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Abstract. In this paper we generalize the notion of I-continuity, which was defined
in [1] for real functions, to maps on topological spaces. We study the classes of
topological spaces such that for each map on X I-continuity implies continuity.

Introduction

This paper was inspired by [1], where the notion of I-continuity is defined for real
functions. We generalize this notion to functions on arbitrary topological spaces.

It was shown in [7, Proposition 3.3] that for metric spaces I-continuity and
continuity are equivalent. We show that they are equivalent for sequential spaces
as well.

The aim of this paper is to characterize the class of all topological spaces X
such that I-convergence and convergence are equivalent for functions on X. When
studying this class, we associate with each proper ideal I in N a prime space NI
and show how the I-convergence of sequences in X is related to the continuity of
maps from NI to X.

1. Definitions

The notion of I-convergence was defined in [7] for sequences in metric spaces.
It was used in [1] to introduce I-convergence for real functions. These notions can
be simply generalized for functions and sequences in topological spaces.

Definition 1.1. A family I of subsets of N is an ideal in N if
(1) A,B ∈ I ⇒ A ∪B ∈ I,
(2) A ∈ I and B ⊂ A ⇒ B ∈ I.

Let us call an ideal I in N proper if N /∈ I. I is admissible if I is proper and it
contains every singleton. If I is an ideal in N then F(I) = {A : N \ A ∈ I} is the
filter associated with the ideal I.

Definition 1.2. Let I be an ideal in N. A sequence (xn)∞n=1 in a topological space
X is said to be I-convergent to a point x ∈ X if

A(U) = {n : xn /∈ U} ∈ I

holds for each open neighborhood U of x. We denote it by I-limxn = x.
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If I = If is the Fréchet ideal (i.e. the ideal containing exactly all finite subsets
of N) then I-convergence coincides with the usual convergence.

If I is an admissible ideal then If ⊂ I. So If -limxn = x implies I-limxn = x.
One can see easily that if X is a Hausdorff space and I is a proper ideal in N

then I-limxn (if exists) is determined uniquely. (This does not hold in general.)
Using the concept of I-convergence we can define I-continuity in the way anal-

ogous to the Heine definition of limit of a function at a point.

Definition 1.3. Let I be an ideal in N and X, Y be topological spaces. A map
f :X → Y is called I-continuous if for each sequence (xn)∞n=1 in X

I-limxn = x0 ⇒ I-lim f(xn) = f(x0)

holds.

We recall some basic facts concerning coreflective subcategories of the category
Top of topological spaces. Coreflective subcategories of Top are classes of topolog-
ical spaces which are closed under the formation of topological sums and quotient
spaces. We will deal with some such classes in this paper. Therefore some results
can be formulated more simply using coreflective subcategories of Top. No prior
knowledge of them is required.

If A is a class of topological spaces, then the coreflective hull CH(A) of A is the
smallest coreflective subcategory of Top which contains A. A topological space X
belongs to CH(A) if and only if it is a quotient space of a topological sum of spaces
from A.

A topological space X is finitely generated if every intersection of open subsets
of X is open. The class FG is the coreflective hull of the Sierpiński space S. S is
the space on the set {0, 1} with open sets ∅, {0} and {0, 1}.

2. Basic properties of I-continuity

In this section we formulate some basic results concerning I-continuity. We show
that for sequential spaces continuity, I-continuity and If -continuity are equivalent.

It is easy to see that the following proposition holds:

Proposition 2.1. If f :X → Y and g:Y → Z are I-continuous, then g ◦ f is also
I-continuous.

The following two proofs are slightly modified proofs of [7, Proposition 3.3] and
[1, Theorem 1].

Theorem 2.2. Let X, Y be topological spaces and let I be an arbitrary ideal in N.
If f :X → Y is continuous then f is I-continuous.

Proof. Let f :X → Y be continuous and I-limxn = x. Then for each open neigh-
borhood V of f(x) there exists an open neighborhood U of x such that f [U ] ⊂ V .
Hence

{n ∈ N : f(xn) /∈ V } ⊂ {n ∈ N : xn /∈ U} ∈ I
and I-lim f(xn) = f(x).
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Theorem 2.3. Let X, Y be topological spaces and let I be an arbitrary admissible
ideal. If f :X → Y is I-continuous then f is If -continuous.

