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Abstract

This talk is mainly concerned with two generalizations of convergence
of sequences called I-convergence and I∗-convergence. We will mention
some other generalizations of limit which are related to I-convergence,
e.g Banach limit and statistical convergence.

1 Generalizations of limit

The notion of limit is one of the central notions in mathematical analysis. No
wonder it was generalized by mathematicians in various ways.

One of natural generalizations of limit is to define an operator extending the
usual limit which assigns a value to some non-convergent sequences too.

For example if we want define an extended limit in a such way that the
sequence

(1, 0, 1, 0, . . .)

has a limit, one would expect that this limit to be 1
2 . Example of an operator

satisfying this condition is the Cesàro mean. The Cesàro mean of the sequence
(an) is the sequence

bn =
a1 + . . . + an

n

of arithmetic means of first n elements. It can be verified that if (an) is con-
vergent then (bn) converges to the same limit. The limit of Cesàro mean of
the sequence (1, 0, 1, 0, . . .) is 1

2 , as we expected. We see, that the operator
ϕ(an) = lim

n→∞
bn is an operator which extends the usual limit. (This is also

known as (C, 1)-convergence. Cesàro summability or (C, 1)-summability is anal-
ogous generalization of a sum of a series. Summability methods like this are
studied in summability theory.)

Stefan Banach proved in [4] that limit can be extended to an operator on
all bounded sequences. He proved the existence of so called Banach limit, i.e.,
a continuous linear functional ϕ : `∞ → R defined on the set `∞ of all bounded
real sequences such that for any real sequences x = (xn), y = (yn) it holds:

• ϕ(c.x + d.y) = c.ϕ(x) + d.ϕ(y); (linearity)

• if x ≥ 0, then ϕ(x) ≥ 0; (positivity)

• ϕ(x) = ϕ(Sx), where Sx is the shift operator defined by S(xn) = (xn+1).
(shift-invariance)
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• If x is a convergent sequence, then ϕ(x) = lim x. (extends the usual limit)

The existence of Banach limit is proved in mathematical analysis usually by
Hahn-Banach theorem. (This proof can be found e.g. in [23], [8] or [17].) We
will prove the existence of Banach limit using I-convergence.

We could note that the sequence x = (1, 0, 1, 0, . . .) has a very special prop-
erty. Let ϕ be any Banach limit. Observe that x + Sx = (1, 1, 1, 1, . . .). Thus
ϕ(x) + ϕ(Sx) = 1 = 2.ϕ(x) and ϕ(x) = 1

2 for any Banach limit ϕ. A bounded
sequence with this property, that every Banach limit has the same value, is
called almost convergent.

The following characterization of almost convergent sequences is due to
Lorentz [16]. (For an alternative proof see [5].)

A sequence (xn) is almost convergent if and only if

lim
p→∞

xn + . . . + xn+p−1

p
= L

uniformly in n.
The above limit can be rewritten in detail as

(∀ε > 0)(∃p0)(∀p > p0)(∀n)
∣∣∣∣
xn + . . . + xn+p−1

p
− L

∣∣∣∣ < ε.

The shift-invariance cannot be fulfilled along with the property ϕ(xn.yn) =
ϕ(xn).ϕ(yn) at the same time. Simply note that for the sequence x = (1, 0, 1, 0, . . .)
it holds x.Sx = (0, 0, . . .) and ϕ(x).ϕ(Sx) 6= 0 = ϕ(x.Sx). (In fact, if we want
the limit operator ϕ to preserves the multiplication, then from x.x = x we get
ϕ(x)2 = ϕ(x) and ϕ(x) ∈ {0, 1}.) We are going to introduce another general-
ization of convergence which preserves multiplication of sequences.

In general, Banach limit is not determined uniquely. There exist many se-
quences which can have various Banach limits. (We will see this later.) In a
certain sense, most sequences are not almost convergent (see [7]).

2 I-convergence

2.1 Definition

We next introduce the I-convergence which is a generalization of the ordinary
convergence. We follow the introductory article [14]. Other good introductory
articles are e.g. [18] and [13].

We first need to recall the definitions of some other notions.

