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1 Introduction

Motivated by [11, Problem 7] J. Činčura studied in [3] hereditary coreflective
subcategories of the category Top of all topological spaces and continuous
maps. He proved a nice characterization of hereditary coreflective subcate-
gories using prime factors of topological spaces. However, it would be interest-
ing to study the hereditary coreflective subcategories also in other categories
of topological spaces, as Haus or, more generally, any epireflective subcat-
egory of Top. In this case the situation becomes more complicated than in
Top. For instance, in Top we obtain the hereditary coreflective hull of a
coreflective subcategory C simply by taking the subcategory SC consisting
of all subspaces of spaces from C. This is not true in the case of coreflective
subcategories of Haus anymore, as the example of T2-subsequential spaces
(see [7] or [4]) shows. The hereditary coreflective hull of Hausdorff sequential
spaces in Haus are precisely the Hausdorff subsequential spaces. But not
every Hausdorff subsequential space is a subspace of a Hausdorff sequential
space. So the description of the hereditary coreflective hull mentioned above
does not work in Haus.

Although we see that this new situation leads to some complications, in
[4] it is proved that the same characterization holds if we study the same
problem in an epireflective subcategory A of Top, which is not bireflective.
Namely, it is shown that a coreflective subcategory of A is hereditary if and
only if it is closed under the formation of prime factors. This paper is an
attempt to study a similar situation and to add a few new results in this
area of research.

We study here mainly the subcategories which are additive and divisible
(i.e., closed under sums and quotient spaces) in A. We call them briefly AD-
classes. The AD-classes include coreflective subcategories as a special case.
If A is a quotient-reflective subcategory of Top (in particular if A = Top),
then there is no difference between these two notions. We show that in many
cases an AD-class B in A is hereditary if and only if it is closed under the
formation of prime factors. E.g., this holds if A ⊆ Haus or B contains at
least one prime space.

We also present a method how to extend our results to bireflective sub-
categories of Top. (Maybe it is more precise to say that the restriction to
non-bireflective subcategories is in fact not so restrictive.) For this purpose
we use the correspondence between bireflective subcategories of Top and
epireflective subcategories of Top consisting only of T0-spaces. This corre-
spondence was introduced in [19] (see also [21]).

2 Preliminaries

Topological terminology follows [6] with a few exceptions. We do not assume
the T1 separation axiom for zero-dimensional spaces. A neighborhood of x
is any set V such that there exists an open subset U with x ∈ U ⊆ V .
(So the neighborhoods in the sense of [6] are open neighborhoods in our
terminology.) Compact spaces are not necessarily Hausdorff. For the notions
and results from category theory we refer to [1], in particular for reflective
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and coreflective subcategories of the category Top of topological spaces and
continuous maps to [9].

All subcategories are assumed to be full and isomorphism-closed. To avoid
some trivial cases we assume that every subcategory of Top contains at least
one space with at least two points.

By X ≺ Y we mean that the spaces X and Y have the same underlying
set and X has a finer topology than Y . By initial map we mean an initial
morphism in the category Top. I.e., f : X → Y is said to be initial if X has
the initial topology w.r.t. f .

Any ordinal is the set of its predecessors ordered by ∈. Cardinal numbers
are the initial ordinals. The class of all cardinals will be denoted by Cn.

2.1 Epireflective and coreflective subcategories

Perhaps the most important notions from category theory, which we will use
in this paper, are those of reflective and coreflective subcategory. We review
here some basic facts, more can be found in [1], [9] or [12].

A subcategory A of a category B is reflective if for any B-object there
exists an A-reflection. The A-reflection of X ∈ B is an object RX ∈ A
together with a morphism r : X → RX (called the A-reflection arrow) which
has the following universal property: For any morphism f : X → A with
A ∈ A there exists a unique morphism f : RX → A such that the following
diagram commutes.

X
r //

f !!D
DD

DD
DD

D RX

f

���
�
�

A

The A-reflection is determined uniquely up to homeomorphism.
The functor R : B → A which assigns to each B-object its A-reflection

(and acts on morphisms in the natural way) is called a reflector. This functor
is coadjoint to the embedding functor A ↪→ B.

We say that A is epireflective (bireflective) in B if all A-reflection arrows
are epimorphisms (bimorphisms) in B. If B = Top and all A-reflections are
quotient maps, we speak about a quotient-reflective subcategory.

A subcategory A of Top is epireflective in Top if and only if it is closed
under the formation of topological products and subspaces.

By EH(A) we denote the epireflective hull of a subcategory A. A topo-
logical space X belongs to EH(A) if and only if it is a subspace of a prod-
uct of spaces from A. An equivalent condition is that there exist an initial
monosource with domain X and codomain in A. (See e.g. [19, Theorem 2] or
[1, Theorem 16.8].) A similar characterization holds for bireflective hulls. A
topological space X belongs to the bireflective hull BH(A) of A if and only
if there is an initial source from X to A ([15, Corollary 2] or [1, Theorem
16.8]).

By I2 we will denote the two-point indiscrete space. An epireflective sub-
category A of Top is bireflective if and only if I2 ∈ A. Therefore BH(A) =
EH(A ∪ {I2}).
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Mostly we will work in an epireflective subcategory A of Top which does
not contain I2. (We will show in Section 5 how to get rid of this assumption.)
The same assumption on A was used in [4]. It is motivated by the fact that
only these epireflective subcategories of Top are closed under the formation
of prime factors. Under this assumption A is closed under topological sums,
too. (Recall that we made an agreement that each subcategory contains a
space with at least 2 points. Hence, A contains all discrete spaces whenever
I2 /∈ A.)

The largest such subcategory of Top is the category Top0 of T0-spaces.
The largest subcategory with these properties such that moreover A ( Top0

is the category Top1 of T1-spaces.
The smallest such subcategory of Top is the subcategory ZD0 of zero-

dimensional T0-spaces. (Note that for a zero-dimensional spaces the condi-
tions T0 and T2 are equivalent.) The subcategory ZD0 is the epireflective
hull of the 2-point discrete space D2.

An epireflective subcategory of Top is quotient-reflective if and only if it
is closed under the formation of spaces with finer topologies. In a quotient-
reflective subcategory of Top regular (extremal) epimorphisms are exactly
the quotient maps.

Let A be an epireflective subcategory of Top and A 6= Ind (the subcate-
gory of all indiscrete spaces). A subcategory B ⊆ A is coreflective in A if and
only if it is closed under topological sums and A-extremal quotients. In par-
ticular B is coreflective in Top if it is closed under sums and quotients. For
each subcategory B of A there exists the smallest coreflective subcategory of
A containing B. It is called the coreflective hull of B in A and denoted by
CHA(B). If B = {B} consists of a single space we use the notation CHA(B).
If A is an epireflective subcategory of Top and A 6= Ind, then the mem-
bers of CHA(B) are exactly the A-extremal quotients of topological sums of
spaces from B. If A = Top, then the notation CH(B) (resp. CH(B)) is used
and CH(B) is called the coreflective hull of B. CH(B) is formed by quotients
of topological sums of spaces from B.

The class FG of all finitely generated spaces is the coreflective hull of all
finite spaces in Top. A space is finitely generated if and only if any inter-
section of its open sets is again open. The subcategory FG is the smallest
coreflective subcategory of Top containing a space, which is not a sum of
indiscrete spaces, and it is the coreflective hull of the Sierpiński space S. The
Sierpiński space S is the two-point space in which only one point is isolated.

A subcategory B of Top is said to be hereditary, if it is closed under
subspaces, and additive, if it is closed under topological sums. We say that
B is divisible in A if for every quotient map q : X → Y with X ∈ B and
Y ∈ A we have Y ∈ B.

A class B which is additive and divisible in A will be called briefly an
AD-class in A. If B is moreover hereditary, we say that it is an HAD-class
in A.

We define the AD-hull (HAD-hull) of B ⊆ A as the smallest (hereditary)
AD-class in A containing B. It will be denoted by ADA(B), resp. HADA(B).
It is clear that ADA(B) consists precisely of all spaces from A, which are
quotient spaces of topological sums of spaces from B.
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If A = Top or A is quotient-reflective in Top, then the notion of AD-class
(HAD-class) coincides with the notion of (hereditary) coreflective subcate-
gory.

Whenever C is coreflective in Top, the subcategory SC consisting of all
subspaces of spaces from C is known to be coreflective as well (see e.g. [16,
Remark 2.4.4(5)] or [3, Proposition 3.1]). Clearly the category S(CH(B)) is
the hereditary coreflective hull of B. It will be denoted also by HCH(B). The
hereditary coreflective hull of a single space A in Top is denoted by HCH(A).

For the future reference we state some obvious relations between AD-hulls
in A and coreflective hulls in Top in the following lemma.

Lemma 2.1. Let A be an epireflective subcategory of Top with I2 /∈ A.
Then ADA(B) = CH(B)∩A and S(ADA(B)) ⊆ HADA(B) ⊆ HCH(B)∩A.

2.2 Prime spaces and prime factors

We say that a space P is a prime space, if it has precisely one accumulation
point a. All prime spaces are T0. It is easy to see that all prime T2-spaces are
zero-dimensional.

If the point a is not isolated in a subspace P ′ of a prime space P , i.e., if
P ′ is itself a prime space, we say briefly that P ′ is a prime subspace of P .

