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Abstract. We prove that every topological space (T0-space, T1-space) can be
embedded in a pseudoradial space (in a pseudoradial T0-space, T1-space). This
answers the Problem 3 in [2]. We describe the smallest coreflective subcategory A
of Top such that the hereditary coreflective hull of A is the whole category Top.

1. Introduction

Pseudoradial or chain-net spaces were introduced by H. Herrlich in [6]. In
the paper [2] A. V. Arhangel’skĭı, R. Isler and G. Tironi asked whether every
topological space is a subspace of a pseudoradial space. The question was asked
again in Nyikos’ survey [10].

In [11] J. Zhou proved that under the assumption p = c every countable T2-
prime space is a subspace of a pseudoradial T2-space and, as a consequence, he
obtained that every space of countable tightness embeds in a pseudoradial space.

In this paper we show that every topological space (T0-space, T1-space) can be
embedded in a pseudoradial space (in a pseudoradial T0-space, T1-space). This
follows from the fact that any topological power of the Sierpiński doubleton is a
pseudoradial (T0-)space.

We also give a characterization of coreflective subcategories A of Top for which
every space can be embedded in a space that belongs to A.

2. Preliminaries and notations

The classes of spaces investigated in this paper are closed under the formation
of topological sums and quotient spaces. In the categorical language, they are
coreflective subcategories of the category Top of topological spaces. We recall
some properties of coreflective subcategories of Top which seem to be useful for
our investigations (see e.g. [7], [1]).

Let A be a full and isomorphism-closed subcategory of Top. Then A is core-
flective if and only if it is closed under the formation of topological sums and
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quotient spaces. If B is a class of topological spaces (a subcategory of Top) then
by CH(B) we denote the coreflective hull of B i.e. the smallest coreflective sub-
category of Top containing B. CH(B) consists of all quotients of sums of spaces
which belong to B.

Let A be a subcategory of Top and let SA denote the subcategory of Top
consisting of all subspaces of spaces from A. Then the following result is known
(see [9,Remark 2.4.4(5)] or [3,Proposition 3.1]).

Proposition 2.1. If A is a coreflective subcategory of Top, then SA is also a
coreflective subcategory of Top. (SA is the coreflective hereditary hull of A.)

Given a topological space X and a point a ∈ X, denote by Xa the space
constructed by making each point, other then a, isolated with a retaining its
original neighborhoods. (I.e. a subset U ⊆ X is open in Xa if and only if a /∈ U
or there exists an open subset V of X such that a ∈ V ⊆ U .)

We say that a coreflective subcategory A of Top is nontrivial if FG ⊆ A. (FG
denotes the class of all finitely generated topological spaces.) In [3,Proposition
3.5] it is shown that

Proposition 2.2. If A is a nontrivial hereditary coreflective subcategory of Top,
then for each X ∈ A and each a ∈ X the prime factor Xa of X at a belongs to
A.

Cardinals are initial ordinals where each ordinal is the (well-ordered) set of its
predecessors. We denote the class of all ordinal numbers by On, the class of all
infinite cardinals by Cn and the class of all regular cardinals by RCn.

Transfinite sequence is a net defined on an infinite ordinal. In particular, a
transfinite sequence defined on the ordinal α is said to be an α-sequence.

A topological space X is said to be a prime space if it contains precisely one
accumulation point.

Finally, let t(X) denote the tightness of X and α be an infinite cardinal. By
Gen(α) we denote the subcategory of Top consisting of all spaces X with t(X) ≤
α. It is well known that Gen(α) is a coreflective subcategory of Top. Moreover,
it is the coreflective hull of the class of all prime spaces P with cardP ≤ α.

3. Subspaces of pseudoradial spaces

We start with the definition of pseudoradial and β-sequential space.
A topological space X is said to be pseudoradial if, for any subset A of X,

A is closed whenever together with any transfinite sequence it contains all its
limits. Let β be an infinite cardinal. A space X is said to be β-sequential if, for
any subset A of X, A is closed whenever together with any α-sequence such that
α ≤ β it contains all its limits.

