Density measures

Martin Sleziak

May 27, 2014

Martin Sleziak Density measures

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Overview Density measures

Main topics:

- density measures
- existence of density measures
- possible values of density measures
- density measures and Lévy group
- density measures as functionals

Most results in this presentation were obtained in join works with Miloš Ziman: [SZ1, SZ2].

Overview Density measures

Asymptotic density

The asymptotic density of $A \subseteq \mathbb{N}$ is defined by

$$d(A) = \lim_{n \to \infty} \frac{A(n)}{n}$$

if this limit exists, where

$$A(n) = |A \cap \{1, 2, \ldots, n\}|.$$

 $\mathcal{D}=$ the set of all subsets of $\mathbb N$ having asymptotic density

Drawback: Some sets do not have asymptotic density. Is it possible to extend d to a finitely additive measure?

Overview Density measures

Definition of density measures

We will call a finitely additive normalized measure on $\mathbb N$ briefly a measure.

Definition

A *density measure* is a finitely additive measure on \mathbb{N} which extends the asymptotic density; i.e., it is a function $\mu : \mathcal{P}(\mathbb{N}) \to [0, 1]$ satisfying the following conditions:

(a)
$$\mu(\mathbb{N}) = 1$$
;
(b) $\mu(A \cup B) = \mu(A) + \mu(B)$ for all disjoint $A, B \subseteq \mathbb{N}$;
(c) $\mu|_{\mathcal{D}} = d$.

Overview Density measures

References for density measures

The term density measures was probably coined by Dorothy Maharam [M].

Density measures were studied by many authors, e.g.

- Blass, Frankiewicz, Plebanek and Ryll–Nardzewski [BFPRN]
- van Douwen [vD]
- Šalát and Tijdeman in [ŠT].

Density measures (and Lévy group) were used in theory of social choice [CK, Fe, L, T].

Overview Density measures

Existence of density measures

Existence of density measures is usually proved using either Hahn-Banach theorem or ultrafilters.

If ${\mathcal F}$ is any free ultrafilter on ${\mathbb N}$ then

$$\mu_{\mathcal{F}}(A) = \mathcal{F}\text{-lim}\,\frac{A(n)}{n}$$

is a density measure

 \mathcal{F} -lim $a_n = L \Leftrightarrow \{n \in \mathbb{N}; |a_n - L| < \varepsilon\} \in \mathcal{F}$ for each $\varepsilon > 0$

Overview Density measures

Properties of \mathcal{F} -limits

$$\mathcal{F}$$
-lim $a_n = L \Leftrightarrow \{n \in \mathbb{N}; |a_n - L| < \varepsilon\} \in \mathcal{F}$ for each $\varepsilon > 0$

- ▶ If \mathcal{F} is ultrafilter and (x_n) is bounded, then \mathcal{F} -lim x_n exists.
- \mathcal{F} -lim $(x_n + y_n) = \mathcal{F}$ -lim $x_n + \mathcal{F}$ -lim y_n .
- If (x_n) is convergent and \mathcal{F} is a free ultrafilter, then \mathcal{F} -lim $x_n = \lim_{n \to \infty} x_n$.

•
$$x_n \ge 0 \Rightarrow \mathcal{F}\text{-lim } x_n \ge 0$$

・ロト ・回ト ・ヨト ・ヨト

æ

Overview Density measures

Density measures from \mathcal{F} -limits

$$\mu_{\mathcal{F}}(A) = \mathcal{F}\text{-lim}\,\frac{A(n)}{n}$$

$$\mu_{\mathcal{F}} \colon \mathcal{P}(\mathbb{N}) \to [0, 1]$$

$$\bullet A \cap B = \emptyset \Rightarrow \mu_{\mathcal{F}}(A \cup B) = \mathcal{F}\text{-lim} \frac{A \cup B(n)}{n} =$$

$$\mathcal{F}\text{-lim} \frac{A(n)}{n} + \mathcal{F}\text{-lim} \frac{B(n)}{n} = \mu_{\mathcal{F}}(A) + \mu_{\mathcal{F}}(B)$$

$$\bullet \frac{A(n)}{n} \ge 0 \Rightarrow \mu_{\mathcal{F}}(A) = \mathcal{F}\text{-lim} \frac{A(n)}{n} \ge 0$$

$$\bullet A \in \mathcal{D} \Rightarrow \mu_{\mathcal{F}}(A) = \mathcal{F}\text{-lim} \frac{A(n)}{n} = \lim_{n \to \infty} \frac{A(n)}{n} = d(A)$$

イロン イヨン イヨン イヨン

æ

Overview Density measures

AC and density measures

Some form of Axiom of Choice is needed in order to get a density measure.

