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Abstract. The notion of I-convergence was introduced in the
paper [18]. This notion includes the notion of the statistical conver-
gence which has been intensively investigated in last twenty years.
In the present paper we will give some of its basic properties and
we will deal with extremal I-limit points.

Introduction

The notion of I-convergence from the paper [18] corresponds to a
generalization of the statistical convergence from [27]. We will show
that it is equivalent, in some sense, to the µ-statistical convergence
from the paper [9].

Note that the notion of the statistical convergence was introduced
in papers [11], [37] and developed in papers [7], [8], [9], [10], [13], [14],
[15], [17], [18], [24], [27], [32]. Some applications of the notions of the
statistical convergence and the I-convergence in the number theory are
given in [35], [36].

In the present paper we will prove some basic results on convergence
fields of the I-convergence to complete results from [18]. The notions
of I- lim inf x, I- lim sup x will be introduced and their basic properties
will be given.

Definitions

Recall the notion of the asymptotic density of a set A ⊂ N (N - the
set of positive integers). (see [4], [5], [12], [29, p. 95–96]). For A ⊂ N
and n ∈ N we put

dn(A) =
1

n

n∑

k=1

χA(k), δn(A) =
1

Sn

n∑

k=1

χA(k)

k
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(χA is the characteristic function of the set A and Sn =
n∑
k=1

1
k
). Then

the numbers

d(A) = lim inf
n→∞

dn(A), d(A) = lim sup
n→∞

dn(A)

are called lower, resp. upper asymptotic density of A. If there exists
the limit d(A) = lim

n→∞
dn(A), then d(A) is called the asymptotic density

of the set A.
Analogously the numbers

δ(A) = lim inf
n→∞

δn(A), δ(A) = lim sup
n→∞

δn(A)

are called lower, resp. upper logarithmic density of A. The limit, if
there exists, δ(A) = lim

n→∞
δn(A) is called the logarithmic density of the

set A. It is known that

(1) d(A) ≤ δ(A) ≤ δ(A) ≤ d(A)

holds for every set A ⊂ N ([29, p. 95]).
Hence, if there exists d(A) then there exists δ(A) and these two

numbers are equal. Obviously the numbers d(A), d(A), δ(A), δ(A) are
in the interval [0, 1].

Recall the well-known result

(2) Sn =
n∑

k=1

1

k
= log n+ γ +O

(
1

n

)
(n→∞),

where γ is the Euler’s constant. It follows from (2) that in the definition
of δn(A), Sn can be replaced by log n.

Recall some other notions.

Definition A. A sequence x = (xn)∞1 of real numbers is said to be
statistically convergent to ξ ∈ R (R - the set of reals) if for each ε > 0
d(A(ε)) = 0 holds, where A(ε) = {n : |xn − ξ| ≥ ε}.
Definition B. Let X 6= ∅. A family S ⊂ 2X of subsets of X is said to
be an ideal in X if

(i) ∅ ∈ S;
(ii) A,B ∈ S imply A ∪B ∈ S;
(iii) A ∈ S, B ⊂ A imply B ∈ S.

(see [19, p. 34])

Definition C. Let X 6= ∅. A non-void family F ⊂ 2X is said to be a
filter in X if

(j) ∅ /∈ F
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(jj) A,B ∈ F imply A ∩B ∈ S;
(jjj) A ∈ F , A ⊂ B imply B ∈ F .

(see [25, p. 44])

The next proposition gives a simple connection between introduced
notions.

Proposition A. Let S be a proper ideal in X (i.e. X /∈ S), X 6= ∅.
Then a family of sets

F(S) = {M ⊂ X : ∃A ∈ S : M = X \ A}
is a filter in X (the filter associated with the ideal S).

Definition D. A proper ideal S is said to be admissible if {x} ∈ S for
each x ∈ X.

We will use the notion of the porosity in a metric space which is
introduced in the following way (see [38, p. 183–212], [39]).

Let (Y, %) be a metric space, M ⊂ Y . Let B(y, δ) be a ball centered
at y ∈ Y with the radius δ > 0, i.e. B(y, δ) = {x ∈ Y : %(x, y) < δ}.
For y ∈ Y and δ > 0 put

γ(y, δ,M) = sup{t > 0 : ∃z ∈ B(y, δ) : [B(z, t) ⊂ B(y, δ)]∧[B(z, t)∩M = ∅]}.
If there is no such t > 0, we put γ(y, δ,M) = 0.

The numbers

p(y,M) = lim inf
δ→0

γ(y, δ,M)

δ
, p(y,M) = lim sup

δ→0

γ(y, δ,M)

δ

are called the lower and upper porosity of the set M at y. If for each
y ∈ Y we have p(y,M) > 0 then M is said to be porous in Y . Obviously
every set porous in Y is nowhere dense in Y .

If p(y,M) ≥ c > 0 then M is said to be c-porous at y. If p(y,M) ≥
c > 0 for each y ∈ Y then M is said to be c-porous in Y .

If p(y,M) > 0 then M is said to be very porous at y. If M is very
porous at y for each y ∈ Y , then M is said to be very porous in Y .
The concept of very c-porous set at y and very c-porous set in Y can
be defined analogously.

If p(y,M) = p(y,M)(= p(y,M)) then the number p(y,M) is called
the porosity of M at y. If p(y,M) = 1 then M is said to be strongly
porous at y. The set M is said to be strongly porous in Y if it is
strongly porous at each y ∈ Y .
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1. I-convergence of sequences of real numbers - examples

Recall the notion of I-convergence ([18]).

Definition 1.1 ([18]). Let I ⊂ 2N be a proper ideal in N. The sequence
x = (xn) of reals is said to be I-convergent to ξ ∈ R, if for each ε > 0
the set A(ε) = {n : |xn − ξ| ≥ ε} belongs to I.

If x = (xn) is I-convergent to ξ then we write I- lim x = ξ or
I- lim xn = ξ. The number ξ is I-limit of the sequence x.