Observe, that if X is a β-sequential space, then X is pseudoradial and if β ≤ γ
and X is β-sequential then X is γ-sequential.

It is useful to characterize β-sequential spaces using β-sequential closure. Let
X be a topological space and A ⊆ X. The β-sequential closure of A is the smallest
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set Ã such that A ⊆ Ã and Ã is closed with respect to limits of α-sequences for
every α ≤ β. Obviously, if A is a subset of X, then Ã ⊆ A and if A ⊆ B ⊆ X,
then Ã ⊆ B̃. The following characterization of β-sequential spaces is well known
and easy to see.

Proposition 3.1. A topological space X is β-sequential if and only if for any
subset A of X Ã = A.

We denote by PsRad the (full) subcategory of Top consisting of all pseudo-
radial spaces, by Psrad(β) the subcategory consisting of all β-sequential spaces
and by SPsrad(β) the subcategory of all subspaces of β-sequential spaces. It is
well known that PsRad and Psrad(β) are coreflective subcategories of Top and,
consequently, SPsrad(β) is also coreflective in Top.

Denote by C(α) the topological space on α∪{α} such that a subset U ⊆ α∪{α}
is open in C(α) if and only if U ⊆ α or card(C(α) \ U) < α. It is known that
Psrad(β) = CH({C(α);α ≤ β;α ∈ RCn}) and PsRad = CH({C(α);α ∈ RCn}).

Next we want to prove that for any infinite cardinal α Gen(α) ⊆ SPsrad(2α).
As a consequence we obtain that every topological space is a subspace of a pseu-
doradial space.

Denote by S the Sierpiński space, i.e. the space defined on the set {0, 1} with
the topology consisting of the empty set, the set {0} and the whole space.

Proposition 3.2. If β is an infinite cardinal, then the topological power Sβ of
the space S is a β-sequential space.

Proof. Let γ be the smallest cardinal such that Sγ is not β-sequential. We want
to show that γ > β. Since for any cardinal α ≤ ω0 S

α is a sequential space (it is
first-countable), γ > ω0. Assume that γ ≤ β. According to Proposition 3.1 there
exists a subset U of Sγ with U \ Ũ 6= ∅ (by Ũ we denote the β-sequential closure
of U).

Let t ∈ U \ Ũ , A = {η ∈ γ; t(η) = 0} and κ = cardA. Clearly, A 6= ∅ and
κ ≤ γ. Consider the subspace K = {s ∈ Sγ ; for each η ∈ γ \ A s(η) = 1}. The
space K is a closed subspace of Sγ , t ∈ K and, obviously, K is homeomorphic to
the space Sκ .

Let us define a map g:Sγ → K by

g(f)(x) =
{
f(x), if x ∈ A
1, if x /∈ A

g is continuous and for every s ∈ Sγ we get g(s) ∈ {̃s}, since the constant
sequence with each term s converges to g(s). Therefore g̃(U) ⊆ Ũ holds for any
subset U ⊆ Sα. It follows from the continuity of g that t ∈ g(U).

If κ < γ, then K is β-sequential, therefore t ∈ g̃(U) ⊆ Ũ . Thus, we obtain
that κ = γ.
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In this case there exists a homeomorphism f :K → Sγ such that f(t) = t0
where t0(η) = 0 for each η ∈ γ. Without loss of generality we can suppose that
K = Sγ and t = t0. For each ξ ∈ γ let fξ denote the element of Sγ given by

fξ(x) =
{

0, for x < ξ,

1, for x ≥ ξ.
It is easy to see that the γ-sequence (fξ)ξ∈γ converges to t0 in Sγ . Since t0 ∈ U
and {t0} = Sγ , we obtain that U = Sγ and therefore fξ ∈ U for each ξ ∈ γ. Put
Aξ = {η ∈ γ; fξ(η) = 0} = {η ∈ γ; η < ξ}. Then for each ξ ∈ γ cardAξ < γ and
according to the preceding part of proof (the case κ < γ) fξ ∈ Ũ . Hence, t0 ∈ Ũ
contradicting our assumption. Thus, γ > β and Sβ is β-sequential. �
Theorem 3.3. Gen(α) ⊆ SPsrad(2α) for every infinite cardinal α.

