Discrete mathematics I. - Homework 7

Problem sessions in the week of november 11, 2013

1. For which sets A, B does hold $A \cap(B-A)=\emptyset$?
2. What is $A \times \emptyset$?
3. Suppose that $A \subset B$. Show that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
4. What is $\emptyset-(\emptyset-A)$?
5. Let $\mathcal{U} \neq \emptyset$. For every subset $A \subseteq \mathcal{U}$ denote the set $\mathcal{U}-A$ as A^{c}. Prove the following identities:
a) $\emptyset^{c}=\mathcal{U}$.
b) $\mathcal{U}^{\mathrm{c}}=\emptyset$.
c) $\left(A^{\mathrm{c}}\right)^{\mathrm{c}}=A$.
d) $A \cup A^{c}=\mathcal{U}$.
6. For the relation of inclusion \subset on the power set $\mathcal{P}(\{a, b, c\})$ draw a diagram representing this relation. $(A \subset B$ if $A \subseteq B$ and $A \neq B)$

We say that a relation R is:
reflexive if $(\forall x)[x, x] \in R$,
symmetric if $[x, y] \in R \Rightarrow[y, x] \in R$,
transitive if $([x, y] \in R \wedge[y, z] \in R) \Rightarrow[x, z] \in R$,
irreflexive if $(\forall x)[x, x] \notin R$,
asymmetric if $[x, y] \in R \Rightarrow[y, x] \notin R$,
antisymmetric if $([x, y] \in R \wedge[y, x] \in R) \Rightarrow x=y$,
dichotomous if $(\forall x, y)([x, y] \in R \vee[y, x] \in R)$.
7. Let $R=\{[a, b],[b, c],[d, e],[d, f]\}$ be a relation on a set $A=\{a, b, c, d, e, f, g\}$. Complete R in such a way that the resulting relation is an equivalence relation and the number of ordered pairs added is minimal.

For the following relations decide which properties they possess:
8. Relation R on \mathbb{Z} defined as $x R y \Leftrightarrow 3 \mid(x-y)$.
9. Relation R on \mathbb{Z} defined as $x R y \Leftrightarrow x^{2}=y^{2}$.
10. Relation R on \mathbb{Q} defined as $x R y \Leftrightarrow x-y \notin \mathbb{Z}$.
11. Relation R on $\mathcal{P}(Y)$ defined as $A R B \Leftrightarrow a \in A \cap B$, where a is a fixed element of the set Y.

Bonus problem

12. Let \sim be a relation on the set of complex numbers \mathbb{C} given by: $z_{1} \sim z_{2}$ if and only if $\left|z_{1}\right|=\left|z_{2}\right|$. Check that \sim is an equivalence relation and describe corresponding equivalence classes \tilde{z}, i.e. sets of all $z^{\prime} \in \mathbb{C}$, for which $z \sim z^{\prime}$. (The norma of a complex number $z=a+b \cdot i$ is defined as $|z|=\sqrt{a^{2}+b^{2}}$.)