Lemma 2.2. Let P be a prime space with the accumulation point a and P ′

be a prime subspace of P . Then the map f : P → P ′, such that f(x) = x if
x ∈ P ′ and f(x) = a otherwise is a retraction.

The fact that the discrete spaces form the smallest coreflective subcate-
gory Disc of Top together with Lemma 2.2 imply that for any prime space
P all its subspaces are contained in CH(P ). (They are moreover contained
in CHA(P ) for any epireflective subcategory A of Top with I2 /∈ A.)

For any space X and any point a ∈ X we define the prime factor of X at
a as the topological space on the same set in which all points different from
a are isolated and the neighborhoods of a are the same as in the original
topology. Clearly, Xa is a discrete or prime space.

Note that a prime space is T2 if and only if it is T1. Thus a prime factor
of a T1-space is either a prime T2-space or a discrete space.

Each topological space X is a quotient of the sum of all its prime factors.
The quotient map is obtained simply by mapping a point x in a summand
Xa to the same point x of the space X.

3 Heredity and prime factors

Hereditary coreflective subcategories of Top were studied in [3]. In this paper
we are interested in a slightly more general situation - we use an epireflec-
tive subcategory A (with I2 /∈ A) instead of Top. There are two natural
generalizations of coreflective subcategories - we can study coreflective sub-
categories of A or AD-classes in A. (Both of them were already studied in
[4], AD-classes only in two special cases A = ZD0 and A = Tych.)
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Clearly, every coreflective subcategory B of A is an AD-class in A. (The
opposite implication does not hold. The counterexample is the subcategory
of k-spaces in Tych. It is the AD-hull of compact spaces in Tych, but the
coreflective hull of compact spaces in Tych is the larger subcategory of kR-
spaces. For more details see Example 3.18 at the end of this section.)

It was shown in [3] that a coreflective subcategory of Top different from
CH(Ind) (the coreflective hull of indiscrete spaces) is hereditary if and only if
it is closed under the formation of prime factors. The same result was shown
in [4] for coreflective subcategories of A (A being an epireflective subcategory
of Top with I2 /∈ A) and for AD-classes in ZD0 and Tych. We would like
to generalize this result for AD-classes in more epireflective subcategories.

The main results of this section are Theorem 3.10 and its consequences.
They say that an AD-class is hereditary if and only if it is closed under
prime factors whenever this AD-class contains a prime space (or a space
with “good” properties). Using this fact we can show in Theorem 3.14 an-
other interesting result: If A ⊆ Haus, then an AD-class in A is hereditary
if and only if it is closed under prime factors. So if we work only with Haus-
dorff spaces, the desired equivalence between heredity and closedness under
prime factors is true. In section 6 we try to find some other cases when this
statement holds.

3.1 When heredity implies closedness under prime factors?

It is easy to show that for an AD-class closedness under prime factors implies
heredity. The proof follows the proof of [4, Theorem 2, Theorem 7].

Lemma 3.1. Let B be additive and divisible in A, A being an epireflective
subcategory of Top with I2 /∈ A. If B is closed under prime factors, then it
is hereditary.

Proof. Let X ∈ B and Y be a nonempty subspace of X. We want to show that
Y ∈ B. Let a ∈ Y . The prime factor Ya is a subspace of the corresponding
prime factor Xa of X. Since B is closed under prime factors, Xa ∈ B and,
by Lemma 2.2, Ya ∈ B as well. Since Y ∈ A and it is a quotient space of all
its prime factors, Y ∈ B. ut

This paper is mostly devoted to the effort to show that the opposite
implication holds too (under some assumptions on A or B).

We first need to define the space X 4b Y which was used in a similar
context in [4].

Definition 3.2. If X and Y are topological spaces, b ∈ Y and {b} is closed
in Y , then we denote by X 4b Y the topological space on the set X × Y
which has the final topology w.r.t the family of maps {f, ga; a ∈ X}, where
f : X → X × Y , f(x) = (x, b) and ga : Y → X × Y , ga(y) = (a, y).

In other words, X 4b Y is the quotient of X t (
∐

a∈X Y ) with respect to
the map obtained as the combination of the maps f and ga, a ∈ X. Since
the space X 4b Y is constructed from X and Y using only topological sums
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and quotient maps, any coreflective subcategory of Top containing X and Y
contains X 4b Y , too.

A local base for the topology of X 4b Y at a point (a, y), y 6= b, is
{{a}×V ;V is an open neighborhood of y in Y }. A local base at (a, b) consists
of all sets of the form

⋃
x∈U{x} × Vx where U is an open neighborhood of a

in X and each Vx is an open neighborhood of b in Y .
Figure 1 depicts the space X 4b Y by showing typical sets from the

neighborhood basis.

b

Y

X
a

(a, b)

y

UVx

Fig. 1 The space X 4b Y

Let Xa
(Y,b) be the subspace of X4bY on the subset {(a, b)} ∪ (X \ {a})×

(Y \ {b}) and Xa be the prime factor of X at a. It was shown in [4] that,
for any space Y in which the subset {b} is closed but not open, the map
q : Xa

(Y,b) → Xa given by q(x, y) = x is quotient. This yields the following
proposition:

Proposition 3.3. Let B be an HAD-class in an epireflective subcategory A
of Top with I2 /∈ A. Let for any X ∈ B there exist Y ∈ B and a non-isolated
point b ∈ Y with {b} being closed in Y such that X4b Y belongs to A. Then
B is closed under the formation of prime factors.

Proof. Let X ∈ B and a ∈ X. We want to show that Xa ∈ B. By the
assumption there exists Y ∈ A and b ∈ Y such that {b} is closed but not
open and X 4b Y ∈ A.

Since X4bY is constructed using quotients and sums, we get X4bY ∈ B,
as well. Therefore also its subspace Xa

(Y,b) belongs to B and Xa is a quotient
of this space. ut

Definition 3.4. We say that a subcategory A of Top is closed under 4 if
X 4b Y ∈ A whenever X, Y ∈ A and b ∈ Y .

Proposition 3.5. Let A be an epireflective subcategory of Top with I2 /∈ A.
If A is closed under 4 and B is hereditary, additive and divisible in A, then
B is closed under prime factors.
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Proof. It suffices to choose any space Y ∈ B and b ∈ Y such that {b} is closed
and not open. (We can w.l.o.g. assume that B contains a non-discrete space,
since discrete spaces are closed under prime factors trivially. If A = Top0,
then the Sierpiński space S belongs to B and we can take for Y the space
S. If A 6= Top0, then A ⊆ Top1 and in this case it suffices to take any non-
discrete space for Y .) By Proposition 3.3 then Xa ∈ B whenever a ∈ X ∈ B.

ut

By [4, Proposition 1] every quotient-reflective subcategory of Top (in
particular Top0, Top1, Haus) is closed under the operation 4. It is also
relatively easy to show that the subcategories Reg, Tych, ZD0 are closed
under 4.

In Example 3.17 we will show that the epireflective subcategories of Top
need not be closed under 4 in general. Therefore it could be interesting to
show the above result under some less restrictive conditions on A.

Proposition 3.3 suggests that it would be useful to have some conditions
on spaces X, Y which imply X 4b Y ∈ A. Such a condition will be obtained
in Theorem 3.10. We first introduce the operation X5b Y , which was defined
in [4].

Definition 3.6. Let X, Y be topological spaces and b ∈ Y with the set {b}
closed in Y . The space X5bY is the topological space on the set X×Y which
has the initial topology w.r.t. the family ha : X×Y → X×Y , ha(x, y) = (x, b)
for x 6= a and ha(a, y) = (a, y).

A subbase for this topology is formed by the sets h−1
a (U × V ) = ({a} ×

V ) ∪ (U \ {a})× Y , where a ∈ X, V is an open neighborhood of b in Y and
U is a neighborhood of a in X, and by the sets of the form {a} × V , where
V is an open set in Y not containing b.

The space is illustrated by Figure 2.

b

Y

X
a

(a, b)

V U

Fig. 2 The space X 5b Y

Observe that X 4b Y ≺ X 5b Y .
Since we have the initial monosource (ha : X 5b Y → X × Y ), it follows

that X 5b Y ∈ EH(X, Y ). In other words, every epireflective subcategory of
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Top containing X and Y must contain X5b Y too. (For the basic properties
of X 5b Y see [4, Proposition 1]).)

Now we introduce a (sufficient) condition on a space Y , under which
X 4b Y ∈ A for each X ∈ A.

Definition 3.7. Let Y , Z be topological spaces and b ∈ Y be a point such
that the set {b} is closed in Y . We say that P (b, Y, Z) holds if there exists
an open local base B at b in Y , a point a ∈ Z and an open neighborhood U0

of a in Z such that for any V ∈ B there exists a continuous map f : Y → Z
with f(b) = a, f−1(U0) = V .

We first present some simple examples of spaces with this property. Let
I = 〈0, 1〉. We claim that P (b, I, I) holds for any b ∈ I. We take B = {〈0, ε)} if
b = 0, symmetrically B = {(1−ε, 1〉} if b = 1, otherwise B = {(b−ε, b+ε)∩I}.
(For a and U0 we can take e.g. 0 and 〈0, 1

2 ), 1 and ( 1
2 , 1〉, b and ( b

2 , 1+b
2 )

respectively.)
Another example: Let Y be any zero-dimensional space, D2 be the 2-point

discrete space. Any point has a clopen local base, therefore P (b, Y,D2) holds
for any b ∈ Y .

