Lévy group and density measures

Martin Sleziak and Miloš Ziman

September 3–5, 2007
Main topics:
▶ density measures
▶ Lévy group

They have applications e.g. in number theory and, more recently, theory of social choice.

We will show that a normalized finitely additive measure on \mathbb{N} extends density if and only if it is preserved by permutations from the Lévy group. We will also present a new characterization of the Lévy group via statistical convergence.
The asymptotic density of $A \subseteq \mathbb{N}$ is defined by

$$d(A) = \lim_{n \to \infty} \frac{A(n)}{n}$$

if this limit exists, where

$$A(n) = |A \cap \{1, 2, \ldots, n\}|.$$

\mathcal{D} = the set of all subsets of \mathbb{N} having asymptotic density

Drawback: Some sets do not have asymptotic density. Is it possible to extend d to a finitely additive measure?
Density measure

We will call a finitely additive normalized measure on \(\mathbb{N} \) briefly a measure.

Definition

A *density measure* is a finitely additive measure on \(\mathbb{N} \) which extends the asymptotic density; i.e., it is a function \(\mu : \mathcal{P}(\mathbb{N}) \to [0, 1] \) satisfying the following conditions:

(a) \(\mu(\mathbb{N}) = 1 \);
(b) \(\mu(A \cup B) = \mu(A) + \mu(B) \) for all disjoint \(A, B \subseteq \mathbb{N} \);
(c) \(\mu|_{\mathcal{D}} = d \).
The term density measures was probably coined by Dorothy Maharam [M].

Density measures were studied by many authors, e.g.

- Blass, Frankiewicz, Plebanek and Ryll–Nardzewski [BFPRN]
- van Douwen [vD]
- Šalát and Tijdeman in [ŠT].
Existence of density measures

Existence of density measures is usually proved using either Hahn-Banach theorem or ultrafilters.

If \mathcal{F} is any free ultrafilter on \mathbb{N} then

$$\mu_{\mathcal{F}}(A) = \mathcal{F}\text{-lim} \frac{A(n)}{n}$$

is a density measure

$$\mathcal{F}\text{-lim} a_n = L \iff \{ n \in \mathbb{N}; |a_n - L| < \varepsilon \} \in \mathcal{F} \text{ for each } \varepsilon > 0$$
Lévy group

Definition

The Lévy group \(G \) is the group of all permutations \(\pi \) of \(\mathbb{N} \) satisfying

\[
\lim_{n \to \infty} \frac{\{|k; k \leq n < \pi(k)\}|}{n} = 0. \tag{1.1}
\]

\[
\pi \in G \iff \lim_{n \to \infty} \frac{A(n) - (\pi A)(n)}{n} = 0 \text{ for all } A \subseteq \mathbb{N}. \tag{1.2}
\]
Equivalent characterization of \mathcal{G}

\[
\pi \in \mathcal{G} \iff \limstat_{n \to \infty} \frac{\pi(n)}{n} = 1
\]

(1.3)

Recall that $\limstat_{n \to \infty} x_n = L$ iff for every $\varepsilon > 0$ the set $A_\varepsilon = \{n; |x_n - L| \geq \varepsilon\}$ has zero asymptotic density ($d(A_\varepsilon) = 0$).

\mathcal{F}-lim for $\mathcal{F} = \{A \subseteq \mathbb{N}; d(A) = 1\}$
Theorem

A measure μ on \mathbb{N} is a density measure if and only if it is \mathcal{G}-invariant, i.e., $\mu(A) = \mu(\pi A)$ for all $A \subseteq \mathbb{N}$ and all permutations $\pi \in \mathcal{G}$.

Introduction

Main results

Applications

References
\mathcal{G}-invariance

We use van Douwen’s result [vD, Theorem 1.12]:

Theorem

A measure μ on \mathbb{N} is a density measure if and only if $\mu(A) = \mu(\pi A)$ for all $A \subseteq \mathbb{N}$ and all permutations $\pi : \mathbb{N} \to \mathbb{N}$ such that

$$\lim_{n \to \infty} \frac{\pi(n)}{n} = 1.$$ \hspace{1cm} (2.1)

$$\Rightarrow \quad (1.3)$$

\mathcal{G}-invariant \Rightarrow density measure

This implication follows also from a result of Blümlinger and Obata [BO, Theorem 2].
The proof of the opposite implication uses the following result (Fridy [F, Theorem 1] or Šalát [Š, Lemma 1.1]):