In the paper [18] some basic properties of I-convergence are given.
E.g., it is discussed the question which of axioms of convergence (see
[23]) I-convergence fulfils.

Further we will give some examples of ideals and corresponding I-
convergences.

(I) Put I0 = {∅}. I0 is the minimal ideal in N. A sequence x = (xn)
is I0-convergent if and only if it is constant.

(II) Let ∅ 6= M ⊂ N, M 6= N. Put IM = 2M . Then IM is a proper
ideal in N. A sequence x = (xn) is IM -convergent if and only if it is
constant on N \M , i.e. if there is ξ ∈ R such that xn = ξ for each
n ∈ N \ M . (Obviously the example (I) is a special case of (II) for
M = ∅).

(III) Let If be the family of all finite subsets of N. Then If is an
admissible ideal in N and If convergence is the usual convergence.

(IV) Put Id = {A ⊂ N : d(A) = 0}. Then Id is an admissible ideal
in N and Id-convergence is the statistical convergence.

(V) Put Iδ = {A ⊂ N : δ(A) = 0}. Then Iδ is an admissible ideal
in N and Iδ-convergence is called logarithmic statistical convergence. If
Id- lim xn = ξ then also Iδ- limxn = ξ (see (1)). This implication is
not invertible.

(VI) Let u(A) be a uniform density of the set A (see [3]). Put
Iu = {A ⊂ N : u(A) = 0}. Then Iu is an admissible ideal.

(VII) Examples (IV) and (V) can be generalized as follows: Let

f : N→ R+ = (0,∞) be such a function that
∞∑
k=1

f(k) = +∞. Put

If = {A ⊂ N : lim
n→∞

n∑
k=1

χA(k)f(k)

n∑
k=1

f(k)
= 0}.

Then If is an admissible ideal in N. Note that If and If are different
ideals (cf. [22], [1], [21]).
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(VIII) A wide class of I-convergences can be obtained in the follow-
ing manner: Let T = (tnk) be a non-negative regular matrix (cf. [30,
p. 8]). Then for A ⊂ N we put

d
(n)
T (A) =

∞∑

k=1

tnkχA(k) (n = 1, 2, . . .),

χA being the characteristic function of A. If there exists

dT (A) = lim
n→∞

d
(n)
T (A)

then it is called the T -density of A (cf. [24]). By the regularity of T
we have

lim
n→∞

∞∑

k=1

tnk = 1

and so dT (A) ∈ [0, 1]. Put IdT = {A ⊂ N : dT (A) = 0}. Then IdT is an
admissible ideal in N. The corresponding IdT -convergence contains as

special case the ϕ-convergence of Schoenberg ([37]) (choosing tnk = ϕ(k)
n

for k | n and tnk = 0 for k - n, ϕ being the Euler’s function).
(IX) Let υ be a finite additive measure defined on a class U of subsets

of N (cf. [4], [5], [9], [12], [20], [33], [34]) which contains all finite subsets
of N and υ({n}) = 0 for every n ∈ N, further υ(A) ≤ υ(B) if A,B ∈ U ,
A ⊂ B. Then Iυ = {A ⊂ N : υ(A) = 0} is an admissible ideal in N.
The Id- and Iδ-convergences are included in Iυ-convergence. Further
for υ we can take the measure density of R. C. Buck (cf. [4], [5]).

(X) Let µm : 2N → [0, 1] (m = 1, 2, . . .) be finitely additive measures
defined on 2N. If there exists µ(A) = lim

m→∞
µm(A), then µ(A) is called

the measure of A. Obviously µ(A) is a finitely additive measure defined
on a class E ⊂ 2N. So Iµ = {A ⊂ N : µ(A) = 0} is an admissible ideal

in N. For µm we can take dm, δm, d
(m)
T .

(XI) Let N =
∞⋃
j=1

Dj be a decomposition of N (i.e. Dk ∩Dl = ∅ for

k 6= l). Assume that Dj (j = 1, 2, . . .) are infinite sets (e.g we can
choose Dj = {2j−1(2s− 1) : s ∈ N} for j = 1, 2, . . .). Denote by I the
class of all A ⊂ N such that A intersects only a finite number of Dj. It
is easy to see that I is an admissible ideal.

(XII) In [13] the concept of density % of sets A ⊂ N is axiomatically
introduced. Using this concept we can define the ideal I% = {A ⊂
N : %(A) = 0}. So we obtain I%-convergence as a generalization of the
statistical convergence.
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(XIII) Let g : N → (0,∞),
∞∑
n=1

g(n) = ∞. Define Ig = {A ⊂ N :

∞∑
n=1

g(n)χA(n) < +∞}. Then Ig is an admissible ideal (cf. [22]).

Putting g(n) = 1
n

(n = 1, 2, . . .) we get ideal Ic = {A ⊂ N :
∑
a∈A

a−1 <

+∞} mentioned already in [18]. This ideal is closely related to the
convergence of subseries of the harmonic series (cf. [31]).

To the end of this section we observe that the µ-statistical conver-
gence of J. Connor [9] is in a sense equivalent to our I-convergence.
In what follows we suppose that µ is a finite additive measure de-
fined on a field Γ of subsets of N, such that µ({k}) = 0 for ev-
ery k ∈ N and if A,B ∈ Γ, A ⊂ B, then µ(A) ≤ µ(B). Put
I = {A ∈ Γ : µ(A) = 0}. Then it is easy to see that I is an ad-
missible ideal in N and F(I) = {B ⊂ N : µ(B) = 1}.

Conversely, if I is an admissible ideal in N, we put Γ = I ∪ F(I).
Then Γ is a field of subsets of N. Define µ : Γ → {0, 1} as follows:
µ(M) = 0 if M ∈ I, µ(M) = 1 if M ∈ F(I). This definition is correct
since I ∩ F(I) = ∅. Further µ({k}) = 0 since I is admissible, the
monotonicity and additivity of µ can be also easily checked.

