Discrete matemathematics I. - Homework 6

Problem sessions for the week of November 4, 2013

We say that
A is a subset of $B(A \subseteq B)$ if $(\forall x)(x \in A \Rightarrow x \in B)$.
A is an empty set if it does not contain any element. We denote it as \emptyset.
C is an union of A and $B(C=A \cup B)$ if $(\forall z)(z \in C \Leftrightarrow(z \in A \vee z \in B))$.
D is an intersection of A and $B(C=A \cap B)$ if $(\forall z)(z \in D \Leftrightarrow(z \in A \wedge z \in B))$.
E is a Cartesian product of A and $B(C=A \times B)$ if $(\forall z)(z \in E \Leftrightarrow(\exists x \in A)(\exists y \in B)(z=[x, y]))$, where $[x, y]$ is so called ordered pair of elements x and y.
F is a set difference of A and $B(C=A-B)$ if $(\forall z)(z \in F \Leftrightarrow(z \in A \wedge z \notin B))$.
$\mathcal{P}(A)$ is a power set of set A if $(\forall z)(z \in \mathcal{P}(A) \Leftrightarrow z \subseteq A)$.

1. Show that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
2. Find elements of the set $A \times B$ if $A=\{a, b, c\}$ and $B=\{x, y\}$.
3. Decide whether $(A \times B) \cup(C \times D)=(A \cup C) \times(B \cup D)$. If so, prove it; if not, find a counterexample.
4. For the following pairs of sets decide whether $B \subset A$:
a) $A=\{\{a, b\},\{c, d\}, c, d\}, \quad B=\{\{a, b\}, c\}$
b) $A=\{\{a, b\},\{a\}, b, \emptyset\}, \quad B=\{\{a\}, b,\{\emptyset\}\}$
c) $A=\{x \in \mathbb{R}: x>0\}, \quad B=\{x \in \mathbb{Z}: x>0\}$
5. Find the power set $\mathcal{P}(A)$ for $A=\{a, b, c\}$.
6. Show the set equality $A-(B-C)=(A-B) \cup(A \cap C)$.
7. For sets A, B show: $(A \cup B)-(A \cap B)=\emptyset \Leftrightarrow A=B$.
