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Abstract

Uniform density (also known as Banach density) was often used in various branches
of mathematics, in particular in number theory and ergodic theory. Several characteri-
zations of uniform density were given in the paper [Z. Gáliková, B. László and T. Šalát,
Remarks on uniform density of sets of integers, Acta Acad. Paed. Agriensis, 2002].

The notion of uniform density was recently generalized to weighted uniform density
in the paper [R. Giuliano Antonini and G. Grekos, Weighted uniform densities, Journal
de théorie des nombres de Bordeaux, 2007]. Some sufficient conditions for the existence
of upper and lower weighted uniform density for every subset of the set of integers have
been obtained in this paper.

We show that for positive weights the upper and lower weighted uniform density
always exist. We also show that the alternative characterizations of the uniform density
remain valid for the weighted uniform density as well. Moreover, we investigate related
characterizations of the upper and lower weighted uniform density.
Keywords: weighted uniform density, uniform density, Banach density, uniform conver-
gence
2000 MSC classification: 11B05

1 Introduction

The notion of uniform density was introduced in [BF1]. It coincides with the notion of Banach
density. It was used in various parts of mathematics, in particular in number theory and er-
godic theory, see for example [BŠ, BF2, Fu, R1, R2, ŠV]. Several equivalent characterizations
of the uniform density can be found in [GLŠ].

Georges Grekos and Rita Giuliano Antonini generalized this notion in the paper [GAG]
to weighted uniform density (in a similar way as the asymptotic density was generalized to
weighted density, see for example [A, MMŠT, GAGM, Ki, PŠV]). In the paper they have
proved sufficient conditions for the existence of upper and lower weighted uniform density
for every subset A of the set of integers N.

In Section 3 of this paper we show that for positive weights the upper and lower weighted
uniform density always exist. This extends the results obtained in [GAG].

The definition of weighted uniform density from [GAG] follows closely the definition of
uniform density from [BF1, BF2]. As we have already mentioned, the upper and lower uni-
form density is the same notion as the upper and lower Banach density ([Fu, p.72, Definition
3.7], [R2]). For the detailed proof of the equivalence of these two notions we refer to [GTT].
Using the results from Section 3 we show that, for weight sequences with infinite sum, the

∗Supported by VEGA Grant 1/3020/06
†Supported by VEGA Grant 1/3020/06
‡Supported by VEGA Grant 1/3018/06

1



lower and upper uniform density can be understood as limit superior and inferior of some
double sequence, which simplifies the original definition. From this we get that a gener-
alization, which would mimic the definition of Banach density, is in fact equivalent to the
definition from [GAG].

In Section 5 we give several characterizations of upper and lower weighted uniform density
generalizing some results from [GLŠ]. These generalizations are not true for arbitrary subsets
of N and arbitrary weight sequences, but we give several sufficient conditions when they hold.
In Section 6 we include several examples showing that the assumptions used in our results
cannot be completely omitted.

2 Preliminaries

Let c = (ci)∞i=1 be any sequence of positive real numbers. For any set A ⊆ N and any interval
I in N (ordered with the usual linear order) we define the weight of the set A in the interval
I by

Ac(I) =
∑
i∈I

ciχA(i)

The ratio

γ(A, I, c) :=
Ac(I)
Nc(I)

is called the relative weight of the set A in the interval I with respect to the weight sequence
c. In particular when I = (n, n + h] we will denote

Ac(n, n + h] :=
n+h∑

i=n+1

ciχA(i) =: sn,h(A)

Nc(n, n + h] :=
n+h∑

i=n+1

ci =: Sn,h

γn,h(A) :=
sn,h(A)

Sn,h

lh(A) = lim inf
n→∞

γn,h(A), Lh(A) = lim sup
n→∞

γn,h(A)

λh(A) = inf
n∈N

γn,h(A), Λh(A) = sup
n∈N

γn,h(A)

We will often omit the set A in the above notation if it is understood from the context.
Upper and lower weighted uniform density were defined in [GAG] as

uc(A) = lim
h→∞

Lh(A)

uc(A) = lim
h→∞

lh(A)

If uc(A) = uc(A) =: uc(A) the common value uc(A) is called weighted uniform density of
the set A with respect to the weight sequence c or briefly c-weighted uniform density of A.

If ci = 1 for each i ∈ N, we obtain the (lower and upper) uniform density. It is denoted
by u(A), u(A) and u(A), respectively.

We will need the following lemmas. An easy proof of Lemma 2.1 is omitted.

Lemma 2.1. Let a1, a2, . . . ak be real numbers and b1, b2, . . . , bk be positive real numbers.
Then

min
ai

bi
≤ a1 + a2 + · · ·+ ak

b1 + b2 + · · ·+ bk
≤ max

ai

bi
.
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Moreover, the equalities hold if and only if all quotients ai/bi are equal.

Lemma 2.2. Let s, S, T , U and V be real numbers such that 0 < T < S and

0 ≤ s− T

S − T
< U < V <

s

S
≤ 1.

Then
0 < S

V − U

1− U
< T.

Proof. From the obvious inequalities V S < s and s−T < U(S−T ) we get V S−T < US−UT
and the last inequality is equivalent with S V−U

1−U < T.

The next lemma gives some monotonicity conditions which we will use in the sequel.

Lemma 2.3. Let h, h′ ∈ N and A ⊆ N. Then

Λh+h′ ≤ max{Λh,Λh′} (2.1)
Lh+h′ ≤ max{Lh, Lh′} (2.2)

h|h′ ⇒ Λh′ ≤ Λh (2.3)
h|h′ ⇒ Lh′ ≤ Lh (2.4)

Proof. Inequalities (2.1) and (2.2) follow from the fact that sn,h+h′(A) = sn,h(A)+sn+h,h′(A)
and Lemma 2.1. Properties (2.3) and (2.4) follow from (2.1) and (2.2), respectively.

3 The existence of the upper and lower weighted uni-
form density

In this section we show that the upper and lower weighted uniform density exist for any
weight sequence (ci)∞i=1 of positive integers.

Theorem 3.1. Let A ⊆ N. Then

lim
h→∞

Lh(A) = inf
h∈N

Lh(A) (3.1)

lim
h→∞

lh(A) = sup
h∈N

lh(A) (3.2)

Proof. As lh(A) = 1− Lh(N \A) it suffices to prove (3.1). We will do it by contradiction.
Let us assume that (3.1) does not hold and let L = infh∈N Lh. Then there exists an ε > 0

such that the set H = {h ∈ N; Lh > L + ε} is infinite. Moreover, there exists an h0 such
Lh0 < L + ε/2. Put U = L + ε/2 and V = L + ε.

