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Introduction

Let X be a topological space which is not finitely generated and SCH(X)
be the hereditary coreflective hull of X in the category Top of topological
spaces. The aim of this paper is to construct a prime space YX with the
same cardinality as X such that SCH(X) = CH(YX) where CH(YX) is the
coreflective hull of YX . Obviously, if X is finitely generated, then CH(X) =
SCH(X). If X is not finitely generated, then, using the prime factors of X we
can easily construct a prime space PX such that SCH(X) = SCH(PX). Thus,
it suffices to restrict our investigation to the case of prime spaces.

For the prime space C(ω0) consisting of a convergent sequence and its
limit point the problem was studied in [5], where a countable generator for
the category SCH(C(ω0)) of subsequential spaces was produced.

Our procedure of constructing a generator YA of the category SCH(A)
(where A is a prime space that is not finitely generated) consists of two main
steps. In the first step, using similar methods as in [5], we produce a set of
special prime spaces which generates SCH(A). Then, in the second step, we
construct the generator YA of SCH(A) with the required properties.

This construction was inspired by the space Sω from [2] and in the case
A = C(ω0) it gives a countable generator for the category of subsequential
spaces different from that one presented in [5].

Finally, as an application of some above mentioned results we prove that
if A and B are coreflective subcategories of Top such that the hereditary
coreflective kernel of A as well as the hereditary coreflective kernel of B is
the category FG of finitely generated spaces, then FG is also the hereditary
coreflective kernel of their join CH(A ∪ B). As a consequence of this result
and some results of [9] we obtain that the collection of all those coreflective
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subcategories of Top the hereditary coreflective kernel of which is FG and the
hereditary coreflective hull of which is Top is closed under the formation of
non-empty finite joins (in the lattice of all coreflective subcategories of Top)
and arbitrary non-empty intersections.

1. Preliminaries

We recall some known facts about coreflective subcategories of the category
Top of topological spaces (see [6]). All subcategories are supposed to be full
and isomorphism-closed. The topological sum is denoted by t.

Let A be a subcategory of Top. A is coreflective if and only if it is
closed under the formation of topological sums and quotient spaces. If A
is a subcategory of Top or a class of topological spaces, then the coreflective
hull of A is the smallest coreflective subcategory of Top which contains A
and we denote it by CH(A). CH(A) consists of all quotients of topological
sums of spaces that belong to A. If B = CH(A), then we say that A generates
B and the members of A are called generators of B. If B = CH({X}), then
B is called simple generated and X is said to be a generator of B. We use the
notation B = CH(X) in this case.

Let A be a subcategory of Top and let SA denote the subcategory of
Top consisting of all subspaces of spaces from A. Then the following result
is known (see [8, Remark 2.4.4(5)] or [3, Proposition 3.1]).

PROPOSITION 1.1. If A is a coreflective subcategory of Top, then SA is
also a coreflective subcategory of Top. (SA is the hereditary coreflective hull
of A.)

By FG we denote the category of all finitely generated spaces. It is well
known (see e.g. [6]) that if X is not finitely generated, then FG ⊆ CH(X).

We say that a subcategory A of Top is hereditary if with each topological
space X it contains also all its subspaces. It is well known that the category
of all finitely generated spaces and all its subcategories that are coreflective
in Top are hereditary.

Some known hereditary coreflective subcategories of Top are Gen(α) and
Top(α), where α is an infinite cardinal. Gen(α) is the subcategory of all
spaces having tightness not exceeding α. Top(α) is the category of all topo-
logical spaces such that the intersection of every family of open sets, which
has cardinality less than α, is an open set.

Let A be a topological space. We say that A is a prime space if it has
precisely one accumulation point. The following assertion is obvious.

LEMMA 1.2. Let X be a prime space with an accumulation point a and let
Y be a subspace of X containing the point a, then the map f : X → Y , defined
by f(x) = x for x ∈ Y and f(x) = a for x ∈ X \ Y , is a quotient map.

Given a topological space X and a point a ∈ X, denote by Xa the space
constructed by making each point, other than a, isolated with a retaining its
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original neighborhoods. (I.e. a subset U ⊆ X is open in Xa if and only if a /∈ U
or there exists an open subset V of X such that a ∈ V ⊆ U .) The topological
space Xa is called prime factor of X at the point a. It is clear that any prime
factor is either a prime space or a discrete space.

PROPOSITION 1.3 ([3, Proposition 3.5]). If A is a hereditary coreflective
subcategory of Top with FG ⊆ A, then for each X ∈ A and each a ∈ X the
prime factor Xa of X at a belongs to A.

Let A be a prime space with an accumulation point a. A subspace B of
A is said to be a prime subspace of A if B is a prime space (i.e. a ∈ B and
B \ {a} 3 a).

LEMMA 1.4. Let (Ai; i ∈ I) be a family of prime spaces and let ai ∈ Ai

be an accumulation point of Ai for i ∈ I. A topological space X belongs to
CH({Ai; i ∈ I}) if and only if for every non-closed subset M of X there exists
i ∈ I, a prime subspace B of Ai and a continuous map f : B → X such that
f [B \ {ai}] ⊆ M and f(ai) /∈ M .

Proof. Let B ⊆ Top be the class of all topological spaces satisfying the
given condition. First we show that B is a coreflective subcategory of Top.
It is evident that B is closed under the formation of topological sums. Now
let X ∈ B and q : X → Y be a quotient map. Let M be a non-closed subset
of Y . Then q−1[M ] is a non-closed subset of X, X ∈ B, so that there exists
i ∈ I, a prime subspace B of Ai and a continuous map g : B → X such that
g[B \ {ai}] ⊆ q−1[M ] and g(ai) /∈ q−1[M ]. Then for f = q ◦ g : B → X we
get f [B \ {ai}] ⊆ M and f(ai) /∈ M . Hence, Y ∈ B and B is a coreflective
subcategory of Top.

Since evidently Ai ∈ B for each i ∈ I, we have CH({Ai; i ∈ I}) ⊆ B.
To prove the reverse inclusion we construct a quotient map from a sum of
subspaces of Ai to arbitrary space X ∈ B. (Every subspace of Ai belongs to
CH(Ai) by Lemma 1.2.)