Example 3.8. Let X be any infinite space with the cofinite topology and
b ∈ X. Then P (b, X,X).

To show this, we take all neighborhoods of b for B. Let a = b, u 6= b and
U0 = X \ {u}. Then U0 is an open neighborhood of a.

Any V ∈ B has the form V = X \ F , where F is a finite set and b /∈ F .
Then there exists a bijection h : V → U0 such that h(b) = b. We can define a
map f : X → X by f |V = h and f [F ] = {u}. Clearly, f is a continuous map.

Lemma 3.9. Let A be an epireflective subcategory of Top. Let X, Y, Z ∈ A,
b ∈ Y be a non-isolated point such that {b} is closed and P (b, Y, Z) holds.
Then X 4b Y ∈ A.

Proof. Using the base B from the definition of P (b, Y, Z), we can obtain
a local base at (a, b) ∈ X 4b Y consisting of sets of the form

⋃
x∈U Vx,

where U is an open neighborhood of a in X and Vx ∈ B for each x ∈ U .
Let S = {fi : i ∈ I} be the set of all maps fi : X → B. For any basic
neighborhood

⋃
x∈U Vx there is an i ∈ I with fi(x) = Vx for every x ∈ U .

Let us denote the topology of X 4b Y by T4.
Now we define the following maps: p : X 4b Y → X is the projection

p(x, y) = x, q : X 4b Y → X 5b Y is the identity map q(x, y) = (x, y),
and for i ∈ I we define a map hi : X 4b Y → Z as follows: For the open
neighborhood fi(x) ∈ B there exists a continuous map gx,i : Y → Z with
g−1

x,i (U0) = fi(x) and gx,i(b) = a. We put hi(x, y) = gx,i(y). Note that the
maps p, q, hi are continuous.

We claim that T4 is the initial topology with respect to the family of maps
{p, q, hi; i ∈ I}. Let us denote this initial topology by T . Let us recall that
an open subbase for the initial topology is formed by sets p−1(U), q−1(U),
h−1

i (U) =
⋃

x∈X g−1
x,i (U), where U is any open set in the codomain of the

respective map.
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T4 ≺ T We first compare open neighborhoods of points (a, b) with a ∈
X. Any such neighborhood contains a basic neighborhood

⋃
x∈U Vx with

Vx ∈ B for each x ∈ U . This set can be expressed as p−1(U) ∩ h−1
i (U0) for

the i ∈ I satisfying fi(x) = Vx for every x ∈ U .
As for neighborhoods of (a, y), y 6= b, it suffices to note that they have

the same neighborhood bases in X 4b Y and X 5b Y .
T ≺ T4 It suffices to notice that the subbasic sets p−1(U), q−1(U),

h−1
i (U) belong to T4.

This family of maps forms a monosource, since it contains the identity
map. So we have found an initial monosource from X4b Y with a codomain
in A and this implies X 4b Y ∈ A. ut

Theorem 3.10. Let A be an epireflective subcategory of Top with I2 /∈ A
and B be an HAD-class in A. If B contains a space Y with P (b, Y, Z) for
some Z ∈ A and a non-isolated point b ∈ Y such that the set {b} is closed,
then B is closed under prime factors.

Proof. Follows easily from Proposition 3.3 and Lemma 3.9. ut

Corollary 3.11. Let A be an epireflective subcategory of Top with I2 /∈ A
and B be an HAD-class in A. If B contains an infinite space with the cofinite
topology or it contains a non-discrete zero-dimensional space (in particular
a prime T2-space), then B is closed under prime factors.

Corollary 3.12. Let A be an epireflective subcategory of Top with I2 /∈ A
and B be an HAD-class in A. If B contains a prime space, then B is closed
under prime factors.

Proof. If A contains a prime T2-space, then the claim follows from Corollary
3.11.

Now assume that A contains a non-Hausdorff prime space P . To resolve
this case we provide an argument which will be used several more times in
this paper.

Since P is not T2, there exists a point b which cannot be separated from
the non-isolated point a of P . The subspace on the set {a, b} is homeomorphic
to the Sierpiński space S. Thus we get S ∈ A, A = Top0, and the result
now follows from Proposition 3.5. (Note that Top0 is closed under 4.) ut

We have seen that the prime T2-spaces are more convenient in this con-
text, because they belong to ZD0 and thus they are automatically contained
in any epireflective non-bireflective subcategory. Let us note that in most
cases it suffices to consider the prime T2-spaces only.

Indeed, the only epireflective subcategory A of Top with I2 /∈ A, which
contains non-T2 prime spaces, is Top0. Moreover, even for A = Top0, the
non-T2 prime spaces are needed only for AD-classes with B ⊆ FG.

Using the Corollary 3.11 we can show that if A ⊆ Haus then every HAD-
class B 6= Disc in A contains a prime space and, consequently, it is closed
under the formation of prime factors.
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Proposition 3.13. Let X be Hausdorff and not discrete. Then X contains
a subspace Y , such that there exists a prime T2-space P which is a quotient
space of Y .

Proof. Let a be any non-isolated point in X. We would like to get a subspace
Y in which a is again non-isolated and which contains enough disjoint open
subsets.

By transfinite induction we construct a system Uβ , β < α, of non-empty
open subsets of X such that for each β, γ < α the following holds:
(1) If β 6= γ then Uβ ∩ Uγ = ∅;
(2) a ∈ Vβ = X \

⋃
η≤β

Uη = Int(X \
⋃

η≤β

Uη);

(3) if γ < β then Uβ ⊆ Vγ ;
(4) a ∈

⋃
η<α

Uη.

β = 0: Since a is non-isolated, there exists b 6= a in X. By Hausdorffness
we have non-empty open sets U , V with U ∩ V = ∅, a ∈ V , b ∈ U . We
put U0 := U . Since a ∈ V ⊆ X \ U and V is open, the condition a ∈ V0 =
Int(X \U0) is fulfilled. The conditions (1) and (3) are vacuously true in this
step of induction.

Now suppose that Uγ for γ < β have already been defined. There are two
possibilities. Either a ∈

⋃
η<β

Uη and we can stop the process (putting α := β)

or a /∈
⋃

η<β

Uη.

In the latter case the set W := X \
⋃

η<β

Uη is an open neighborhood of

a such that W ∩ (
⋃

η<β

Uη) = ∅. Since a is not isolated, there exists b ∈ W ,

b 6= a. Again, by T2-axiom, there exist open sets U , V such that U ∩ V = ∅,
a ∈ V , b ∈ U . We put Uβ := U ∩W .

Since Uβ ⊆ W and W ∩ (
⋃

η<β

Uη) = ∅, we do not violate (1).

The point a belongs to the open set V ∩ W and (V ∩ W ) ∩ Uγ = ∅ for
every γ ≤ β, thus we get a ∈ Int(X \

⋃
η≤β

Uη), so (2) is fulfilled as well.

For γ < β we have W ⊆ Vγ = X \
⋃

η≤γ

Uη, thus Uβ ⊆ Vγ and (3) holds.

The condition (4) does make sense only at the end of induction, when we
have finished the process and said, what α is. Note, that this procedure must
stop at some ordinal α, otherwise we would obtain a proper class of open
subsets of X.

Now we put Y := {a} ∪ (
⋃

β<α

Uβ). The prime space P will be obtained

as the space on the set α ∪ {α} which is quotient with respect to q : Y → P
defined by q(a) = α and q[Uβ ] = {β} for any β < α. By (1) and (2) the map
q is well-defined.

Since q−1({β}) = Uβ , each β < α is isolated. By (4) and q−1(α) = {a},
the point α is not isolated. Hence P is a prime space.
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Since the set q−1({γ ∈ α ∪ {α}; γ > β}) = Vβ ∩ Y is open in Y for each
β < α, the prime space P is T2 (every isolated point can be separated from
the accumulation point). ut

From Proposition 3.13 and Corollary 3.11 we get

Theorem 3.14. If A is an epireflective subcategory of Top such that A ⊆
Haus and B is an HAD-class in A, then B is closed under prime factors.

Corollary 3.15. Let A be an epireflective subcategory of Top such that A ⊆
Haus. For every HAD-class B in A there exists a class S of prime spaces
such that B = ADA(S).

3.2 Two related examples

In the rest of this section we present two examples which are connected with
HAD-classes and hereditary coreflective subcategories. In the first one we
will deal with closedness of epireflective subcategories under 4. The second
one is an example of an AD-class in Tych which is not coreflective in Tych.

We have observed in Proposition 3.5 that if A is closed under 4 then
every HAD-class in A is closed under prime factors. We also noticed that
this condition is fulfilled for many familiar epireflective subcategories of Top.
Now we provide an example showing that it does not hold in general.

We first recall the notion of a strongly rigid space. A topological space X
is called strongly rigid if any continuous map f : X → X is either constant
or idX . (See [17], it should be noted that such spaces are called rigid by some
authors.) We will show in Example 3.17 that for a strongly rigid space which
is not “too trivial” X 4b X ∈ EH(X) does not hold.