Let d ∈ N and h = dh0 + 1. For any h′ > hh0 there exist nonnegative integers e and f
such that h′ = eh + fh0. By Proposition 2.3 we have Lh′ ≤ max{Lh, Lh0}. As H is infinite,
necessarily h ∈ H, that is, Lh > V .

By the properties of limes superior, there exists n = nd ∈ N such that

sn,h(A)
Sn,h

> V and ∀j ≥ 0 :
sn+j,h0(A)

Sn+j,h0

< U.

By Lemma 2.1 also sn,dh0(A)/Sn,dh0 < U , hence n+h = n+ dh0 +1 ∈ A and by Lemma 2.2
we have cn+dh0+1 > (V − U)Sn,h/(1− U).
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Similarly, for any i ∈ {0, 1, . . . , d} we have cn+ih0+1 ∈ A,

sn,h(A)− cn+ih0+1

Sn,h − cn+ih0+1
=

∑i−1
k=0 sn+kh0,h0(A) +

∑d−1
k=i sn+kh0+1,h0(A)∑i−1

k=0 Sn+kh0,h0 +
∑d−1

k=i Sn+kh0+1,h0

< U,

and by Lemma 2.2

∀i ∈ {0, 1, . . . , d} : cn+ih0+1 >
V − U

1− U
Sn,h.

Therefore

Sn,h ≥
d∑

i=0

cn+ih0+1 > (d + 1)
V − U

1− U
Sn,h,

that is d + 1 < (1− U)/(V − U). As d was arbitrary, this is a contradiction.

By minor modifications of the above argument it is easy to prove also the following result.

Theorem 3.2. Let A ⊆ N. Then

lim
h→∞

Λh(A) = inf
h∈N

Λh(A), (3.3)

lim
h→∞

λh(A) = sup
h∈N

λh(A). (3.4)

In the case of the (standard) uniform density we have inf Lh(A) = inf Λh(A) for any set
A ⊆ N. As the following theorem shows, this property holds whenever

∑∞
n=1 cn is divergent.

Theorem 3.3. Let A ⊆ N and
∑∞

n=1 cn = +∞. Then

inf
h∈N

Lh(A) = inf
h∈N

Λh(A), (3.5)

sup
h∈N

lh(A) = sup
h∈N

λh(A). (3.6)

Proof. Let L = infn∈N Lh. As Lh ≤ Λh, it suffices to show that

∀ε > 0∃h ∈ N : Λh ≤ L + ε.

Let 0 < ε < 1− L be fixed and put U = L + ε/2, and V = L + ε. Then

∃h0, n0 ∈ N∀n > n0 :
sn,h0(A)

Sn,h0

< L + ε/2 = U. (3.7)

Without the loss of generality we can assume h0|n0.
As

∑∞
n=0 cn = +∞ we have

∀δ > 0 ∃nδ ∈ N ∀i ∈ {1, 2, . . . , n0} : Si,n0 < δSn0+i,nδ
.

Again, we can assume h0|nδ.
Let h = n0 + nδ. As h0|h by Proposition 2.3 and (3.7) for any n > n0 we have

sn,h(A)/Sn,h < U . Therefore Λh > V if and only if there exists i ∈ {1, 2, . . . , n0} such
that si,h(A)/Si,h > V . Put s = Si,n0 + sn0+i,nδ

(A), S = Si,h and T = Si,n0 . Then s/S > V
and, as h0|n0, (s−T )/(S−T ) < U . Therefore, by lemma 2.2 we have T > (V −U)S/(1−U),
that is,

Si,n0 >
V − U

1− U
Sn0+i,nδ

.

However, by the choice of nδ for δ < (V −U)/(1−U) the above condition cannot hold. Hence
for any such δ we have Λh < V .

Remark 3.4. If
∑∞

n=1 cn = C, then for A = {1} we have infh∈N Lh(A) = 0 while infh∈N Λh(A) =
c1/C. Therefore the condition

∑∞
n=1 cn = +∞ is in fact necessary for (3.5), (3.6) to hold for

every set A ⊆ N.
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4 Weighted uniform densities as uniform limits of rela-
tive weights

In this section we give a characterization of upper and lower weighted uniform densities as
the uniform limit superior and limit inferior of the double sequence of relative weights γn,h.

We observe first that the uniform convergence of a double sequence as,t for t → ∞
uniformly in s, which we will denote by lim

t⇒∞
as,t, is precisely the convergence of this double

sequence considered as a net on the directed set D = (N × N,≺), (s, t) ≺ (s′, t′) ⇔ t ≤ t′.
For any net (xα)α∈I of real numbers defined on a general directed set (I,�) limit superior
of the net is defined as

lim sup xα = lim
α∈I

sup
β�α

xβ = inf
α∈I

sup
β�α

xβ .

It can be defined equivalently as the largest limit point of the net.
In the case of double sequence defined on the directed set D we obtain that L = lim sup

t→∞
as,t

uniformly in s if and only if

lim
t→∞

(sup
t′≥t
s∈N

as,t′) = inf
t

(sup
t′≥t
s∈N

as,t′) = L.

We will use notation
lim sup

t⇒∞
as,t = L.

Similar notation is used when L = lim inf
t→∞

as,t uniformly in s and we denote it by

lim inf
t⇒∞

as,t = L.

More about limes superior and inferior of nets can be found for example in [AB, p.32], [M,
p.217], [S, 7.43–7.47]. We will use several times the fact that the limit superior of a subnet
is less or equal to the limit superior of a net. The dual inequality holds for limit inferior.

Now we can give the characterization of the upper and lower weighted uniform density in
terms of the uniform convergence of relative weights.

From now on we will always assume that the weight sequence (ci)∞i=1 fulfills the conditions
ci > 0 and

∑∞
i=0 ci = +∞. (If we allow zero weights of elements then we potentially allow

arbitrarily long intervals with zero weight. In the case that the sum of the weights is finite,
some finite sets have non-zero upper density. Hence both these conditions are quite natural
and working with sequences not fulfilling them would lead to unnecessary complications.)

Theorem 4.1. Let c = (ci)∞i=1 be a weight sequence. Then for any A ⊆ N the equalities

uc(A) = lim sup
h⇒∞

γn,h(A),

uc(A) = lim inf
h⇒∞

γn,h(A)

hold.

Proof. We give the proof of the first equality, the second one can be proved by an easy
modification of it. Let

α = lim sup
h⇒∞

γn,h = lim
h→∞

sup
h′≥h,n∈N

γn,h′ .
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Recall that for Λh = supn∈N γn,h we have by Theorems 3.1 and 3.3 that

uc(A) = lim
h→∞

Λh.