Proof. Assume that f is I-continuous but it is not If -continuous. Then there exists
a sequence (xn)∞n=1 such that If -limxn = x but it does not hold If -lim f(xn) =
f(x). So there exists an open neighborhood V of f(x) such that A(V ) = {n :
f(xn) /∈ V } /∈ If i.e. A(V ) is infinite. Let (yn)∞n=1 be the subsequence of (xn)∞n=1

given by the subset A(V ) of N. Then {n : f(yn) /∈ V } = N. Also for the subse-
quence (yn)∞n=1 holds If -lim yn = x. Then I-lim yn = x and, by I-continuity of f ,
I-lim f(yn) = f(x). Hence {n : f(yn) /∈ V } = N ∈ I, a contradiction.

An example which shows that implications in Theorem 2.2 and Theorem 2.3 are
not reversible will be given in the next section.

Topological spaces for which If -continuity is equivalent to continuity are called
sequential spaces. Sequential spaces were first thoroughly examined by S. P. Franklin
in [4]. We recall some well-known facts about sequential spaces (see also [3], [6]).
All first countable and all metric spaces are sequential. It is known that X is se-
quential if and only if a set V ⊂ X is closed in X whenever it contains with each
convergent sequence all its limits. Sequential spaces are exactly quotient spaces of
metric spaces. Sequential spaces are closed under the formation of topological sums
and quotient spaces, i.e. they form a coreflective subcategory of Top.

Corollary 2.4. Let X be a sequential space and let I be an admissible ideal. Let
Y be a topological space and let f :X → Y be a map. Then the following statements
are equivalent:

(1) f is continuous,
(2) f is If -continuous,
(3) f is I-continuous.

Special case of Corollary 2.4 is [7, Proposition 3.3], where it is proved for metric
spaces.

3. I-continuity and prime spaces

We say that a topological spaceX is a prime space ifX has only one accumulation
point (see [5], [2]). There exists an one-to-one correspondence between the prime
spaces on the set N ∪ {∞} with the accumulation point ∞ and proper ideals in N.

Let I be a proper ideal. We define a topological space NI on the set N ∪ {∞}
as follows: U ⊂ N ∪ {∞} is open in NI if and only if ∞ /∈ U or U \ {∞} ∈ F(I).
NI is clearly a prime space with the accumulation point ∞.

On the other hand, let P be a prime space on N ∪ {∞} with the accumulation
point ∞. Let I = {U ⊂ N : U is closed in P}. It is easy to see that I is a proper
ideal.

Admissible ideals correspond to prime spaces in which every one-point set is
closed, i.e. T1-prime spaces. Any T1-prime space is also Hausdorff.

The following result shows the relation between I-convergence and the space NI .

Proposition 3.1. Let X be a topological space, x ∈ X, xn ∈ X for each n ∈ N.
Let us define a map f :NI → X by f(n) = xn and f(∞) = x. Then I-limxn = x
if and only if f is continuous.
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Proof. Let I-limxn = x and let U be an open subset of X. If x /∈ U then ∞ /∈
f−1[U ] and f−1[U ] is open. If x ∈ U then {n : f(n) ∈ U} ∈ F(I) and f−1[U ] =
{n : f(n) ∈ U} ∪ {∞} is open. So f is continuous.

Now assume that f :NI → X is continuous. We want to show that I-limxn = x.
Indeed, if U is an open neighborhood of x then f−1[U ] = {n : f(n) ∈ U} ∪ {∞} is
open in NI , hence {n : xn ∈ U} ∈ F(I) and {n : xn /∈ U} ∈ I.

Let S be a family of proper ideals in N. We say that a topological space X is
S-sequential if every map f :X → Y is continuous provided that f is I-continuous
for each I ∈ S. (We briefly say that f is S-continuous.)

Lemma 3.2. For each I ∈ S the space NI is S-sequential.

