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Abstract. Density measures are finitely additive measures on N which extend
asymptotic density. They can be considered as a way to assigning some kind

of “size” to each subset of N and they are used in various areas, for example,

social choice theory.
We will show that these measures can be characterized by the property

that they are invariant w.r.t. Lévy group. We will discuss which values can
density measures attain for a given set. We will also mention a correspondence

between finitely additive measures on N and linear continuous functionals on

`∞ and discuss, which functionals correspond to density measures.

This talk was presented at Séminaire ModMad in Saint-Etienne.

Most of the results in this talk are from papers [SZ1, SZ2]. The equality d(A) =
d∞(A) is shown in [LMS].

1. Introduction

In this talk I would like to speak about density measures. Density measures are
extensions of asymptotic density to the whole power set P(N).

Density measures have found applications in number theory and, more recently,
in the theory of social choice (see e.g. Fey [Fe], Lauwers [L]).

We will start by showing that density measures exist and then discuss what
possible values can density measures obtain for a given set A ⊆ N.

Density measures can be characterized as those finitely additive measures on
integers G-invariant, where G denotes the Lévy group. (We will later see that
this property characterizes the Lévy group as well.) We will also present a new
characterization of the Lévy group via statistical convergence.

2. Preliminaries

2.1. F-limits.

Definition 2.1. A subset F ⊆ P(N) is called a filter if F 6= ∅, ∅ /∈ F and

(i) A ∈ F , A ⊆ B ⇒ B ∈ F (i.e., F is closed under supersets);
(ii) A,B ∈ F ⇒ A ∩B ∈ F (i.e., F is closed under intersections).

A filter which is maximal w.r.t. inclusion is called ultrafilter.
A filter is called free if

⋂
F = ∅.

A filter F ⊆ P(N) is an ultrafilter if and only if

(∀A ⊆ N)A ∈ F ∨ (N \A) ∈ F ,

i.e., for each A ⊆ N, either A or complement of A belongs to F .
1
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Definition 2.2. If F is a filter on N and (an) is a sequence of real numbers then
a number L is said to be the F-limit of the sequence (an) if for each ε > 0.

F-lim an = L⇔ (∀ε > 0){n ∈ N; |an − L| < ε} ∈ F .

Basic properties of F-limits are summarized in the following result.

Proposition 2.3. Let (xn)∞n=1, (yn)∞n=1 be real sequences, c ∈ R and F be a filter
on N.

(i) If F-limxn and F-lim yn exist, then F-lim(xn + yn) = F-limxn +F-lim yn
and F-lim(cxn) = cF-limxn.

(ii) If F-limxn and F-lim yn exist, then F-lim(xnyn) = F-limxn · F-lim yn.
(iii) A ∈ F is an infinite set and the limit lim

n∈A
xn = L exists, then the F-limit

has the same value F-limxn = lim
n∈A

xn.

(iv) If F is a free filter and (xn)∞n=1 is a convergent sequence then

F-limxn = lim
n→∞

xn.

(v) If (xn)∞n=1 is a bounded sequence and F is an ultrafilter, then F-limxn
exists.

(vi) If F is a free ultrafilter, then F-limxn is a limit point of the sequence
(xn)∞n=1. Conversely, for each limit point L of the sequence (xn)∞n=1 there
exists a free ultrafilter such that F-limxn = L.

(vii) If xn ≥ yn for each n, then F-limxn ≥ F-lim yn. In particular, xn ≥ 0
implies F-limxn ≥ 0.

2.2. Lévy group. We will also use a group of permutations of N which is related
to the asymptotic density.

Definition 2.4. The Lévy group G is the group of all permutations π of N satisfying

(2.1) lim
n→∞

∣∣{k; k ≤ n < π(k)}
∣∣

n
= 0.

We will use the following characterizations of Lévy group [B, Lemma 2].
A permutation π ∈ G if and only if

(2.2) lim
n→∞

A(n)− (πA)(n)

n
= 0

for all A ⊆ N.
We have found an interesting connection between the Lévy group and statistical

convergence. This new characterization of G has proved to be useful in the proof
of the main theorem.

Let us first recall the definition of statistical convergence.
We say that limstat

n→∞
xn = L iff for every ε > 0 the set

Aε = {n; |xn − L| ≥ ε}

has zero asymptotic density (d(Aε) = 0).
The statistical limit is in fact F-limit for the filter F consisting of all sets with

d(A) = 1. (This filter is not an ultrafilter, hence there exist sequences without
statistical limit. Of course, the statistical convergence can be formulated using
ideals an I-convergence too.)
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Theorem 2.5. A permutation π : N→ N belongs to G if and only if

(2.3) limstat
n→∞

π(n)

n
= 1.