Definition 2.1. A non-empty subset I of P(N) is called an ideal on N if

(i) B ∈ I whenever B ⊆ A for some A ∈ I (closed under subsets)

(ii) A ∪B ∈ I whenever A,B ∈ I (closed under unions)

An ideal is called proper if N /∈ I. An ideal is called maximal if it is a proper
ideal which is maximal with respect to inclusion. An ideal is called admissible
if it is proper and contains all finite subsets.
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Reader should be warned at this point, that many concepts mentioned in
this exposition are more frequently defined using limit along a filter. Filter is
a dual notion to ideal - it is closed under supersets and intersections. It holds
that {N \A; A ∈ I} is a filter if and only if I is ideal. I.e. there is a one-to-one
correspondence between ideals and filters. As this talk follows [14], we will use
ideals in all definitions. But we will point out where appropriate that some
notions are more familiar for filters, we try to include references when possible.

Because of this duality every result or definition using ideals can be refor-
mulated using filters and vice-versa. Just a short comment on terminology:
Maximal ideals correspond to ultrafilters, admissible ideals correspond to free
filters.

We will need the following characterization of maximal ideals (more fre-
quently introduced for ultrafilters).

Lemma 2.2. An ideal I is maximal if and only if for any subset A ⊆ N it holds
either A ∈ I or N \A ∈ I.
Proof. If an ideal I satisfies the above condition then by adding any new set A
to ideal we see that any ideal containing A and I contains A∪ (N \A), hence it
is not proper.

If an ideal doesn’t satisfy this condition, i.e. there is a set A with A /∈ I and
N \A /∈ I, then I ′ = {C ⊆ A′ ∪B; A′ ⊆ A,B ∈ I} is a proper ideal.

It is easy to see that ∅ ∈ I for any ideal. Ideal can be viewed as a way
to describe which sets will be considered “small”. (Filter is collection of all
“large” sets.) It is known that Axiom of Choice implies that any proper ideal
is contained in a maximal ideal. (This result is more common in the form: Any
filter is contained in an ultrafilter.)

Definition 2.3. Let I ⊂ P(N) be a proper ideal in N. The sequence x = (xn)
of reals is said to be I-convergent to L ∈ R, if for each ε > 0 the set

A(ε) = {n : |xn − L| ≥ ε}

belongs to I.
If x = (xn) is I-convergent to L then we write I- lim x = L or I- lim xn = L.

The number L is I-limit of the sequence x.

The definition of I-convergence can be interpreted very simply - it states
that the set A(ε) of “bad” indices is small. For the usual convergence small
means finite, here small set means a set in I.

For the introduction of limit along a filter (also called F-limit) see e.g. [2,
p.122, Definition 8.23], [12, p.206, Definition 2.7], [18], [1] (and many others -
some set-theoretical expositions define this notion in the chapter on filters).

We will deal only with the case of real sequences, but without any changes
the same definition can be used for metric spaces (as it was defined in [14]) or
topological spaces (see [15] or [21]).

We will introduce examples of several ideals and corresponding I-convergences.
Also other questions, such as properties and concepts analogous to known prop-
erties of the usual convergence or the statistical convergence are studied.
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2.2 Examples of some interesting ideals

Fréchet ideal and the usual convergence. We should first describe the
relation to the usual convergence. The ideal If consisting of all finite sets will be
called Fréchet ideal. Clearly, If -convergence is precisely the usual convergence.

Since If ⊆ I for any admissible ideal I, the usual convergence implies I-
convergence.

Asymptotic density and statistical convergence.

Definition 2.4. Let A be a subset of N. We put A(n) = |{k ∈ A; k ≤ n}| .
The asymptotic density of A is the limit

d(A) := lim
n→∞

A(n)
n

,

if this limit exists.

We see that asymptotic density is limit of frequencies of numbers in the sets
{0, 1, . . . , n}, therefore it is (when it exists) intuitively correct measure of size
of subsets of integers.

It can be easily verified that d(A∪B) = d(A)+d(B) if A and B are disjoint
subsets. Using this fact we can show that:

Lemma 2.5. The set Id := {A ⊆ N; d(A) = 0} is an ideal.

Id-convergence was extensively studied (see e.g. [10] or [19]), it is known as
statistical convergence.

Asymptotic density and statistical convergence are frequently used in num-
ber theory. Asymptotic density is (in some context) appropriate way to describe
whether a subset of natural numbers is small or large.

The statistical convergence is perhaps the most important example in con-
nection with the I-convergence, because the research in I-convergence was mo-
tivated mainly by known results on statistical convergence.

