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2 2.ROCNIK

I. OBYCAJNE DIFERENCIALNE ROVNICE A
SYSTEMY OBYCAJNYCH DIFERENCIALNYCH ROVNIC

Definicia 1.1. Nech DCRxXR"™ je oblast, tj. otvorend stvisl4 mnozina a
f i D-R™ (t,x)—f(t, ), z€R™. Obycéajnd diferencidlna rovnica 1. rddu v D je
rovnica tvaru:

dz

(1) —=f(t.x) (t.2)eD

d
Niekedy piSeme & miesto —x, tj. a=f(t,x), priom x=(x1, -+ , Tpn), T=(Z1, - ,Zn).
Nech f = (flaf27' o afn)a tj' f(tax) = (fl(tax)a U afn(tam))’ kde fl : D—R
(t,z)— fi(t,x). Rovnica (1) plati & ak &1=Ff1(t,z1, - ,Tpn), Lo=fo(t, 21, - ,Ty),
S Ep=fn(t,x1, -, x,) systém obyc¢ajnych diferencidlnych rovnic 1.radu.

Priklad 1.1. D=R?, f : RxR2—=R2, f=(f1, f2), f1(t,x)=x1, f2(t,z)= — 22 potom
i‘lz.’lfl, j?gz — X9.
z1(t)=ceM F1=ci e M=cre A=1 x1(t)=cret
To(t)=coett To=couett=cyett p=—1 xo(t)=coe*

Definicia 1.2. Nech f : D—R", (¢t,z)—f(t,z) je spojité zobrazenie. RieSenie
diferencialnej rovnice (1) na intervale ICR je také spojite diferencovatelné zobraze-
nie ¢ : I—R", pre ktoré plati:

1. (t,¢(t))eD, pre Vtel.

deo(t) _ . do(t) _ (dei(t)  denl(t)
2. Tff(t,ap(t)) pre Vtel, kde p=(¢1, ,©n),s 7t ( T — >,
depi(t)

dt :fl(t7901(t)a 7()0n(t)) pre Vte-[a 'Lzlv , 1.

d d
Priklad 1.2. d—f:l, 2€R mé nekonecne vela rieSeni x(t)=t+c. Ale d—le, x(0)=0

ma4 jediné rieSenie x(t)=t.
Cauchyho zaciatocénd dloha:
T=f(t,x
o) (=1

I(to):IO

Pre dané (tg,20)€D treba najst interval ICR obsahujici ¢y tj. to€l a rieSenie
x : I-R™ diferencidlnej rovnice = (¢, x) ktoré spliluje tzv. za¢iatoéni podmienku
Z(to)=x0. Hovorime tiez, Ze rieSenie x prechddza bodom (tg, zo).

II. VETY O EXISTENCII A JEDNOZNACNOSTI A GLOBALNEJ EXISTENCII RIESEN{

Veta 2.1. Peanova o existencit

Nech DCRXR" je oblast a f : D—R", (t,z)— f(t,x) je spojité zobrazenie. Potom
pre kazdy bod (to,z9)€D existuje otvoreny interval ICR obsahujiici ty na ktorom
Jje definované riesenie x : I—-R"™ zaciatoc¢nej tlohy (2), tj. 2=f(t,x) x(to)=x¢.
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Definicia 2.1. Nech f : D—R", (¢t,2)—f(t,z), D je oblast v RxR"™. Hovorime,
7e zobrazenie f spliia v D Lipschitzovu podmienku vzhladom na premennt z (ho-
vorime tiez, ze f je lipschitzovské v D vzhladom na z), ak existuje takd konsStanta
L>0, 7 plati [|f(t,2)— f(t, y) | <Llle—y|| pre ¥(t,2), (t,5)€D, kde | - | je norma
v R™ (napr. euklidovskd norma).

Definicia 2.2. Hovorime, Ze zobrazenie f : D—R", (t,z)— f(t,x), je lokalne lip-
schitzovské na D vzhladom na x, ak je splnend podmienka: V(to,z)€D existuja
¢isla a>0, b>0 také, ze G={(t,z)eRxR"; [t—tp|<aq, ||[z—zo||<b}CD a
I f(t, 2)—=f(t,y)|<L||z—yl, pre ¥(¢, x), (t,y)€G, kde L>0 je konstanta.
Veta 2.2. o lokdlnej existencii a jednoznacnosti
Nech DCRxR™ je oblast, f : D—R", (t,x)— f(t,x) je spojité zobrazenie a lokdlne
lipschitzovské na D vzhladom na x. Potom pre kazdy bod (tg,z¢)€ED existuje
dislo >0 také, Ze na intervale I5=(ty—0,to+0) je definované prave jedno rieSenie
zaclatocénej tlohy: i=f(t,x), x(to)=xo.