Proof. Since Gen(α) is the coreflective hull of the class of all prime spaces P with
cardP ≤ α and SPsrad(2α) is coreflective, it suffices to prove that every prime
space P with cardP ≤ α belongs to SPsrad(2α).

Let P be a prime space and cardP ≤ α. Then P is a T0-space and the weight
of P w(P ) = β ≤ 2α. It is well known (see e.g. [5,Theorem 2.3.26]) that P is
embeddable in Sβ . According to Proposition 3.2 Sβ is β-sequential and therefore
it is also 2α-sequential. Hence P belongs to SPsrad(2α). �

As a consequence of the preceding theorem we obtain:

Theorem 3.4. Any topological space is a subspace of a pseudoradial space. More-
over, every T0-space is a subspace of a pseudoradial T0-space.

Proof. The first part is an easy consequence of Theorem 3.3. The second part
follows from the fact that every T0-space is subspace of some Sα ([5,Theorem
2.3.26]) and from Proposition 3.2. �
Remark 3.5. According to Theorem 3.4 the coreflective hereditary hull of PsRad
is Top and according to [3,Example 4.9] the coreflective hereditary kernel of
PsRad is the category FG of all finitely generated spaces.

Theorem 3.4 can be strengthened to the category Top1 of T1-spaces as follows.
Let us recall that the cofinite topology on an underlying set X is the coarsest

T1 topology on this set. Closed sets in the cofinite topology are finite sets and
the whole set X.

For any cardinal number α, let (Sα)1 be the topological space on the set {0, 1}α
with the topology which is the join of the product topology Sα and the cofinite
topology on the set {0, 1}α. If α is finite, then (Sα)1 is discrete space.

Proposition 3.6. Let α be an infinite cardinal. The topological space (Sα)1 is
α-sequential.

Proof. The collection

B1 = {UM ;M ⊆ α,M is finite}, where UM = {f ∈ {0, 1}α; f(m) = 0 for each m ∈M}
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is the canonical base for the product topology Sα. Clearly

B = {UM \ F ;M ⊆ α,M is finite,F ⊆ {0, 1}α, F is finite}

is a base for the topology of the space (Sα)1.
We have to show that if t ∈ U \U then t ∈ Ũ . (By Ũ we denote the α-sequential

closure of U in (Sα)1.) Let us put

At = {η ∈ α; t(η) = 0}.

Assume that, on the contrary, there exist some t ∈ {0, 1}α and U ⊆ {0, 1}α
such that t ∈ U \ U and t /∈ Ũ . Let β be the smallest cardinal number such that
β = cardAt for some t and U satisfying t ∈ U \ U and t /∈ Ũ .

First let β be finite, i.e. let At be a finite subset of α. Then UAt is a neighbor-
hood of t, thus there exists f1 ∈ U ∩ UAt . Since UAt \ {f1} is a neighborhood of
t, there is f2 ∈ U ∩ (UAt \ {f1}). In a similar way we can find for every n < ω,
n ≥ 2, an fn ∈ U ∩ (UAt \ {f1, . . . , fn−1}). We claim that fn → t.

Every basic neighborhood of t has the form UB \F , where F ⊆ Sα and B ⊆ At
are finite subsets. UB contains all terms of the sequence (fn)n<ω and by omitting
the finite subset F we omit only finitely many of them, since this sequence is
one-to-one.

Thus β is not finite and ω ≤ β = cardAt ≤ α. Let {aξ; ξ < β} be a well-
ordering of At. Let us define a function fγ :α→ S by

fγ(x) =
{

0, if x = aξ for some ξ < γ

1, otherwise,

for every γ < β.
If UB \F is a basic neighborhood of fγ , then (UB \F )∪ {t} is a neighborhood

of t. Hence fγ ∈ U . Since the cardinality of the set Aγ = {aξ, ξ < γ} = {η ∈
β; fγ(β) = 0} is less then β and fγ ∈ U , we get fγ ∈ Ũ .