Lemma 3.16. Let X be a topological space and b ∈ X. If X is a strongly
rigid space and X 4b X ∈ EH(X), then for x 6= b the set {U × V ;U is an
open neighborhood of x and V is an open neighborhood of b} is a local base
for the topology of X4b X at (x, b), i.e., this topology has the same local base
at the point (x, b) as the product topology.

Proof. Recall, that the underlying set of X 4b X is X × X (see Definition
3.2). Clearly, X4b X ≺ X×X. So it remains to show that any neighborhood
of (x, b) in X 4b X contains a neighborhood of the form U × V with U and
V as above. Since we assume that X 4b X ∈ EH(X), the space X 4b X has
the initial topology w.r.t. the family C(X 4b X, X); i.e., the subbase for the
topology of this space consists of sets f−1(U) where f ∈ C(X 4b X, X) and
U is open subset of X. (By C(Y, Z) we mean the family of all continuous
mapping between spaces Y and Z.)

The subspaces of X4b X on the sets {a}×X for any a ∈ X and X×{b}
are homeomorphic to X. To be more precise, the homeomorphisms are given
by ha(a, x) = x (between the subspace {a} × X and X) and h(x, b) = x
(between the subspace X × {b} and X). Thus for any f ∈ C(X 4b X, X)
the restrictions to these subspaces are either constant or coincidental with
ha resp. h. We next investigate in detail all maps f in C(X 4b X, X).
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First, assume that f |X×{b} is not constant. Then f(x, b) = x for any x ∈
X. Thus for a 6= b we get f(a, b) = a 6= b = ha(a, b). Therefore the restriction
of f to the subspace {a} × X, a 6= b, is the constant map f(a, x) = a. For
the subspace {b}×X we have two possibilities: hb or a constant map. In this
case we obtain two continuous maps: f1 such that f1(x, y) = x and f2 given
by f2(x, y) = x for x 6= b and f2(b, y) = y.

The second possibility remains: f(x, b) = a0 for any x ∈ X. If a0 6= b
then for any a ∈ X we have f(a, b) = a0 6= b = ha(a, b) and f is a constant
map. Thus the only interesting case is a0 = b. In this case some restrictions
are equal to ha’s and some are constant. I.e., every such map corresponds to
a subset A of X in the following way: fA(x, y) = y if x ∈ A and fA(x, y) = b
otherwise.

We showed that the family C(X4bX, X) consists precisely of all constant
maps, the maps f1, f2 and the maps of the form fA, A ⊆ X. The set U × V
can be obtained as f−1

X (V ) ∩ f−1
1 (U). Moreover, every subbasic set f−1(U),

where f ∈ C(X 4b X, X), contains a subset of the form U × V . Thus such
sets from a local base. ut

Example 3.17. If X is a strongly rigid space and
⋂

x∈X Ux is an intersection
of open neighborhoods of a point b in X which fails to be a neighborhood,
then the set

⋃
x∈X{x}×Ux is open in X 4b X, but it does not contains any

subset from the local basis described in Lemma 3.16. Therefore in such case
X 4b X /∈ EH(X).

This means that to obtain a counterexample, it suffices to have a strongly
rigid space with a non-isolated point b such that at the same time {b} is an
intersection of a family Ui, i ∈ I, of open sets, with card I ≤ cardX. Any of
the examples of strongly rigid T2-spaces constructed in [5], [8] or [17] satisfies
this condition.

We next include an example of an AD-class which is not coreflective. We
will work in the epireflective subcategory A = Tych of all completely regular
(Tychonoff) spaces.

A topological space X is called kR-space if it is completely regular and if
every map f : X → R, whose restriction to every compact subset K ⊆ X is
continuous, is continuous on X. For more information about kR-spaces see
e.g. [13] or [18].

A topological space X is a k-space if a subset U ⊆ X is open whenever
U ∩ K is open for every compact subset K ⊆ X. The class of all k-spaces
is the coreflective hull of compact spaces in Top. In the next example we
will denote the corresponding coreflector by C. It is known that X and CX
have precisely the same compact subsets and the relative topology on every
compact subset is the same.

Example 3.18. E. Michael constructed in [20, Lemma 3.8] a normal kR-space
X such that CX is not regular. This means that X is not a k-space. We will
show that RCX = X, where R denotes the Tych-reflection. This implies that
X is in the coreflective hull of compact spaces in Tych, since there exists
a quotient map q from the sum of all compact subspaces of X to CX and
consequently the map Rq with the codomain RCX = X is a Tych-extremal
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epimorphism. (Since every reflector is coadjoint functor, it preserves regular
epimorphisms.) But X is not in the AD-hull of compact spaces in Tych, since
CX 6= X. Therefore the AD-hull of compact spaces in Tych (which consists
precisely of Hausdorff k-spaces) is an example of an AD-class in Tych which
is not a coreflective subcategory of Tych.

To show that X is the Tych-reflection of CX it suffices to show that the
continuous maps from both spaces to R are the same. A map f : CX → R is
continuous if and only if all restrictions f |K with K compact are continuous.
Since compact subsets of X and CX are the same and moreover the corre-
sponding subspaces are homeomorphic, this implies that f is continuous as
the map from X to R. (Since X is a kR-space and we have shown that the
restrictions on compact subsets are continuous.)

4 The space Aω and HAD-classes

In [23] the space Aω was constructed for any prime space A and it was shown
that the prime factor (Aω)a is a generator of the hereditary coreflective hull of
the space A in Top. The goal of this section is to show some useful properties
of the space Aω. Namely we will prove that this space is zero-dimensional
for any prime T2-space A. This implies that, if A is a prime T2-space, then
Aω is contained in every epireflective subcategory A with I2 /∈ A. Using this
property of Aω we can show that if B is an HAD-class in A which contains
a prime space then the coreflective hull CH(B) of B in Top is hereditary.

We first introduce some notions which are necessary to define the space
Aω. This space is very similar to the space Sω defined in [2], the difference lies
in using an arbitrary prime space A instead of the space C(ω) (see Definition
6.1) and A-sums instead of sequential sums. Let us note that the space Sω is
also a special case of the space TF defined in [24].

We first recall the definition of A-sums from [23]. Apart from the sequen-
tial sums of [2] this construction is also similar to the brush of [16].

Definition 4.1. Let A be a prime space with the accumulation point a.
Let us denote B := A \ {a}. Suppose that for each b ∈ B we are given a
topological space Xb and a point xb ∈ Xb. Then the A-sum

∑
A

〈Xb, xb〉 is

the topological space on the set F = A ∪ (
⋃

b∈B

{b} × (Xb \ {xb})) which is

quotient with respect to the map ϕ : A t (
∐

b∈B

Xb) → F , ϕ(x) = x for x ∈ A,

ϕ(x) = (b, x) for x ∈ Xb \ {xb} and ϕ(xb) = b for every b ∈ B.

This means that the A-sum is defined simply by identifying each xb ∈ Xb

with the corresponding point b ∈ A.
For the sake of convenience, we adopt some terminology from [16]. The

map ϕ is called the defining map of the A-sum. The subspace of
∑
〈Xb, xb〉

on the subset ϕ[Xb] = {b} ∪ ({b} × {Xb \ {xb}}) is called the bristle.
The following easy lemma states that the bristles are homeomorphic to

the spaces from which the A-sum is constructed.
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Lemma 4.2. The space Xb is homeomorphic to the subspace of the space∑
〈Xb, xb〉 on the subset ϕ[Xb] = {b}∪ ({b}×{Xb \ {xb}}). (The homeomor-

phism is given by the restriction of ϕ to the summand Xb.)

Now we are ready to define the space Aω using the A-sum. We first define
inductively the spaces An for n ∈ N. We put A1 = A and An+1 =

∑
〈An, a〉.

Note that An is a subspace of An+1 for each n. Figure 3 depicts the space
A3 for A = C(ω).

0

(0,2)

(0,1)

(0,0)

ω

(1,0,2)

Fig. 3 The space A3 for A = C(ω)

Another possibility how to obtain An+1 is to attach the space A (by its
accumulation point) to each isolated point of An. Clearly, the underlying set
is the same. It can be shown by induction that the topologies are the same
too.

For n = 1 this is clear from the definition of A2. If n > 1 then each
stem of the space An+1 is homeomorphic to An. By the induction hypothesis
it can be obtained by gluing the space A to each isolated point of An−1.
The isolated points in An =

∑
An−1 are precisely the isolated points of the

bristles. Hence by attaching the space A to isolated points we get An from
each bristle and the resulting space will be An+1 =

∑
An.

Definition 4.3. Let A be a prime space with the accumulation point a.
Then Aω is the space on the set

⋃
n∈N An where U ⊆

⋃
n∈N An is open if and

only if U ∩An is open for every n ∈ N.

We see that Aω is a quotient space of
∐

n∈N An, so Aω ∈ CH(A). (Let us
note that Aω is the inductive limit of spaces An and each An is embedded
into Aω.)

Observe that the underlying set of the space Aω is {a}∪
⋃

n∈N
(A\{a})n. The

space An is homeomorphic to the subspace on the subset {a}∪
n⋃

k=1

(A\{a})k

and the bristles of An are the subspaces on sets {b}∪{(b, x2, x3, . . . , xn);xi ∈
A \ {a}}.