From the obvious equality

sup
h′≥h,n∈N

γn,h′ = sup
h′≥h

(
sup
n∈N

γn,h′

)
we get

α = lim
h→∞

sup
h′≥h

Λh′ = lim sup
h→∞

Λh.

By Theorem 3.2 the sequence (Λh)∞h=1 has a limit, thus

lim sup
h→∞

Λh = lim
h→∞

Λh,

that is, α = uc(A).

As a direct consequence of the above result we obtain the following generalization of [GLŠ,
Theorems 1.1 and 1.2].

Corollary 4.2. Let (ci)∞i=1 be a weight sequence. Then for any A ⊆ N

lim
h⇒∞

γn,h(A) = uc(A)

in the sense that uc(A) exists if and only if the limit on the left hand side exists and they
have the same value.

This result is interesting for two reasons. Firstly, we have obtained an equivalent definition
of the upper and lower weighted uniform density that is similar to the definition of the
weighted density – it is defined using (some kind of) lim sup and lim inf. Secondly, as we
have already mentioned, the upper Banach density is usually defined in this way. Thus the
generalization of upper and lower Banach density to the case of weighted densities would
lead precisely to the values indicated in the theorem.

5 An alternative characterization of the weighted uni-
form density

In this section we would like to generalize the following result from [GLŠ, Theorem 3.1]:

lim
p⇒∞

p

ak+p − ak+1
= u(A) (5.1)

in the sense that u(A) exists if and only if the limit in (5.1) exists and they have the same
value.

The above characterization makes sense only for infinite sets. Since we always assume
that

∑∞
n=0 cn = +∞, every finite set has zero uniform weighted density, thus we can assume

that A is an infinite set. Therefore all limits superior and inferior defined bellow will be
automatically considered zero for finite sets.

As we have already seen, the upper weighted uniform density is equal to

lim sup
|I|→∞

Ac(I)
Nc(I)

,
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that is, if we denote Λh = sup|I|=h
Ac(I)
Nc(I) for h ∈ N, then uc(A) = lim supΛh, (in fact, it is

equal to lim
h→∞

Λh). In a similar way, corresponding to (5.1), we will consider the intervals

containing the same number of elements of A instead of the intervals of fixed length. Thus
we will investigate

lim sup
|I∩A|→∞

Ac(I)
Nc(I)

and

lim inf
|I∩A|→∞

Ac(I)
Nc(I)

.

If we look at all the intervals whose intersection with the set A is {ap, . . . , ap+k} and
compare maximal and minimal possible value of the fraction Ac(I)

Nc(I) for such intervals, we see
that these values are equal to

γp,k(A) =
Ac[ap, ap+k]
Nc[ap, ap+k]

,

γ
p,k

(A) =
Ac(ap−1, ap+k+1)
Nc(ap−1, ap+k+1)

,

where we put a0 = 0 by definition.
The above intervals are the maximal and minimal ones with the property A ∩ I =

{ap, . . . , ap+k}. Among the remaining intervals with this property also the intervals (ap−1, ap+k]
and [ap, ap+k+1) are in some sense extremal. Thus it is natural to study also the following
fractions

γ′p,k(A) =
Ac(ap−1, ap+k]
Nc(ap, ap+k]

,

γ∗p,k(A) =
Ac[ap, ap+k+1)
Nc[ap, ap+k)

.

As a generalization of (5.1) we will investigate whether the following equalities hold.

uc(A) = lim sup
k⇒∞

γp,k(A) (S)

uc(A) = lim sup
k⇒∞

γ
p,k

(A) (S)

uc(A) = lim sup
k⇒∞

γ′p,k(A) (S’)

uc(A) = lim sup
k⇒∞

γ∗p,k(A) (S∗)

We will also investigate the analogous equalities for the lower weighted uniform density.

uc(A) = lim inf
k⇒∞

γp,k(A) (I)

uc(A) = lim inf
k⇒∞

γ
p,k

(A) (I)

uc(A) = lim inf
k⇒∞

γ′p,k(A) (I’)

uc(A) = lim inf
k⇒∞

γ∗p,k(A) (I∗)
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The following inequalities are almost immediate (when comparing lim sup
k⇒∞

γp,k(A) and

lim sup
h⇒∞

γn,h(A) we use the fact that (γp,k(A))(p,k)∈N×N is a subnet of (γn,h(A))(n,h)∈N×N).

uc(A) = lim inf
h⇒∞

γn,h(A) ≤ lim inf
k⇒∞

γ
p,k

(A) ≤ lim sup
k⇒∞

γp,k(A) ≤ lim sup
h⇒∞

γn,h(A) = uc(A).

lim inf
k⇒∞

γ
p,k

(A) ≤ lim inf
k⇒∞

γ′p,k(A) ≤ lim sup
k⇒∞

γ′p,k(A) ≤ lim sup
k⇒∞

γp,k(A)

lim inf
k⇒∞

γ
p,k

(A) ≤ lim inf
k⇒∞

γ∗p,k(A) ≤ lim sup
k⇒∞

γ∗p,k(A) ≤ lim sup
k⇒∞

γp,k(A)

This yields the following implications denoted by arrows in the diagram

(S’)

  A
AA

AA

(S)

>>~~~~~

  A
AA

AA
(S)

(S∗)

>>~~~~~

(I’)

  A
AA

AA

(I)

>>~~~~~

  A
AA

AA
(I)

(I∗)

>>~~~~~

Remark 5.1. On some occasions we will use the fact that in the definition of the upper
(lower) uniform density we can use γn,h for n ≥ n0 instead of n ∈ N and that the same fact
is true of γp,k, that is, for each n0, p0 ∈ N

uc(A) = lim sup
h→∞

( sup
n≥n0
h′≥h

γn,h′(A)) = lim sup
h⇒∞

γn+n0,h

lim sup
p⇒∞

γp,k(A) = lim sup
k→∞

( sup
p≥p0
k′≥k

γp,k′(A)) = lim sup
p⇒∞

γp+p0,k(A)

hold.
To see this it is enough to note that uc(F ) = lim

p⇒∞
γp,k(F ) = 0 for every finite set. Note

that here we use again the assumption that
∑∞

i=1 ci = +∞.

5.1 Conditions on weights

As can be seen from the examples in Section 6 neither of the equalities mentioned above is
true for arbitrary sets and arbitrary weight sequences. Therefore we will try to find some
sufficient or necessary conditions on weights or sets such that these equalities are true.