There exists a model of ZF constructed by Pincus and Solovay [PS] in which there are no nonprincipal finitely additive measures on \mathbb{N} .

< 🗇 🕨 🖌 🚍 🕨

Extremal values of density measures Density measures from $\alpha\text{-densities}$ Summary

Values of density measures

What are possible values of density measures for a given set $A \subseteq \mathbb{N}$?

$$\{\mu(A); \mu \text{ is a density measure}\}$$

This set is convex.

sup =?, max =?, inf =?, min =?

Extremal values of density measures Density measures from α -densities Summary

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Extremal values of density measures

$$\underline{\underline{d}}(A) = \sup\{d(B); B \subseteq A, B \in \mathcal{D}\},\\ \overline{\overline{d}}(A) = \inf\{d(C); C \supseteq A, C \in \mathcal{D}\}.\\ \underline{\underline{d}}(A) \le \mu(A) \le \overline{\overline{d}}(A)$$

Theorem

Let $A \subseteq \mathbb{N}$. There exists a density measure μ such that $\mu(A) = x$ if and only if $x \in [\underline{\underline{d}}(A), \overline{\overline{d}}(A)]$.

Extremal values of density measures Density measures from α -densities Summary

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

Pólya's result

The following expression for $\overline{\overline{d}}(A)$ was obtained by Pólya [P].

$$\overline{\overline{d}}(A) = \lim_{\theta \to 1^{-}} \limsup_{n \to \infty} \frac{A(n) - A(\theta n)}{n - \theta n}$$

Extremal values of density measures Density measures from α -densities Summary

lpha-densities

Upper and lower α -density for $\alpha \geq -1$ (see [GAGM]):

$$\underline{d_{\alpha}}(A) = \liminf_{n \to \infty} \frac{A_{\alpha}(n)}{\mathbb{N}_{\alpha}(n)};$$

 $\overline{d_{\alpha}}(A) = \limsup_{n \to \infty} \frac{A_{\alpha}(n)}{\mathbb{N}_{\alpha}(n)}.$

where $A_lpha(n) = \sum\limits_{k=1}^n \chi_A(k) k^lpha.$ It is known that for $-1 \leq lpha \leq eta$

$$\underline{d_{\beta}}(A) \leq \underline{d_{\alpha}}(A) \leq \overline{d_{\alpha}}(A) \leq \overline{d_{\beta}}(A).$$

If $A \in \mathcal{D}$, then $\underline{d_{\alpha}}(A) = \overline{d_{\alpha}}(A) = d(A)$ for $\alpha \geq -1$.

Extremal values of density measures Density measures from α -densities Summary

æ

Density measures from α -densities

If lpha > -1 and ${\mathcal F}$ is a free ultrafilter, then

$$\mu^{\mathcal{F}}_{lpha}(A) = \mathcal{F} ext{-lim}\,rac{A_{lpha}(n)}{\mathbb{N}_{lpha}(n)}.$$

is a density measure.

$$\frac{\underline{d}_{\infty}(A)}{\overline{d}_{\infty}(A)} = \lim_{\alpha \to \infty} \underline{d}_{\alpha}(A) = \inf_{\alpha \ge -1} \underline{d}_{\alpha}(A);$$
$$\overline{d}_{\infty}(A) = \lim_{\alpha \to \infty} \overline{d}_{\alpha}(A) = \sup_{\alpha \ge -1} \overline{d}_{\alpha}(A).$$

Clearly

$$\underline{\underline{d}}(A) \leq \underline{d_{\infty}}(A) \leq \overline{d_{\infty}}(A) \leq \overline{\overline{d}}(A).$$

Extremal values of density measures Density measures from α -densities Summary

臣

Density measures from α -densities

In fact, the equalities hold:

$$\overline{\overline{d}}(A) = \overline{d_{\infty}}(A) = \lim_{\alpha \to \infty} \overline{d_{\alpha}}(A),$$

see [LMS].