Proof. Obviously I-limn =∞ in NI . The assertion follows from Proposition 3.1.

Lemma 3.3. The class of all S-sequential spaces is closed under the formation of
topological sums and quotient spaces. (I.e. S-sequential spaces form a coreflective
subcategory of Top.)

Proof. Let Xj , j ∈ J , be a system of S-sequential spaces, we want to show that∐
j∈J Xj is S-sequential. Let f :

∐
j∈J Xj → Y be S-continuous. It suffices to

show that f |Xj is S-continuous for each j ∈ J . (Then each f |Xj is continuous
and therefore also f is continuous.) But it is clear that if I-limxn = x in Xj

then I-limxn = x in
∐
j∈J Xj as well. So I-lim f |Xj (xn) = I-lim f(xn) = f(x) =

f |Xj (x).
Let X be a S-sequential space and q:X → Y be a quotient map. Let f :Y → Z

be S-continuous. Then f ◦ q is S-continuous (Proposition 2.1 and Theorem 2.2).
Hence f ◦ q is continuous and f is continuous.

The next lemma is well-known in general topology.

Lemma 3.4. Let X and Y be topological spaces and let f :X → Y be a surjective
continuous map. Then f is quotient if and only if for each g:Y → Z it holds

(1) g is continuous ⇔ g ◦ f is continuous.

Theorem 3.5. A topological space X is S-sequential if and only if it is the quotient
of a topological sum of copies of spaces NI , I ∈ S. (I.e. S-sequential spaces are the
coreflective hull of {NI ; I ∈ S}.)
Proof. ⇐ This implication follows from Lemma 3.2 and Lemma 3.3.
⇒ According to Proposition 3.1 a map f :X → Z is continuous if and only if

for each I ∈ S and every continuous map g:NI → X the map f ◦ g is continuous.
Let gj :Xj → X, j ∈ J , be the system of all continuous maps such that Xj = NI for
some I ∈ S. Then the combination q = [gj ]:

∐
j∈J Xj → X is quotient by Lemma

3.4.

By [2, Corollary 3.4] if K is a class of prime spaces and X ∈ CH(K) (i.e. X is
a quotient space of topological sum of spaces belonging to K), then every closed
(open) subspace belongs to CH(K). So we get that every (closed) open subspace
of a S-sequential space is again S-sequential.

A topological space is called countable generated if V ⊂ X is closed whenever for
each countable subspace U of X V ∩U is closed in U . Countable generated spaces
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form the coreflective hull of countable spaces (see [6]). I.e. a space X is countable
generated if and only if it is a quotient space of a topological sum of countable
spaces.

It is known that each topological space X can be obtained as a quotient of a
topological sum of (Hausdorff) prime spaces with cardinality not exceeding cardX.
X is a quotient of sum of so called prime factors of X, see e.g. [2]. Prime factors
of X are prime spaces of the same cardinality as X. If a prime space P is not
Hausdorff, then it is either finitely generated (and FG = CH(S) ⊂ CH(NI) for
each admissible ideal I in N) or it can be obtained as a quotient space of sum
of a Hausdorff prime space P ′ (which is subspace of P ) and several copies of the
Sierpiński space S.

Corollary 3.6. Let S be the system of all (admissible) ideals in N. Then a topo-
logical space X is countable generated if and only if X is S-sequential, i.e. for every
topological space Y and every map f :X → Y the following holds:

f is continuous ⇔ f is I-continuous for each (admissible) ideal I in N.

Example 3.7. Let Aj , j ∈ J , be a decomposition of N consisting of infinite sets.
Let us define an ideal I in N such that M belongs to I if and only if M has infinite
intersection with only finitely many Aj ’s. I is obviously an admissible ideal. (The
space NI is homeomorphic to the space S−2 from [5]. It is used in that paper as an
example of a non-sequential space.)

We claim that no sequence of natural numbers converges to ∞ in NI . Assume,
indirectly, that xn ∈ N for each n ∈ N and limn→∞ xn = ∞ in NI . For each
k ∈ N the set NI \ Ak is an open neighborhood of ∞, so Ak contains only finitely
many terms of the sequence (xn)∞n=1. Therefore {xn : n ∈ N} belongs to I and
the complement of this set is an open neighborhood of ∞ in NI which contains no
terms of the sequence (xn)∞n=1.