2. Convergence field of I-convergence

Let I be an admissible ideal. Put F0(I) for the set of all real I-
convergent sequences. The set F0(I) is said to be the convergence field
of the I-convergence, F0(I) ⊂ w where w is the set of all real sequences.
We will give some properties of the field F0(I).

Theorem 2.1. Let I be an admissible ideal.

(i) If lim
n→∞

xn = ξ then I- limxn = ξ;

(ii) If I- lim xn = ξ, I- lim yn = η, then I- lim(xn + yn) = ξ + η;
(iii) If I- lim xn = ξ, I- lim yn = η, then I- lim(xnyn) = ξη.

Proof. (i) The statement is an easy consequence of the inclusion If ⊂
I.

(ii) Let ε > 0. Then the inclusion {n : |(xn + yn)− (ξ + η)| ≥ ε} ⊂
{n : |xn− ξ| ≥ ε

2
}∪ {n : |yn− η| ≥ ε

2
} holds and the statement follows.

(iii) It follows from the assumption of (iii) that B = {n : |xn− ξ| <
1} ∈ F(I). Obviously |xnyn − ξη| ≤ |xn||yn − η| + |η||xn − ξ|. For
n ∈ B we have |xn| < |ξ|+ 1 and it follows

(3) |xnyn − ξη| ≤ (|ξ|+ 1)|yn − η|+ |η||xn − ξ|.
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Let ε > 0. Choose δ > 0 such that

(4) 0 < 2δ <
ε

|ξ|+ |η|+ 1
.

The sets M1 = {n : |xn−ξ| < δ} and M2 = {n : |yn−η| < δ} belong to
F(I). Obviously B ∩M1 ∩M2 ∈ F(I) and for each n ∈ B ∩M1 ∩M2

we have from (3) and (4)

|xnyn − ξη| < ε.

Hence {n : |xnyn − ξη| ≥ ε} ∈ I and (iii) holds. �
It is known that the I-convergence determines another type of con-

vergence, so-called I∗-convergence, which is connected with sets of the
filter F(I) (see [18]). Recall the definition of the convergence I∗.
Definition 2.1. Let I be an admissible ideal. A sequence x = (xn) is
said to be I∗-convergent to ξ, if there is a set M ∈ F(I), M = {m1 <
m2 < . . .} such that lim

k→∞
xmk = ξ (shortly I*- lim xn = ξ).

The notion of I∗-convergence was introduced in [18] for a sequence
in a metric space. We will deal with real sequences. In [18] it is proved
the implication

(5) I*- lim xn = ξ ⇒ I- limxn = ξ.

This implication in general cannot be inverted. This shows the follow-
ing example.

Example 2.1. Let I be the ideal introduced in example (XI). Define
x = (xn) as follows: For n ∈ Dj we put xn = 1

j
(j = 1, 2, . . .). Then

obviously I- lim xn = 0. We show that I*- lim xn = 0 does not hold.
Suppose in contrary that I*- lim xn = 0. Then there is a set M ∈

F(I) such that

(6) lim
m→∞,m∈M

xm = 0.

By the definition of F(I) we have M = N \H, where H ∈ I. By the
definition of I there is a p ∈ N such that

H ⊂ D1 ∪ . . . ∪Dp.

But then M contains the set Dp+1 and so xm = 1
p+1

for infinitely many

m’s from M . This contradicts (6).

In the paper [18] it is proved Theorem 3.2 which gives a condi-
tion for the equivalence of I-convergence and I∗-convergence. The
I-convergence is equivalent to I∗-convergence if and only if the ideal
I has the property (AP). (The ideal I has the property (AP) if for
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any sequence {A1, A2, . . .} of mutually disjoint sets of I there is a se-
quence {B1, B2, . . .} of sets such that each symmetric difference Aj4Bj

(j = 1, 2, . . .) is finite and
∞⋃
j=1

Bj ∈ I.) As a consequence for real se-

quences we have that I-convergence is equivalent to I∗-convergence if
and only if the ideal I has the property (AP).

The I-convergence and I∗-convergence can be regarded as some sum-
mation (limitation) methods. Let F0(I) (F0(I∗)) be the convergence
field of the method I-convergence (I∗-convergence). I.e. F0(I) = {x =
(xn) ∈ w : there is I- lim xn ∈ R}, F0(I∗) = {x = (xn) ∈ w : there is
I*- lim xn ∈ R}. In general we have the inclusion

(7) F0(I∗) ⊂ F0(I)

and the equality in (7) holds if and only if the ideal I has the property
(AP).

Further we shall deal with bounded sequences. We will deal with
sets `∞ ∩ F0(I) and `∞ ∩ F0(I∗), where `∞ is the space of all bounded
sequences endowed with sup-norm. We introduce sets F (I) ⊂ `∞ and
F (I∗) ⊂ `∞ as follows: F (I) = {x = (xn) ∈ `∞ : there is I- lim xn ∈
R}, F (I∗) = {x = (xn) ∈ `∞ : there is I*- lim xn ∈ R}.

We saw that F (I) is a linear subspace (subring) of the linear space
(ring) `∞. It follows from Theorem 2.1. An analogous assertion holds
for the set F (I∗).

In what follows we show that properties of convergence fields F (I)
and F (I∗) depends on the ideal I.

Let Z be the class of all admissible ideals in N. The class Z is
partially ordered by inclusion. If Z0 ⊂ Z is a non-void linearly ordered
subset of Z, then it is easy to verify that

⋃
Z0 is an admissible ideal

in N which is an upper bound of Z0. It follows from Zorn Lemma that
in Z there is a maximal admissible ideal. The following lemma gives a
characterization of a maximal admissible ideal.

Lemma 2.1. Let I0 be an ideal in N which contains all singletons.
Then I0 is maximal admissible if and only if

(8) (A ∈ I0) ∨ (N \ A ∈ I0)

holds for each A ⊂ N.