Let X ∈ B. Let fj : Bj → X, j ∈ J , be the family of all continuous maps
such that Bj is a prime subspace of some Ai, i ∈ I. Let D(X) be the discrete
space on the set X and idX : D(X) → X be the identity map. It is easy to
check that the map f : D(X) t (

∐
j∈J Bj) → X given by the maps idX and

fj , j ∈ J , is a quotient map. 2

Cardinals are initial ordinals where each ordinal is the (well-ordered) set of
its predecessors. We denote the class of all ordinals by ON. If α is a cardinal,
then by α+ we denote the cardinal which is a successor of α. A net in a
topological space defined on an ordinal α we call an α-sequence.

From now on we assume that A is a prime space with an accumulation
point a which is not finitely generated and the tightness of the space A is
t(A) = α.
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2. Closure operator describing CH(A)

The notion of sequential closure was used in [5] when studying sequential and
subsequential spaces. Now we introduce a corresponding closure operator for
the subcategory CH(A).

Let X be an arbitrary space and M ⊆ X. The set M1 = {x ∈ X : there
exists a prime subspace B of A and a continuous map f : B → X such that
f [B \ {a}] ⊆ M and f(a) = x} is called the A-closure of M . Using transfinite
induction we can define the set Mβ (the β-th A-closure of M) for each ordinal
β as follows. M0 = M , Mβ+1 = (Mβ)1 for each ordinal β and Mγ =

⋃
β<γ Mβ

for each limit ordinal γ > 0. Put M̃ =
⋃

β∈ON Mβ .

Evidently (M̃)1 = M̃ , M̃ ⊆ M . It is also clear that Mβ ⊆ Mγ holds for
β < γ. If A ⊆ B ⊆ X, then Aβ ⊆ Bβ for each ordinal β and Ã ⊆ B̃. If
Mβ = Mβ+1 for some ordinal β, then M̃ = Mβ .

The following proposition characterizes the spaces belonging to CH(A)
using the closure operator M 7→ M̃ . It is a special case of [8, Theorem 3.1.7]
which includes more general cases of closure operators.

PROPOSITION 2.1. A topological space X belongs to CH(A) if and only if
M = M̃ for every subset M ⊆ X.

Proof. Let X ∈ CH(A) and M ⊆ X. Then (M̃)1 \ M̃ = ∅, so that by
Lemma 1.4 M̃ is closed and M̃ = M .

Conversely, if M = M̃ for each M ⊆ X and M is non-closed, then M1\M 6=
∅ and there exists a prime subspace B of A and a continuous map f : B → X
such that f [B \ {a}] ⊆ M and f(a) /∈ M . Hence, according to Lemma 1.4, we
conclude that X ∈ CH(A). 2

PROPOSITION 2.2. Let A be a prime space with an accumulation point a,
X ∈ CH(A) and α = t(A). Then for every subset M ⊆ X it holds Mα+ = M .

Proof. If suffices to prove that (Mα+)1 = Mα+ . Let c ∈ (Mα+)1. Then
there exists a prime subspace B of A and a continuous map f : B → X with
f(a) = c and f [B \ {a}] ⊂ Mα+ . Since t(A) = α and a ∈ B \ {a}, there exists
C ⊆ B \ {a} with card C ≤ α such that a ∈ C. The subspace B1 = C ∪ {a}
of A is a prime subspace, f |B1 : B1 → X is continuous and f |B1 [C] ⊆ Mα+ .

For each x ∈ C choose βx < α+ such that x ∈ Mβx
(α+ is a limit ordinal).

Since cardC ≤ α < α+ and α+ is a regular cardinal we obtain that γ =
sup{βx, x ∈ C} < α+. Then C ⊆ Mγ and, obviously, f |B1(a) = f(a) = c ∈
Mγ+1 ⊆ Mα+ . Thus, (Mα+)1 ⊆ Mα+ . 2

3. A-sum

The notion of A-sum is a special case of the brush defined in [8] and a gener-
alization of the sequential sum introduced in [2]. The sequential sum was used
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in [5] for constructing the set of “canonical” prime spaces which generates the
category of subsequential spaces. The notion of the A-sum will be used in a
similar way to produce the set of special prime spaces that generates SCH(A).

Definition 3.1. Let A be a prime space with an accumulation point a ∈ A.
Let us denote B := A \ {a}. Let for each b ∈ B Xb be a topological space
and xb ∈ Xb. Then the A-sum

∑
A

〈Xb, xb〉 is the topological space on the set

F = A∪ (
⋃

b∈B

{b}× (Xb \{xb})) such that the map ϕ : At (
∐

b∈B

Xb) → F given

by ϕ(x) = x for x ∈ A, ϕ(x) = (b, x) for x ∈ Xb \{xb} and ϕ(xb) = b for every
b ∈ B is a quotient map. (We assume A and all {b} ×Xb to be disjoint.) The
map ϕ will be called the defining map of the A-sum.

Often it will be clear from the context what we mean under A and we
will abbreviate the notation of the A-sum to

∑
〈Xb, xb〉 or

∑
Xb. The A-sum

is obtained simply by identifying every xb ∈ Xb with the point b ∈ A. It is
easy to see that the subspace ϕ[Xb] is homeomorphic to Xb and A is also a
subspace of the A-sum

∑
〈Xb, xb〉.

The A-sum is defined using topological sum and quotient map, thus if A
is a coreflective subcategory of Top and A contains A and all Xb’s, then the
A-sum

∑
Xb belongs to A.

The following lemma follows easily from the definition of the A-sum.

LEMMA 3.2. A subset U ⊆
∑
A

〈Xb, xb〉 is open (closed) if and only if U ∩ A

is open (closed) in A and U ∩ϕ[Xb] is open (closed) in ϕ[Xb] for every b ∈ B.

Let for every b ∈ B Xb and Yb be topological spaces, xb ∈ Xb, yb ∈ Yb and
let fb : Xb → Yb be a function with f(xb) = yb. Then we can define a map
f =:

∑
fb :

∑
A

〈Xb, xb〉 →
∑
A

〈Yb, yb〉 by yb = f(xb), f(b, x) = (b, fb(x)) for x ∈

Xb\{xb} and f(x) = x for x ∈ A. Let us note that f ◦ϕ1|Xb
= ϕ2|Yb

◦fb where
ϕ1 and ϕ2 are the defining maps of the A-sums

∑
Xb and

∑
Yb respectively.