Let us start by introducing some conditions on the sequence (ck)∞k=1, that are not too
restrictive but, in some cases, they will be sufficient to obtain the desired results.

In the paper [MMŠT] Alexander’s densities were studied – this is a weighted analogue of
the asymptotic density. The authors have shown that the following condition

lim
n→∞

cn∑n
k=1 ck

= 0 (M)

is necessary and sufficient for the associated weighted density to have to have the Darboux
property. In the paper [PŠV, Theorem 2.3] the authors have shown that the weighted density
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is a compact submeasure if and only if the weight sequence has the property (M). Let us
note that in [MMŠT] it is also shown that (M) is equivalent to

lim
n→∞

max{ck; k = 1, . . . , n}∑n
k=1 ck

= 0

for every sequence (ck)∞k=1 such that
∞∑

k=1

ck = +∞.

Motivated by these facts we tried to find a uniform analogy to the condition (M). The
following conditions seem to be good candidates.

lim
h⇒∞

max{ct; t ∈ N ∩ (n, n + h]}
Nc(n, n + h]

= 0 (Um)

lim
h⇒∞

cn+h

Nc(n, n + h]
= 0 (Ue)

lim
h⇒∞

cn

Nc[n, n + h]
= 0 (Ub)

The following condition has been used in [GAG].

for every fixed integer q ≥ 1, lim
r→∞

sup
n∈N

Sn+rq,q

Sn,rq
= 0. (5.2)

It can be shown the condition is equivalent to (M). Let us start by describing the relationships
between these conditions.

Clearly, (Um) ⇒ (Ue) ⇒ (M) and (Um) ⇒ (Ub). Every non-decreasing sequence fulfills
(Ub) and every non-increasing sequence fulfills (Ue).

The weight sequences used in Examples 6.1, 6.3 show that (Ub) 6⇒ (M). The fact that
(Ue) 6⇒ (Um) is exemplified by the sequence from Example 6.2.

This can be expressed in the form of the following diagram where none of the implications
indicated in the diagram by an arrow can be reversed and, if there is no path between two
conditions, the corresponding implication does not hold.

(Ue) // (M)

(Um)

""E
EE

EE
EE

E

<<yyyyyyyy

(Ub)

Proposition 5.2. A sequence (cn)∞n=1 fulfills (Um) if and only if it fulfils both (Ue) and
(Ub).

Proof. Clearly, (Um) implies both (Ue) and (Ub).
Now, suppose that (cn)∞n=1 fulfills both (Ue) and (Ub). Thus there exists an h0 such that

cn+1

Nc(n, n + l]
< ε and

cn+l

Nc(n, n + l]
< ε

whenever l ≥ h0.
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Now, suppose that h ≥ 2h0. We will show that

max{ct; t ∈ (n, n + h]}
Nc(n, n + h]

< ε.

If t ≥ n + h0 then
ct

Nc(n, n + h]
≤ ct

Nc(t− h0, t]
< ε

(using (Ue)). In the remaining case we have t + h0 < n + 2h0 = n + h. Thus

ct

Nc(n, n + h]
≤ ct

Nc[t, t + h0]
< ε.

We next show how the conditions (Um), (Ue) and (Ub) influence the relations between
the equalities (S) through (S).

We have

Ac(ap, ap+k]
Nc(ap, ap+k]

=
Ac[ap, ap+k]− cap

Nc[ap, ap+k]− cap

=
Ac[ap, ap+k]− cap

Nc[ap, ap+k]
· Nc[ap, ap+k]

Nc[ap, ap+k]− cap

If we assume that (cn)∞n=1 fulfills (Ub), then

lim
k⇒∞

Nc[ap, ap+k]
Nc[ap, ap+k]− cap

= 1,

therefore

lim sup
k⇒∞

Ac(ap, ap+k]
Nc(ap, ap+k]

= lim sup
k⇒∞

Ac[ap, ap+k]− cap

Nc[ap, ap+k]
.

Using (Ub) once again, we get that the right hand side is equal to lim sup
k⇒∞

Ac[ap,ap+k]
Nc[ap,ap+k] . Thus

(Ub) implies
lim sup

k⇒∞
γ′p,k(A) = lim sup

k⇒∞
γp,k(A).

The same reasoning works for lim inf instead of lim sup.
Note that we have used (ap, ap+k] instead of (ap−1, ap+k] when expressing γ′p,k(A). This

is justified by Remark 5.1.
Under the assumption (Ue), an analogous derivation works for γ∗p,k(A) and γp,k(A). (The

only difference is subtracting cap+k
instead of cap

.)
In a similar manner we can establish the equality of the remaining pairs.
Summarizing this we get

Proposition 5.3. If the weight sequence (cn)∞n=1 fulfills (Ub) then

lim sup
k⇒∞

γ′p,k(A) = lim sup
k⇒∞

γp,k(A) and lim sup
k⇒∞

γ∗p,k(A) = lim sup
k⇒∞

γ
p,k

(A).

If the weight sequence (cn)∞n=1 fulfills (Ue) then

lim sup
k⇒∞

γ∗p,k(A) = lim sup
k⇒∞

γp,k(A) and lim sup
k⇒∞

γ′p,k(A) = lim sup
k⇒∞

γ
p,k

(A).

The analogous equalities hold from limit inferior.
Consequently, if (cn)∞n=1 fulfills (Um), all four values of limit superior (limit inferior) are

the same.
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The above result implies the implications between the studied conditions indicated in the
following diagrams. In particular, (Um) implies the equivalence of all four conditions.

(S’)

AA
AA

A

AA
AA

A

(S)

~~~~~
~~~~~

AA
AA

A

AA
AA

A
(S)

(S∗)

~~~~~
~~~~~

(S’)

  A
AA

AA

(S)

~~~~~
~~~~~

  A
AA

AA
(S)

(S∗)

~~~~~
~~~~~

(S’)

AA
AA

A

AA
AA

A

(S)

>>~~~~~

AA
AA

A

AA
AA

A
(S)

(S∗)

>>~~~~~

(Um) (Ue) (Ub)

(I’)

AA
AA

A

AA
AA

A

(I)

~~~~~
~~~~~

AA
AA

A

AA
AA

A
(I)

(I∗)

~~~~~
~~~~~

(I’)

AA
AA

A

AA
AA

A

(I)

>>~~~~~

AA
AA

A

AA
AA

A
(I)

(I∗)

>>~~~~~

(I’)

  A
AA

AA

(I)

~~~~~
~~~~~

  A
AA

AA
(I)

(I∗)

~~~~~
~~~~~

(Um) (Ue) (Ub)

5.2 Syndetic sets

An alternative approach to putting conditions on the weight sequences is to find systems of
subsets of N for which the studied equalities are satisfied without any restriction on weights.
Now we will consider a class of subsets of N for which the equalities (S) and (I) hold without
any additional assumptions on (cn)∞n=1.