3. Density measures

3.1. Definition of density measures. Recall that the asymptotic density of A ⊆
N is defined by

d(A) = lim
n→∞

A(n)

n
if this limit exists. The asymptotic density is one of standard tools for measuring
the size of subsets of N. However, the drawback of the asymptotic density is that
not every subset of N has the asymptotic density. (The above limit need not exist.)
Therefore it is very natural to ask whether it is possible to extend the asymptotic
density to a finitely additive measure on N. The set of all subsets of N having
asymptotic density will be denoted by D.

Definition 3.1. A density measure is a finitely additive measure on N which ex-
tends the asymptotic density; i.e., it is a function µ : P(N) → [0, 1] satisfying the
following conditions:

(a) µ(N) = 1;
(b) µ(A ∪B) = µ(A) + µ(B) for all disjoint A,B ⊆ N;
(c) µ|D = d.

(For the sake of brevity we will call the functions µ : P(N)→ [0, 1] fulfilling the
conditions (a) and (b) from the preceding definition measures.)

The term density measures was probably coined by Dorothy Maharam [Ma].
They were studied (among many others) by Blass, Frankiewicz, Plebanek and Ryll–
Nardzewski in [BFPRN], van Douwen in [vD] or Šalát and Tijdeman in [ŠT].

Recently the density measures and related concept of Lévy group were also used
in the theory of social choice [CK, Fe, L, T].

3.2. Existence of density measures. The existence of density measures is usu-
ally proved either using Hahn-Banach theorem or using ultrafilters. (We will also
mention use of Banach-Alaoglu Theorem in Section 6.) We will use the following
approach several times:

For any ultrafilter F ∈ βN∗ the function

(3.1) µF (A) = F-lim
A(n)

n

is a density measure (see e.g. [BŠ, Theorem 8.33], [HJ, p.207]).
Indeed, if A ∩B = ∅, then we have

µF (A ∪B) = F-lim
A ∪B(n)

n
= F-lim

A(n)

n
+ F-lim

B(n)

n
= µF (A) + µF (B).

We also get that µF (A) ≥ 0 (since A(n)/n ≥ 0 for each n.) And if A ∈ D, then

µF (A) = F-lim
A(n)

n
= lim
n→∞

A(n)

n
= d(A).

Let us note that at least some form of axiom of choice is needed in the construc-
tion of finitely additive measures on N, since there exists a model of ZF constructed
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by Pincus and Solovay [PS] in which there are no nonprincipal finitely additive mea-
sures on N, see also [HR]. (See also [V] for the version of this result for `∗∞, which
can be identified with the space of all finitely additive measures.)

4. Possible values of density measures for a given set

One of natural questions, which one can ask about density measures is: If we
are given a set A, what possible values can be obtained as µ(A) for some density
measure µ. In the other words, what can be said about the following set:

{µ(A);µ is a density measure}.
Since the set of density measures is convex, we are basically asking about supremum
and infimum of this set (or maximum and minimum, if they exist).

Since every density measure is monotone (in the sense that A ⊆ B ⇒ µ(A) ≤
µ(B)), we immediately get

d(A) ≤ µ(A) ≤ d(A),

where

d(A) = sup{d(B); B ⊆ A, B ∈ D},

d(A) = inf{d(C); C ⊇ A, C ∈ D}.
It is interesting that this rather trivial estimate is, in fact, best possible.

Theorem 4.1. Let A ⊆ N. There exists a density measure µ such that µ(A) = x

if and only if x ∈ [d(A), d(A)].

This result is shown in [SZ2] using some more general results about partial mea-
sures from [BRBR] (together with some facts that can be shown about asymptotic

density and the quantities d(A) and d(A)).

Another expression for this value was given by Pólya [P, Satz VIII]. The setting
of the paper [P] is more general, but for densities on N it says that

d(A) = lim
θ→1−

lim sup
n→∞

A(n)−A(θn)

n− θn
.

For A ⊆ N and α > −1 we can define Aα(n) =
n∑
k=1

χA(k)kα.

We can obtain another class of density measures in a way similar to (3.1) but
using the fraction Aα(n)/Nα(n) instead of A(n)/n. The fractions Aα(n)/Nα(n) are
used in the definition of α-densities

dα(A) = lim inf
n→∞

Aα(n)

Nα(n)
;

dα(A) = lim sup
n→∞

Aα(n)

Nα(n)
.

The α-densities were studied in [GAGM].
It is known that if A ∈ D, then dα(A) = dα(A) = d(A) for α > −1.
If α > −1 and F is a free ultrafilter, then

µFα (A) = F-lim
Aα(n)

Nα(n)
= dα(A).

is a density measure.
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If we denote

d∞(A) = lim
α→∞

dα(A) = inf
α≥−1

dα(A);

d∞(A) = lim
α→∞

dα(A) = sup
α≥−1

dα(A).

then we clearly have

d(A) ≤ d∞(A) ≤ d∞(A) ≤ d(A).