We will need the following simple lemma:

LEMMA 3.3. Let f : X → Y be a quotient map, A ⊆ Y and let f be one-to-
one outside A. Then f |f−1[A] : f−1[A] → A is a quotient map.

LEMMA 3.4. Let A be a prime space with an accumulation point a and B =
A\{a}. Let for every b ∈ B fb : Xb → Yb be a map between topological spaces,
xb ∈ Xb, yb ∈ Yb and f(xb) = yb.

(i) If all fb’s are continuous, then
∑

fb is continuous.

(ii) If all fb’s are quotient maps, then
∑

fb is a quotient map.

(iii) If all fb’s are embeddings, then
∑

fb is an embedding.

(iv) If all fb’s are homeomorphisms, then
∑

fb is a homeomorphism.
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(v) Let C be a prime subspace of A. Then
∑
C

〈Xb, xb〉 is a subspace of the space∑
A

〈Xb, xb〉.

Proof. Put f =
∑

fb and let ϕ1, ϕ2 be the defining maps of the A-sums∑
〈Xb, xb〉,

∑
〈Yb, yb〉 respectively. Let us denote idAt (

∐
b∈B fb) by h. In this

situation the following diagram commutes.

A t (
∐

Xb)
h //

ϕ1

��

A t (
∐

Yb)

ϕ2

��∑
〈Xb, xb〉

f
// ∑〈Yb, yb〉

The validity of (i) and (ii) follows easily from the fact that ϕ1 and ϕ2 are
quotient maps.

(iii) Now, suppose that all fb’s are embeddings. W.l.o.g. we can assume
that Xb ⊆ Yb and fb is the inclusion of Xb into Yb for every b ∈ B. Let X ′

be the subspace of the space
∑

Yb on the set
∑

Xb. We have the following
situation:

A t (
∐

Xb)
� � h //

ϕ1

��

A t (
∐

Yb)

ϕ2

��
X ′ �

�

f
// ∑Yb

We only need to prove that X ′ has the quotient topology with respect to ϕ1,
because this implies that X ′ =

∑
Xb and f is an embedding of X ′ =

∑
Xb to∑

Yb. But ϕ2 is one-to-one outside the set At (
∐

Xb) and Lemma 3.3 implies
that ϕ1 is a quotient map.

(iv) It is an easy consequence of (ii) and (iii). (v) It follows easily from the
definition of the A-sum. 2

COROLLARY 3.5. Let A be a prime space with an accumulation point a and
let C be a prime subspace of A. Let for every b ∈ A \ {a} Xb be a topological
space and xb ∈ Xb. Let for every b ∈ C Yb be a subspace of Xb such that
xb ∈ Yb. Then

∑
C

〈Yb, xb〉 is a subspace of the space
∑
A

〈Xb, xb〉.

Let us note, that if for every b ∈ A \ {a} fb is an embedding which maps
isolated points of Xb to isolated points of Yb, then the embedding

∑
fb has

the same property.

4. The sets TSγ, TSSγ

In this section we construct the set of special prime spaces that generates
SCH(A) (where A is a prime space which is not finitely generated and t(A) =

clan2acs.tex; 13/09/2005; 17:35; p.6



7

α). We start with defining the set TSγ of topological spaces for each ordinal
γ < α+.

Let TS0 = ∅ and TS1 be the set of all prime subspaces of A.
If β ≥ 1 is an ordinal, then TSβ+1 consists of all B-sums

∑
B

〈Xb, xb〉 where

B is a prime subspace of A, each Xb ∈ TSβ and xb = a.
If γ > 0 is a limit ordinal, then TSγ =

⋃
β<γ TSβ .

Sometimes, if we want to emphasize which prime space A is used to
construct this set, we use the notation TSγ(A).

Every space belonging to TSγ contains B as a subspace and therefore it
contains a. All spaces from TSγ are constructed from A using B-sums, where
B ∈ CH(A), thus TSγ ⊆ CH(A) for each γ.

The following lemma is a generalization of [5, Lemma 6.2].

LEMMA 4.1. Let X be a topological space and M ⊆ X. If p ∈ Mβ \ Mγ

for any γ < β, then there exists a space S ∈ TSβ and a continuous map
f : S → X, which maps all isolated points of S into M and maps only the
point a to p.

Proof. For β = 1 the claim follows from the definition of M1.
From the definition of Mβ it follows that β is a non-limit ordinal. According

to Proposition 2.2 β < α+. Suppose the assertion is true for any subset K of
X and for any β′ < β.

For a non-limit β > 1 there exists a prime subspace B of A and a continuous
map f : B → X such that f(a) = p and f [B \ {a}] ⊆ Mβ−1.

If β − 1 is non-limit, we can moreover assume that f [B \ {a}] ⊆ Mβ−1 \
Mβ−2. (If necessary, we choose B′ = {b ∈ B : f(b) ∈ Mβ−1 \ Mβ−2} and
f ′ = f |B′ . B′ is a prime subspace of A, otherwise we get x ∈ Mβ−1.)

If β − 1 is a limit ordinal, then for each point x ∈ Mβ−1 there exists the
smallest ordinal γ < β − 1 such that x ∈ Mγ . Obviously, γ is a non-limit
ordinal.

Thus for each x ∈ f [B \ {a}] there exists a continuous map fx : Sx → X,
where Sx ∈ TSβ−1, which sends all isolated points of Sx into M and a to x.

Then
∑
B

〈Sf(b), a〉 ∈ TSβ and we can define a map g :
∑
B

〈Sf(b), a〉 → X

such that g|B = f and g|{x}×(Sx\{a})(x, y) = fx(y) for y ∈ Sx \ {a}. Clearly,
g maps isolated points into M . It remains only to show that g is continuous.

The defining map ϕ : Bt(
∐

b∈B\{a} Sf(b)) →
∑
〈Sf(b), a〉 is a quotient map.