Otdzka: Ako sa najde lipschitzova konstanta?

Tvrdenie 2.1. Nech f=(f1, -, fn) : D=(a,b)x H—R" je spojité zobrazenie, kde
—oo<a<b<oo a HCR"™ je konvexnd oblast priom funkcia f; (i=1,--- ,n) ma spo-

8fi(9€)? (j=1,---,n), (t,z)€(a,b)xH.

ij
8 7 ta
K= sup ‘f(u) <00
(t,u)€(a,b)xH 8:'Uj
t,j=1,--,n

jité parcialne derivacie

Potom || f(t, z)—f(t, y)||I<L||xz—y||, pre V(¢t,z), (t,y)E(a,b)xH, kde L=Kn a || - ||
je euklidovska norma.

Dokaz. 1
Nech (t,l‘), (t,y)E(a,b)XH. Potom ||f(t,x)—f(t,y)||= [Z(fz(t7x)_fz(tay)>2
i=1
it )= fult, ) M3 A (i
=1 !
kde = <8f ’é(i’lcl) e aflé(ifn)); T=x—y.
9o 1/2
- 0 i\ly Cj
TACRO AT TRl L LN I PR s S PR
i=1 |« J
<K

n

I (t2)=f )= | D (it @)= filty))? IIDT*yIIS(n?Kz)%IIx*yIIZQ{SIIx*yH

=1 <nK?2 =L

MVT= Mean value theorem= Veta o strednej hodnote
CSB= nerovnost Cauchyho-Schwarzova-Bunjakovského
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Definicia 2.3. Nech ICR je interval (otvoreny) a x : I—R™ je rieSenie diferen-
cidlnej rovnice £=f(t,z). Riesenie y : J—R" diferencidlnej rovnice &= (¢, z), kde
JCR je interval sa nazyva prediZenim rieSenia x, ak ICJ a x(t)=y(t) pre Vtcl.
Ak I#J, ICJ potom sa y(t) nazyva vlastngm prediZenim rieSenia z(t). RieSenie
x : I-R™ sa nazjva plné, ak neexistuje ziadne jeho vlastné predizenie. Vtedy I sa
nazyva maximalny interval existencie. RieSenie x diferencidlnej rovnice #=f(t, x)
sa nazyva globélne, ak I=(—00, 00)— maximéalny interval existencie.

Veta 2.3. o globdlnej existencii

Nech f : RxR"—R" je spojité zobrazenie splitujiice podmienku, Ze
|(t,2)|<B(E)e(o]) pre V(¢ 2)eRXR", kde B: RoRF, w s RF —RF;
fvo [w(o)]~tdo=00, vo>0.

III. TECHNIKA RIESENI NIEKTORYCH TYPOV DIFERENCIALNYCH ROVNIiC

1. Trividlne diferencialne rovnice:
x=f(t), x(to)=x0, kde f(t) nezavisi od xz. Potom x(t ft s)ds+xo, kde

f=(frs s o)y 2=(21, -, 20) ft fi(s)ds+ - +L0fn 8)ds)+xo.
2. Separované a separovatelné d1ferenc1alne rovnice:

Separované: &=f1(t)fo(x), x€R.

Separovatelné: ktoré sa daja transformovat do separovanych.

Formalny vypocet:

dx r

m:fl(t)dt < zo f2

%f: A fa(z) & / Fuds+k <

o ap=FY( / Fu(s)ds+k)

Veta 3.1. Nech f1 : (a,b)—=R, fa: (¢,d)—R st spojité funkcie, to(a, b), xo€(c, d).
Potom plati:

1. Ak f3(x9)=0 potom je x : (a,b)—R, x(tg)=x¢ je rieSenim zaciatocnej tlohy
z=f1(t) fa(x) , z(to)=xo. (pozn. x(t)=x¢ je singuldrne rieSenie.)