If can be shown that in fact
d(A) = d∞(A)

and d(A) = d∞(A) (see [LMS]).

5. Density measures and Lévy group

5.1. G-invariance. The main result of this [SZ1] is the following theorem.

Theorem 5.1. A measure µ on N is a density measure if and only if it is G-inva-
riant, i.e., µ(A) = µ(πA) for all A ⊆ N and all permutations π ∈ G.

The proof employs van Douwen’s result [vD, Theorem 1.12]:

Theorem 5.2. A measure µ on N is a density measure if and only if µ(A) = µ(πA)
for all A ⊆ N and all permutations π : N→ N such that

(5.1) lim
n→∞

π(n)

n
= 1.

With this result at hand, one half of Theorem 5.1 is easy. Clearly, if a permuta-
tion π fulfills (5.1), then it fulfills also (2.3). This yields the implication:
π is G-invariant ⇒ π is a density measure.

Let us note that this result can also be deduced from Blümlinger and Obata [BO,
Theorem 2], where it was proved by different means. This theorem deals with linear
functionals on the space D of Césaro summable sequences, but it can be applied to
our situation. They have shown that every G-invariant linear functional on D is a
multiple Césaro mean.

Every measure assigns some value to characteristic sequences of subsets of N.
We can extend it to a linear functional on `∞ (see also Section 6) without violating
the G-invariance and then restrict this functional to D. Since this functional is
normalized, the restriction is precisely the Césaro mean. In terms of measures, any
G-invariant extends the density.

In this short talk we will not go into details of the proof of the opposite implica-
tions. We just note that main components of this proof are our characterization of
the Lévy group using the statistical convergence (Theorem 2.5) and the following
result (see Fridy [Fr, Theorem 1] or Šalát [Š, Lemma 1.1]):

Theorem 5.3. A sequence (xn) is statistically convergent to L ∈ R if and only if
there exists a set A such that d(A) = 1 and the sequence xn converges to L along
the set A, i.e., L is limit of the subsequence (xn)n∈A.

The basic idea of the proof is that if a permutation π fulfills (2.3) then it can be
modified to a new permutation ψ fulfilling (5.1) in such a manner that π(A) and
ψ(A) differ only in a set having zero density. By the van Douwen’s result (Theorem
5.2) the permutation ψ preserves density measure and we can use it to show that
the measure of the set A will be preserved by the permutation π as well.
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5.2. Characterization of Lévy group. By theorem 5.1 every density measure
is π-invariant for permutations π ∈ G. It is natural to ask whether there are
other permutations with this property. Proposition 5.4 states that this property
characterizes Lévy group.

Proposition 5.4. If π is a permutation such that every density measure is π-
invariant, i.e., µ(πA) = µ(A) for every A ⊂ N and every density measure µ, then
π ∈ G.

6. Finitely additive measures and `∗∞

There is a very natural correspondence between finitely additive (signed) mea-
sures on N and the space `∗∞.

For a moment we will consider all finitely additive set functions on N, i.e., func-
tions µ : P(N)→ R such that

µ(A ∪B) = µ(A) + µ(B)

whenever A ∩ B = ∅. (We do not require positivity. We have also omitted the
condition µ(N) = 1.)

Let us call such function a finitely additive signed measure on N.
As usual, `∞ denotes the space of all bounded real sequences (with the norm

‖x‖∞ = sup |xn|) and `∗∞ is the dual space, i.e., it contains all linear bounded
functionals on `∞.

It is clear that if f : `∞ → R is a bounded linear functional, then

µ(A) = f(χA)

is a finitely additive signed measure.
On the other hand, for every finitely additive measure there exists precisely one

f ∈ `∗∞ which produces this measure.
The process of obtaining a functional from a given measure is similar to definition

of Riemann integral. It uses the fact that any bounded sequence can be uniformly
approximated by step sequences. (By a step sequence we mean a sequence of the
form

∑n
i=1 ciχAi

for some c1, . . . , cn ∈ R and A1, . . . , An ⊆ N, i.e. a finite linear
combination of characteristic sequences.)

More details about this construction can be found, for example, in [C, Theorem
16.7], [Mo, p.50, Example 1.19], [vD, Section 3].

It is relatively easy to see that the positive measures correspond to positive func-
tionals, and positive normed measures correspond to functionals such that ‖f‖ = 1.

The advantage of this approach is that now we can view finitely additive measures
(and in particular density measures) as a subset of the Banach space `∗∞, which
means that we can use tools from functional analysis.

However, it would be useful to know whether we can somehow characterize the
functionals corresponding to finitely additive measures.