Definition 5.4. A set A = {a1 < a2 < · · · < an < . . . } ⊆ N is called a syndetic set if

lim sup
n→∞

(an+1 − an) < ∞,

that is, if the set A has “bounded gaps”, see for example [Fu, R1]. Such sets are sometimes
also called relatively dense [BS].

If a set A ⊆ N is not syndetic (that is, lim sup
n→∞

(an+1 − an) = +∞) we say that A has

arbitrarily large gaps.

Note that a set A has arbitrarily large gaps if and only if u(A) = 0.
Suppose we are given a set A ⊆ N. For any n, h we put

k := A(n, n + h]− 1. (5.3)

Moreover, if A ∩ (n, n + h] 6= ∅, then there exists an integer p such that

ap := min A ∩ (n, n + h], (5.4)

that is, ap is the first and ap+k is the last element of A ∩ (n, n + h].
As p and k depend only on n, h and the set A, which is fixed, we will denote them by

p(n, h) and k(n, h).
For such p and k we get

Ac(n, n + h] = Ac[ap, ap+k] = Ac(ap−1, ap+k+1) (5.5)

γp,k(A) =
Ac[ap, ap+k]
Nc[ap, ap+k]

≥ Ac(n, n + h]
Nc(n, n + h]

= γn,h(A) (5.6)

γ
p,k

(A) =
Ac(ap−1, ap+k+1)
Nc(ap−1, ap+k+1)

≤ Ac(n, n + h]
Nc(n, n + h]

= γn,h(A) (5.7)

11



The above estimation yields immediately:

Theorem 5.5. Let (ci)∞i=1 be a weight sequence. Let A ⊆ N be a syndetic set. Then

uc(A) = lim sup
k⇒∞

γp,k(A)

uc(A) = lim inf
k⇒∞

γ
p,k

(A)

Proof. The inequalities (5.6), (5.7) imply that it suffices to show

lim
h⇒∞

k(n, h) = +∞.

If sup(an+1 − an) = M , then we have k(n, h) ≥
⌊

h
M

⌋
− 2, thus this is indeed true. (In fact,

the condition that A is syndetic is equivalent to lim
h⇒∞

k(n, h) = +∞.)

Hence for any syndetic set both (S) and (I) hold.
If (ci)∞i=1 fulfills (Um), then also the equalities (S) and (I) hold for every syndetic set by

Proposition 5.3. Examples 6.2, 6.3 show that the condition (Um) can be weakened neither
to (Ue) nor to (Ub).

5.3 Upper and lower weighted uniform density for arbitrary sets

We first show that if a weight sequence (ci)∞i=1 fulfills (Um), then (S) holds for every A ⊆ N.

Theorem 5.6. Let a weight sequence (ci)∞i=1 fulfills (Um). Then, for any A ⊆ N,

lim sup
k⇒∞

γp,k(A) = lim sup
k⇒∞

Ac[ap, ap+k]
Nc[ap, ap+k]

= uc(A). (5.8)

In the other words, if (ci)∞i=1 fulfills (Um) then (S) holds for every A ⊆ N.

Proof. The condition (Um) means that for any given ε1 > 0 there exists h1 such that for
h > h1 and n ∈ N

ct

Nc(n, n + h]
< ε1

holds for any t ∈ (n, n + h]. Note that this implies

γn,h =
Ac(n, n + h]
Nc(n, n + h]

≤ ε1A(n, n + h] (5.9)

whenever h > h1. (The choice of ε1 and all other ε’s will be specified later.)
Let us denote uc(A) = α. Without loss of generality we can assume α > 0.
Let us consider the upper density first. By Theorem 4.1 the equality uc(A) = α implies

that
sup
h≥h2
n∈N

γn,h ≥ α

for each h2, that is, for any given ε2 > 0 and arbitrary h2 there exist h ≥ h2 and n ∈ N with

γn,h =
Ac(n, n + h]
Nc(n, n + h]

≥ α− ε2. (5.10)

From now on let h > h1.

12



Now let p := p(n, h) and k := k(n, h) (see (5.4), (5.3)) for some n, h fulfilling (5.10) (note
that, since Ac(n, n + h] > 0 by (5.10), there exists at least one element of the set A in this
interval.) For this choice of p and k we have (see (5.5))

γp,k(A) =
Ac[ap, ap+k]
Nc[ap, ap+k]

=
Ac(n, n + h]
Nc[ap, ap+k]

≥ Ac(n, n + h]
Nc(n, n + h]

≥ α− ε2.

Suppose ε1 ≥ ε2. Then we have k + 1 = A(n, n + h] ≥ α−ε2
ε1

≥ α
ε1
− 1, hence by choosing ε1

small enough we can get k > k0 for any given k0.
This implies

lim sup
k⇒∞

γp,k ≥ α− ε2

and, since ε2 > 0 can be chosen arbitrarily small,

lim sup
k⇒∞

γp,k ≥ α = uc(A).

The opposite inequality is obvious.

Example 6.2 shows that (Um) cannot be weakened to (Ue). Example 6.4 shows that it
cannot be weakened to (Ub).

Next we show that if a weight sequence (ci)∞i=1 fulfills either (Ue) or (Ub), then the
condition (I) is fulfilled for every set A ⊆ N.

Theorem 5.7. If the weight sequence fulfills (Ub) then (I) holds for each A ⊆ N.

Proof. If the set A is syndetic then the claim follows from Theorem 5.5. So it remains to
consider sets with arbitrarily large gaps. Since for any such set A we have uc(A) = 0, it
suffices to prove

lim inf
k⇒∞

γ
p,k

(A) = 0.

Suppose we are given a set A ⊆ N with arbitrarily large gaps, a positive real number ε
and a positive integer k0. We want to show the existence of k ≥ k0 and p with γ

p,k
< ε.

Let k := k0. By the condition (Ub), there exists h0 such that

cn

Nc[n, n + h]
<

ε

k

whenever h > h0.
Since A has arbitrarily large gaps, for any h > h0 there exists n > ak+1 such that

A ∩ [n, n + h] = ∅. This also implies Ac[n, n + h] = 0.
For such n and h, let p be positive integer such that

ap+k+1 := min A ∩ (n + h,∞).