We introduce some terminology analogous to [2]. We say that a point
x ∈ Aω is a point of k-th level if it belongs to (A \ {a})k. Point a is the only
point of 0-th level.

It was proved in [23, Proposition 5.1] that Aω homeomorphic to the A-
sum of several copies of itself: Aω

∼=
∑
A

〈Aω, a〉.
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From this property and Lemma 4.2 we can see that the bristles are home-
omorphic to Aω.

Lemma 4.4. For b ∈ A\{a} denote by X the subspace of Aω on the set X :=
{b}∪ ({b}×

⋃
n∈N(A \ {a})n). Then X is homeomorphic to Aω. Moreover, if

A is T2, then X is a clopen subset of Aω.

Using this lemma repeatedly we can find for any point of Aω a (clopen,
if A is T2) neighborhood homeomorphic to Aω (by induction on the level of
points). Namely, if x = (x1, . . . , xk) then Ux = {(x1, . . . , xk)}∪{(x1, . . . , xk)}×
(
⋃

n∈N(A \ {a})n) is a neighborhood of x homeomorphic to Aω.
We now proceed to defining a clopen local base at a ∈ Aω.
We will show that B = {U ⊆ Aω; a ∈ U ;U is open in Aω and (1) holds}

is a base for Aω at the point a.

(x1, x2, . . . , xn, xn+1, . . . , xn+k) ∈ U ⇒ (x1, x2, . . . , xn) ∈ U (1)

Lemma 4.5. B is a base for Aω at the point a.

Proof. Let V be an open neighborhood of a. We want to find U ∈ B such
that U ⊆ V . Let us put

U1 := V ∩A1

U2 := V ∩A2 ∩ [U1 ∪ (U1 × (A \ {a}))]
Un+1 := V ∩An+1 ∩ [Un ∪ (Un × (A \ {a}))]

and U :=
⋃

n∈N Un.
Observe that a ∈ U ⊆ V and, for each n ∈ N, Un ⊆ Un+1, Un is open in

An and U ∩An = Un. Hence U is open in Aω.
If (x1, . . . , xn+1) ∈ Un+1 then (x1, . . . , xn+1) ∈ Un × (A \ {a}) and

(x1, . . . , xn) ∈ Un. By induction we get that (1) holds for U . ut

Lemma 4.6. All sets in B are clopen.

Proof. Let U be any set from B. If x = (x1, . . . , xk) /∈ U , then no point of
the form (x1, . . . , xk, yk+1, . . . , yk+l) belongs to U , i.e., Ux ∩ U = ∅ holds for
the neighborhood Ux = {(x1, . . . , xk)} ∪ {(x1, . . . , xk)} × (

⋃
n∈N(A \ {a})n)

of x. Hence x ∈ Int(Aω \ U), Aω \ U is open, U is closed. ut

If A is T2 then by Lemma 4.4 we obtain from the clopen base B at a a
clopen base at each point of Aω. Thus we get finally

Proposition 4.7. The space Aω is zero-dimensional and T2 for any prime
T2-space A.

As Aω is a zero-dimensional T2-space, it is contained in any epireflective
subcategory of Top with I2 /∈ A. In the following proposition we summarize
some properties of Aω which were proved in [23].

Proposition 4.8. If A is a prime space, then HCH(A) = CH((Aω)a) =
HCH(Aω).

If A is infinite then Aω ∈ CH(A) and card(Aω)a = cardA.
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Using Lemma 2.1 we obtain from Proposition 4.8 the following corollary.

Corollary 4.9. Let A be an epireflective subcategory of Top with I2 /∈ A.
If A ∈ A is a prime space, then HADA(A) = ADA((Aω)a) = HCH(A) ∩A.
Moreover, if A is infinite, then card(Aω)a = cardA.

Proof. We first observe that A contains Aω. If A is T2 then this is true by
Proposition 4.7. If A is not T2, then A = Top0 and Aω is clearly a T0-space.

By Lemma 2.1 and Proposition 4.8 HADA(A) ⊆ HCH(A)∩A = CH((Aω)a)∩
A = ADA((Aω)a) holds.

On the other hand, Aω ∈ A implies Aω ∈ HADA(A). The HAD-class
HADA(A) contains the prime space A. So by Corollary 3.12 it is closed under
prime factors and (Aω)a ∈ HADA(A), which proves the opposite inclusion.

ut

In the rest of this section we show that coreflective hull CH(B) in Top of
an HAD-class B in A is hereditary whenever B contains at least one prime
space.

Lemma 4.10. Let A be an epireflective subcategory of Top such that I2 /∈
A. If B = HADA(D), where D ⊆ A is a set of spaces and B contains
at least one prime space, then there exists a prime space B ∈ A such that
B = HADA(B) = ADA(B). Moreover, CH(B) = HCH(B) is hereditary.

Proof. Let us denote by D′ the set of all non-discrete prime factors of spaces
from D. By joining the accumulation points of all prime spaces in D′ into
one point we get a prime space A. We consider 2 cases. If A = Top0 then
clearly A ∈ A. If A ⊆ Top1 then all spaces in D′ are T2 and A is T2 as well.
Therefore in both cases A ∈ A and HADA(A) = HADA(D′).

Any space from D can be obtained as a quotient of the sum of its prime
factors and consequently ADA(D′) = CH(D′)∩A contains the whole D and
B = HADA(D) = HADA(D′) = HADA(A).

Using Corollary 4.9 we obtain that the claim of the lemma holds for
B = (Aω)a. ut

With the help of Lemma 4.10 we can prove, using very similar methods
as in [4, Proposition 4], the following theorem.

Theorem 4.11. Let A be an epireflective subcategory of Top such that I2 /∈
A. If B is an HAD-class in A and B contains at least one prime space, then
the coreflective hull CH(B) of B in Top is hereditary.

Proof. We first represent B as a union of an ascending chain of HAD-classes
Bα in A, such that each of them is generated by a single space (as an AD-
class).

Let us denote by Bα the HAD-hull of all spaces from B with cardinality
at most α. Clearly, B =

⋃
α∈Cn Bα and the system Bα, α ∈ Cn, is nonde-

creasing.
Since B contains a prime space, there exists the smallest α0 such that Bα0

contains a prime space. Then B =
⋃

α≥α0
Bα and for each α ≥ α0 the class
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Bα is a HAD-hull of a set of spaces and it contains a prime space. So we can
use Lemma 4.10 and we get that for any cardinal number α ≥ α0 there exists
a prime space Bα ∈ A such that Bα = HADA(Bα) = ADA(Bα) ⊆ CH(Bα).

It is easy to see that CH(B) consists of quotients of spaces from B. Thus
if Y ∈ CH(B), then Y is quotient of some space X ∈ B and there exists
α ≥ α0 such that X ∈ Bα. Consequently we get Y ∈ CH(Bα).

Any subspace of Y belongs to HCH(Bα) = CH(Bα) ⊆ CH(B). Thus
CH(B) is closed under the formation of subspaces. ut

Using the above theorem we can prove the result corresponding to [4,
Corollary 1].

Corollary 4.12. Let A be an epireflective subcategory of Top such that I2 /∈
A. Let B ⊆ A and B contain at least one prime space. Then HADA(B) =
HCH(B) ∩A = S(CH(B)) ∩A.

Proof. By Lemma 2.1 we have HADA(B) ⊆ HCH(B) ∩A.
To obtain the opposite inclusion, we use Theorem 4.11 for the HAD-

class HADA(B). We get CH(HADA(B)) = HCH(HADA(B)). This implies
HADA(B) ⊇ CH(HADA(B)) ∩A = HCH(HADA(B)) ∩A ⊇ HCH(B) ∩A.

ut

In particular, Theorem 3.14 implies that Theorem 4.11 and Corollary 4.12
are valid for any HAD-class in A ⊆ Haus.

Corollary 4.13. For any epireflective subcategory A of Top such that A ⊆
Haus the assignment given by C 7→ C ∩ A yields a bijection between the
hereditary coreflective subcategories of Top with C ⊇ FG and HAD-classes
in A.

Proof. If C is a hereditary coreflective subcategory of Top then the class
C ∩ A is an intersection of two hereditary classes, thus it is hereditary as
well. It is clearly an AD-class in A.

Let us denote by F the assignment defined in the claim. We will show
that G given by G(Disc) = FG and G(B) = CH(B) for B 6= Disc is inverse
to F .

First, observe that if B 6= Disc is an HAD-class in A then by Proposition
3.13 it contains a prime space and from Theorem 4.11 we get that CH(B) is
hereditary.

Let C ) FG be a hereditary coreflective subcategory of Top. Then
G(F (C)) = CH(C ∩A). Since C ∩A contains all prime T2-spaces from C,
we get CH(C ∩A) = C (see [4, Lemma 1]). The equality G(F (FG)) = FG
is also clear.

On the other hand, if B is an HAD-class in A and B 6= Disc, then
F (G(B)) = CH(B) ∩A = ADA(B) = B. ut

Remark 4.14. Obviously, if A is an epireflective subcategory of Top with
A ⊆ Haus (e.g. A = Tych,Reg2,ZD0), then C 7→ C∩A yields a bijection
between the hereditary coreflective subcategories (i.e., HAD-classes) in Haus
and HAD-classes in A.
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For any epireflective subcategory of Top with I2 /∈ A the above assign-
ment is a bijection between hereditary coreflective subcategories of Top such
that C ) FG and the HAD-classes in A containing at least one prime space.

