Discrete mathematics I. – Homework 7

Problem sessions in the week of november 11, 2013

- **1.** For which sets A, B does hold $A \cap (B A) = \emptyset$?
- **2.** What is $A \times \emptyset$?
- **3.** Suppose that $A \subset B$. Show that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
- **4.** What is $\emptyset (\emptyset A)$?

5. Let $\mathcal{U} \neq \emptyset$. For every subset $A \subseteq \mathcal{U}$ denote the set $\mathcal{U} - A$ as A^c . Prove the following identities: a) $\emptyset^c = \mathcal{U}$. b) $\mathcal{U}^c = \emptyset$.

c) $(A^{c})^{c} = A$.

d) $A \cup A^{c} = \mathcal{U}$.

6. For the relation of inclusion \subset on the power set $\mathcal{P}(\{a, b, c\})$ draw a diagram representing this relation. $(A \subset B \text{ if } A \subseteq B \text{ and } A \neq B)$

We say that a relation R is: reflexive if $(\forall x) [x, x] \in R$, symmetric if $[x, y] \in R \Rightarrow [y, x] \in R$, transitive if $([x, y] \in R \land [y, z] \in R) \Rightarrow [x, z] \in R$, irreflexive if $(\forall x) [x, x] \notin R$, asymmetric if $[x, y] \in R \Rightarrow [y, x] \notin R$, antisymmetric if $([x, y] \in R \land [y, x] \in R) \Rightarrow x = y$, dichotomous if $(\forall x, y)([x, y] \in R \lor [y, x] \in R)$.

7. Let $R = \{[a, b], [b, c], [d, e], [d, f]\}$ be a relation on a set $A = \{a, b, c, d, e, f, g\}$. Complete R in such a way that the resulting relation is an equivalence relation and the number of ordered pairs added is minimal.

For the following relations decide which properties they possess:

- **8.** Relation R on \mathbb{Z} defined as $xRy \Leftrightarrow 3|(x-y)$.
- **9.** Relation R on \mathbb{Z} defined as $xRy \Leftrightarrow x^2 = y^2$.
- **10.** Relation R on \mathbb{Q} defined as $xRy \Leftrightarrow x y \notin \mathbb{Z}$.

11. Relation R on $\mathcal{P}(Y)$ defined as $ARB \Leftrightarrow a \in A \cap B$, where a is a fixed element of the set Y.

Bonus problem

12. Let \sim be a relation on the set of complex numbers \mathbb{C} given by: $z_1 \sim z_2$ if and only if $|z_1| = |z_2|$. Check that \sim is an equivalence relation and describe corresponding equivalence classes \tilde{z} , i.e. sets of all $z' \in \mathbb{C}$, for which $z \sim z'$. (The norma of a complex number $z = a + b \cdot i$ is defined as $|z| = \sqrt{a^2 + b^2}$.)