Van der Waerden’s ideal and the ideal Ic. There are also systems of
subsets of N for which proving the properties of ideal is far from trivial. Let us
put W = set of all subsets of N which don’t contain arbitrary long arithmetic
progressions. Famous theorem of Van der Waerden implies that W is an ideal.
(The Van der Waerden’s result can be rephrased as: A ∪ B contains arbitrary
long AP’s⇒ one of the sets A, B contains arbitrary long AP’s.) Another famous
theorem of Szemerédi says that W ⊂ D.

The problem whether the set of all prime numbers P belongs to W was
long standing open problem. It was recently shown by Tao and Green [11] that
primes contains arbitrary long arithmetic progressions.

An open conjecture of Erdös says that every set {n1 < n2 < . . .} such that
∞∑

k=1

1
nk

diverges contains arbitrary long arithmetic progressions. It can be shown

that Ic = {A ⊆ N;
∞∑

k=1

1
ak

< ∞} is an ideal. Thus this conjecture can be restated

using these ideals as follows: W ⊆ Ic.
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2.3 Basic properties of I-convergence

The proofs of the following properties are not very hard and they are, to a
certain extent, analogous to the proofs in the case of the usual convergence.
Therefore these proofs will be omitted, they can be found e.g. in [13].

Proposition 2.6. Let I be an admissible ideal.

(i) If lim
n→∞

xn = L then I- limxn = L.

(ii) If I- limxn exists, then lim inf xn ≤ I- limxn ≤ lim sup xn.

(iii) The I-limits are unique.

(iv) I- lim(axn + byn) = a I- limxn + b I- lim yn (provided the I-limits of (xn)
and (yn) exist).

(v) I- lim(xn.yn) = I- limxn. I- lim yn (provided the I-limits of (xn) and (yn)
exist).

Proposition 2.7. If I is a maximal ideal then any bounded sequence is I-
convergent.

Proof. Let (xn) be a bounded sequence. Choose a0 and b0 such that a0 ≤ xn <
b0. Put c0 := a0+b0

2 . Then precisely one of the sets {n ∈ N; xn ∈ 〈a0, c0)},
{n ∈ N; xn ∈ 〈c0, b0)} belongs to the ideal I. (They are complement of each
other and the ideal I is maximal.) We choose 〈a1, b1) as that subinterval from
〈a0, c0) and 〈c0, b0) for which {n ∈ N;xn ∈ 〈a1, b1)} doesn’t belong to I.

Now we again bisect the interval 〈a1, b1) by putting c1 = a1+b1
2 . If both sets

{n ∈ N; xn ∈ 〈a1, c1)}, {n ∈ N; xn ∈ 〈c1, b1)} belonged to I, then their union
{n ∈ N; xn ∈ 〈a1, b1)} would belong to I. Thus at least one of them is not in
I. We choose the corresponding interval for 〈a2, b2).

By induction we obtain the monotonous sequences (an), (bn) with the same
limit lim

n→∞
an = lim

n→∞
bn := L such that for any k ∈ N it holds {n ∈ N; xn ∈

〈ak, bk)} /∈ I.
We claim that I- lim xn = L. Indeed, for any ε > 0 there is m ∈ N such

that 〈am, bm) ⊆ (L − ε, L + ε), thus A(ε) ⊆ {n ∈ N;xn /∈ 〈am, bm)}. The set
{n ∈ N; xn /∈ 〈am, bm)} belongs to I (its complement doesn’t belong to I and
I is maximal) hence A(ε) ∈ I as well.

If we modify the definition of the I-limit such that we allow ±∞ as the value
of limit, then every (not only bounded) sequence has I-limit for a maximal ideal
I.

Proposition 2.8. If L is a cluster point of a sequence (xn) (i.e. there is a
subsequence xnk

with lim
k→∞

xnk
= L) then there is an ideal I with I- lim xn = L.

Proof. It suffices to prove the existence of a proper ideal with N \ {nk; k ∈ N} ∈
I, or, equivalently, with {nk; k ∈ N} /∈ I. We can take the ideal generated by
N \ {nk; k ∈ N} and all finite sets.

The converse inclusion holds as well, thus the set of all cluster points coin-
cides with the set of all I-limits.

Propositions 2.7 and 2.8 are stated in their “filter form” e.g. in [2] and [12].
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Using Proposition 2.8 we can see that for our first example – the sequence
(1, 0, 1, 0, . . .) – we can obtain only values 0 or 1 by taking I-limits. (We’ve
already mentioned that the same holds for any multiplicative limit operator.)
This doesn’t look very intuitive, but everything can be saved using the Cesàro
mean. This is the principle of the following construction of Banach limit.