Now

Ac(ap−1, ap+k+1)
Nc(ap−1, ap+k+1)

=
cap

+ · · ·+ cap+k

Nc(ap−1, ap+k+1)
cap+t

Nc(ap−1, ap+k+1)
≤

cap+t

Nc[ap+t, n + h]
<

ε

k

for t = 0, . . . , k, since ap+t < n, n + h− ap+t > h. Consequently

Ac(ap−1, ap+k+1)
Nc(ap−1, ap+k+1)

=
cap

+ · · ·+ cap+k

Nc(ap−1, ap+k+1)
< k

ε

k
= ε.
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Thus

lim inf
k⇒∞

γ
p,k

(A) = 0.

By a minor modification of the above proof it is possible to show

Theorem 5.8. If the weight sequence fulfills (Ue) then (I) holds for each A ⊆ N.

The same examples which we have used for syndetic sets show that (I) need not be true
if only one of the conditions (Ue), (Ub) is fulfilled.

Of course, if both of them hold then by Propositions 5.2 and 5.3 the equalities (I) and (I)
are equivalent.

5.4 Weighted uniform density for arbitrary sets

If we want to establish a characterization similar to (5.1) with a sequence in A, the following
condition is in a direct analogy with (5.1)

lim
k⇒∞

γ′p,k(A) = uc(A) (L’)

or

lim
k⇒∞

γ∗p,k(A) = uc(A), (L∗)

in the sense that the set A has weighted uniform density if and only if the limit on the left
hand side exists and they have the same value.

Another possible generalization of (5.1) is the following

uc(A) = lim
k⇒∞

γp,k(A) = lim
k⇒∞

γ
p,k

(A) (L)

in the sense that uc(A) exists if and only if both limits on the right hand side exist and have
the same value and, in this case, the value of uc is the common value of these limits.

Note that all these conditions for the unit weights are equivalent to (5.1).
Clearly, if a set A has weighted uniform density, then all limits mentioned above are equal

to uc(A).
The condition (L’) implies (L) and the same is true for (L∗). All these conditions are

equivalent for the weight sequences fulfilling (Um). From Example 6.1 we see that (L) implies
neither (L’) nor (L∗).

From the results we obtained in the preceding section we get

Proposition 5.9. The condition (L) holds for any syndetic subset of N.
If the weight sequence (ci)∞i=1 fulfills (Um), then (L) holds for any subset of N.

In Example 6.2 we construct a syndetic set not fulfilling (L’) and a syndetic set not
fulfilling (L∗).

Also, from Example 6.2 we see that the assumption (Um) cannot be weakened to (Ue).
Example 6.4 shows that it cannot be weakened to (Ub).
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5.5 Necessary conditions for (I’) and (S)

In the preceding parts we have obtained some sufficient conditions for some of possible
generalizations of the result from [GLŠ]. Next we include some partial results concerning
the necessity of these conditions.

Let us first recall another notion characterizing smallness of sets which is related to the
uniform density.

Definition 5.10. A set A = {a1 < a2 < · · · < an < . . . } ⊆ N is called lacunary, if
lim

n→∞
(an+1 − an) = +∞.

The reader should be warned that the term lacunary is also used with different meanings
in literature. The same convention as here is used in [BF1, GLŠ]. Lacunary sets are called
(SC)-sets in [Fl2].

Some authors use the term lacunary for the sets fulfilling lim sup
n→∞

an+1
an

> 1, such sets are

called Hadamard lacunary in [Ka], almost thin in [Fl1]. These are precisely the sets having
the gap density defined in [GV] greater than 1 (see also [GŠT]).

Theorem 5.11. If (M) does not hold for a weight sequence (cn)∞n=1, that is,

lim sup
n→∞

cn

Nc(0, n]
= α > 0, (5.11)

then there exists a lacunary set A ⊆ N with

lim
k⇒∞

γ′p,k = α. (5.12)

As A is lacunary, we have thus uc(A) = 0.

This shows that (I’) ⇒ (M). We also see from this theorem that (L’) implies (M).
Example 6.1 shows that (I) 6⇒ (M). From the same example we see that (L’) 6⇒ (M).

Proof. Since lim sup
n→∞

cn

Nc(0,n] = α, there exists a subsequence (cbn
)∞n=1 with

lim
n→∞

cbn

Nc(0, bn]
= α. (5.13)

Choose a subsequence ak = bnk
of the sequence (bn)∞n=1 with the properties lim

k→∞
(ak+1−ak) =

+∞ and

lim
k→∞

Nc(0, ak]
Nc(0, ak+1]

= 0. (5.14)

The existence of such a subsequence follows from the fact that
∑∞

k=1 ck = +∞.
Being a subsequence of (bn)∞n=1, this sequence fulfills

lim
k→∞

cak

Nc(0, ak]
= α > 0 (5.15)

as well. Note that (5.14) implies

lim
k→∞

Nc(ak, ak+1]
Nc(0, ak+1]

= 1 (5.16)

lim
k→∞

Nc(0, ak]
cak+1

= lim
k→∞

Nc(0, ak]
Nc(0, ak+1]

· Nc(0, ak+1]
cak+1

(5.14),(5.15)
= 0
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The set A = {a1 < a2 < · · · < ak < . . . } is lacunary. We will show that (5.12) holds for
this set. First, note that

γ′p,k =
cap+1 + · · ·+ cap+k

Nc(ap, ap+k]
≥

cap+k

Nc(0, ap+k]
.

The condition (5.15) implies that the right hand side goes to α uniformly in p as k tends to
infinity. Thus we get

lim inf
k⇒∞

γ′p,k ≥ α.

On the other hand

γ′p,k =
cap+1 + · · ·+ cap+k

Nc(ap, ap+k]
=

cap+1 + · · ·+ cap+k

cap+k

· Nc(ap+k−1, ap+k]
Nc(ap, ap+k]

·
cap+k

Nc(ap+k−1, ap+k]
.

For the first fraction we have the estimate

cap+1 + · · ·+ cap+k

cap+k

≤
Nc(0, ap+k−1] + cap+k

cap+k

= 1 +
Nc(0, ap+k−1]

cap+k

and the right hand side tends to 1 uniformly in p as k tends to infinity by (5.14).
The limit of the second fraction Nc(ap+k−1,ap+k]

Nc(ap,ap+k] for k →∞ is 1 by (5.16). The limit of the

third fraction
cap+k

Nc(ap+k−1,ap+k] is α by (5.15). In both cases, the convergence is uniform in p.
Together we get that the limit of the right hand side is α and

lim sup
k⇒∞

γ′p,k ≤ α.

Thus we have shown that
lim

k→∞
γ′p,k = α

uniformly in p.

