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Overview

Main topics:
I density measures
I existence of density measures
I possible values of density measures
I density measures and Lévy group
I density measures as functionals

Most results in this presentation were obtained in join works with
Milo² Ziman: [SZ1, SZ2].
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Asymptotic density

The asymptotic density of A ⊆ N is de�ned by

d(A) = lim
n→∞

A(n)

n

if this limit exists, where

A(n) = |A ∩ {1, 2, . . . , n}| .

D = the set of all subsets of N having asymptotic density

Drawback: Some sets do not have asymptotic density.
Is it possible to extend d to a �nitely additive measure?
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De�nition of density measures

We will call a �nitely additive normalized measure on N brie�y a
measure.

De�nition
A density measure is a �nitely additive measure on N which extends
the asymptotic density; i.e., it is a function µ : P(N)→ [0, 1]
satisfying the following conditions:

(a) µ(N) = 1;

(b) µ(A ∪ B) = µ(A) + µ(B) for all disjoint A,B ⊆ N;
(c) µ|D = d .
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References for density measures

The term density measures was probably coined by Dorothy
Maharam [M].

Density measures were studied by many authors, e.g.
I Blass, Frankiewicz, Plebanek and Ryll�Nardzewski [BFPRN]
I van Douwen [vD]
I �alát and Tijdeman in [�T].

Density measures (and Lévy group) were used in theory of social
choice [CK, Fe, L, T].
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Existence of density measures

Existence of density measures is usually proved using either
Hahn-Banach theorem or ultra�lters.

If F is any free ultra�lter on N then

µF (A) = F-lim
A(n)

n

is a density measure

F-lim an = L ⇔ {n ∈ N; |an − L| < ε} ∈ F for each ε > 0
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Properties of F -limits

F-lim an = L ⇔ {n ∈ N; |an − L| < ε} ∈ F for each ε > 0

I If F is ultra�lter and (xn) is bounded, then F-lim xn exists.
I F-lim(xn + yn) = F-lim xn + F-lim yn.
I If (xn) is convergent and F is a free ultra�lter, then
F-lim xn = lim

n→∞
xn.

I xn ≥ 0 ⇒ F-lim xn ≥ 0
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Density measures from F -limits

µF (A) = F-lim
A(n)

n

µF : P(N)→ [0, 1]

I A ∩ B = ∅ ⇒ µF (A ∪ B) = F-lim A∪B(n)
n

=

F-lim A(n)
n

+ F-lim B(n)
n

= µF (A) + µF (B)

I A(n)
n
≥ 0 ⇒ µF (A) = F-lim A(n)

n
≥ 0

I A ∈ D ⇒ µF (A) = F-lim A(n)
n

= lim
n→∞

A(n)
n

= d(A)
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AC and density measures

Some form of Axiom of Choice is needed in order to get a density
measure.
There exists a model of ZF constructed by Pincus and Solovay [PS]
in which there are no nonprincipal �nitely additive measures on N.
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Values of density measures

What are possible values of density measures for a given set A ⊆ N?

{µ(A);µ is a density measure}

This set is convex.
sup =?, max =?, inf =?, min =?
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Extremal values of density measures

d(A) = sup{d(B); B ⊆ A, B ∈ D},

d(A) = inf{d(C ); C ⊇ A, C ∈ D}.

d(A) ≤ µ(A) ≤ d(A)

Theorem
Let A ⊆ N. There exists a density measure µ such that µ(A) = x if

and only if x ∈ [d(A), d(A)].
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Pólya's result

The following expression for d(A) was obtained by Pólya [P].

d(A) = lim
θ→1−

lim sup
n→∞

A(n)− A(θn)

n − θn
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α-densities

Upper and lower α-density for α ≥ −1 (see [GAGM]):

dα(A) = lim inf
n→∞

Aα(n)

Nα(n)
;

dα(A) = lim sup
n→∞

Aα(n)

Nα(n)
.

where Aα(n) =
n∑

k=1

χA(k)k
α.

It is known that for −1 ≤ α ≤ β

dβ(A) ≤ dα(A) ≤ dα(A) ≤ dβ(A).

If A ∈ D, then dα(A) = dα(A) = d(A) for α ≥ −1.
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Density measures from α-densities

If α > −1 and F is a free ultra�lter, then

µFα (A) = F-lim
Aα(n)

Nα(n)
.

is a density measure.

d∞(A) = lim
α→∞

dα(A) = inf
α≥−1

dα(A);

d∞(A) = lim
α→∞

dα(A) = sup
α≥−1

dα(A).

Clearly
d(A) ≤ d∞(A) ≤ d∞(A) ≤ d(A).

Martin Sleziak Density measures



Introduction
Range of density measures

Lévy group
Measures and means

Applications
References

Extremal values of density measures
Density measures from α-densities
Summary

Density measures from α-densities

In fact, the equalities hold:

d(A) = d∞(A) = lim
α→∞

dα(A),

see [LMS].
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Summary

d(A) = inf{d(C ); C ⊇ A, C ∈ D}

= lim
θ→1−

lim sup
n→∞

A(n)− A(θn)

n − θn
= lim

α→∞
dα(A)
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Lévy group

De�nition
The Lévy group G is the group of all permutations π of N satisfying

lim
n→∞

∣∣{k ; k ≤ n < π(k)}
∣∣

n
= 0. (3.1)

π ∈ G ⇔ lim
n→∞

A(n)− (πA)(n)

n
= 0 for all A ⊆ N (3.2)
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Equivalent characterization of G

π ∈ G ⇔ limstat
n→∞

π(n)

n
= 1 (3.3)

Recall that limstat
n→∞

xn = L i� for every ε > 0 the set

Aε = {n; |xn − L| ≥ ε}

has zero asymptotic density (d(Aε) = 0).

