1. Order the set of all rational numbers \mathbb{Q} into an injective sequence. (I.e. every rational number will occur in the sequence exactly once).
2. Find a bijection between sets $(0,1\rangle \times\langle 0,1)$ and $\left\{[x, y] \in \mathbb{R}^{2} ; 0<x^{2}+y^{2} \leq 1\right\}$.
3. Find a bijection between the set of all rational numbers and the set of all nonzero rational numbers. Does there exist such a bijection which preserves ordering (i.e. if $x<y$ then $f(x)<f(y)$ as well)?
4. Let A_{1}, A_{2}, \ldots be sets such that for every n is the intersection $A_{1} \cap A_{2} \cap \ldots \cap A_{n}$ nonempty. Could it happen that $A_{1} \cap A_{2} \cap \ldots=\emptyset$?
5. Show that the set of all open intervals with the endpoints in rational numbers is countable.
6. Show that the set of all open intervals with the endpoints in real numbers is uncountable.
7. Prove that every system of mutually disjoint open intervals in \mathbb{R} has to be countable.
