all infinite subsets of \mathbb{N} is countable. Justify your answer.

7. (7 pt) Let $f: X \to Y$ be a map and sets $A, B \subseteq Y$ be disjoint, i.e. $A \cap B = \emptyset$. Decide whether $f^{-1}(A) \cap f^{-1}(B) = \emptyset$.

8. (5 pt) Using general rules for computing with cardinal numbers decide which one of the following cardinal numbers is larger or whether they are equal: $2^{(\aleph_0^{\circ})}$ and $2^{(c^{\aleph_0})}$.