Midterm, Discrete Mathematics, 2.12.2009
We say that a relation R is:
reflexive if $(\forall x)[x, x] \in R, \quad$ antisymmetric if $([x, y] \in R \wedge[y, x] \in R) \Rightarrow x=y$,
antireflexive if $(\forall x)[x, x] \notin R, \quad$ dichotomous if $(\forall x, y)([x, y] \in R \vee[y, x] \in R)$,
symmetric if $[x, y] \in R \Rightarrow[y, x] \in R, \quad$ transitive if $([x, y] \in R \wedge[y, z] \in R) \Rightarrow[x, z] \in R$.

1. Show that for all sets A, B, C we have:
a) $A \cup B=A-B \Leftrightarrow B=\emptyset$,
b) $A-(C \cap B)=(A-C) \cup B \Leftrightarrow((B \subseteq A) \wedge(A \cap C=\emptyset))$.
2. How many relations on a four element set can be simultaneously antisymmetric and dichotomous?
3. On the set $\mathbb{R} \times \mathbb{R}$ we have a relation \sim given by:

$$
\left[x_{1}, y_{1}\right] \sim\left[x_{2}, y_{2}\right] \Leftrightarrow x_{1} y_{1}=x_{2} y_{2} .
$$

Show that the relation \sim is an equivalence relation, determine what are the equivalence classes for elements $[1,1]$ and $[0,0]$, draw a picture describing the partition of $\mathbb{R} \times \mathbb{R}$.
4. Determine whether there exists a partial ordering of five element set which has 2 maximal and one greatest element. If it does exist, draw its Hasse diagram; if it does not, give an explanation.
5. Let $f: X \rightarrow Y$ be a map and $A, B \subseteq X$ are subsets of X. Show that $f(A)-f(B) \subseteq f(A-B)$. Find an example where equality does not hold. $(f(A)$ is an image of the set A, i.e. $f(A)=\{z \mid \exists a \in$ $A, f(a)=z\})$.