Extremal values of density measures Density measures from α -densities Summary

・ロ・ ・聞・ ・ヨ・ ・ヨ・

æ

Summary

$$\overline{\overline{d}}(A) = \inf \{ d(C); \ C \supseteq A, \ C \in \mathcal{D} \}$$
$$= \lim_{\theta \to 1^{-}} \limsup_{n \to \infty} \frac{A(n) - A(\theta n)}{n - \theta n}$$
$$= \lim_{\alpha \to \infty} \overline{d_{\alpha}}(A)$$

Martin Sleziak Density measures

Definition G-invariance Characterization of Lévy group

Lévy group

Definition

The Lévy group ${\mathcal G}$ is the group of all permutations π of ${\mathbb N}$ satisfying

$$\lim_{n \to \infty} \frac{\left| \{k; \ k \le n < \pi(k)\} \right|}{n} = 0.$$
 (3.1)

イロト イポト イヨト イヨト

臣

$$\pi \in \mathcal{G} \iff \lim_{n \to \infty} \frac{A(n) - (\pi A)(n)}{n} = 0 \text{ for all } A \subseteq \mathbb{N}$$
 (3.2)

Definition G-invariance Characterization of Lévy group

Equivalent characterization of ${\cal G}$

$$\pi \in \mathcal{G} \iff \limsup_{n \to \infty} \frac{\pi(n)}{n} = 1$$
 (3.3)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Recall that $\limsup_{n \to \infty} x_n = L$ iff for every $\varepsilon > 0$ the set

$$A_{\varepsilon} = \{n; |x_n - L| \ge \varepsilon\}$$

has zero asymptotic density $(d(A_{\varepsilon}) = 0)$.

 \mathcal{F} -lim for $\mathcal{F} = \{A \subseteq \mathbb{N}; d(A) = 1\}$

Definition *G*-invariance Characterization of Lévy group

\mathcal{G} -invariance

Theorem

A measure μ on \mathbb{N} is a density measure if and only if it is \mathcal{G} -invariant, i.e., $\mu(A) = \mu(\pi A)$ for all $A \subseteq \mathbb{N}$ and all permutations $\pi \in \mathcal{G}$.

Definition *G*-invariance Characterization of Lévy group

\mathcal{G} -invariance

We use van Douwen's result [vD, Theorem 1.12]:

Theorem

A measure μ on \mathbb{N} is a density measure if and only if $\mu(A) = \mu(\pi A)$ for all $A \subseteq \mathbb{N}$ and all permutations $\pi : \mathbb{N} \to \mathbb{N}$ such that

$$\lim_{n \to \infty} \frac{\pi(n)}{n} = 1. \tag{3.4}$$

$$(3.4) \Rightarrow (3.3)$$

G-invariant \Rightarrow density measure

This implication follows also from a result of Blümlinger and Obata [BO, Theorem 2].

Definition *G*-invariance Characterization of Lévy group

\mathcal{G} -invariance

The proof of the opposite implication uses the following result (Fridy [Fr, Theorem 1] or Šalát [Š, Lemma 1.1]):

Theorem

A sequence (x_n) is statistically convergent to $L \in \mathbb{R}$ if and only if there exists a set A such that d(A) = 1 and the sequence x_n converges to L along the set A, i.e., L is limit of the subsequence $(x_n)_{n \in A}$.

Definition *G*-invariance Characterization of Lévy group

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Basic idea of the proof

If π fulfills (3.3)

$$\pi \in \mathcal{G} \iff \limsup_{n \to \infty} rac{\pi(n)}{n} = 1$$

it can be modified to ψ fulfilling (3.4)

$$\lim_{n\to\infty}\frac{\psi(n)}{n}=1$$

and πA and ψA differ only in a set of zero density.

$$\mu(A) = \mu(\psi A) = \mu(\pi A)$$

Definition G-invariance Characterization of Lévy group

Lévy group and invariance of density measures

Proposition

If π is a permutation such that every density measure is π -invariant, i.e., $\mu(\pi A) = \mu(A)$ for every $A \subseteq \mathbb{N}$ and every density measure μ , then $\pi \in \mathcal{G}$.