If for a bounded sequence (xn) exists the limit

C(x) = lim
n→∞

x1 + · · ·+ xn
n

then C(x) is called Cesàro mean of the sequence x.

Theorem 6.1. Let µ be a measure and f ∈ `∗∞ be the corresponding functional.
The measure µ is a density measure if and only if f extends Cesàro mean.
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We already know that density measures are characterized by the property that
they are G-invariant. It is relatively easy to show that if µ is G-invariant, then the
corresponding functional f also is G-invariant. It was shown [BO, Theorem 2] a
positive functional with ‖f‖ = 1 extends Cesàro mean if and only if it is G-invariant.

6.1. Existence of density measures using Banach-Alaoglu theorem. As a
very simple application of the correspondence between finitely additive measures
and `∗∞ we will show a different proof that density measures exist. Clearly, it suffices
to show existence of a positive normed functional which extends Cesàro mean.

Let us define for x = (xn) ∈ `∞

Cn(x) =
x1 + · · ·+ xn

n
.

Each Cn is a positive linear functional belonging to `∗∞ such that ‖Cn‖ = 1.
We know from Banach-Alaoglu theorem that unit ball of `∗∞ is compact when

endowed with the weak∗-topology (i.e., the topology of pointwise convergence.)
So the set {Cn;n ∈ N} has a cluster point in `∗∞, i.e., there exists a subnet

(Cnd
)d∈D which is convergent to some f ∈ `∞.

We have that f is positive and ‖f‖ = 1, since the same is true for each Cn. And
we also have

f(x) = lim
d∈D

Cnd
(x) = lim

n→∞
Cn(x) = C(x)

for every sequence which has a Cesàro mean.
Thus f is a positive normed linear functional extending Cesáro mean.

7. Applications

7.1. An interesting density measure. We will closed this talk with an inter-
esting example of a density measure which answers several questions posed by van
Douwen [vD] and Šalát and Tijdeman [ŠT]. This example of density measure was
defined in the paper of Blümlinger [B].

Example 7.1. Let F be any ultrafilter. By 2F we denote the ultrafilter given by
the base {2A;A ∈ F}, i.e., 2F = {B ⊆ N;B ⊇ 2A for some A ∈ F}. Let us define
µ by

µ(A) = 2 (2F)-lim
A(n)

n
−F-lim

A(n)

n
.

It can be shown that µ is a density measure.

Now let us consider the set A =
∞⋃
i=1

{22i , 22i + 1, . . . , 2.22
i − 1}. Note that

A(2.22
i − 1) ≥ 1

2 and A(22
i − 1) ≤ 1

2i−3 for any positive integer i. It can be shown

that d(A) = 1
2 and µ(A) = 1 for any ultrafilter containing the set {22i ; i ∈ N}.

This answers the Van Douwen’s question [vD, Question 7A.1] whether µ(A) ≤
d(A) for every density measure. The same density measure µ is a counterexample
to the following claim of Lauwers [L, p.46]:
Every density measure can be expressed in the form

(7.1) µϕ(A) =

∫
βN∗
F-lim

A(n)

n
dϕ(F), A ⊆ N
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for some probability Borel measure ϕ on the set of all free ultrafilters βN∗.
It is easy to notice that if this claim were true the answer to van Douwen’s question
would be positive.

Šalát and Tijdeman have posed another question concerning the density mea-
sures [ŠT, p.201]. They ask whether every density measure has the following prop-
erties:
a) If A(n) ≤ B(n) for all n ∈ N then µ(A) ≤ µ(B) (where A,B ⊆ N).

b) If lim
n→∞

A(n)
B(tn) = 1 then µ(A) = tµ(B) (where A,B ⊆ N and t ∈ R).

(The authors of [ŠT] conjectured that there exist density measures that do not
fulfill a) and b). We will see that this conjecture was right.)

Clearly, any density measure of the form (7.1) has both these properties.
The question a) is closely related to van Douwen’s question. Clearly, if a set A

fulfills d(A) < µ(A) there is a set B having asymptotic density d(B) ∈ (d(A), µ(A)).
Since d(B) > d(A), there exists n0 such that B(n) ≥ A(n) for n > n0. Since
changing only finitely many elements influences neither asymptotic density nor
density measure, any such pair of sets yields a counterexample to the property a).

It is easy to verify that for the set A from the preceding example (and the measure

given by an ultrafilter containing {22i ; i ∈ N}) we get µ(2A) = 0 and µ(A) = 1.
This shows that property b) is not valid in general. (A different density measure
µ and a set A with µ(2A) 6= 1

2µ(A) was given by Van Douwen [vD, Example 5.6,
Case 2].)
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[Š] T. Šalát. On statistically convergent sequences of real numbers. Mathematica Slovaca,

30:139–150, 1980.
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