Discrete mathematics I. - Homework 9

Problem sessions in the week of November 25, 2013

1. Let $A=\{a, b, c\}$ and $B=\{x, y\}$. Find following mappings (if they exist):
a) all injective maps from A to B, and all injective maps from B to A.
b) all surjective maps from A to B, and all surjective maps from B to A.
c) all bijections from A to B, and all bijections from B to A.
2. Does the injectivity of f follow from the fact that the composed mapping $f \circ g$ is injective? How about the injectivity of g ? What happens when we replace words "injectivity" with "surjectivity" in previous questions? (composed map is defined as $(f \circ g)(x)=f(g(x))$
3. Let A be a finite set. Show:
a) If $f: A \rightarrow A$ is injective, then it is surjective as well.
b) If $f: A \rightarrow A$ is surjective, then it is injective as well.

Do such claims hold for an infinite set (e.g. \mathbb{N}) as well?
4. Let $f: A \rightarrow B$ be a mapping. Show that for every $X, Y \subseteq A$:

$$
\begin{aligned}
& f(X \cup Y)=f(X) \cup f(Y) \\
& f(X \cap Y) \subseteq f(X) \cap f(Y)
\end{aligned}
$$

Here, $f(X)$ denotes the set $\{y \in B \mid(\exists x \in X) y=f(x)\}$ - the image of the set X, which can be expressed also as $\{f(x) \mid x \in X\}$.

Find a map f and sets X, Y so that we do not have equality in the latter inclusion.
5. Find a bijection between $\langle 0,1)$ and $\left\{[x, y] \in \mathbb{R} \times \mathbb{R} \mid x^{2}+y^{2}=1\right\}$.
6. Let $f: A \rightarrow B$ be a map. Prove that for any $U, V \subseteq B$:

$$
\begin{aligned}
& f^{-1}(U \cup V)=f^{-1}(U) \cup f^{-1}(V) \\
& f^{-1}(U \cap V)=f^{-1}(U) \cap f^{-1}(V)
\end{aligned}
$$

Here, $f^{-1}(Y)$ denotes the set $\{x \in A \mid f(x) \in Y\}$ - the preimage of the set Y.
7. Find a bijection between intervals: $(0,1),(0, \infty)$.

Bonus problems

8. Find a bijection between intervals: $(0,1],(0,1)$.
9. Find an injective map from \mathbb{R}^{2} to \mathbb{R}.