Proof. 1) Let an ideal I0 fulfil (8) for each set A ⊂ N. By contradiction
we show that I0 is maximal admissible. Let I0 $ I1, I1 - an admissible
ideal in N. Then there is A ⊂ N such that A ∈ I1 \ I0. Since A /∈ I0,
according to (8) we have N \A ∈ I0. Consequently A ∈ I1, N \A ∈ I1

and also N ∈ I1 - a contradiction.
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2) Let I0 be a maximal admissible ideal in N. We prove (8). By
contradiction. Let A ⊂ N be such a set that

(9) (A /∈ I0) ∧ (N \ A /∈ I0).

Put K = {X ⊂ N : X ∩ A ∈ I0}. We show
a) K ⊃ I0;
b) K is an admissible ideal in N.

a) Let X ∈ I0. Then X ∩ A ⊂ X and X ∩ A ∈ I0, hence X ∈ K.
b) Obviously N /∈ K and K contains each singleton {n}, n ∈ N. If

X1, X2 ∈ K, then X1 ∩A,X2 ∩A ∈ I0 and (X1 ∪X2)∩A = (X1 ∩A)∪
(X2 ∩ A) ∈ I0, consequently X1 ∪X2 ∈ K.

Let X ∈ K and X1 ⊂ X. Then X1∩A ⊂ X∩A ∈ I0 and X1∩A ∈ I0.
Hence X1 ∈ K.

We showed that K is an admissible ideal in N and K ⊃ I0. It follows
from the maximality of I0 that K = I0. Since (N \A)∩A = ∅ ∈ I0 we
have N \ A ∈ K - a contradiction with respect to (9). �

Theorem 2.2. Let I be an admissible ideal in N. Then F (I) = `∞ if
and only if I is a maximal admissible ideal in N.

Proof. 1) Let I be a maximal admissible ideal in N. Let x = (xn) ∈ `∞.
We show that there exists I- lim xn ∈ R.

Since x ∈ `∞, there are numbers a, b ∈ R such that a ≤ xn ≤ b
hold for each n ∈ N. Put A1 = {n : a ≤ xn ≤ a+b

2
}, B1 = {n :

a+b
2
≤ xn ≤ b}. Then A1 ∪ B1 = N. Since I is an admissible ideal

both sets A1, B1 cannot belong to I. Thus at least one of them does
not belong to I. Denote it by D1 and the interval corresponding to
it denote by J1. So we have the set D1 and the interval J1 such that
D1 = {n : xn ∈ J1} /∈ I.

We can construct (by induction) a sequence of closed intervals J1 ⊃
J2 ⊃ . . . ⊃ Jn ⊃ . . ., Jn = [an, bn], lim

n→∞
(bn − an) = 0 and sets Dk =

{n : xn ∈ Jk} /∈ I (k = 1, 2, . . .).

Let ξ ∈
∞⋂
l=1

Jk and ε > 0. Construct the set M(ε) = {n : |xn−ξ| < ε}.
For sufficiently large m we have Jm = [am, bm] ⊂ (ξ − ε, ξ + ε). Since
Dm /∈ I we see that M(ε) /∈ I. Since I is a maximal ideal, according
to Lemma 2.1 we have N\M(ε) ∈ I and {n : |xn− ξ| ≥ ε} ∈ I. Hence
I- lim xn = ξ.

2) Suppose that I is not maximal. It follows from Lemma 2.1 that
there is a set M = {m1 < m2 < . . .} such that M /∈ I and N \M /∈ I.
Define the sequence x = (xn) as follows: xn = χM(n) (n = 1, 2, . . .).
Then x ∈ `∞ and I- lim xn does not exists. Indeed, for every ξ ∈ R
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and sufficiently small ε > 0 the set {n : |xn − ξ| ≥ ε} is equal to M or
N \M or to N and neither of these sets belong to I. �

Remark 2.1. The previous theorem cannot be extended for unbounded
sequences. This is shown in the following:

Proposition 2.1. Let I be an admissible ideal. Then there exists an
unbounded sequence of real numbers for which I- limxn does not exist.

Proof. Put xn = n (n = 1, 2, . . .). Obviously I- lim xn does not exist.
�

In what follows we will deal with topological properties of conver-
gence fields F (I) and F (I∗) in `∞.

Theorem 2.3. Suppose that I is an admissible ideal in N. Then F (I)
is a closed linear subspace of `∞ (`∞ - endowed with the sup-norm).

Proof. Let x(m) = (x
(m)
j )∞j=1 ∈ F (I) (m = 1, 2, . . .), lim

m→∞
x(m) = x,

x = (xj) in `∞, i.e. lim
m→∞

‖x(m) − x‖ = 0. We prove x ∈ F (I).

By the assumption there exist I- lim x(m) = ξm ∈ R, (m = 1, 2, . . .).
The proof will be realized in two steps:
1) We prove that (ξm)∞1 is a Cauchy sequence (so that there exists

lim
m→∞

ξm = ξ ∈ R).

2) We prove that I- lim x = ξ.
1) Let η > 0. From lim

m→∞
x(m) = x we deduce that (x(m))∞1 is a

Cauchy sequence in `∞. Therefore there is an m0 ∈ N such that for
each u, v > m0 we have

(10) ‖x(u) − x(v)‖ < η

3
.

Fix u, v > m0. Note that sets U(η
3
) = {j : |x(u)

j − ξu| < η
3
}, V (η

3
) =

{j : |x(v)
j − ξv| < η

3
} belong to F(I), thus their intersection is non-void.

For any element s ∈ U(η
3
) ∩ V (η

3
) we have

(11) |x(u)
s − ξu| <

η

3
, |x(v)

s − ξv| <
η

3
.

It follows from (10) and (11)

|ξu − ξv| ≤ |ξu − x(u)
s |+ |x(u)

s − x(v)
s |+ |x(v)

s − ξv| <
η

3
+
η

3
+
η

3
= η.

Hence (ξm)∞1 is a Cauchy sequence and so there exists ξ = lim
m→∞

ξm ∈
R.
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2) Let ε > 0. Choose v0 such that for v > v0 we have simultaneously

(12) |ξv − ξ| < ε

3
, ‖x(v) − x‖ ≤ ε

3
.