Theorem 5.12. Suppose that a weight sequence (cn)∞n=1 fulfills (M) but it doest not fulfill
(Um). Then there exists a set A ⊆ N with lim

k⇒∞
γp,k(A) = 0 and uc(A) > 0.

This shows that (S) ⇒ (Um) ∨ ¬(M). In the other words, if we restrict ourselves to the
sequences fulfilling (M), then (Um) is necessary for (S) to hold.

We also see from the above theorem that (L) ⇒ (Um) ∨ ¬(M).

Proof. Suppose that (Um) is not true for (cn)∞n=1. This means that there exists ε > 0 such
that for any given h0 we can find n and h with h > h0 and ct

Nc(n,n+h] ≥ ε for some t ∈ (n, n+h].
Inductively we construct sequences (hk)∞k=1, (nk)∞k=1, (mk)∞k=1, (ak)∞k=1 such that

• hk ≥ k;

• ak ∈ (nk, nk + hk];

• cak

Nc(nk,nk+hk] ≥ ε;

• cak

Nc(0,ak] ≤
1
2k ;

• mk > ak and Nc(ak,mk] ≥ 2kNc(0, ak] (the choice of such an mk is possible, since∑∞
k=1 ck = +∞);
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• ak+1 > mk;

• (ak)∞k=1 is increasing (this follows from the last two conditions).

The only thing to be clarified is, whether it is possible to choose ak+1 large enough to get
ak+1 > mk and ct

Nc(n,n+h] ≥ ε.
More precisely, the condition (M) implies that there exists tk such that

ct

Nc(0, t]
≤ 1

2k

whenever t > tk. By the assumption we know that, for any given h0 ≥ k, there exists h > h0,
n and t ∈ (n, n + h] such that

ct

Nc(n, n + h]
≥ ε.

We want to show that it is possible to choose such n, h and t with the additional property
t > Nk := max{mk, tk}. (Then we can put ak+1 = t.)

Let us choose h0 > Nk, at first. Note that, whenever n < t < Nk, we have

ct

Nc(n, n + h]
≤ max{c1, . . . , cNk

}
Nc(Nk, h]

.

By choosing h0 large enough, we can get

Nc(Nk, h] >
max{c1, . . . , cNk

}
ε

whenever h > h0. Such a choice of h0 will enforce that ak+1 > Nk.
If we have A = {ak; k ∈ N} constructed as above, then clearly uc(A) ≥ ε since

cak

Nc(nk, nk + hk]
≥ ε

and hk tends to infinity. Thus uc(A) ≥ ε > 0.
It remains to show that

γp,k(A) =
Ac[ap, ap+k]
Nc[ap, ap+k]

=
cap

+ · · ·+ cap+k−1 + cap+k

Nc[ap, ap+k]

converges to 0 uniformly in p as k tends to infinity.
Now we have the estimate

cap
+ · · ·+ cap+k−1

Nc[ap, ap+k]
≤ Nc(0, ap+k−1]

Nc(ap+k−1,mp+k−1]
≤ 1

2p+k−1

It remains to estimate the last term
cap+k

Nc[ap,ap+k] . We have

cap+k

Nc[ap, ap+k]
≤

cap+k

Nc(ap+k−1, ap+k]
=

cap+k

Nc(0, ap+k]
Nc(0, ap+k−1] + Nc(ap+k−1, ap+k]

Nc(ap+k−1, ap+k]
≤

≤ 1
2p+k

(
1 +

1
2p+k−1

)
≤ 2

2p+k
=

1
2p+k−1

.

Together we get

γp,k(A) =
Ac[ap, ap+k]
Nc[ap, ap+k]

≤ 2
2p+k−1

≤ 1
2k−2

which implies
lim

k→∞
γp,k(A) = 0

uniformly in p.
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6 Examples

In this section we include several examples where we explicitly compute values of the weighted
uniform densities of some sets, as well as the limits superior and limits inferior which appear
in the equalities we have studied.

Most of the examples are pathological in some sense. For example, in Example 6.1 the
value of the upper and lower weighted uniform density depends only on the finiteness of the
set or its complement. However, the purpose of these examples is to provide counterexamples
showing that the assumptions in some of the results of preceding section cannot be weakened.
Also, Theorems 5.11 and 5.12 imply that the weight sequence cannot be “too nice” in order
to obtain such a counterexample.

Example 6.1. Let us define the weight sequence by cn = 22n

. Note that it fulfills (Ub),
since it is increasing. It fulfills neither (M) nor (Um).

Obviously,

uc(A) = lim sup
k⇒∞

γp,k(A) =

{
0, if A is finite
1, otherwise

uc(A) = lim inf
k⇒∞

γ
p,k

(A) =

{
1, if A is cofinite
0, otherwise

On the other hand, we have also

lim inf
k⇒∞

γp,k(A) =

{
0, if A is finite
1, otherwise

lim sup
k⇒∞

γ
p,k

(A) =

{
1, if A is cofinite
0, otherwise

Thus in this case (S), (I) and (L) hold.
But (S) and (I) fail for the set A and the weight sequence given above.
Also, since the weight sequence does not fulfill (M), we get from Theorem 5.11 that

(L’) fails for this sequence. As the weight sequence fulfills (Ub), we have lim sup
k⇒∞

γ
p,k

(A) =

lim sup
k⇒∞

γ∗p,k(A) and lim inf
k⇒∞

γ
p,k

(A) = lim inf
k⇒∞

γ∗p,k(A). From this we get that for every A ⊆ N

the limit lim
k⇒∞

γ∗p,k(A) exists. Therefore (L∗) is not valid in this case.

Example 6.2. We will use the following sequence:

c =
1
4
,
1
4
,

1
16

,
1
16

,
1
16

,
1
16

, . . . ,
1

22n , . . . ,
1

22n ,︸ ︷︷ ︸
22n

-times

, . . . .

As this sequence is non-increasing, it fulfills (Ue). Clearly, it does not fulfill (Ub) and,
consequently, it does not fulfill (Um).

We choose the set A as the set of all ends of the blocks of length 22n

. Thus we have
cak

= 1

22k . Then

Ac[ap, ap+k]
Nc[ap, ap+k]

=
1

22p + · · ·+ 1

22p+k

1
22p + k

≤
1 + 1

2 + · · ·+ 1

22p+k

k
≤ 2

k
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thus lim
k⇒∞

γp,k(A) = 0.

On the other hand, this set has the upper density uc(A) = 1. (Consider γn,h for n, h such
that n + 1 ∈ A.) Thus neither (S) nor (L) is true in this case.