Thus, g :
∑
〈Sf(b), a〉 → X is continuous if and only if g ◦ϕ is continuous. But

g ◦ ϕ|B = f and g ◦ ϕ|Sx
= fx are continuous, thus g is continuous. 2

For any S ∈ TSγ we denote by P (S) the subspace of the space S which
consists of all isolated points of S and of the point a. Clearly, P (S) is a prime
space. We denote by TSSγ the set of all spaces P (S) where S ∈ TSγ . The
above lemma implies:

LEMMA 4.2. If p ∈ Mβ and p /∈ Mγ for any γ < β, then there exists a space
T ∈ TSSβ and a continuous map f : T → X, which maps all isolated points
of the space T into M and such that f(a) = p.
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PROPOSITION 4.3. SCH(A) is generated by the set
⋃

γ<α+
TSSγ .

Proof. Let X ∈ SCH(A). According to Lemma 1.4 it suffices to prove that
for any subset M ⊆ X and any x ∈ M \M there exists T ∈

⋃
γ<α+

TSSγ and

a continuous map f : T → X such that f(a) = x and f [T \ {a}] ⊆ M .
Since X ∈ SCH(A) there exists Y ∈ CH(A) such that X is a subspace of Y .

Denote by MY the closure of M in Y . Then M = MY ∩X and x ∈ MY \M in
Y . By Proposition 2.2 MY = Mα+ =

⋃
β<α+

Mβ . Let β be the smallest ordinal

with x ∈ Mβ . Then β > 0 and for any γ < β x /∈ Mγ . By Lemma 4.1 there
exists S ∈ TSβ and a continuous map f : S → Y with f(a) = x and f(c) ∈ M
for any isolated point of S. Then P (S) ∈ TSSγ and f [P (S)] ⊆ X. Hence,
f |P (S) : P (S) → X is a continuous map satisfying the required conditions.
Consequently, X ∈ CH(

⋃
γ<α+

TSSγ). 2

Remark 4.4. It can be easily seen that if we define the sets T ′Sγ , γ < α+,
similarly as the sets TSγ but we use only the A-sums (and not all B-sums for
prime subspaces B of A) and then we put T ′SSγ = {P (S) : S ∈ T ′Sγ} we
obtain the set

⋃
γ<α+

T ′SSγ which also generates SCH(A). This follows from

the fact that any space from
⋃

γ<α+
TSSγ is a prime subspace of some space

from
⋃

γ<α+
T ′SSγ .

Similarly, if we put T ′SS′γ = {Sa : S ∈ T ′Sγ} (Sa is the prime factor of
S at a), then the set

⋃
γ<α+

T ′SS′γ generates SCH(A) because
⋃

γ<α+
T ′SS′γ ⊆

SCH(A) and for every S ∈
⋃

γ<α+
T ′Sγ P (S) is a subspace of Sa.

5. The spaces Aω and (Aω)a

The space Aω is defined similarly as Sω in [2] using the A-sum and the space
A instead of the sequential sum and the space C(ω0). We start with defining
the space An for each n ∈ N putting A1 = A and An+1 =

∑
A

〈An, a〉. Clearly,

A1 is a subspace of A2 and if An−1 is a subspace of An, then, according to
Lemma 3.4, An =

∑
A

〈An−1, a〉 is a subspace of An+1 =
∑
A

〈An, a〉. Hence, An

is a subspace of An+1 for each n ∈ N.
The Figure 1 represents the space A3 for A = C(ω0). (The space C(ω0) is

defined in Example 5.7.)
The space Aω is a topological space defined on the set

⋃
n∈N An such that a

subset U of
⋃

n∈N An is open in Aω if and only if U∩An is open in An for every
n ∈ N. It is obvious that for every n ∈ N the space An is a subspace of Aω

and Aω is a quotient space of the topological sum
∐

n∈N An. Consequently,
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0

(0,2)

(0,1)

(0,0)

ω

(1,0,2)

Figure 1. The space A3 for A = C(ω0)

Aω belongs to CH(A). Observe that Aω can be considered as an inductive
limit of its subspaces An, n ∈ N.

Similarly as the space Sω in [2] the space Aω has the following important
property.

PROPOSITION 5.1. Aω =
∑
A

〈Aω, a〉

Proof. Put X =
∑
A

〈Aω, a〉. For each n ∈ A the space An is a subspace of

Aω and it follows that An+1 =
∑
A

〈An, a〉 is a subspace of X (Lemma 3.4).

Obviously, A = A1 is also a subspace of X and we obtain that for each n ∈ N
An is a subspace of X. Clearly, X =

⋃
n∈N

An. To finish the proof it suffices to

check that if U is a subset of X and U ∩ An is open in An for each n ∈ N,
then U is open in X.

Let us denote by Ab
n the subspace of X on the set {b}∪ ({b}× (An \ {α}))

and by Ab
ω the subspace of X on the set {b}∪ ({b}× (Aω \ {α})). Clearly, Ab

n

is homeomorphic to An and Ab
ω is homeomorphic to Aω, Ab

n is a subspace of
Ab

ω and a subset V of Ab
ω is open in Ab

ω if and only if V ∩ Ab
n is open in Ab

n

for each n ∈ N.
If U ⊆ X and U ∩ An is open in An for all n ∈ N, then U ∩ A is open in

A and U ∩ An+1 is open in An+1 =
∑
A

〈An, a〉 for all n ∈ N. Then U ∩ Ab
n is

open in Ab
n for each n ∈ N and b ∈ A \ {a} and it follows that U ∩Ab

ω is open
in Ab

ω for each b ∈ A \ {a}. Hence, U is open in X. 2

The following lemma is evident.

LEMMA 5.2. cardAω = cardA

LEMMA 5.3. For every ordinal γ, 1 ≤ γ < α+ and every space S ∈ TSγ

the space S is a subspace of Aω. (Clearly, the point a of S coincides with the
point a of Aω.)

Proof. If γ = 1, then S = B is a prime subspace of A = A1. Let γ be an
ordinal, 1 < γ < α+ and suppose that the assertion holds for every ordinal
β, 1 ≤ β < γ. If S =

∑
B

Xb ∈ TSγ , then for each b ∈ B \ {a} Xb ∈ TSβb

with 1 ≤ βb < γ. Hence, for each b ∈ B \ {a}, Xb is a subspace of Aω and,
according to Corollary 3.5, S is a subspace of Aω =

∑
A

〈Aω, a〉. 2

clan2acs.tex; 13/09/2005; 17:35; p.9



10

THEOREM 5.4. Let (Aω)a be the prime factor of the space Aω at a. Then
(Aω)a is a prime space, CH((Aω)a) = SCH(A) and card(Aω)a = cardA.