Then for each n ∈ N we have

(13) |xn − ξ| ≤ |xn − x(v)
n |+ |x(v)

n − ξv|+ |ξv − ξ|.
Let A(ε) = {n : |xn−ξ| ≥ ε}, CA(ε) = {n : |xn−ξ| < ε}, Av( ε3) = {n :

|x(v)
n − ξv| ≥ ε

3
}, CAv( ε3) = {n : |x(v)

n − ξv| < ε
3
}. It follows from (12)

and (13) for n ∈ CAv(ε) the inequality |xn − ξ| < ε and the inclusion

(14) CAv

(ε
3

)
⊂ CA(ε)

holds. Note that Av(
ε
3
) ∈ I. If we take complements of sets in (14) we

have A(ε) ∈ I and the proof of 2) is finished. �

We can summarize our results concerning the convergence fields
F (I), F (I∗). We know that F (I∗) ⊂ F (I) (see (7)) and the equality
F (I∗) = F (I) holds if and only if I satisfies the condition (AP). Fur-
ther F (I) = `∞ if and only if I is a maximal ideal. Thus if I is not
maximal and does not satisfy the condition (AP) then

F (I∗) $ F (I) $ `∞.

Now we show that for every admissible ideal I the set F (I∗) is dense
in F (I).

Theorem 2.4. For every admissible ideal I in N we have

F (I∗) = F (I).

(F (I∗) is the closure of the set F (I∗) in `∞).

Proof. We have F (I∗) ⊂ F (I). Since F (I) is a closed subspace of `∞
(Theorem 2.3) we get F (I∗) ⊂ F (I). It suffices to prove F (I) ⊂ F (I∗).

Put B(z, δ) = {x ∈ `∞ : ‖x− z‖ < δ} for z ∈ `∞, δ > 0 (ball in `∞).
It suffices to prove that for each y ∈ F (I) and 0 < δ < 1 we have

(15) B(y, δ) ∩ F (I∗) 6= ∅.
Put L = I- lim y. Choose an arbitrary η ∈ (0, δ). Then

A(η) = {n : |yn − L| ≥ η} ∈ I.
Define x = (xn)∞1 as follows: xn = yn if n ∈ A(η) and xn = L

otherwise.
Then obviously x ∈ `∞, I*- lim x = L and x ∈ B(y, η). So (15) holds

and the proof is finished. �
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It is well known fact that if W is a closed linear subspace of a linear
normed space X and X 6= W , then W is a nowhere dense set in X.
This fact evokes the question about the porosity of W . We will give
the answer to this question in general and show some applications to
convergence fields F (I) and F (I∗).
Lemma 2.2. Suppose that X is a linear normed space and W is its
closed linear subspace, W 6= X. Let

s(W ) = sup{δ > 0 : ∃B(y, δ) ⊂ B(Q, 1) \W}
(Q being the zero element of X). Then s(W ) = 1

2
.

Proof. We proceed indirectly. Suppose that s(W ) > 1
2
. Then there is

a δ > 1
2

such that for suitable y we have

(16) B(y, δ) ⊂ B(Q, 1) \W.
There are two possible cases:

(α) ‖y‖ > 1

2
, (β) ‖y‖ ≤ 1

2
.

(α) In this case for every c, 1
2
< c < δ we have

y +
c

‖y‖y ∈ B(y, δ).

Simultaneously we have

‖y +
c

‖y‖y‖ =

(
1 +

c

‖y‖
)
‖y‖ = ‖y‖+ c > 1.

Hence y + c
‖y‖y 6∈ B(Q, 1), which contradicts (16).

(β) In this case Q ∈ B(y, δ) ∩W which contradicts (16) too.
Hence s(W ) ≤ 1

2
.

Let v ∈ X \ W and put α = infu∈W ‖v − u‖. Obviously α > 0.
Without loss of generality we can assume α = 1

2
(if α 6= 1

2
we can

take 1
2α
v instead of v). For ε ∈ (0, 1

2
) there exists u0 ∈ W such that

1
2
≤ ‖v− u0‖ < 1

2
+ ε by definition of α. Put y = v− u0 and δ = 1

2
− ε.

We show that (16) holds for them.
If z ∈ B(y, δ) then ‖z − y‖ < 1

2
− ε and ‖z‖ ≤ ‖z − y‖ + ‖y‖ <

(1
2
− ε) + (1

2
+ ε) = 1, i.e B(y, δ) ⊂ B(Q, 1).

Suppose that z ∈ B(y, δ) ∩W then ‖z − y‖ < 1
2
− ε. On the other

hand ‖z− y‖ = ‖z− (v− u0)‖ = ‖(z+ u0)− v‖ ≥ 1
2
, since z+ u0 ∈ W .

We get a contradiction, hence B(y, δ) ∩W = ∅.
If ε→ 0+ then δ → 1

2

−
and we get s(W ) = 1

2
. �
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Theorem 2.5. Suppose that X is a linear normed space and W is its
closed linear subspace, W 6= X. Then W is a very porous set in X, in
more detail

a) If x ∈ X \W then p(x,W ) = 1,
b) If x ∈W then p(x,W ) = 1

2
.

Proof. The part a) is an easy consequence of the closedness of W in X.
We prove b). Since W 6= X, there is a u ∈ B(Q, 1) \W and δ > 0

such that

(17) B(u, δ) ⊂ B(Q, 1) \W.
First we show that

(18) ‖u‖+ δ ≤ 1.

We proceed indirectly. Assume that ‖u‖+ δ > 1. Since ‖u‖ < 1 for
a suitable c > 0 we have 1 < ‖u‖+c‖u‖ < ‖u‖+δ. From this c‖u‖ < δ
and so

(19) u+ cu ∈ B(u, δ).

On the other hand

‖u+ cu‖ = (1 + c)‖u‖ = ‖u‖+ c‖u‖ > 1

and so u + cu 6∈ B(Q, 1), which contradicts (17), (19). Hence (18)
holds.