Theorem

A sequence \((x_n)\) is statistically convergent to \(L \in \mathbb{R}\) if and only if there exists a set \(A\) such that \(d(A) = 1\) and the sequence \(x_n\) converges to \(L\) along the set \(A\), i.e., \(L\) is limit of the subsequence \((x_n)_{n \in A}\).
Basic idea of the proof

If \(\pi \) fulfills (1.3)

\[
\pi \in \mathcal{G} \iff \lim \text{stat} \frac{\pi(n)}{n} = 1
\]

it can be modified to \(\psi \) fulfilling (2.1)

\[
\lim_{n \to \infty} \frac{\psi(n)}{n} = 1
\]

and \(\pi A \) and \(\psi A \) differ only in a set of zero density.

\[
\mu(A) = \mu(\psi A) = \mu(\pi A)
\]
Proposition

If π is a permutation such that every density measure is π-invariant, i.e., $\mu(\pi A) = \pi A$ for every $A \subseteq \mathbb{N}$ and every density measure μ, then $\pi \in \mathcal{G}$.
Blümlinger [B]:

\[2\mathcal{F} = \{ B \subseteq \mathbb{N}; B \supseteq 2A \text{ for some } A \in \mathcal{F} \} \]

(the ultrafilter given by the base \(\{2A; A \in \mathcal{F}\} \))

\[
\mu(A) = 2 \ (2\mathcal{F})\text{-lim} \frac{A(n)}{n} - \mathcal{F}\text{-lim} \frac{A(n)}{n}
\]

is a density measure

Let \(A = \bigcup_{i=1}^{\infty} \{2^2^i, 2^2^i + 1, \ldots, 2.2^2^i - 1\} \) and \(\{2^2^i; i \in \mathbb{N}\} \in \mathcal{F} \).

Then \(\mu(A) = 1 \) and \(\overline{d}(A) = \frac{1}{2} \).
An interesting density measure

A negative answer van Douwen [vD, Question 7A.1]: Does $\mu(A) \leq \bar{d}(A)$ hold for every density measure?

Counterexample to the following claim of Lauwers [L, p.46]:

Every density measure can be expressed in the form

$$\mu_\varphi(A) = \int_{\beta\mathbb{N}^*} \mathcal{F}\text{-lim} \left(\frac{A(n)}{n} \right) \, d\varphi(\mathcal{F}), \quad A \subseteq \mathbb{N} \quad (3.1)$$

for some probability Borel measure φ on the set of all free ultrafilters $\beta\mathbb{N}^$.*
Šalát and Tijdeman [ŠT]: Has every density measure the following properties?

a) If \(A(n) \leq B(n) \) for all \(n \in \mathbb{N} \) then \(\mu(A) \leq \mu(B) \) (where \(A, B \subseteq \mathbb{N} \)).

b) If \(\lim_{n \to \infty} \frac{A(n)}{B(tn)} = 1 \) then \(\mu(A) = t\mu(B) \) (where \(A, B \subseteq \mathbb{N} \) and \(t \in \mathbb{R} \)).

Answer to both these questions is negative.

a) If \(\mu(A) > \overline{d}(A) \) and \(d(B) \in (\overline{d}(A), \mu(A)) \) then \(B(n) > A(n) \) for \(n > n_0 \), but \(\mu(A) > d(B) = \mu(B) \).

b) In the preceding example we have \(\mu(A) = 1 \) and \(\mu(2A) = 0 \).
Thanks for your attention!

The preprint [SZ] presented here, as well as the text of this talk and these slides can be found at:
http://thales.doa.fmph.uniba.sk/sleziak/papers/

Email: sleziak@fmph.uniba.sk
M. Blümlinger.
Lévy group action and invariant measures on $\beta \mathbb{N}$.

A note on extensions of asymptotic density.

M. Blümlinger and N. Obata.
Permutations preserving Cesáro mean, densities of natural numbers and uniform distribution of sequences.

J. A. Fridy.
On statistical convergence.

L. Lauwers.
Intertemporal objective functions: strong Pareto versus anonymity.

D. Maharam.
Finitely additive measures on the integers.

T. Šalát.
On statistically convergent sequences of real numbers.
Mathematica Slovaca, 30:139–150, 1980.

T. Šalát and R. Tijdeman.
Asymptotic densities of sets of positive integers.

M. Sleziak and M. Ziman.
Density measures.
submitted.
E. K. van Douwen.
Finitely additive measures on \mathbb{N}.