It only remains to show that the sequence fγ converges to t. Any basic neigh-
borhood of t has the form UB \ F , where B ⊆ At, B and F are finite. Let
δ1 = sup{ξ : aξ ∈ B} and δ2 = sup{ξ : fξ ∈ F}. Since F and B are finite,
δ1, δ2 < α. Let δ = max{δ1, δ2}. Then for each γ > δ fγ ∈ UB \ F .

Thus t ∈ Ũ , a contradiction.

Theorem 3.7. Every T1-space is a subspace of a pseudoradial T1-space.

Proof. Let X be a T1-space. Then there exists an embedding e:X ↪→ Sα of X into
some topological power Sα of S. Since X is T1, e:X ↪→ (Sα)1 is an embedding
as well. (Sα)1 is a T1-space and it is pseudoradial by Proposition 3.6.
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4. Coreflective subcategories with SA = Top

In [8] H. Herrlich and M. Hušek suggested to investigate the coreflective sub-
categories of Top for which the coreflective hereditary kernel is the category FG
and the coreflective hereditary hull is the whole category Top. Let S denote the
collection of all such subcategories of Top. We next show that the intersection
of any nonempty family of elements of S belongs to S and S has the smallest
element.

Recall (see Proposition 2.1) that if A is a coreflective subcategory of Top,
then the coreflective hereditary hull of A is SA. We first give a characterization
of coreflective subcategories of Top for which SA = Top.

Theorem 4.1. Let A be a coreflective subcategory of Top. Then SA = Top if
and only if Sα ∈ A for every infinite cardinal α.

Proof. Let A be a coreflective subcategory of Top for which SA = Top and α
be any infinite cardinal. There exists a space X ∈ A such that Sα is a subspace
of X. For each a ∈ α let pa:Sα → S denote the a-th projection of topological
power Sα by onto S. The set (pa)−1(0) is open in Sα so that there exists an open
subset Ua in X such that Ua ∩ Sα = (pa)−1(0). The map fa:X → S given by
fa(x) = 0 for each x ∈ Ua and fa(x) = 1 otherwise is a continuous extension of
pa:Sα → S. The map f :X → Sα with fa = pa ◦ f for each a ∈ α is continuous
and the restriction f |Sα is the identity map on Sα. Hence f is a retraction and,
consequently, f is a quotient map. Thus Sα ∈ A.

Conversely, if for any cardinal α Sα belongs to A, then any prime space belongs
to SA and since SA is a coreflective subcategory of Top we obtain that SA =
Top. �

Corollary 4.2. If {Ai, i ∈ I} is a nonempty collection of coreflective subcate-
gories of Top such that for each i ∈ I SAi = Top and A =

⋂{Ai, i ∈ I}, then
SA = Top.

If, moreover, for each i ∈ I the coreflective hereditary kernel of Ai is FG,
then, obviously, the coreflective hereditary kernel of A is again FG.

Corollary 4.3. A = CH({Sα;α ∈ Cn}) is the smallest coreflective subcategory
of Top such that SA = Top. Obviously, the coreflective hereditary kernel of A
is FG (since FG ⊆ A ⊆ PsRad).

Note that Theorem 4.1, Corollary 4.2 and Corollary 4.3 remain valid after
replacing Top by Top0 (the category of T0-spaces).

We next present another class of (in some sense more convenient) generators
of the category CH({Sα;α ∈ Cn}).

Let α be an infinite cardinal and Bβ = {γ ∈ α ∪ {α}; γ ≥ β} for each β ∈ α.
Then M(α) is the topological space on the set α∪{α} with the topology consisting
of all Bβ , β being a non-limit ordinal less then α or β = 0. These spaces have the
following useful property:
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Proposition 4.4. Let α be an infinite cardinal and M(α) be a subspace of X.
Then there exists a retraction f :X →M(α).