Let x ∈ W , ε > 0. We show that

(20) B(x+ εu, εδ) ⊂ B(x, ε) \W,
if (17) holds.

For z ∈ B(x+ εu, εδ) we put w = z − x− εu. Then

(21) ‖w‖ = ‖z − x− εu‖ < εδ.

Further z − x = εu+ w, hence by (18), (21)

‖z − x‖ = ‖εu+ w‖ ≤ ‖εu‖+ ‖w‖ < ε‖u‖+ εδ ≤ ε.

From this we get z ∈ B(x, ε).
We show yet z 6∈W . In the contrary case we have z− x = εu+w ∈

W , hence

(22) u+
1

ε
w ∈W.

Since ‖1
ε
w‖ < δ (see (21)), 1

ε
w ∈ B(u, δ). But then by (17) we get

u+ 1
ε
w 6∈ W , which contradicts (22).

Hence we have proved the inclusion (20) under the assumption that
B(u, δ) ⊂ B(Q, 1) \W . But then by definition of γ(x, ε,W ) we have
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γ(x, ε,W ) ≥ εδ for each δ > 0 such that (17) holds. From this we get
γ(x, ε, w) ≥ εs(W ),

p(x,W ) ≥ s(W ),

where s(W ) = 1
2

is introduced in Lemma 2.2.
Since for every ball B(y, δ), δ > 1

2
, B(y, δ) ⊂ B(Q, 1) we have Q ∈

B(y, δ), the assertion of Theorem 2.5 follows from Lemma 2.2. �
We will apply Theorem 2.5 to the study of the structure of conver-

gence fields F (I), F (I∗), I being an admissible ideal in N. We take
the linear normed space `∞ of all bounded real sequences with the
sup-norm

‖x‖ = sup
n=1,2,...

|xn|, x = (xn)∞1 ∈ `∞.

By Theorem 2.2 the convergence field F (I) coincides with `∞ if and
only if I is a maximal ideal. Hence it is convenient to deal with F (I)
under the assumption that I is not maximal. In this case we have
F (I) $ `∞ and by Theorem 2.3 the set F (I) is a closed linear subspace
of `∞.

The following theorem is an easy consequence of Theorem 2.5.

Theorem 2.6. Suppose that I is an admissible ideal in N which is not
maximal. Then the following holds:

(1) If x ∈ `∞ \ F (I), then p(x, F (I)) = 1.
(2) If x ∈ F (I), then p(x, F (I)) = 1

2
.

Since F (I∗) ⊂ F (I) = F (I∗) (see Theorem 2.4), we get

Corollary 2.1. Under the condition of Theorem 2.6 we have:

(1) If x ∈ `∞ \ F (I), then p(x, F (I∗)) = 1.
(2) If x ∈ F (I), then p(x, F (I∗)) = 1

2
.

3. Extremal I-limit points I- lim inf x and I- lim sup x1

In the next part of the paper the notions of I- lim inf x and I- lim sup x
will be introduced, and some of their basic properties will be given.

In the paper [13] the notions of the statistical limit point and the
statistical cluster point have been introduced. In [15] the authors
have introduced notions of extremal statistical limit points (statisti-
cal lim inf x, statistical lim sup x). In the paper [18] the notions of the
I-limit point and the I-cluster point of a sequence of elements of a

1The notions of I- lim supx and I- lim inf x were independently introduced and
investigated by K. Demirci: I-limit superior and limit inferior, Math. Communica-
tions 6(2001), no. 2, 165–172.
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metric space were introduced. These notions generalize notions of the
statistical limit point and the statistical cluster point.

Recall that a number ξ is said to be an I-limit point of x = (xm)
provided that there is a set M = {m1 < m2 < . . .} ⊂ N such that
M /∈ I and lim

k→∞
xmk = ξ. A number ξ is said to be an I-cluster point

of x = (xm) if for each ε > 0 we have {n ∈ N : |xm − ξ| < ε} /∈ I.
Further we shall deal with an admissible ideal I and the used symbols

have above introduced meanings.

Remark 3.1. Note that for any set M ⊂ N at least one of the state-
ments M ∈ I, N \M ∈ I does not hold.

In what follows we will give a generalization of notions of statistical
lim inf x and statistical lim sup x of a real sequence x = (xn) of [15].

We put for t ∈ R
Mt = {n : xn > t}, M t = {n : xn < t}.

Definition 3.1.

a) If there is a t ∈ R such that Mt /∈ I, we put

I- lim sup x = sup{t ∈ R : Mt /∈ I}.
If Mt ∈ I holds for each t ∈ R then we put I- lim sup x = −∞.

b) If there is a t ∈ R such that M t /∈ I, we put

I- lim inf x = inf{t ∈ R : M t /∈ I}.
If M t ∈ I holds for each t ∈ R then we put I- lim inf x = +∞.

Remark 3.2. If I = If , then the above Definition 3.1 gives usual
definition of the notion lim sup

n→∞
xn and lim inf

n→∞
xn.

The next statement is an analogy of Theorem 1.2 of [15].

Theorem 3.1.

(a) β = I- lim sup x ∈ R if and only if

(23) {n : xn > β − ε} /∈ I ∧ {n : xn > β + ε} ∈ I
holds for each ε > 0.

(b) α = I- lim inf x ∈ R if and only if

(24) {n : xn < α + ε} /∈ I ∧ {n : xn < α− ε} ∈ I
holds for each ε > 0.
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Proof. We prove the part (a). The proof of the part (b) is similar.
Let ε > 0. Since β + ε > β = sup{t : Mt /∈ I}, the number β + ε is

not in {t : Mt /∈ I} and {n : xn > β + ε} ∈ I. Further β − ε < β and
there exists t′ ∈ R such that β − ε < t′ < β, t′ ∈ {t : Mt /∈ I}. Hence
{n : xn > t′} /∈ I and also {n : xn > β − ε} /∈ I. Consequently (23)
holds.