Construction of Banach limit. Again we should note that the following
construction is more common with ultrafilters in literature.

Let I be a maximal ideal on N. Let (xn) be a bounded sequence. The Cesàro
mean of (xn) is then bounded as well. Thus it has an I-limit and the functional

ϕ(xn) = I- lim
x1 + . . . + xn

n

is well defined. We claim that ϕ is a Banach limit.
Continuity, positivity, linearity and extension of the usual limit are clear.

It only remains to prove the shift-invariance. To show this, simply observe
that x1+...+xn

n − (Sx)1+...+(Sx)n

n = x1+...+xn

n − x2+...+xn+1
n = x1−xn+1

n . As the
sequence (xn) is bounded, the last expression converges to 0 and the I-limit of
both sequences must be the same.

Since we used maximal ideals in our construction of Banach limit, this proof
needs Axiom of Choice.

We can now construct a sequence which is not almost convergent. We put
xn = 0 for 32k ≤ n < 32k+1 and xn = 1 for 32k+1 ≤ n < 32k+2, k ∈ N. Let
(yn) be the Cesàro mean of (xn). By an easy computation one can show that
y32k+1 ≤ 1

3 and y32k ≥ 2
3 , therefore at least two different values of a Banach

limit can be obtained as an I-limit of yn for a maximal ideal I.

3 I∗-convergence

We will define one more kind of convergence related to ideals.

Definition 3.1. Let I be an admissible ideal. We say that a sequence (xn) of
real numbers I∗-converges to L if there exists a set M = {m1 < m2 < . . .} such
that N \M ∈ I and lim

k→∞
xmk

= L.

Intuitively, this definition can be understood in a such way that there exists
a “large” set M ⊆ N such that xn converges to L along this set.

I∗ is in some situations better applicable. Relationship of these 2 kinds of
convergence is described in the following two results.

Proposition 3.2. If a sequence is I∗-convergent, then it is I-convergent to the
same limit.

Proof. Let M = {m1 < m2 < . . .} be the set such that N \ M ∈ I and
lim

k→∞
xmk

= L. Then A(ε) contains only finitely many members of M for any ε.

Hence it is union of the set N \M and a finite set, thus A(ε) ∈ I.

Theorem 3.3 ([14, Theorem 3.3]). I-convergence and I∗-convergence are equiv-
alent if and only if the ideal I satisfies the following condition (AP): For any
countable family {Ai, i ∈ N} of mutually disjoint sets (Ai ∩ Aj = ∅ for i 6= j)
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from I there exists a countable family {Bi, i ∈ N} such that the symmetric

difference Ai 4Bi is finite for every i ∈ N and B =
∞⋃

i=1

Bi belongs to I.

(AP) stands for additive property, it is similar to σ-additivity - although the
ideal is not countable additive, after changing only finitely many elements of
each set, we get a system whose union is in I.

It is known, for instance, that the Id and I∗d convergence are equivalent.
There are examples of ideals for which these 2 types of convergence are not

equivalent. Perhaps the simplest example is the example which appears in [14,
Theorem 3.1(ii)], [15, Theorem 7] and [13, Example 2.1].

4 Some applications of I-limits

Density measures.

Definition 4.1. A finitely additive measure µ on N is a function µ : P(N) →
〈0, 1〉 such that µ(A ∪ B) = µ(A) + µ(B) for all disjoint A,B ⊆ N. Here we
moreover require finitely additive measure to be normed, i.e. µ(N) = 1.

S. Banach proved in [3] that the asymptotic density can be extended to a
finitely additive measure on N. (The finitely additive measures on N extending
the asymptotic density are sometimes called density measures, [24], [6], [20],
[22]). We now show another procedure yielding density measures. (Again, this
construction more frequently employs ultrafilters, see e.g. [2, Theorem 8.33],
[12, p.207], [6].)

Recall the sequence A(n)
n . This sequence is bounded. Thus for any maximal

ideal I there exists the I-limit

µ(A) = I- lim
A(n)

n
.

We claim that µ is a density measure. It is easy to see that µ is defined for all
subsets of N and µ(N) = 1. The finite additivity follows from the simple fact
that for disjoint A, B it holds (A ∪B)(n) = A(n) + B(n).

A density measure can be constructed using any Banach limit instead of
I-limit, see [9].
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