5 Extension of the results to bireflective subcategories

Until now we have only dealt with the epireflective subcategories A of Top
such that I2 /∈ A, i.e., with A not bireflective. In this section we would like to
find a method how to extend our results also to bireflective subcategories of
Top. For this, we can use the one-to-one correspondence between bireflective
and non-bireflective epireflective subcategories of Top given by the assign-
ments A 7→ BH(A) and B 7→ B ∩ Top0 = {R0B;B ∈ B} (see [19], [21]).
For sake of simplicity we will ignore the trivial case A = Ind. (The bire-
flective subcategory Ind corresponds in this assignment to the subcategory
containing only one-point spaces and the empty space.)

Recall that the category Top0 of all T0-spaces is a quotient-reflective
subcategory of Top. We will denote the T0-reflector by R0.

The T0-reflection of a space X is the quotient space given by the following
equivalence relation: x ∼ y if and only if {x} = {y} (see e.g. [9, Beispiel
8.3(2)]). The T0-reflection arrow is the quotient map corresponding to this
equivalence relation. It is moreover an initial map and a retraction, i.e., the
T0-reflection R0X is homeomorphic to a subspace of X obtained by choosing
one point from each equivalence class.

Using the results of the foregoing section we obtain a simple characteri-
zation of hereditary AD-classes in a bireflective subcategory A in Theorem
5.4.

The following lemma says that in the collection of all AD-classes in A
with I2 ∈ A all AD-classes except Disc contain I2.

Lemma 5.1. Let C be an AD-class in an epireflective subcategory A with
I2 ∈ A and A 6= Ind. If C contains a non-discrete space then I2 ∈ C.

Proof. Let C ∈ C be a non-discrete space and c ∈ C be non-isolated. Let us
define f, g : C → I2 by f(c) = 0, f [C \ {c}] = {1} and g(c) = 1, g[C \ {c}] =
{0}. We see at once that the map h : CtC → I2, obtained as the combination
of f and g, is a quotient map. ut
Lemma 5.2. Let C be an AD-class in an epireflective subcategory A, A 6=
Ind, I2 ∈ C and A ∈ A. Then A ∈ C if and only if R0A ∈ C.

Proof. Let A ∈ C. Since R0A is a subspace of A, we have R0A ∈ A. The
T0-reflection arrow A → R0A is a quotient map, therefore R0A ∈ C.

Now let R0A ∈ C. Since the T0-reflection arrow rA : A → R0A is an
initial map and bireflective subcategories of Top are known to be closed
under initial sources, we get A ∈ BH(R0A) = EH({R0A, I2}) ⊆ A.

Since the equivalence classes of ∼ are indiscrete subspaces of A, the space
A can be obtained as a quotient of the topological sum of R0A and indiscrete
spaces corresponding to these equivalence classes. (We identify each point of
R0A with some point from the indiscrete space representing its equivalence
class.) Hence A ∈ CH(R0A, I2). Consequently, A ∈ C. ut
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Lemma 5.3. If C is an AD-class in an epireflective subcategory A 6= Ind,
then C ∩Top0 = R0C = {R0C;C ∈ C}.

Proof. W.l.o.g. let C contains a non-discrete space.
If X ∈ C ∩Top0, then X = R0X ∈ R0C. Hence C ∩Top0 ⊆ R0C.
On the other hand, let X = R0C for C ∈ C. By Lemma 5.2 X ∈ C,

hence X ∈ C ∩Top0. So the opposite inclusion is true as well. ut

Theorem 5.4. Let C be an AD-class in an epireflective subcategory A 6=
Ind with I2 ∈ A. Then C is hereditary if and only if R0C = C ∩ Top0 is
hereditary.

Proof. We can assume I2 ∈ C, since otherwise C ⊆ Disc and the claim is
trivial.

If C is hereditary, then C ∩Top0 is hereditary as an intersection of two
hereditary classes.

Now assume that R0C is hereditary. Let B ∈ C and e : A ↪→ B be an
embedding. Then the map R0e : R0A ↪→ R0B is an embedding as well. (Re-
call that R0B is the subspace of B obtained by choosing one point from each
equivalence class and note that the equivalence relation ∼A is the restriction
of the relation ∼B .) Therefore R0A ∈ C ∩ Top0. Then Lemma 5.2 implies
A ∈ C. ut

We have shown that to answer the question whether an AD-class in A
is hereditary it suffices to study the corresponding AD-class in A ∩ Top0.
Since for a bireflective subcategory A 6= Top we have I2 /∈ A∩Top0, this is
precisely the situation examined in the preceding parts of this paper.

Lemma 5.5. If f : X → Y is a surjective initial map, b ∈ Y and f−1(b) =
{a}, then Xa ∈ CH(Yb).

Proof. Let g : Yb → Xa be any map such that f(g(x)) = x for any x ∈ Xa

(in particular, g(b) = a). We first show that g is continuous.
If a ∈ U and U is open in Xa, then there exists an open set U ′ ⊆ Y with

a ∈ f−1(U ′) ⊆ U . Then g−1(U) ⊇ g−1(f−1(U ′)) = U ′ 3 b, hence g−1(U) is
open in Yb.

We have continuous maps f , g such that f ◦g = idXa
. So f is a retraction,

thus it is a quotient map and Xa ∈ CH(Yb). ut

Corollary 5.6. Let X be a topological space, a ∈ X be a point such that Xa

is T2 and r : X → RX0 be the T0-reflection of X. Then Xa ∈ CH((R0X)b),
where b = r(a).

Proof. Since {a} = {a}, the equivalence class of the point a consists of this
single point. Therefore r−1(b) = {a} holds for the Top0-reflection r of X.
The claim follows now from Lemma 5.5. ut

Note that, if A is none of the categories Top, Top0, then all prime factors
belonging to A are Hausdorff. So we see from the above corollary that, if B
is an AD-class in an epireflective subcategory A 6= Top,Top0 and R0B
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is closed under the formation of prime factors, then B is closed under the
formation of prime factors too.

So our results for arbitrary epireflective subcategories can be subsumed
as follows:

Proposition 5.7. Let A 6= Ind be an epireflective subcategory of Top and
B be an AD-class in A. If A∩Top0 ⊆ Haus or the subcategories A∩Top0

and B ∩Top0 fulfill the assumptions of Theorem 3.10 or those of Corollary
6.8, then B is hereditary if and only if it is closed under the formation of
prime factors which belong to A.

In particular we get that B is closed under the formation of prime factors
which are Hausdorff.

6 AD-classes and HAD-classes containing a prime space

We have shown in Corollary 3.11 that if an HAD-class contains a prime space
then it is closed under the formation of prime factors. In connection with this
result it seems useful to give some conditions on an HAD-class B which imply
that B contains at least one prime space.

Unfortunately we were able neither to find a counterexample to the claim
that every HAD-class (in an epireflective subcategory A of Top with I2 /∈ A)
contains a prime space nor to prove this in general.

We have already shown that if an HAD-class B contains a Hausdorff
non-discrete space then it contains a prime space (Proposition 3.13). In this
section we provide further sufficient conditions. The main results we obtain
are the following: If B contains a space which is not locally connected, then
it contains a prime space (Corollary 6.8). The same holds for non-discrete
totally disconnected spaces.

We also show that an AD-class contains a prime space if and only if it
contains the space C(α) for some regular cardinal α. At the end of this section
we provide some consequences of our results for the lattices of all coreflective
subcategories of Top and of some epireflective subcategories of Top.

6.1 AD-classes containing C(α)

Definition 6.1. For any infinite cardinal α we denote by C(α) the space on
the set α ∪ {α} such that each β ∈ α is isolated and the sets Bβ = {ξ ∈
α ∪ {α}; ξ ≥ β} for β < α form a local base at α.

The most important case is the case when α is regular, since for any α ∈
Cn there exists a regular cardinal β with CH(C(α)) = CH(C(β)). (Namely,
β is the cofinality of α.)

If α is regular we have a simpler description of the topology of C(α): A
subset V of C(α) is open if either α /∈ V or card(C(α) \ V ) < α. Note that
this implies that every injective map f : C(α) → C(α) such that f(α) = α is
continuous.

In this part we show that an AD-class contains a prime space if and only
if it contains some space C(α). We first state two lemmas needed in the proof.
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Lemma 6.2. Let α be an infinite regular cardinal. If Y ≺ C(α) is a prime
space (with the accumulation point α), then C(α) ∈ CH(Y ).

Proof. Let fi, i ∈ I, be the family of all injective mappings fi : α ∪ {α} →
α ∪ {α} such that fi(α) = α. Let us denote by X the topological space on
α ∪ {α} with the final topology with respect to the family fi : Y → X. We
claim that X = C(α).
One of the maps fi is the identity, hence Y ≺ X and α is non-isolated in X.
Since Y ≺ C(α) and all fi’s considered as maps from C(α) to C(α) are
continuous, we get X ≺ C(α).

To verify that C(α) ≺ X we show that any set which is not closed in
C(α) is not closed in X.

