## Discrete mathematics I. - Homework 1

Problem sessions in the week of September 30, 2013
Prove the following:

1. $1+3+5+\cdots+(2 n-1)=n^{2}$.
2. $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$.

Let us define a sequence of natural numbers $F_{1}, F_{2}, \ldots, F_{n}, \ldots$ as:

$$
F_{1}=1, \quad F_{2}=1, \quad F_{n}=F_{n-2}+F_{n-1} \quad \text { for } \quad n \geq 3
$$

(We will get a sequence $1,1,2,3,5,8,13,21, \ldots$ ) This sequence is called The Fibonacci sequence.
3. Prove that every fourth element in the Fibonacci sequence is divisible by three, i.e. $3 \mid F_{4 n}$.
4. Prove that for any integer $n \in \mathbb{N}$ are the elements $F_{n}$ and $F_{n+1}$ coprime, i.e. $\operatorname{gcd}\left(F_{n}, F_{n+1}\right)=1$.
5. Prove the following formula for the Fibonacci number $F_{n}$ :

$$
F_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}
$$

Decide whether are the following formulas tautologies:
6. $p \Rightarrow[(\neg q \wedge q) \Rightarrow r]$.
7. $(p \Rightarrow q) \Leftrightarrow[(p \wedge q) \Leftrightarrow p]$.
8. Decide whether the following statement holds: ,,John can do logic if and only if it is not true, that is not true, that John can do logic".
9. Decide whether the following statement holds: ,If an integer $a$ is divisible by three then the fact that $a$ is not divisible by three implies that $a$ is divisible by five.".

## Bonus problems

10. Define the logical connective or $(\vee)$ using conditional $(\Rightarrow)$ and negation $(\neg)$.
11. Define the logical connective and $(\wedge)$ using connective or $(\vee)$ and negation $(\neg)$.
