Midterm, Discrete mathematics, 28.10.2009
Axioms and theorems of propositional calculus which may be used:
$(\mathrm{A} 1) \vdash A \Rightarrow(B \Rightarrow A)$
$(\mathrm{T} 1) \vdash \neg A \Rightarrow(A \Rightarrow B)$
$(\mathrm{A} 2) \vdash(A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C))$
(T2) $\vdash \neg \neg A \Rightarrow A$
(A3) $\vdash(\neg B \Rightarrow \neg A) \Rightarrow(A \Rightarrow B)$
(T2') $\vdash B \Rightarrow \neg \neg B$
(T0) $\vdash A \Rightarrow A$
$(\mathrm{T} 3) \vdash(A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A)$

1. Sequence $\left\{a_{n}\right\}$ is defined as $a_{n+1}=3 a_{n}+1$ for $n \geq 1$ and $a_{1}=5$. Show that $a_{n}=\frac{11 \cdot 3^{n-1}-1}{2}$.
2. Show that for elements in Fibonacci sequence $\left\{F_{n}\right\}$ (i.e. $F_{1}=1, F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$) for $n \geq 2$ holds:

$$
F_{n}^{2}=F_{n+1} F_{n-1}+(-1)^{n+1} .
$$

3. Determine whether is formula $p \vee q$ a logical consequence of formula $((p \Rightarrow q) \Rightarrow r) \Rightarrow p$.
4. Show that $\neg(B \Rightarrow A) \vdash B$. You can use theorems mentioned above, axioms, rule Modus Ponens and the Deduction Theorem.
5. Show that the following formula with quantifiers is logically true or find a counterexample:

$$
(\forall x)(\Phi(x) \Rightarrow \Psi(x)) \Rightarrow((\exists x) \Phi(x) \Rightarrow(\forall x) \Psi(x))
$$