Proof. Evidently, (Aω)a is a prime space and card(Aω)a = card A. Since
Aω belongs to CH(A) ⊆ SCH(A), according to Proposition 1.3 (Aω)a belongs
to SCH(A). Hence, it suffices to check that

⋃
γ<α+

TSSγ ⊆ CH((Aω)a).

Let T ∈
⋃

γ<α+
TSSγ . Then there exists an ordinal γ, 1 ≤ γ < α+, and

S ∈ TSγ such that T = P (S). By Lemma 5.3 S is a subspace of Aω and,
clearly, it follows that T = P (S) is a subspace of (Aω)a. Consequently, there
exists a quotient map (Aω)a → T and we obtain that T belongs to CH((Aω)a).

2

Finally, let X be an arbitrary topological space which is not finitely gener-
ated and {Xc, c ∈ Y } be the set of all prime factors of X that are not discrete
spaces. Denote by AX the quotient space of the topological sum

∐
c∈Y

({c}×Xc)

obtained by collapsing all points of the subset {(c, c), c ∈ Y } of the space∐
c∈Y

({c} ×Xc) into one point a.

The space AX is a prime space which is not finitely generated, a is the
accumulation point of AX , cardAX = cardX and the following statement
holds:

THEOREM 5.5. SCH(X) = CH(((AX)ω)a), ((AX)ω)a is a prime space and
card((AX)ω)a = cardX.

Proof. Evidently, AX ∈ SCH(X), X ∈ CH(AX) and therefore SCH(X) =
SCH(AX). According to Theorem 5.4 SCH(AX) = CH(((AX)ω)a), ((AX)ω)a

is a prime space and card((AX)ω)a = cardAX = cardX. 2

Recall, that a topological space X belongs to Top(ω1) if and only if every
countable intersection of open subsets of X is open in X and Top(ω1) is a
hereditary coreflective subcategory of Top. If the space A belongs to Top(ω1),
then SCH(A) ⊆ Top(ω1) and we can find smaller (and simpler) set of gen-
erators of SCH(A) than the set

⋃
γ<α+ TSSγ(A) constructed in Proposition

4.3.

PROPOSITION 5.6. If A ∈ Top(ω1), then SCH(A) = CH({P (An); 0 < n <
ω0}).

Proof. It suffices to show that (Aω)a ∈ CH({P (An);n < ω0}). Clearly,
each P (An) is a subspace of (Aω)a. Denote by in : P (An) ↪→ (Aω)a the
corresponding embedding and by f :

∐
n∈N

P (An) → (Aω)a the continuous map

given by the maps in, n ∈ N. It is easy to see that this map is surjective. We
claim that f is also a quotient map.

It suffices to show that if a ∈ U ⊆ (Aω)a and U ∩P (An) is open in P (An)
for each n < ω0, then U is open in (Aω)a. Since P (An) is a subspace of Aω,
there exists an open subset Wn of Aω such that Wn ∩ P (An) = U ∩ P (An).
Put W =

⋂
n<ω0

Wn. The set W is open in Aω since Aω belongs to Top(ω1).
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We have W ∩P (An) ⊆ U ∩P (An) and
⋃

n<ω0
P (An) = Aω, therefore W ⊆ U .

Obviously, a ∈ W . Hence, the set U is open in (Aω)a. 2

Next we present some special cases of our construction.

Example 5.7. Sequential spaces. Recall that subspaces of sequential spaces
are called subsequential. The category Seq of sequential spaces is the core-
flective hull of the space C(ω0). The space C(ω0) is the topological space on
the set ω0 + 1 = ω0 ∪ {ω0} such that all points of ω0 are isolated and a set
containing ω0 is open if and only if its complement is finite. (Equivalently, the
topology of C(ω0) is the order topology given by the usual well-ordering of
ω0 + 1.) The space C(ω0)ω is homeomorphic to Sω defined in [2]. Our results
imply that the prime factor of the space C(ω0)ω at ω0 is a generator of the
category of subsequential spaces. Another countable generator of this category
was constructed before in [5].

Example 5.8. The coreflective hull of the space C(α). Let α be a regular
cardinal and C(α) be the topological space on the set α + 1 = α ∪ {α}
such that all points of α are isolated and a set containing α is open if and
only if its complement has cardinality less than α. It is well known that X
belongs to CH(C(α)) if and only if a subset V ⊆ X is closed in X whenever
for each α-sequence of points from V the set V contains also all limits of
this α-sequence. The subcategories SCH(C(α)) are minimal elements of the
collection of all hereditary coreflective subcategories of Top above FG. We
use the subcategories SCH(C(α)) in the next section. Our construction yields
the generator (C(α)ω)α of SCH(C(α)) which has cardinality α.

6. Subcategories of Top having FG as their hereditary coreflective
kernel

Recall that a hereditary coreflective kernel of a subcategory A of Top is
the largest hereditary coreflective subcategory of Top contained in A. We
denote it by HCK(A). In this section we prove that if A and B are core-
flective subcategories of Top such that HCK(A) = HCK(B) = FG, then
also HCK(CH(A∪B)) = FG. The analogous result does not hold for infinite
countable joins of coreflective subcategories. This problem is closely related
to the subcategories SCH(C(α)) because (see [3, Theorem 4.8]) FG is the
hereditary coreflective kernel of a coreflective subcategory A of Top if and
only if FG ⊆ A and for any regular cardinal α the category SCH(C(α)) is
not contained in A.

In [7, Problem 7] H. Herrlich and M. Hušek suggest to study coreflective
subcategories of Top such that their hereditary coreflective hull is the whole
category Top (i.e. SA = Top) and their hereditary coreflective kernel is the
subcategory FG. In the paper [9] it is shown that there exists the smallest
such subcategory of Top and the collection of all such subcategories of Top
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is closed under the formation of arbitrary non-empty intersections. In this
section we prove that this collection is also closed under the formation of
non-empty finite joins without being closed under the formation of infinite
countable joins in the lattice of all coreflective subcategories of Top.

Throughout this section we will apply the results obtained in preceding
sections to prime spaces C(α), α being a regular cardinal, defined in Example
5.8. Note that α is an accumulation point of C(α) and t(C(α)) = α for any
regular cardinal α. Since any prime subspace of C(α) is homeomorphic to
C(α) it suffices to use only C(α)-sums in the definition of TSγ . For instance,
if n is a natural number, then TSn as well as TSSn contain precisely one
space.