So there are no non-trivial convergent sequences in the space NI . Therefore
every map f :NI → X is If -continuous. We construct a map f :NI → R so that
f(n) = 1

k if n ∈ Ak and f(∞) = 1. Obviously, f is not continuous. So this example
shows that the implication in Theorem 2.2 is not reversible.

From Lemma 3.2 it follows that f is not I-continuous. (I-limn =∞ in NI , but
it does not hold I-lim f(n) = f(∞).) This example show also that the implication
in Theorem 2.3 cannot be conversed.

Let S be a system of admissible ideals in N. We want to find out whether the
S-sequential spaces can be characterized by a similar condition as the sequential
spaces:

(2)
V is closed in X if for each I-convergent sequence (xn)∞n=1 of
points of V , where I ∈ S, V contains all I-limits of (xn)∞n=1

If, for each I-convergent sequence (xn)∞n=1 of points of V , V contains all I-limits
of (xn)∞n=1, we say briefly that V is closed with respect to I-limits.

Lemma 3.8. If a topological space X fulfils (2) then it is S-sequential.

Proof. Let f :X → Y be a S-continuous map and V ⊂ Y be a closed set. We want
to show that f−1[V ] is closed. It suffices to show that if xn ∈ f−1[V ] for each
n ∈ N, I ∈ S and I-limxn = x then x ∈ f−1[V ]. The S-continuity of f implies
that I-lim f(xn) = f(x) and f(x) ∈ V = V . Hence x ∈ f−1[V ].
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Lemma 3.9. The class of all spaces X which fulfil (2) is closed under the formation
of topological sums and quotient spaces.

Proof. A subset of
∐
j∈J Xj is closed if and only if for each j ∈ J its intersection

with Xj is closed in Xj . If V is closed with respect to I-limits in
∐
j∈J Xj then

V ∩Xj is closed with respect to I-limits in Xj for each j ∈ J . Therefore this class
of spaces is closed under the formation of topological sums.

Let X fulfil (2) and let q:X → Y be a quotient map. Let V be a subset of
Y which is closed with respect to I-limits for each I ∈ S. We have to prove that
q−1[V ] is closed. It suffices to show that q−1[V ] is closed with respect to I-limits for
each I ∈ S. Let xn ∈ q−1[V ] for each n ∈ N and let I-limxn = x, where I ∈ S. q is
continuous, so it is by Theorem 2.2 also I-continuous. Therefore I-lim q(xn) = q(x)
and q(x) ∈ V , x ∈ q−1[V ].

Combining Lemma 3.8, Lemma 3.9 and Theorem 3.5 we get:

Proposition 3.10. Let S be a system of admissible ideals in N. Let for each I ∈ S
the space NI fulfils (2). Then a topological space X is S-sequential if and only if
V ⊂ X is closed whenever for each I-convergent sequence (xn)∞n=1 of points of V ,
where I ∈ S, V contains all I-limits of (xn)∞n=1.

The next example shows that in general (2) does not hold for a prime space NI .

Example 3.11. Let Aj , j ∈ J , be a decomposition of N consisting of infinite sets.
We define an ideal I in N such that M belongs to I if and only if the intersection
M∩A1 is finite and M has infinite intersection with only finitely many Aj ’s. Clearly,
the subspace of the space NI on the set A1 ∪ {∞} is homeomorphic to NIf and
the subspace on the set {∞} ∪ (

⋃∞
j=2Aj) is homeomorphic to the space S−2 from

Example 3.7. Let V =
⋃∞
j=2Aj , V /∈ I therefore V is not closed in NI . But V is

closed with respect to I-limits.
Assume, on the contrary, that there exists a continuous map f :NI → V ∪ {∞}

such that it maps only ∞ to ∞. Then the restriction f |A1∪{∞} corresponds to a
sequence in S−2 which converges to ∞. But we showed in Example 3.7 that there
is no such sequence in S−2 .
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