F-lim for F = {A ⊆ N; d(A) = 1}
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G-invariance

Theorem
A measure µ on N is a density measure if and only if it is

G-invariant, i.e., µ(A) = µ(πA) for all A ⊆ N and all permutations

π ∈ G.
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G-invariance
We use van Douwen's result [vD, Theorem 1.12]:

Theorem
A measure µ on N is a density measure if and only if µ(A) = µ(πA)
for all A ⊆ N and all permutations π : N→ N such that

lim
n→∞

π(n)

n
= 1. (3.4)

(3.4) ⇒ (3.3)

G-invariant ⇒ density measure

This implication follows also from a result of Blümlinger and Obata
[BO, Theorem 2].
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G-invariance

The proof of the opposite implication uses the following result
(Fridy [Fr, Theorem 1] or �alát [�, Lemma 1.1]):

Theorem
A sequence (xn) is statistically convergent to L ∈ R if and only if

there exists a set A such that d(A) = 1 and the sequence xn
converges to L along the set A, i.e., L is limit of the subsequence

(xn)n∈A.
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Basic idea of the proof

If π ful�lls (3.3)

π ∈ G ⇔ limstat
n→∞

π(n)

n
= 1

it can be modi�ed to ψ ful�lling (3.4)

lim
n→∞

ψ(n)

n
= 1

and πA and ψA di�er only in a set of zero density.

µ(A) = µ(ψA) = µ(πA)
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Lévy group and invariance of density measures

Proposition

If π is a permutation such that every density measure is

π-invariant, i.e., µ(πA) = µ(A) for every A ⊆ N and every density

measure µ, then π ∈ G.
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Finitely additive measure and `∗∞

Finitely additive signed measure is a function µ : P(N)→ R such
that

µ(A ∪ B) = µ(A) + µ(B)

whenever A ∩ B = ∅.

If f ∈ `∗∞ then
µ(A) = f (χA)

µ is a �nitely additive signed measure.
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Finitely additive measure and `∗∞

For every �nitely additive measure there exists precisely one f ∈ `∗∞
such that

µ(A) = f (χA).

positive measures = positive functionals (f ≥ 0)
probabilistic measures = normed functionals ‖f ‖ = 1
density measures = ?
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Functionals corresponding to density measures

If for a bounded sequence (xn) exists the limit

C (x) = lim
n→∞

x1 + · · ·+ xn

n

then C (x) is called Cesàro mean of the sequence x .

Theorem
Let µ be a measure and f ∈ `∗∞ be the corresponding functional.

The measure µ is a density measure if and only if f extends Cesàro

mean.
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Existence of density measures using Banach-Alaoglu theorem

Theorem (Banach-Alaoglu)

If X is a normed linear space, then the unit ball of X ∗ endowed
with weak∗-topology is compact.

Weak∗-topology is
I initial topology w.r.t. the evaluation maps ϕ 7→ ϕ(x) for

x ∈ X (i.e., the coarsest topology which makes all these maps
continuous);

I the topology of pointwise convergence (a net (ϕd )d∈D
converges to ϕ if and only if ϕd (x)→ ϕ(x) for each x ∈ X );

I the subspace topology inherited from the product topology on
RX .
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Existence of density measures using Banach-Alaoglu theorem

Cn(x) =
x1 + · · ·+ xn

n
.

Each Cn is a positive functional which belongs to the unit ball of
`∗∞.
There exists a convergent subnet: f = lim

d∈D
Cnd .

f (x) = lim
d∈D

Cnd (x) = lim
n→∞

Cn(x) = C (x)

f is a positive functional such that ‖f ‖ = 1 and f extends Cesàro
mean.
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An interesting density measure

Blümlinger [B]:
2F = {B ⊆ N;B ⊇ 2A for some A ∈ F}
(the ultra�lter given by the base {2A;A ∈ F})

µ(A) = 2 (2F)-lim A(n)

n
−F-lim A(n)

n

is a density measure

Let A =
∞⋃
i=1

{22i , 22i + 1, . . . , 2.22
i − 1} and {22i ; i ∈ N} ∈ F . Then

µ(A) = 1 and d(A) = 1

2
.
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An interesting density measure

A negative answer van Douwen [vD, Question 7A.1]:
Does µ(A) ≤ d(A) hold for every density measure?
Counterexample to the following claim of Lauwers [L, p.46]:
Every density measure can be expressed in the form

µϕ(A) =

∫
βN∗
F-lim A(n)

n
dϕ(F), A ⊆ N (5.1)

for some probability Borel measure ϕ on the set of all free

ultra�lters βN∗.
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An interesting density measure

�alát and Tijdeman [�T]: Has every density measure the following
properties?
a) If A(n) ≤ B(n) for all n ∈ N then µ(A) ≤ µ(B) (where
A,B ⊆ N).
b) If lim

n→∞
A(n)
B(tn) = 1 then µ(A) = tµ(B) (where A,B ⊆ N and

t ∈ R).
Answer to both these questions is negative.

a) If µ(A) > d(A) and d(B) ∈ (d(A), µ(A)) then B(n) > A(n) for
n > n0, but µ(A) > d(B) = µ(B).
b) In the preceding example we have µ(A) = 1 and µ(2A) = 0.
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Thanks for your attention!

The preprints of [SZ1, SZ2] presented here, as well as the text of
this talk and these slides can be found at:
http://thales.doa.fmph.uniba.sk/sleziak/papers/

Email: sleziak@fmph.uniba.sk
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