In order to prove the main result of this section, we first prove that if
SCH(C(α)) ⊆ CH(A ∪ B) for some coreflective subcategories A, B of Top,
then one of these subcategories contains SCH(C(α)). We show it separately
for the case α = ω0 and α ≥ ω1.

We start with the case α = ω0 where we can use some results presented
in the paper [5]. As the sets TSSγ , γ < ω1, introduced in [5] do not coincide
with the sets TSSγ(C(ω0)) defined in Section 4 we denote the sets used in [5]
by TSS′γ(C(ω0)).

The next lemma follows from [5, Theorem 7.1], resp. [5, Corollary 7.2].

LEMMA 6.1. The category SSeq = SCH(C(ω0)) of subsequential spaces is
the coreflective hull of the set

⋃
γ<ω1

TSS′γ(C(ω0)).

As a consequence of [5, Theorem 7.1] and [5, Theorem 6.4] we obtain:

LEMMA 6.2. If β < γ < ω1, then TSS′β(C(ω0)) ⊆ CH(TSS′γ(C(ω0))).

The following result concludes the part of this section concerning the
subcategory SCH(C(ω0)).

PROPOSITION 6.3. If SCH(C(ω0)) ⊆ CH(
⋃

i∈I Ai), Ai is a coreflective
subcategory of Top for every i ∈ I and card I ≤ ω0, then there exists i0 ∈ I
such that SCH(C(ω0)) ⊆ Ai0 .

Proof. Put βi = sup{β : TSS′β(C(ω0)) ⊆ Ai} for i ∈ I. Since sup βi = ω1

(Lemma 6.1) and ω1 is a regular cardinal, there exists i0 ∈ I such that βi0 =
ω1. By Lemma 6.1 and Lemma 6.2 we get that the coreflective subcategory
Ai0 contains the subcategory SSeq = SCH(C(ω0)). 2

Next we want to prove a result analogous to Proposition 6.3 for the space
C(α), where α ≥ ω1 is a regular cardinal. In the case α ≥ ω1 the desired result
holds only for non-empty finite joins of coreflective subcategories of Top.

Recall that C(α)1 = C(α) and C(α)n+1 =
∑

C(α)

〈C(α)n, α〉. According to

Corollary 3.5 we obtain that P (C(α)n+1) = P (
∑

C(α)

〈P (C(α)n), α〉) and it is

easy to see that αn+1 ∪ {α} is the underlying set of the space P (C(α)n+1)
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and the subspace of
∑

P (C(α)n) on the set {η}∪({η}×αn) is homeomorphic
to P (C(α)n) for each η < α. To simplify the notation we will write C(α)−n
instead of P (C(α)n).

The following result is a special case of Proposition 5.6.

PROPOSITION 6.4. If α ≥ ω1 is a regular cardinal, then SCH(C(α)) =
CH({C(α)−n ; 0 < n < ω0}).

LEMMA 6.5. Let α ≥ ω1 be a regular cardinal. If M is a subset of C(α)n

such that α ∈ M and M contains only isolated points of C(α)n, then there
exists a subset M ′ ⊆ M such that the subspace of the space C(α)n on the set
M ′ is homeomorphic to C(α)n.

Proof. The case n = 1 is clear. Let the assertion be true for m. Denote the
subspace of C(α)m+1 =

∑
C(α)

C(α)m on the set {η} ∪ ({η} × (C(α)m \ {α})),

where η < α, by C(α)η
m.

Put B = M ∩ C(α). Then B is a prime subspace of C(α), for each
η ∈ B \ {α} all points of the set Mη = M ∩ C(α)η

m are isolated in the
space C(α)η

m and η ∈ Mη in C(α)η
m (observe that Mη in C(α)η

m coincides
with Mη in C(α)m+1 because C(α)η

m is closed in C(α)m+1). Since C(α)η
m is

homeomorphic to C(α)m by the induction assumption we obtain that there
exists a subset M ′

η ⊆ Mη such that η ∈ M ′
η and the subspace M ′

η of C(α)η
m is

homeomorphic to some space C(α)m.
Let B′ = B \ {α} and M ′ =

⋃
n∈B′

M ′
η. Clearly, M ′ ⊆ M , M ′ =

⋃
η∈B′

M ′
η ∪

{α} in S and M ′
η is homeomorphic to C(α)m for each η ∈ B′.

The subspace B of C(α) is homeomorphic to C(α) and it is easy to check
that M ′ is homeomorphic to

∑
C(α)

C(α)m = C(α)m+1. 2

COROLLARY 6.6. Let α ≥ ω1 be a regular cardinal, 0 < n < ω0. Then every
prime subspace T of C(α)−n is homeomorphic to C(α)−n .

Proof. Put M = T \ {α}. Clearly, α ∈ M . According to Lemma 6.5
there exists a subset M ′ of M such that the subspace M ′ ∪ {α} of C(α)−n
is homeomorphic to C(α)−n . It follows from the proof of Lemma 6.5 that
M ′ \ M is a discrete clopen subspace of C(α)−n with cardinality at most α.
Hence, T = M ∪ {α} is homeomorphic to C(α)−n as well. 2

PROPOSITION 6.7. Let α ≥ ω1 be a regular cardinal and 0 < n < ω0. If
C(α)−n ∈ CH(

⋃
i∈I Ai), where all Ai’s are coreflective subcategories of Top,

then there exists i0 ∈ I such that C(α)−n ∈ Ai0 .
Proof. The space C(α)−n is a prime space with an accumulation point α. If

C(α)−n ∈ CH(
⋃

i∈I Ai), then there exists a quotient map f :
∐
i∈I

Bi → C(α)−n ,

where Bi belongs to Ai for each i ∈ I. Put fi = f |Bi
and let Ai be the space

on the set fi[Bi] endowed with the quotient topology with respect to fi for
each i ∈ I.
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The topology of every space Ai is finer than the topology of the corre-
sponding subspace of C(α)−n and it follows that Ai is either discrete or prime
space. Clearly, a set U ⊆ C(α)−n is open in C(α)−n if and only if U ∩Ai is open
in Ai for each i ∈ I and Ai ∈ Ai. Obviously, there exists i0 ∈ I such that α
is an accumulation point of Ai0 (otherwise α would be isolated in C(α)−n ).