From X ≺ C(α) follows that X is a prime space, therefore it suffices
to compare the sets not containing its accumulation point α. So let V be a
subset of α with cardinality α and α /∈ V . Then there exists an i ∈ I such
that fi maps bijectively the set α to V . Since the subset α is not closed in
Y (the point α is not isolated), we get that V is not closed in X. ut

Lemma 6.3. Let α be any infinite cardinal. If Y ≺ C(α) is a prime space
(with the accumulation point α), then there exists a regular cardinal β with
C(β) ∈ CH(Y ).

Proof. Let β be the cofinality of α. There exists a quotient map q : C(α) →
C(β) which maps only the point α to β. Let Y ′ be the quotient of Y with
respect to the same map q. Then Y ′ is a prime space, since q−1(β) = {α}
and α is not isolated in Y . Moreover, Y ′ ≺ C(β) and β is a regular cardinal,
thus C(β) ∈ CH(Y ′) ⊆ CH(Y ) by Lemma 6.2.

Proposition 6.4. If an AD-class B in an epireflective subcategory A 6= Ind
contains a prime T2-space then it contains C(α) for some regular cardinal
number α.

Proof. Let P be a prime space with the accumulation point a. Denote by α
the smallest cardinality of a non-closed subset of P \{a}. Let C be some such
subset.

If V is any subset of C with cardinality smaller than α then it is closed
(since α was chosen as the smallest cardinality of a non-closed set). Therefore
C ∪ {a} is a prime subspace of P and it is finer than C(α). (In the case that
α is regular it is even homeomorphic, but in either case complements of all
basic neighborhoods Bβ of α are closed.)

The claim follows now from Lemma 6.3. ut

Since every prime T2-space is zero-dimensional, Proposition 6.4 could be
also deduced from Proposition 6.11. But the proof presented here is more
straightforward.

6.2 How to obtain a prime space

We now turn our attention to some conditions which are sufficient to enforce
that an HAD-class contains a prime space.
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Let us denote by Con the class of all connected spaces. By [9, Satz 21.2.6]
its coreflective hull CH(Con) consists precisely of sums of connected spaces.
An equivalent characterization is that X ∈ CH(Con) if and only if each point
of X has an open connected neighborhood.

Proposition 6.5. If X is not a sum of connected spaces then there exists a
quotient map f : X → P , where P is a prime T2-space and P ≺ C(α).

Proof. Since X does not belong to CH(Con), there exists a ∈ X such that
no open neighborhood of a is connected. This means that for any open neigh-
borhood U of a there exist disjoint open proper subsets V , W of U such that
V ∪ W = U . By transfinite induction we construct a decreasing family Uα

of open neighborhoods of a. We put U0 = X. For any β the neighborhood
Uβ can be divided into two disjoint open non-empty sets. Denote by Uβ+1

that one which contains a. Now suppose that β is a limit ordinal and Uγ is
already defined for each γ < β. We put Uβ :=

⋂
γ<β Uγ if this set is open. If

not, we stop the process and put α := β. (We must stop at some ordinal β,
otherwise there would be a proper class of open sets in X.)

Thus we get a system (Uβ)β<α of open neighborhoods of a with the
following properties: Uβ $ Uγ whenever β > γ. For any limit ordinal β < α
the equality Uβ =

⋂
γ<β Uγ holds. The set Uβ \ Uβ+1 is open for any β < α,

but
⋂

β<α Uβ is not open.
Now we define f : X → α ∪ {α} by

f(x) = sup{β ∈ α : x ∈ Uβ}.

Recall (Definition 6.1) that a neighborhood base for C(α) at α consists of
the sets Bβ = {ξ ∈ α ∪ {α}; ξ ≥ β} for β < α. We have f−1(Bβ) = Uβ ,
f−1(β) = Uβ \ Uβ+1 for any β < α and f−1(α) =

⋂
β<α Uβ . Thus the

quotient space w.r.t. the map f is finer than C(α) and the point α is non-
isolated in it. Hence it is a prime T2-space. ut

Propositions 6.5 and 3.13 imply that, if there exist an epireflective sub-
category A of Top, A 6= Ind, and an HAD-class B in A not containing a
prime space, then B ⊆ CH(Con) and B contains no non-discrete T2-space.

A topological space X is totally disconnected if all components of X are
singletons ([6, Notes after section 6.2], [25, Definition 29.1]). The class of
totally disconnected spaces forms a quotient-reflective subcategory TD of
Top. If a totally disconnected space X is a sum of connected spaces, then X
is clearly discrete.

Corollary 6.6. If X is non-discrete and totally disconnected then there ex-
ists a quotient map from X to a prime T2-space.

All zero-dimensional spaces T0-spaces are totally-disconnected, thus the
above corollary applies to the class ZD0 as well. We will see in Proposition
6.11 that in the case of zero-dimensional spaces this result can be slightly
improved, which leads to the description of atoms above Disc in the lattice
of coreflective subcategories of the category ZD0.



24 Martin Sleziak

We say that a space X is locally connected if for any open neighborhood
U of x there is an open neighborhood V ⊆ U of x, which is connected (see [6,
Problem 6.3.3] or [25, Definition 27.7]). The class of locally connected spaces
is a coreflective subcategory of Top.

Lemma 6.7. Let X be a topological space. If X is not locally connected then
there exists an open subspace V of X such that V is not a sum of connected
spaces.

Proof. If X is not locally connected then there exist a point x and an open
neighborhood V of x such that no open neighborhood U of x with U ⊆ V is
connected. So x has no open connected neighborhood in the subspace V and
V /∈ CH(Con). ut

Corollary 6.8. Let A be an epireflective subcategory of Top with I2 /∈ A.
If B is an HAD-class in A and B contains at least one space which is not
locally-connected, then B is closed under prime factors.

6.3 Lattices of coreflective subcategories

The rest of this section is devoted to showing some new facts concerning
the (large) lattice of all coreflective subcategories of Top and of ZD, which
follow from the results above or can be shown using similar methods.

Definition 6.9. Let α be a regular cardinal. Then B(α) is the topological
space on the set α ∪ {α} whose open sets are precisely the sets Bβ = {ξ ∈
α ∪ {α}; ξ ≥ β} for β < α. We will denote the coreflective hull of B(α) in
Top by Bα.

Many interesting facts about the lattice of all coreflective subcategories
of Top can be found in [9, §22] and [10]. It is shown that the atoms of this
lattice above FG are precisely the subcategories Bα. It is also shown that
Bα ⊆ CH(C(α)) and CH(C(α))∩CH(C(β)) = FG for any regular cardinals
α 6= β.

Next we show that the minimal elements of the lattice of all coreflec-
tive subcategories of Top such that C 6⊆ CH(Con) are precisely the sub-
categories CH(C(α)). (Note that the spaces B(α) are connected whereas
C(α) /∈ CH(Con).)

Proposition 6.10. If C is a subcategory of Top with C 6⊆ CH(Con), then
there exists a regular cardinal α such that CH(C(α)) ⊆ C.

Proof. If we have X ∈ C, where C is coreflective and X /∈ CH(Con), then
by Proposition 6.5 and Lemma 6.3 we get C(α) ∈ C for some cardinal α. ut

The subcategory Bα = CH(B(α)) is the smallest coreflective subcategory
of Top such that in each space X ∈ Bα any intersection of less than α open
sets is open, and there exists a space Y ∈ Bα and a system of α open sets in
Y with a non-open intersection.
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We show that if we have a zero-dimensional space with similar properties
then we can obtain a prime T2-space from it. Thus the atoms in the lattice
of coreflective subcategories of ZD above the class FG ∩ ZD have a similar
description. The proof of the following proposition is similar to the proof of
[22, Proposition 4.4].

Proposition 6.11. Let X be a zero-dimensional space and α be the smallest
cardinal number such that there exists a system Uβ, β < α, of open subsets
of X with non-open intersection

⋂
β<α Uβ, but every intersection of less than

α open subsets of X is open. Then there exists a prime space Y ≺ C(α) and
a quotient map q : X → Y .

Proof. Denote by {Uβ ;β < α} the system of α open sets in X whose in-
tersection is not open. We can assume w.l.o.g. that this system is strictly
decreasing and all sets Uβ are clopen. (From an arbitrary decreasing sys-
tem of open sets we obtain a system of clopen sets by choosing any point
a ∈

⋂
γ<α Uγ \ Int(

⋂
γ<α Uγ) and choosing a basic neighborhood U ′

β with
a ∈ U ′

β ⊆ Uβ for each β < α.) If necessary, we can modify this system in
such a way that U0 = X and Uβ =

⋂
γ<β Uγ for any limit ordinal β < α.

Define f : X → α ∪ {α} by

f(x) = sup{β ∈ α : x ∈ Uβ}.

Let Y be the quotient space with respect to f .
The equality f−1(Bβ) = Uβ holds for any β < α. Since each Uβ is clopen,

we see that Bβ and its complement are open in the quotient topology.
The set f−1(α) =

⋂
β<α Uβ is not open, therefore {α} is not open. Since

the sets Uβ are clopen, all sets {β} = f−1(Uβ \ Uβ+1) are open in Y . Thus
Y is indeed a prime space and Y ≺ C(α). ut

Theorem 6.12. Let A = ZD or A = ZD0. Let C be a coreflective sub-
category (an AD-class) in A such that C 6⊆ FG ∩A and α be the smallest
cardinal such that there exists a space X ∈ C and a system Uβ, β < α, of
open sets in X whose intersection

⋂
β<α Uβ is not open. Then there exists a

regular cardinal α such that CHA(C(α)) ⊆ C (resp. ADA(C(α)) ⊆ C).

