Discrete matemathematics I. – Homework 6

Problem sessions for the week of November 4, 2013

We say that

A is a subset of B $(A \subseteq B)$ if $(\forall x)(x \in A \Rightarrow x \in B)$.

A is an *empty set* if it does not contain any element. We denote it as \emptyset .

C is an union of A and B $(C = A \cup B)$ if $(\forall z)(z \in C \Leftrightarrow (z \in A \lor z \in B))$.

D is an intersection of A and B $(C = A \cap B)$ if $(\forall z)(z \in D \Leftrightarrow (z \in A \land z \in B))$.

E is a Cartesian product of *A* and *B* (*C* = *A* × *B*) if $(\forall z)(z \in E \Leftrightarrow (\exists x \in A)(\exists y \in B)(z = [x, y]))$, where [x, y] is so called ordered pair of elements *x* and *y*.

F is a set difference of A and B (C = A - B) if $(\forall z)(z \in F \Leftrightarrow (z \in A \land z \notin B))$. $\mathcal{P}(A)$ is a power set of set A if $(\forall z)(z \in \mathcal{P}(A) \Leftrightarrow z \subseteq A)$.

- **1.** Show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- **2.** Find elements of the set $A \times B$ if $A = \{a, b, c\}$ and $B = \{x, y\}$.
- **3.** Decide whether $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$. If so, prove it; if not, find a counterexample.
- **4.** For the following pairs of sets decide whether $B \subset A$: a) $A = \{\{a, b\}, \{c, d\}, c, d\}, B = \{\{a, b\}, c\}$ b) $A = \{\{a, b\}, \{a\}, b, \emptyset\}, B = \{\{a\}, b, \{\emptyset\}\}$ c) $A = \{x \in \mathbb{R} : x > 0\}, B = \{x \in \mathbb{Z} : x > 0\}$
- **5.** Find the power set $\mathcal{P}(A)$ for $A = \{a, b, c\}$.
- **6.** Show the set equality $A (B C) = (A B) \cup (A \cap C)$.
- **7.** For sets A, B show: $(A \cup B) (A \cap B) = \emptyset \Leftrightarrow A = B$.