Measures from functionals Functionals from measures Functionals extending Cesàro mean Banach-Alaoglu theorem

A B > A B >

Finitely additive measure and ℓ_∞^*

Finitely additive signed measure is a function $\mu \colon \mathcal{P}(\mathbb{N}) \to \mathbb{R}$ such that

$$\mu(A \cup B) = \mu(A) + \mu(B)$$

whenever $A \cap B = \emptyset$.

If $f\in\ell_\infty^*$ then

$$\mu(A)=f(\chi_A)$$

 μ is a finitely additive signed measure.

Measures from functionals Functionals from measures Functionals extending Cesàro mean Banach-Alaoglu theorem

Finitely additive measure and ℓ_∞^*

For every finitely additive measure there exists precisely one $f \in \ell_\infty^*$ such that

$$\mu(A)=f(\chi_A).$$

positive measures = positive functionals ($f \ge 0$) probabilistic measures = normed functionals ||f|| = 1density measures = ?

Measures from functionals Functionals from measures Functionals extending Cesàro mean Banach-Alaoglu theorem

Functionals corresponding to density measures

If for a bounded sequence (x_n) exists the limit

$$C(x) = \lim_{n \to \infty} \frac{x_1 + \dots + x_n}{n}$$

then C(x) is called Cesàro mean of the sequence x.

Theorem

Let μ be a measure and $f \in \ell_{\infty}^*$ be the corresponding functional. The measure μ is a density measure if and only if f extends Cesàro mean.

Measures from functionals Functionals from measures Functionals extending Cesàro mean Banach-Alaoglu theorem

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Existence of density measures using Banach-Alaoglu theorem

Theorem (Banach-Alaoglu)

If X is a normed linear space, then the unit ball of X^* endowed with weak*-topology is compact.

Weak*-topology is

- initial topology w.r.t. the evaluation maps φ → φ(x) for x ∈ X (i.e., the coarsest topology which makes all these maps continuous);
- b the topology of pointwise convergence (a net (φ_d)_{d∈D} converges to φ if and only if φ_d(x) → φ(x) for each x ∈ X);
- ► the subspace topology inherited from the product topology on ℝ^X.

Measures from functionals Functionals from measures Functionals extending Cesàro mean Banach-Alaoglu theorem

Existence of density measures using Banach-Alaoglu theorem

$$C_n(x)=\frac{x_1+\cdots+x_n}{n}$$

Each C_n is a positive functional which belongs to the unit ball of ℓ_{∞}^* .

There exists a convergent subnet: $f = \lim_{d \in D} C_{n_d}$.

$$f(x) = \lim_{d \in D} C_{n_d}(x) = \lim_{n \to \infty} C_n(x) = C(x)$$

f is a positive functional such that $\|f\| = 1$ and f extends Cesàro mean.

An interesting density measure

An interesting density measure

Blümlinger [B]: $2\mathcal{F} = \{B \subseteq \mathbb{N}; B \supseteq 2A \text{ for some } A \in \mathcal{F}\}$ (the ultrafilter given by the base $\{2A; A \in \mathcal{F}\}$)

$$\mu(A) = 2(2\mathcal{F})-\lim \frac{A(n)}{n} - \mathcal{F}-\lim \frac{A(n)}{n}$$

is a density measure Let $A = \bigcup_{i=1}^{\infty} \{2^{2^i}, 2^{2^i} + 1, \dots, 2 \cdot 2^{2^i} - 1\}$ and $\{2^{2^i}; i \in \mathbb{N}\} \in \mathcal{F}$. Then $\mu(A) = 1$ and $\overline{d}(A) = \frac{1}{2}$.

An interesting density measure

An interesting density measure

A negative answer van Douwen [vD, Question 7A.1]: Does $\mu(A) \leq \overline{d}(A)$ hold for every density measure? Counterexample to the following claim of Lauwers [L, p.46]: Every density measure can be expressed in the form

$$\mu_{\varphi}(A) = \int_{\beta \mathbb{N}^*} \mathcal{F}\operatorname{-lim} \frac{A(n)}{n} \, \mathrm{d}\varphi(\mathcal{F}), \qquad A \subseteq \mathbb{N}$$
 (5.1)

< A > < > >

for some probability Borel measure φ on the set of all free ultrafilters $\beta \mathbb{N}^*$.