7 Further applications

In this section we study some other questions which are related to HAD-
classes.

7.1 HAD-hulls and hereditary coreflective hulls

The aim of this part is to show that if the coreflective hull of D in A is
hereditary, it is at the same time the HAD-hull of D in A.

Recall that the coreflective hull CHA(D) of D in A can be formed by
taking all A-extremal quotients of topological sums of spaces from D.
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Lemma 7.1. Let A be an epireflective subcategory of Top with I2 /∈ A and
D ⊆ A. Then the prime T2-spaces contained in CHA(D) and the prime T2-
spaces contained in CH(D) are the same. I.e., {P ∈ CHA(D), P is a prime
T2-space} = {P ∈ CH(D), P is a prime T2-space}.

In the case A = Top0 we moreover get {P ∈ CHA(D), P is prime} =
{P ∈ CH(D), P is prime}.

Proof. Let P be a prime T2-space belonging to CHA(D). There is an A-
extremal epimorphism e : A → P , where A is a sum of spaces from D, which
can be factorized as m◦q with q a quotient map and m an injective continuous
map.

A
q //

e
  @

@@
@@

@@
X

m

��
P

Since m : X → P is an injective map, X is either discrete or a prime
T2-space. Thus X ∈ ZD0 ⊆ A, and m is an A-monomorphism. Since e is A-
extremal epimorphism, we obtain that m is an isomorphism and P ∈ CH(D).

Any prime space is T0. Therefore the second part is clear from the equality
CHA(D) = CH(D) ∩A, which holds for A = Top0. ut

Theorem 7.2. Let A be an epireflective subcategory of Top with I2 /∈ A
and D ⊆ A. If CHA(D) is hereditary then CHA(D) = CH(D) ∩A.

Proof. The inclusion CH(D)∩A ⊆ CHA(D) holds for any D ⊆ A. We show
the opposite inclusion.

If CHA(D) is a hereditary coreflective subcategory of A, then it is closed
under the formation of prime factors (see [4, Theorem 1]). Let Y ∈ CHA(D).
If A ⊆ Top1 then any prime factor Ya of Y is T2. All of them belong to
CHA(D). According to Lemma 7.1 prime T2-spaces in CHA(D) and CH(D)
are the same. As Y is a quotient of spaces Ya belonging to CH(D), we get
Y ∈ CH(D).

In the case A = Top0 the equality CHA(D) = CH(D)∩A holds for any
D ⊆ A. ut

Corollary 7.3. Let A be an epireflective subcategory of Top with I2 /∈
A and D ⊆ A. If CHA(D) is hereditary then CHA(D) = ADA(D) =
HADA(D).

This corollary implies that the results we proved about HAD-hulls in A
can be applied in the case of hereditary coreflective hulls in A as well.

E.g., if D ⊆ A is a set of spaces and B = CHA(D) is hereditary, then by
Corollary 7.3 it fulfills the assumptions of Lemma 4.10 and we get existence
of a space B with B = CHA(B) in this case.
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7.2 Coreflective hull of a map invariant hereditary class need not be
hereditary

Finally, we turn our attention to another question. Relatively little is known
about conditions on a class of spaces which ensure the heredity of the core-
flective hull (AD-hull) of this class. V. Kannan has a result saying that if
B is a hereditary family closed under the formation of spaces with finer
topologies then the coreflective hull CH(B) of B in Top is hereditary as well
([16, Remark 2.4.4(6)]). Our Theorem 4.11 yields a kind of such condition,
too. We next present a well-known example of classes B such that CH(B) is
hereditary.

Example 7.4. Let α be an infinite cardinal and Gα be the class of all spaces
with cardinality at most α. These classes are hereditary, map invariant (i.e.,
closed under continuous images) and closed under the formation of prime
factors. The coreflective hull of Gα is hereditary for each α. Spaces from
the coreflective hull of Gα are called α-generated and the subcategory of all
α-generated spaces is denoted Gen(α).

On the other hand, let B be a class of topological spaces which is map
invariant and closed under prime factors. It is easy to show that if B contains
an infinite space, then either B = Top or B = Gα for some cardinal α. If B
consists of finite spaces only, then CH(B) is either FG or Disc.

It is natural to ask whether we can somehow weaken the above mentioned
properties of the classes Gα in such a way, that for every class B with these
properties the coreflective hull CH(B) of B in Top is hereditary.

One possible weakening is replacing the condition that B is map invariant
by divisibility. We can construct easily an example showing that for such a
class CH(B) need not be hereditary in general.

Example 7.5. Let B consist of all quotients of the space C(ω) and of all
discrete (at most) countable spaces. This class is clearly divisible. Every
space in B is prime or discrete, hence B is closed under the formation of
prime factors. A subspace of a prime space P is either a discrete space or a
quotient of P , thus B is hereditary.

The coreflective hull CH(B) = CH(C(ω)) = Seq is not hereditary.

Another possible weakening is omitting the closedness under prime fac-
tors. We show in the rest of this section that there exists a class B which is
hereditary and map invariant but CH(B) is not hereditary.

We start with two easy examples.

Example 7.6. Let B be the class of all continuous images of the space B(ω).
The class B is hereditary and map invariant, but CH(B) = CH(B(ω)) is not
hereditary. (This follows from the fact that the prime factor (B(ω))ω is C(ω)
and C(ω) /∈ CH(B(ω)).)

It is known, that if A is a map invariant class of topological spaces then
CH(A) coincides with the class Agen of A-generated spaces (see [9, §21] or
[10]). A topological space X is said to be A-generated if U ⊆ X is closed
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whenever U ∩ V is closed in V for every subspace V of X which belongs to
A. The subcategory Gen(α) and the class of k-spaces used in Example 3.18
are examples of such categories.

We denote the cardinality of the topology of a space X by o(X) (in
accordance with [14]). For any cardinal α let us denote by Aα the class of
all topological spaces such that o(X) < 2α. This class is hereditary and map
invariant. Its coreflective hull (i.e., the class of all Aα-generated spaces) will
be denoted by Cα.

Note that o(B(ω)) = ω, thus CH(B) ⊆ Cω holds for the category B from
Example 7.6.

Example 7.7. We show that Aω0 is not closed under the formation of prime
factors and consequently it is not hereditary.

Let X be a countable topological space with the cofinite topology. Clearly,
o(X) = ω0, thus X ∈ Aω0 . But the prime factor Xa of X is homeomorphic
to C(ω). Only the finite subspaces of C(ω) belong to Aω0 . Thus the point ω
is isolated in each subspace belonging to Aω0 and C(ω) /∈ Cω0 .

Note that by Proposition 3.13 in every non-discrete Hausdorff space X we
have infinitely many disjoint open subsets in the subspace Y constructed in
the proof of this proposition. Therefore o(X) ≥ c. This implies Aω0∩Haus ⊆
Disc and, consequently, Cω0 ∩Haus = Disc.

Note that, since the space constructed in the above example is T1, we also
obtain that CHA(Aα ∩A) is not hereditary for A = Top0,1.

It is quite natural to look for a Hausdorff example after we have con-
structed a T1-space with the required properties. We have already seen that
such an example cannot be found in the subcategory Cω0 . We were able to
construct a Hausdorff example only under the assumption 2ω1 = 2c (which
is valid under CH).

Example 7.8 (2ω1 = 2c). Suppose 2ω1 = 2c. Let X be the topological space
on the set R with the topology T = {U \ A;U is open in R and cardA ≤
ω0}. Clearly, o(X) = o(R). card{A ⊆ R;A is countable} = c.cω0 = c. Thus
X ∈ Ac.

We claim that, for any a ∈ X, the prime factor Xa does not belong to
Cc. Indeed, if a ∈ V and V is a subspace of Xa such that V ∈ Ac, then
cardV = ω0 (otherwise V contains a discrete subspace V \ {a} of cardinality
ω1 and o(V ) = 2ω1 = 2c). At the same time a /∈ V \ {a} (since {a} ∪ (R \ V )
is a neighborhood of a). We see that a is isolated in all subspaces of Xa

belonging to Ac, but a is not isolated in Xa, thus Xa /∈ Cc.

Example 7.9. After we have shown that Cα is not hereditary for some α, we
can be interested in finding a concrete example of a space from Cα and its
subspace which is not in Cα. Such an example can be found with the help
of the operation 4.

Suppose that X ∈ Cα is such a space that Xa /∈ Cα. Let Y := X 4a X.
Clearly, Y ∈ Cα. Recall that Xa

(X,a) is the subspace on the set {(a, a)}∪ (X \
{a})× (X \ {a}). Since Xa /∈ Cα and Xa is a quotient of Xa

(X,a), we get that
the subspace Xa

(X,a) /∈ Cα as well.
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Note that, since the subcategories Top1, Haus are closed under 4, if
we start with the space X from Example 7.7 (or Example 7.8), the resulting
space Y will be T1 (resp. Hausdorff) as well.

Acknowledgement. I would like to thank H. Herrlich and J. Činčura for
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