Discrete mathematics I. - Homework 8

Problem sessions in the week of November 18, 2013

We say that the relation R is:
reflexive if $(\forall x)[x, x] \in R$,
irreflexie if $(\forall x)[x, x] \notin R$,
symmetric if $[x, y] \in R \Rightarrow[y, x] \in R$,
asymmetric if $[x, y] \in R \Rightarrow[y, x] \notin R$,
antisymmetric if $([x, y] \in R \wedge[y, x] \in R) \Rightarrow x=y$,
transitive if $([x, y] \in R \wedge[y, z] \in R) \Rightarrow[x, z] \in R$,
dichotomous if $(\forall x, y)([x, y] \in R \vee[y, x] \in R)$.

1. Find a relation which is symmetric and transitive but is not reflexive. Or show that such a relation can not exist.
2. How many different equivalence relations there are on a set of four elements?
3. On the set of positive integers \mathbb{N} we define a relation R as: $a R b$ if and only if a divides b or b divides a. Is R an equivalence?
4. Sets $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are sets of integers, rational and real numbers. Let us define the relations:

$$
\begin{aligned}
T & =\{[x, y] \in \mathbb{R} \times \mathbb{R} \mid x-y \in \mathbb{Z}\} \\
U & =\{[x, y] \in \mathbb{R} \times \mathbb{R} \mid x-y \in \mathbb{Q}\}
\end{aligned}
$$

Show that T and U are equivalence relations. Describe partitions of the set \mathbb{R} given by these equivalences.
5. Denote the set of all continuous real-valued functions defined on the interval $[0,1]$ as $C(0,1)$. Define:

$$
[f, g] \in T \Leftrightarrow(\forall x) f(x) \leq g(x) \wedge(\exists y) f(y)<g(y)
$$

Show that T is a partial (strict) order on $C(0,1)$ (i.e. T is not reflexive since $[f, f] \notin T$, but T is transitive and asymmetric). Find two incomparable elements.

In a partially ordered set A with an order \leq an element a is called least if $(\forall x \in A) a \leq x$. An element b is called minimal if $(\forall x \in A)(x \leq b \Rightarrow x=b)$. Similarly, an element c is greatest if $(\forall x \in A) x \leq c$ and an element d is maximal if $(\forall x \in A)(d \leq x \Rightarrow x=d)$. Notions of minimal and least element describe two different things, especially for partially ordered sets (i.e. not totally ordered).
6. Find a partially ordered set, which has exactly one maximal element but does not have the greatest element.
7. Prove that in a totally ordered set is the minimal element also the least.
8. Prove that if a partially ordered set has a greatest element, then it is its only maximal element.

Bonus problem

9. Let $\mathbb{Q}[x]$ be the set of polynomials in a variable x with rational coefficients. Let $A[x]=\mathbb{Q}[x]-\mathbb{Q}$ (the set difference), i.e. $A[x]$ is the set of all rational polynomials in a variable X of degree at least 1 . Define:

$$
[f(x), g(x)] \in D \Leftrightarrow g(x)=f(x) \cdot q(x) \quad \text { for some } \quad q(x) \in A[x]
$$

Show that D is a partial (strict) order. Find two incomparable elements in $A[x]$.
Note: Relation D is analogous to the relation of divisibility | on the set of natural numbers \mathbb{N}.