We show that C(α)−n ∈ CH(Ai0). Let M be a non-closed subset of C(α)−n .
It suffices to find a continuous map f : Ai0 → C(α)−n such that f [Ai0 \ {α}] ⊆
M and f(α) = α. According to Corollary 6.6 the subspace on the set M ∪{α}
is homeomorphic to C(α)−n . Let us denote the homeomorphism from C(α)−n
to M∪{α} by g. Moreover, there is a continuous map i : Ai0 → C(α)−n defined
by i(x) = x for each x ∈ Ai0 . The desired continuous map is f = g ◦ i. 2

If X and Y are prime spaces, then a continuous map f : X → Y is called a
prime map if it maps only the accumulation point of X to the accumulation
point of Y .

LEMMA 6.8. Let α ≥ ω1 be a regular cardinal and 0 < m < n < ω0. There
exists a quotient prime map g : C(α)−n → C(α)−m.

Proof. Obviously it suffices to prove the lemma for n = m + 1. In this
case C(α)−m+1 = P (

∑
C(α)−m) is a topological space on the set {α} ∪ αm+1

and C(α)−m is a topological space on the set {α} ∪ αm. We define a map
g : C(α)−m+1 → C(α)−m by g(α) = α and g((η, x)) = x for all (η, x) ∈
C(α)−m+1 \ {α}. It is easy to check that the map g is continuous and quotient.

2

COROLLARY 6.9. If α ≥ ω1 is a regular cardinal and 0 < m < n < ω0, then
C(α)−m ∈ CH(C(α)−n ).

PROPOSITION 6.10. If α is a regular cardinal and SCH(C(α)) ⊆ CH(A ∪
B), then SCH(C(α)) ⊆ CH(A) or SCH(C(α)) ⊆ CH(B).

Proof. Since the case α = ω0 follows immediately from Proposition 6.3 we
can assume that α ≥ ω1.

By Proposition 6.7 for each n, 0 < n < ω0, the space C(α)−n belongs either
to A or to B. By Lemma 6.8 we have a quotient map f : C(α)−n → C(α)−m
for each n > m. Hence, one of these two coreflective categories contains all
spaces C(α)−n and, consequently, it contains SCH(C(α)). 2

Now we can state the main result of this section.

THEOREM 6.11. If A, B are coreflective subcategories of the category Top
and HCK(A) = HCK(B) = FG, then HCK(CH(A ∪B)) = FG.

Proof. Suppose the contrary. Then according to [3, Theorem 4.8] there
exists a regular cardinal α with SCH(C(α)) ⊆ CH(A ∪B). Proposition 6.10
implies that SCH(C(α)) ⊆ A or SCH(C(α)) ⊆ B, contradicting the assump-
tion that the hereditary coreflective kernel of both these categories is FG.

2
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Let C be the conglomerate of all coreflective subcategories of Top. It is
known that C partially ordered by inclusion is a complete lattice. The above
theorem shows that the collection of all coreflective subcategories A of Top
such that HCK(A) = FG is closed under the formation of non-empty finite
joins in the lattice C. We next show that this family is not closed under the
formation of infinite countable joins. Namely, for all categories CH(C(α)−n )
we have HCK(CH(C(α)−n )) = FG and their join is the category SCH(C(α))
which does not have this property. The proof is divided into three auxiliary
lemmas.

LEMMA 6.12. Let α ≥ ω1 be a regular cardinal and 2 ≤ n < ω0. If there
exists a prime map f : C(α)−n → C(α)−n+1, then there exists a prime map
f ′ : C(α)−n → C(α)−n+1 such that f ′[{ξ} × αn−1] ∩ (

⋃
η<ξ{η} × αn) = ∅ for

each ξ < α.
Proof. Let f : C(α)−n → C(α)−n+1 be a prime map. Denote by Bξ the

subspace of
∑

C(α)−n−1 on the set {ξ} ∪ ({ξ} × αn−1) where ξ < α. The
subspace Bξ is homeomorphic to C(α)−n−1.

For each ξ < α the set f−1[{α} ∪ (
⋃

η≥ξ{η} × αn)] is open in C(α)−n ,
therefore there exists an ordinal γ < α such that for each γ′ > γ the set
{γ′} ∪ (f−1[

⋃
η≥ξ{η} × αn] ∩ Bγ′) is open in Bγ′ . Hence, we can define an

increasing sequence (γξ)ξ<α such that Cξ := {γξ}∪(f−1[
⋃

η≥ξ{η}×αn]∩Bγξ
)

is open in Bγξ
. Clearly, f [Cξ \ {γξ}] ⊆

⋃
η≥ξ{η} × αn.

According to Corollary 6.6 the subspace of Bγξ
on the set Cξ is home-

omorphic to C(α)−n−1. Hence, for each ξ < α we can define an embedding
hξ : C(α)−n−1 ↪→

∑
C(α)−n−1 such that hξ[C(α)−n−1] = Cξ. It is easy to see

that the map h :
∑

C(α)−n−1 →
∑

C(α)−n−1 given by h(ξ) = γξ for each
ξ < α, h(α) = α and h(ξ, x) = hξ(x) for each ξ < α and x ∈ αn−1 is also an
embedding. Put Aξ = {ξ}×αn−1 (Aξ ⊆ Bξ). Then h[Aξ] ⊆ hξ[C(α)−n−1] = Cξ

and f [h[Aξ]] ⊆ f [Cξ \ {γξ}] ⊆
⋃

η≥ξ{η} × αn. Consequently f ◦ h[Aξ] ∩
(
⋃

η<ξ{η}×αn) = ∅ and the prime map f ′ = f ◦(h|C(α)−n
) : C(α)−n → C(α)−n+1

is a prime map satisfying the required condition. 2

LEMMA 6.13. Let α ≥ ω1 be a regular cardinal and 0 < n < ω0. Then there
exists no prime map from C(α)−n to C(α)−n+1.