Proof. For every non-limit ordinal β < α denote by Uβ the union of all open
subsets of X with U ∩M(α) = Bβ and put U0 = X. Clearly, if 0 ≤ β < β′ < α
then Uβ % Uβ′ and for each β < α Uβ ∩M(α) = Bβ . Define f :X →M(α) by

f(x) = sup{β ∈ α : x ∈ Uβ}.

Obviously, f−1(Bβ) = Uβ for non-limit ordinal β. Thus f is continuous. Moreover
we have f(β) = β for β ∈M(α) and f is a retraction. �
Theorem 4.5. Let A be a coreflective subcategory of Top and α be an infinite
cardinal. The following statements are equivalent:

(1) Psrad(α) ⊆ SA
(2) Sα ∈ A
(3) M(α) ∈ A

Proof. (1)⇒ (2) By Proposition 3.2 Sα ∈ Psrad(α). Hence Sα ∈ SA, i.e. Sα is a
subspace of a space X ∈ A. Following the proof of Theorem 3.3 we can construct
a retraction f :X → Sα, thus Sα ∈ A.

(2) ⇒ (3) Let Sα ∈ A. The weight of the space M(α) is w(M(α)) = α,
therefore M(α) is a subspace of Sα by [5,Theorem 2.3.26]. Then by Proposition
4.4 there exists a retraction g:Sα →M(α) and M(α) ∈ A.

(3) ⇒ (1) Let M(α) ∈ A. Clearly, M(β) is a subspace of M(α) for every
β < α. (M(β) is the subspace on the set β ∪ {β}.) Thus for every β ≤ α we
have M(β) ∈ SA and C(β) = (M(β))β ∈ SA (using Proposition 2.2). Therefore
Psrad(α) = CH({C(β);β ≤ α}) ⊆ SA. �
Corollary 4.6. Let α be an infinite cardinal number. Then CH(M(α)) = CH(Sα)
and this is the smallest coreflective subcategory of Top such that Psrad(α) ⊆ SA.

Corollary 4.7. CH({M(α);α ∈ RCn}) = CH({Sα;α ∈ Cn}).
Corollary 4.8. Let A be a coreflective subcategory of Top. Then SA = Top if
and only if M(α) ∈ A for every regular cardinal α.

For a topological space X and x ∈ X, t(X,x) denotes the tightness of the point
x in the topological space X.

For any infinite cardinal α, let B(α) be the topological space on the set α∪{α}
with the topology consisting of all sets Bβ = {γ ∈ α ∪ {α}; γ ≥ β} where β < α.

Proposition 4.9. Let A be a coreflective subcategory of Top. Then SA = Top
if and only if for every regular cardinal α A contains a space X such that there
exists x ∈ X with t(X,x) = α and for α = ω0 the prime factor Xx of X at x is,
moreover, not finitely generated.

Proof. One direction follows from t(M(α), α) = α and Theorem 4.5.
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Now let t(X,x) = α and X ∈ A. Then there exists V ⊆ X and x ∈ X with
cardV = α, x ∈ V and x /∈ U for any U ⊆ V , cardU < α. Let Y be the subspace
of X on the set V ∪{x}. Y belongs to SA and by Proposition 2.2 Yx also belongs
to SA.

Next we want to prove that B(α) ∈ SA.
We claim that the topological space Yx is finer than B(α). Indeed, if card(V \

U) < α then x /∈ V \ U and U is neighborhood of x in Y , hence U is open in Yx.
Clearly, the set {x} is not open in Y .

Since cardY = α, we can assume that Y is a topological space on the set
α∪ {α} and x = α. For every γ < δ ≤ α let Sγδ be a Sierpiński topological space
on the set {γ, δ} with the set {δ} open. A subset U ⊆ α ∪ {α} is open in B(α) if
and only if it is open in Yx and U∩{γ, δ} is open in Sγδ for every γ < δ ≤ α (i.e. U
contains with γ ∈ U every δ > γ). Thus B(α) is a quotient space of Yx t (

∐
Sγδ)

and B(α) ∈ SA.
Then the prime factor (B(α))α = C(α) belongs to SA for every regular cardinal

α, hence PsRad ⊆ SA and by Theorem 3.4 SA = Top. �
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