An interesting density measure

・ロト ・回ト ・ヨト ・ヨト

An interesting density measure

Šalát and Tijdeman [ŠT]: Has every density measure the following properties?

a) If
$$A(n) \leq B(n)$$
 for all $n \in \mathbb{N}$ then $\mu(A) \leq \mu(B)$ (where $A, B \subseteq \mathbb{N}$).
b) If $\lim_{n \to \infty} \frac{A(n)}{B(tn)} = 1$ then $\mu(A) = t\mu(B)$ (where $A, B \subseteq \mathbb{N}$ and $t \in \mathbb{R}$).

Answer to both these questions is negative.

a) If $\mu(A) > \overline{d}(A)$ and $d(B) \in (\overline{d}(A), \mu(A))$ then B(n) > A(n) for $n > n_0$, but $\mu(A) > d(B) = \mu(B)$. b) In the preceding example we have $\mu(A) = 1$ and $\mu(2A) = 0$.

An interesting density measure

Thanks for your attention!

The preprints of [SZ1, SZ2] presented here, as well as the text of this talk and these slides can be found at: http://thales.doa.fmph.uniba.sk/sleziak/papers/

Email: sleziak@fmph.uniba.sk

M. Blümlinger.

Lévy group action and invariant measures on $\beta \mathbb{N}$. Trans. Amer. Math. Soc., 348(12):5087–5111, 1996.

- A. Blass, R. Frankiewicz, G. Plebanek, and C. Ryll-Nardzewski. A note on extensions of asymptotic density. *Proc. Amer. Math. Soc.*, 129(11):3313-3320, 2001.
- 📄 M. Blümlinger and N. Obata.

Permutations preserving Cesáro mean, densities of natural numbers and uniform distribution of sequences. *Ann. Inst. Fourier*, 41:665–678, 1991.

D. E. Campbell and J. S. Kelly.
 Asymptotic density and social choice trade-offs.
 Math. Social Sci., 29:181–194, 1995.

A (1) < (1) < (1) </p>

M. Fey.

May's theorem with an infinite population. Social Choice and Welfare, 23:275–293, 2004.

J. A. Fridy.

On statistical convergence.

Analysis, 5:301–313, 1985.

R. Giuliano Antonini, G. Grekos, and L. Mišík. On weighted densities. Czechosl. Math. J., 57(3):947-962, 2007.

L. Lauwers.

Intertemporal objective functions: strong Pareto versus anonymity.

Mathematical Social Sciences, 35:37-55, 1998.

Peter Letavaj, Ladislav Mišík, and Martin Sleziak.

Extreme points of the set of density measures. in preparation.

D. Maharam.

Finitely additive measures on the integers. *Sankhya, Ser. A*, 38:44–59, 1976.

G. Pólya.

Untersuchungen über Lücken und Singularitäten von Potenzreihen.

Math. Zeit., 29:549-640, 1929.

David Pincus and Robert M. Solovay. Definability of measures and ultrafilters. J. Symbolic Logic, 42(2):179–190, 1977.

🔋 T. Šalát.

On statistically convergent sequences of real numbers.

Mathematica Slovaca, 30:139-150, 1980.

📄 T. Šalát and R. Tijdeman.

Asymptotic densities of sets of positive integers. *Mathematica Slovaca*, 33:199–207, 1983.

- M. Sleziak and M. Ziman.
 Lévy group and density measures.
 J. Number Theory, 128(12):3005-3012, 2008.
 - 🧃 M. Sleziak and M. Ziman.

Range of density measures.

Acta Mathematica Universitatis Ostraviensis, 17:33-50, 2009.

V. Toma.

Densities and social choice trade-offs. *Tatra Mt. Math. Publ.*, 31:55-63, 2005.

Finitely additive measures on \mathbb{N} .

Topology and its Applications, 47:223–268, 1992.

・ロン ・四と ・ヨン ・ヨン

æ