1. Write down negations of the following statements:
(i) n is even or m is multiple of 3 ,
(ii) every $x \in A$ is an element of $A \cap B$,
(iii) if it does not rain today then frogs are not falling from the sky.
2. Translate the meaning of the following symbolic statement into a short English sentence (it can be done in 6 words). Write its negation in symbolic language as well. (In this problem the variables m, n, a, b are understood as positive integers, i.e. $\forall m$ means $\forall m \in \mathbb{N}^{+}$.)

$$
(\forall m)(\exists n)(\forall a)(\forall b)[[n \geq m] \wedge[(a=1) \vee(b=1) \vee((a b \neq n) \wedge(a b+2 \neq n))]] .
$$

3. Let the binary operation $*$ on positive integers satisfy:
(i) $1 * n=n-1 \quad$ for all $n \in \mathbb{N}$,
(ii) $m * 1=(m-1) * 2 \quad$ for all $m \in \mathbb{N}, m>1$,
(iii) $m * n=(m-1) *(m *(n-1)) \quad$ for $m, n \in \mathbb{N}, m, n>1$.

Find the value of $5 * 5$.
4. The symmetric difference $A \triangle B$ of sets A and B is defined as $(A-B) \cup(B-A)$. Using the truth table for the propositions $x \in A, x \in B, x \in C$ show that the operation \triangle is associative. Show that x belongs to $A \triangle(B \triangle C)$ if and only if x belongs to an odd number of sets A, B, C. Use this observation to construct another proof of associativity of \triangle.
5. Define a binary operation $*$ on \mathbb{Z}^{2} by: $(a, b) *(c, d)=(a c, a d+b c)$. Show that the operation $*$ is commutative and associative. Find a formula for

$$
\left(a_{1}, b_{1}\right) *\left(a_{2}, b_{2}\right) * \cdots *\left(a_{k}, b_{k}\right)
$$

6. Let f be a map from real numbers to real numbers. We say that f is strictly increasing if for $x<y$ we have $f(x)<f(y)$ as well. Show that if f is strictly increasing then it is injective. Does it have to be surjective? Suppose that f is bijective and $f(0)=0, f(1)=1$. Does it follow that f is strictly increasing? What if f is continuous?
7. Let R be an rectangle which can be subdivided into smaller rectangles, each of them having at least one side of integer length. Show that R has at least one side of integer length.
8. Let n be an even number and \mathcal{A} is a system of subsets of the set $\{1,2, \ldots, n\}$ with the property that for every $A, B \in \mathcal{A}$ is the number of elements of $A \cap B$ even (this holds for the pair $A=B$ as well). How many sets could \mathcal{A} contain? How does the answer change if the sets in \mathcal{A} have an even number of elements but for $A \neq B$ is the cardinality of the intersection $A \cap B$ odd?
9. Can we partition the closed interval $[0,1]$ into countable infinite union of disjoint nonempty closed intervals?
10. There are n points in a plane not lying on a single line. Show that there exists a line containing exactly two of those points.
11. For $i \in \mathbb{N}$ let $\left[a_{i}, b_{i}\right]$ be a closed interval of positive real numbers. Assume that $\sum_{i}\left|b_{i}-a_{i}\right|<\infty$. Does it follow that there exists a real number x such that $n x$ does not belong to any interval $\left[a_{i}, b_{i}\right]$ for any n ?
12. Countably infinitely many dons are standing in a circle. Every don wears red or blue hat. Each don can see hats of all his colleagues but not his own. In a certain moment dons have to shout the colour of their hats. Is it possible to give dons such instructions that only finitely many would guess colour of their hats incorrectly?
