1. Denote $0=|\emptyset|$ and $1=|\{\emptyset\}|$. Show that for every cardinal number p the following holds:
a) $p+0=p \cdot 1=p$,
b) $p^{0}=0^{0}=1$,
c) $p^{1}=p$.
(recall that equalities between cardinal numbers are represented by some bijections, their summation corresponds to a disjoint union, their product to Cartesian product of sets, and powers are represented by sets of mappings)
2. Show that for any cardinal numbers p, q and r we have:
a) $p \leq q \Rightarrow p r \leq q r$,
b) $p \leq q \Rightarrow p^{r} \leq q^{r}$,
c) if $r \neq 0$, then $p \leq q \Rightarrow r^{p} \leq r^{q}$. What happens when $r=0$?
3. Do the statements from problem 2 remain true when we replace inequalities by strict inequalities?

The arithmetics of infinite cardinal numbers is slightly different than expected:
For example $\aleph_{0}+\aleph_{0}=\aleph_{0}$, because $\mathbb{N}_{0} \cup-\mathbb{N}=\mathbb{Z}$. Similarly, $\aleph_{0} \cdot \aleph_{0}=\aleph_{0}$, because $|\mathbb{N}||\mathbb{Z}|=|\mathbb{Q}|$.
4. Denote $\aleph_{0}=|\mathbb{N}|$ and $c=|\mathbb{R}|=2^{\aleph_{0}}$. By using inequalities from problem 2 and relations from the lecture show that for any integer $n \in \mathbb{N}, n \geq 2$ holds:
a) $c \leq n c \leq \aleph_{0} c \leq c c \leq c^{n} \leq c^{\aleph_{0}}=\left(2^{\aleph_{0}}\right)^{\aleph_{0}}=c$,
b) $2^{\overline{\aleph_{0}}}=n^{\aleph_{0}}=\aleph_{0}^{\aleph_{0}}=c^{\aleph_{0}}=c$,
c) $2^{c}=n^{c}=\aleph_{0}^{c}=c^{c}$.
5. Show that the set of all irrational numbers is uncountable.

Bonus problems

6. Let A be some uncountable set of real numbers and a map $f: A \rightarrow \mathbb{R}$ be injective. Show that there exists an irrational number $x \in A$ such that $f(x)$ is irrational as well. Deduce that there exists a pair of irrational numbers a, b such that a^{b} is rational. Find a concrete example of such a pair.
7. Does there exists uncountable system \mathcal{B} of subsets of \mathbb{N} such that for different $A, B \in \mathcal{B}$ is the intersection $A \cap B$ finite?