Next we include two examples of syndetic sets.
For B = 2N + 1 we get γ∗p,k(B) = 1

2 (for each p, k), hence

lim
k⇒∞

γ∗p,k(B) =
1
2
,

while

uc(B) = 0,

uc(B) =
1
2
.

This shows that (I∗) does not hold for this sequence. By Proposition 5.3, this condition is
equivalent to (I). Hence this example fails to fulfill (I), even for syndetic sets. We also see
that (L∗) is not true for this weight sequence.

Now, let us consider the set C = 2N = N \ B. Since it is the complement of B, we have
immediately

uc(C) = 1,

uc(C) =
1
2
.

In this case γ′p,k(C) = 1
2 for each p, k, hence

lim
k⇒∞

γ′p,k(C) =
1
2

So neither (S’) nor (L’) is true for this set. Again, using Proposition 5.3, the condition (S’)
is equivalent to (S). Thus it fails even for syndetic sets.

Example 6.3. This example is, in a sense, similar to Example 6.2. Let us choose

c = 1, 1, 2, 2, . . . , 22n

, 22n

, . . .

This sequence fulfills (Ub), but not (Ue). Recall that by Proposition 5.3 the condition (S∗)
is equivalent to (S) in this case. Similarly, (I’) is equivalent to (I).

For A = 2N + 1 we have uc(A) = 1, uc(A) = 1
2 and lim

k⇒∞
γ∗p,k(A) = 1

2 . Thus (S∗) and (S)

do not hold.
For B = 2N we have uc(B) = 1

2 , uc(B) = 0 and lim
k⇒∞

γ′p,k(B) = 1
2 . Thus (I’) and (I) do

not hold.
Both A and B are syndetic sets.

Example 6.4. Consider the sequence

c = 4, 4, 4, 4, 16, . . . , 16,︸ ︷︷ ︸
16-times

. . . , 22n

, . . . , 22n

,︸ ︷︷ ︸
22n

-times

, . . . .

It fulfills (Ub), since it is non-decreasing.
For the set A we chose the beginnings of blocks of length 22n

.

19



We have uc(A) = 1. (Consider γn,h for n and h such that n + h ∈ A.)
On the other hand, we have

γp,k(A) =
Ac[ap, ap+k]
Nc[ap, ap+k]

=
22p

+ 22p+1
+ · · ·+ 22p+k

22p+1 + 22p+2 + · · ·+ 22p+k + 22p+k .

Clearly

γp,k(A) ≥ 22p

+ 22p+1
+ · · ·+ 22p+k

22p+1 + 22p+2 + · · ·+ 22p+k + 22p+k+1 =
1
2
.

On the other hand,

γp,k(A) ≤ 22p+k−1+1 + 22p+k

2.22p+k =
1
2

+
22p+k−1

22p+k =
1
2

+
1

22p+k−1 ≤
1
2

+
1

22k−1 ,

hence

lim
k⇒∞

γp,k(A) =
1
2
.

Thus we have shown that this weight sequence does not fulfill the conditions (S) and (L).

If we modify this example by repeating the same value enough times before starting the
next block, we can obtain an example with similar properties that, in addition, fulfills (M).

7 Conclusion

We have shown that for any positive weight sequence the upper weighted and lower weighted
uniform density (as defined in [GAG]) exist. If, in addition,

∑∞
i=0 ci = +∞, then they

coincide with the weighted analogue of the upper and lower Banach density and they can be
described in terms of uniform limit superior and inferior of the double sequence γn,k(A) of
relative weights.

We have also investigated several possibilities of extending an alternative characterization
of the uniform density given in [GLŠ] to the case of the weighted uniform density. We have
seen that these characterizations do not hold in general, but we succeeded to find sufficient
conditions on the given set A or on the weight sequence (ci)∞i=1 such that they are true. Let us
note that the equalities (S) and (I) seem to be the most important and most natural among
several considered alternatives. However, in some cases they are equivalent to some of the
remaining conditions and working with γ′p,k or γ∗p,k instead of γ

p,k
and γp,k can simplify the

computations. The results and counterexamples given in the preceding sections suggest also
that the condition (Um) seems to be appropriate, since under this condition the weighted
uniform density behaves relatively well.

The overview of the obtained result is given in the following two tables, where the shortcut
syn stands for syndetic sets. As far as the necessity of the assumptions is concerned, we have
obtained only partial results.

⇒ (S) (S) (I) (I)
syn - + - +

syn+(Um) + + + +
syn+(Ue) - + - +
syn+(Ub) - + - +

⇒ (S) (S) (I) (I)
(Um) + + + +
(Ue) - - - +
(Ub) - - - +
(M) - - - -
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Remark 7.1. Let us note that there is another possibility to generalize the (5.1), namely,
fixing the sum instead of the number of elements in a given interval. In this case we would
investigate the values

lim sup
k⇒∞

Ac(I)≥k

Ac(I)
Nc(I)

and lim inf
k⇒∞

Ac(I)≥k

Ac(I)
Nc(I)

(7.1)

(To be precise, the above expressions make sense only for Ac(N) = +∞. In the case that
Ac(N) < ∞ we consider both values to be 0.) This alternative could be subject of further
study.

Remark 7.2. The motivation for expressing the uniform density in the form (5.1) is clear
– this characterization resembles the analogous characterization of the asymptotic density
d(A) = lim

n→∞
n
an

. A generalization of this result to the Alexander’s densities is easy.

Let us recall that, using our notation, the upper and lower Alexander’s density (also called
weighted density) given by the weight sequence (ci)∞i=1 is

dc(A) = lim sup
Ac(0, n]
Nc(0, n]

and dc(A) = lim inf
Ac(0, n]
Nc(0, n]

.

It can be shown easily that

dc(A) = lim sup
Ac(0, ak]
Nc(0, ak]

and dc(A) = lim inf
Ac(0, ak+1)
Nc(0, ak+1)

.

The proof is almost the same as in the case of the asymptotic density. As far as we know,
this result on Alexander’s densities was not published elsewhere.

It was shown in [GLŠ, Theorem 4.2] that the uniform density has Darboux property. In
the case of the Alexander’s densities it was shown in [MMŠT] that the Alexander’s density
associated with some weight sequence c has Darboux property if and only if c fulfills (M).
Moreover, the proof is similar to the proof of Darboux property for the asymptotic density.

The above mentioned proof in [GLŠ] for the uniform density strongly depends on the
fact the all weights are the same and it cannot be easily generalized. Thus we propose the
following problem.

Problem 7.3. Find necessary and sufficient conditions under which the weighted uniform
density has Darboux property.
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