On the other hand, suppose that the number β fulfils (23) for each
ε > 0. Then, if ε > 0, we have β + ε /∈ {t : Mt /∈ I} and I- lim sup x ≤
β + ε. Since this holds for every ε > 0, we have

(25) I- lim sup x ≤ β.

The first of conditions in (23) implies I- lim sup x ≥ β − ε for each
ε > 0, and so we have

(26) I- lim sup x ≥ β.

Inequalities (25) and (26) imply β = I- lim sup x. �
Theorem 3.2. The inequality

(27) I- lim inf x ≤ I- lim sup x

holds for every sequence x = (xn) of real numbers.

Proof. If I- lim sup x = +∞, then (27) obviously holds. Suppose I- lim sup x <
+∞. There are two possibilities.

a) I- lim sup x = −∞;
b) −∞ < I- lim sup x < +∞.
a) In this case we have

(28) Mt ∈ I for each t ∈ R.
It follows from (28) that M t ∈ F(I) holds for each t ∈ R and obviously
M t /∈ I for each t ∈ R. Hence I- lim inf x = inf{t : M t /∈ I} = −∞
and (27) is proved.

b) We have β = I- lim sup x = sup{t : Mt /∈ I}. If t > β, then
Mt ∈ I and M t /∈ I (Remark 3.1) so we have I- lim inf x = inf{t :
M t /∈ I} ≤ β and (27) holds. �

Recall that the core of a sequence x = (xn) is said to be the interval
[lim inf x, lim sup x] = core{x}. In analogy to the st-core{x} (see [15])
we can introduce

I-core{x} = [I- lim inf x, I- lim sup x].

Theorem 3.3. The inequalities

(29) lim inf x ≤ I- lim inf x ≤ I- lim sup x ≤ lim sup x

hold for every real sequence x = (xn).
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Corollary 3.1. For each real sequence x = (xn) we have

I-core{x} ⊂ core{x}.
Proof. We prove only the last inequality of (29). If lim sup x = +∞
then the statement obviously holds. Suppose L = lim sup x < +∞ and
t′ > L. Then the set Mt′ = {n : xn > t′} is finite and it belongs to I (I
is an admissible ideal). It follows I- lim sup x = sup{t : Mt /∈ I} ≤ t′

and I- lim sup x ≤ L. �
Definition 3.2. A sequence x = (xn) is said to be I-bounded if there
is a K > 0 such that {k : |xk| > K} ∈ I.

Remark 3.3. If there exists an I- lim x ∈ R then x = (xn) is I-
bounded. This statement cannot be conversed. This shows the next
Example 3.1.

Theorem 3.4. The sequence x = (xn) is I-convergent if and only if

I- lim inf x = I- lim sup x.

If this equality holds then

I- limx = I- lim inf x = I- lim sup x.

Proof. 1) Suppose that there is I- lim x = L ∈ R. Then for each ε > 0
the set {n : |xn−L| ≥ ε} is in I. Since the property of heredity of the
ideal I we have {n : xn > L + ε} ∈ I and {n : xn < L − ε} ∈ I. For
each t ≥ L+ ε the set Mt is in I, sup{t : Mt /∈ I} ≤ L+ ε and

(30) I- lim sup x ≤ L.

Analogously it can be shown

(30’) I- lim inf x ≥ L.

It follows from Theorem 3.2, (30) and (30’) that

L = I- lim inf x = I- lim sup x.

2) Let
L = I- lim inf x = I- lim sup x.

Let ε > 0. It follows from the definition of the number I- lim sup x that
{n : xn ≥ L+ε} ∈ I. Analogously can be shown {n : xn ≤ L−ε} ∈ I.
From the property of additivity of the ideal I the union of these sets
also belongs to I, i.e., {n : |xn − L| ≥ ε} ∈ I. Hence L = I- limx. �

It is well-known that lim sup x is the greatest limit point of the se-
quence x. There is a natural question whether this fact holds also for
I-convergence, i.e., whether I- lim sup x is the greatest I-limit point
of the sequence x. In [15] it is shown that, in general, the answer is
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negative. In [15] the authors showed an example of a sequence x = (xn)
such that the greatest Id-limit point of x and Id - lim sup x are different.
In this connection we will give an example of a sequence such that the
set of all Id-limit points is non-void, bounded and it has no greatest
point. Naturally, Id - lim sup x exists.

Example 3.1. Put Dj = {2j−1(2k − 1) : k ∈ N} (j = 1, 2, . . .).
Obviously Dj ∩ Dk = ∅ for j 6= k and d(Dj) = 1

2j
(j = 1, 2, . . .)).

We define x = (xn)∞1 in the following way: xn = 1 − 1
j

for n ∈ Dj

(j = 1, 2, . . .). Then each number 1 − 1
j

(j = 1, 2, . . .) is an Id-limit

point of x and obviously no number greater than 1 is an Id-limit point
of x Further, it follows from the Definition 3.1 that Id - lim sup x = 1.

We show that the number 1 is not Id-limit point of x. By contra-
diction. Suppose that 1 is an Id-limit point of x. Then there is a set
M = {m1 < m2 < . . .} ⊂ N such that

(31) d(M) > 0, lim
k→∞

xmk = 1.

The definition of x and (31) imply that the set M has a finite inter-

section with each set Dj (j = 1, 2, . . .). Since N =
∞⋃
j=1

Dj, we have

M =
∞⋃
j=1

(M ∩Dj). The equality

M =
k⋃
j=1

(M ∩Dj) ∪
∞⋃

j=k+1

(M ∩Dj)

holds for each fixed k. Hence it follows

(32) d(M) = lim sup
n→∞

M(n)

n
≤

k∑
j=1

lim sup
n→∞

(M ∩Dj)(n)

n
+ d(E),

where E =
∞⋃

j=k+1

(M ∩Dj).

Since every of the sets M ∩Dj is finite, (32) implies d(M) ≤ d(E).
The E is obviously contained in the set of all multiples of 2k, conse-
quently d(M) ≤ 2−k. The last inequality holds for each k = 1, 2, . . .
and we have d(M) = 0. A contradiction with respect to (31).