Proof. First let n = 1. For each γ < α the set {γ} × α is closed in C(α)−2 .
Consequently f−1[{γ} × α] is closed in C(α), hence it contains less than
α points and there exists a set Uγ ⊆ α with card(α \ Uγ) < α such that

({γ} × Uγ) ∩ f [C(α)] = ∅. Thus, W = {α} ∪
(⋃

γ<α{γ} × Uγ

)
is an open

neighborhood of α in C(α)−2 such that f−1[W ] = {α} and this contradicts
the continuity of f .

Let n > 1 and the lemma hold for n − 1. Suppose that there exists a
prime map f : C(α)−n → C(α)−n+1. By Lemma 6.12 we can assume w.l.o.g.
that f [{ξ} × αn−1] ∩ (

⋃
η<ξ{η} × αn) = ∅ for each ξ < α.
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Recall the definition of the quotient prime map g : C(α)−n → C(α)−n−1 from
Lemma 6.8. The map g is defined by g(α) = α and g(η, x) = x for η < α,
x ∈ αn−1.

Put Aξ = {ξ} × αn−1. Let us denote the subspace of
∑

C(α)−n−1 on the
set {ξ} ∪ Aξ = {ξ} ∪ ({ξ} × αn−1) by Bξ for each ξ < α. Clearly Bξ is
homeomorphic to C(α)−n−1. We define a map fξ : Bξ → C(α)−n+1 by fξ(ξ) = α
and fξ(ξ, x) = f(ξ, x) for each x ∈ αn−1.

The map g ◦ fξ : Bξ → C(α)−n cannot be continuous, otherwise we get
a prime map from a space homeomorphic to C(α)−n−1 to the space C(α)−n .
Therefore there exists an open subset of C(α)−n such that inverse image of
this set is not open in Bξ. This set can be written in the form Uξ ∪{α}, where
α /∈ Uξ, and we get that the set

f−1
ξ [g−1[Uξ∪{α}]] = f−1

ξ [{α}∪(
⋃

η<α

({η}×Uξ))] = {ξ}∪(Bξ∩f−1[
⋃

η<α

{η}×Uξ])

is not open in Bξ.
Put Vξ =

⋂
η≤ξ Uη for ξ < α. The family Vξ is non-increasing and it

has the same properties as the family Uξ. Each Vξ ∪ {α} is open in C(α)−n ,
because C(α)−n belongs to Top(α) (SCH(C(α)) ⊆ Top(α)). The set {ξ} ∪
(Bξ ∩ f−1[

⋃
η<α{η} × Vξ]) is not open in Bξ since Bξ is a prime space with

an accumulation point ξ (and {ξ} ∪ (Bξ ∩ f−1[
⋃

η<α{η} × Vξ]) ⊆ {ξ} ∪ (Bξ ∩
f−1[

⋃
η<α{η} × Uξ])).

Finally let us put W =
⋃

ξ<α{ξ}×Vξ. The set W ∪{α} is open in C(α)−n+1.
We claim that f−1[{α} ∪ W ] is not open in C(α)−n . It suffices to show that
{ξ} ∪ (f−1[W ] ∩Bξ) is not open in Bξ for each ξ < α.

Clearly Bξ = Aξ ∪ {ξ} and we get {ξ} ∪ (f−1[{α} ∪ W ] ∩ Bξ) = {ξ} ∪
(f−1[

⋃
η<α{η} × Vη] ∩ Aξ). We have f [Aξ] ∩ (

⋃
η<ξ{η} × αn−1) = ∅, hence

f−1[
⋃

η<α{η} × Vη] ∩Aξ = f−1[
⋃

η≥ξ{η} × Vη] ∩Aξ and we obtain

{ξ} ∪ (f−1[{α} ∪W ] ∩Bξ) = {ξ} ∪ (f−1[
⋃
η≥ξ

{η} × Vη] ∩Bξ) ⊆

⊆ {ξ} ∪ (f−1[
⋃
η≥ξ

{η} × Vξ] ∩Bξ) ⊆ {ξ} ∪ (f−1[
⋃

η<α

{η} × Vξ] ∩Bξ).

The latter set is not open in Bξ therefore {ξ} ∪ (f−1[{α} ∪ W ] ∩ Bξ) is not
open in Bξ as well. 2

LEMMA 6.14. Let α ≥ ω1 be a regular cardinal and 0 < n < ω0. Then
HCK(CH(C(α)−n )) = FG.

Proof. Recall (see [6]) that if γ > δ, then Top(γ)∩Gen(δ) = FG. For β <
α we have SCH(C(β)) ⊆ Gen(β) and C(α)−n ∈ Top(α), hence SCH(C(β)) *
CH(C(α)−n ). Similarly if β > α, then SCH(C(β)) ⊆ Top(β) and C(α)−n ∈
Gen(α). Thus, SCH(C(β)) * CH(C(α)−n ).

By Lemma 6.13 and Lemma 1.4 C(α)−n+1 /∈ CH(C(α)−n ) (every prime
subspace of C(α)−n is homeomorphic to C(α)−n ) and C(α)−n+1 ∈ SCH(C(α)),
therefore SCH(C(α)) * CH(C(α)−n+1) as well. 2
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It follows from Proposition 6.4 and Lemma 6.14 that the conglomerate of
all coreflective subcategories A of Top such that HCK(A) = FG is not closed
under the formation of infinite countable joins in C.

Denote by L the collection of all coreflective subcategories A of Top such
that SA = Top and HCK(A) = FG. In the paper [9] it is shown that L
has the smallest element A0 = CH({Sα;α is a cardinal}), where S is the
Sierpiński doubleton, and L is closed under the formation of arbitrary non-
empty intersections. This together with Theorem 6.11 yields:

THEOREM 6.15. The collection L is closed under the formation of non-
empty intersections, non-empty finite joins in C and has the smallest element.

PROPOSITION 6.16. There is no maximal coreflective subcategory A of Top
such that HCK(A) = FG. Consequently, the collection L has no maximal
element.

Proof. Suppose that A is maximal coreflective subcategory of Top with
the property HCK(A) = FG. Let α ≥ ω1 be a regular cardinal. According to
Lemma 6.14 and Theorem 6.11 HCK(CH(A ∪ {C(α)−n })) = FG for each n,
0 < n < ω0. Thus, we get C(α)−n ∈ A for each n < ω0 and by Proposition 6.4
SCH(C(α)) ⊆ A, a contradiction.

The proof that L has no maximal elements is analogous. 2
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