We have shown that the sequence x = (xn) has no greatest Id-limit
point, but it has Id - lim sup x equal to 1.

In connection with above example we have for bounded sequences
the following result.
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Theorem 3.5. Let x = (xn) ∈ `∞ and let I(Γx) be the set of all
I-cluster points of x. Then

I- lim sup x = max I(Γx).

Remark 3.4. It can be shown for a bounded sequence x = (xn) the
equality

I- lim inf x = min I(Γx).

Proof of Theorem 3.5. Put L = I- lim sup x. Suppose L′ > L. First
we show that L′ is not in I(Γx). We have

(33) L = supS, S = {t : {n : xn > t} /∈ I}.
Choose ε > 0 such that L < L′ − ε < L′. Then L′ − ε /∈ S and
{n : xn > L′ − ε} ∈ I. If follows from the definition of I-cluster point
that L′ /∈ I(Γx).

We show L ∈ I(Γx). Let η > 0. It follows from (33) that there is a
t0 ∈ R such that L− η < t0 ≤ L, t0 ∈ S. Hence

(34) {n : xn > t0} /∈ I.
Simultaneously, since L+ η

2
/∈ S, we have

(34’) {n : xn > L+
η

2
} ∈ I.

It follows from (34) and (34’) {n : xn ∈ (L − η, L + η)} /∈ I and
L ∈ I(Γx). �

Remark 3.5. For unbounded sequences the set I(Γx) can be void.
Example: x = 1,−1, 2,−2, . . .

4. Maximal ideals in `∞, F (I) and F (I∗)
Further we will deal with the rings of sequences of real numbers `∞,

F (I) and F (I∗) from the algebraical point of view. We will give a
connection between algebraic maximal (proper) ideals A in these rings
and maximal (proper) ideals I in N.

First recall some well-known facts about ideals in rings (see, e.g. [16],
[6], [2]). Let R be a commutative ring with 1. Then A is a maximal
proper ideal in R if and only if R/A is a field. Obviously, if 1 ∈ A
then the ideal A is not proper. In the next we will use the following
consequences of the axiom of choice.

Lemma 4.1. Every proper ideal A in a commutative ring R is con-
tained in a maximal ideal A0 in R.
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Lemma 4.2. Let U = {Ui} be a family of subsets of X such that no
finite subfamily of U covers X. Then the family U can be extended to
a maximal ideal I in X.

For sequences x = (xn), y = (yn) of real numbers we put x + y =
(xn + yn) and x.y = (xn.yn). Then `∞, F (I) and F (I∗) (I is an
admissible ideal in N) are commutative rings with 1 = (1) with + and
· defined in this way.

In the next statement we will admit that the maximal ideal I in N
need not be admissible, i.e., I fulfils only conditions of Definition B.
A detail analysis of the proof of Theorem 2.2 shows that the condition
on I to be admissible is superfluous. In this form Theorem 2.2 is used
in the proof of the following theorem.

Theorem 4.1. Let S be a subring of `∞ such that:

(i) S contains all constant sequences,
(ii) if (xn) ∈ S and xn > K > 0 for some real K and every n ∈ N,

then the sequence
(

1
xn

)
∈ S.

Then A is a maximal ideal in S if and only if there exists maximal ideal
I in N such that

A = AI = {x = (xn) ∈ S; I- lim xn = 0}.
Proof. Suppose that I is a maximal ideal in N. Obviously AI is an ideal
in S. We show that AI is maximal. According to Theorem 2.2 there
exists I- lim xn for each (xn) ∈ `∞. We can define a homomorphism
ΦI : S → R such that ΦI(x) = I- lim xn. Since S contains all constant
sequences, ΦI is surjective. Clearly AI = KerΦI and S/AI = R. Thus
AI is a maximal ideal.

We show that every maximal ideal in S is of the form AI for some
maximal ideal I in N. Let M(N) be the set of all maximal ideals in
N. Assume that A is an ideal in S which is not contained in any AI ,
I ∈ M(N). Then for each maximal ideal I ∈ M(N) there exists a
sequence (xn) ∈ A such that xn ≥ 0 and I- lim xn = L > 0. Thus there
exists VI ∈ F(I) such that xn >

L
2

for every n ∈ VI . We show that
there exist a finite set

(35) {I1, I2, . . . , Im}

such that N ⊂
m⋃
k=1

VIk . In the opposite case {VI ; I ∈ M(N)} fulfils

assumptions of the Lemma 4.2 and there exists a maximal ideal I0

with {VI ; I ∈M(N)} ⊂ I0. Thus we have VI0 ∈ I0 and VI0 ∈ F(I0), a
contradiction.



I-CONVERGENCE AND EXTREMAL I-LIMIT POINTS 21

For I1, . . . , Im from (35), let x(i), i = 1, . . . ,m, be the sequence x(i) =

(x
(i)
n ) ∈ A satisfying x

(i)
n > 0 and x

(i)
n > Li

2
for n ∈ VIi (Li = Ii - lim x

(i)
n ).

Put zn = x
(1)
n + . . . + x

(m)
n . Then (zn) ∈ A and zn > min

1≤i≤m
Li
2
> 0 for

each n ∈ N. It follows from (ii) that
(

1
zn

)
∈ S and 1 =

(
zn · 1

zn

)
∈ A,

hence A is not a proper ideal in S. �
Corollary 4.1. The set A ⊂ `∞(F (I), F (I∗)) is a maximal ideal in
`∞(F (I), F (I∗)) if and only if there exists a maximal ideal J in N such
that

A = AJ = {x = (xn) ∈ `∞(F (I), F (I∗)) : J - lim xn = 0}.
Example 4.1. Note that if I is the maximal ideal consisting exactly of
all subset of N which does not contain m ∈ N, we receive the maximal
ideal

A = {x = (xn) ∈ S : xm = 0}
in S.
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