2. Ak fo(x0)#0 pre vsetky x€(c,d) potom pre kazdé xzo€(c,d) existuje rieSenie
z : (o, B)—R zaciatocnej tlohy: z=f1(t)f2(x), z(to)=x0, kde to€(a, 3), xz0€(c, d),
(v, B)C(a,b) a toto md tvar:

* ds

#(H)=F "} (G(0)+F), kde G(1)= f1< s F@0= | Ry

F(xo):k

IV. LINEARNA HOMOGENNA DIFERENCIALNA ROVNICA (V R)

(1) CZ =p(t)z, z€R

p: (a,b)—R, (—oo<a<b<oo) spojita funkcia.
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Veta 4.1. %
Nech p(t) je spojita na intervale I=(a,b). Potom plati:
t
1. Kazdé rieSenie x(t) diferencidlnej rovnice (1) m4 tvar J;(t):effo P ve T, toel,
ceR. (Toto riesenie sa nazyva vSeobecné)

2. Pre kazdé toe€l a kazdé xo€R m4 zaciatoénd tloha: d—i:p(t)x, x(tg)=xo prave

t
Jjedno riesenie a toto rieSenie x(t) ma tvar x(t):effo pe)ds

d
Dokaz. Separacia premennych %—p t)dt < f ?— [p(t)dt < In|z|= [ p(t)dt=
— J! pls)ds+1nc| IHH — [} pls)ds & Ja(t)=eo "] @

x(t)#0 = Vtel. Ak by 37€R : z(7)=0, potom by %:p(t)x, x(7)=0 mala 2 rozne
rieSenia, a to x(t) a xo(t)=0 spor s jednoznacnostou.

® Ak 2(t)>0, tak |z(t)|=z(t) Yt = z(t)=el0 PO

Ak 2(£)<0, tak [z(t)|= — z(t) = z(t)=—elto PO (—|c)).

2. x(t):effto p(s)ds . x(to)=zo = xo=1(to)=C

V. LINEARNA NEHOMOGENNA DIFERENCIALNA ROVNICA (V R)

i p(t)z+ £ (¢) f(t),p(t) st spojité na I
Veta 5.1. Pre kazdé tocI=(a,b) a kazdé xo€R m4d zaciatocnd tiloha

dx
e =p(t)z+[(t), z(to)=x¢ prave jedno riesenie x(t) a toto rieSenie m4d tvar:

t t t T
x(t)= elio PO 1 4 lig P9 / e Juo p(s)dsf(r)dT
————

to
Th (t)

zp(t)

xp (t)-rieSenie homogénnej rovnice spliiujiice x(tg)=xg.
xp(t)—partikuldrne rieSenie nehomogénnej diferencidlnej rovnice.
x(t)=z,(t)+xn(t) — princip superpozicie rieseni.

Dokaz. Metoda varidcie konstanty:

t
Hladajme rieSenie nehomogénnej diferencidlnej rovnice v tvare :C(t):effo p (S)dsc(t),
kde ¢(t) je spojite diferencovatelnd na I=(a,b). Dosadme z(t) do rovnice:

dii’l-(ﬁt) :p(t) eftto p(s)dsc(t) +eftt0 p(s)ds dil(tt) :p(t)x(t)Jrf(t) PN
——

—elio P8 f(t) trividlna diferencidlna rovnica pre ¢

t
c(t)= el Ms)dsf(T)dT-FK

to



6 2.ROCNIK

t t t T
L ()l PO ) iy PN, U oI P(S)dsf(T)dT+K} ro=i(t)=K

to

t t t T
a(t)=elio PO g0 4 elig P()ds / e o P () dr
) &
Th

wp(t)

Dokaz vety %.
a) Metodou postupnych aproximdcii: f : DCRxR"—R". Z predpokladu existuje
a,b>0 také, ze f spliiuje lipschitzovski podmienku v oblasti G={(t, x)ERxR";

b
[t—to|<a, ||z—x0||<b}CD. Nech M= max_||f(¢, )|, nech o=min {a, Ul
Budeme konstruovat postupnost {zx}%°,, =i : (to—a, to+a)—R" takd, ze
2k (t) = x(t) na I, kde z(t) je rieSenie zaiatocnej ulohy. (pokr.)

s

Tvrdenie 5.1. z(t) je rieSenim zaciatocnej tlohy Ccll—f:f(t,x), x(tp)=xo na inter-
vale I, < x(t) je spojita na I, a x(t)=zo+ fti f(s,x(s))ds pre Vtel,.

Dokaz.

:

/to d:il(ts)ds x(t)xo/to f(s,z(s))ds = :c(t)onr/tO f(s,z(s))ds Vtel,

———
z(t)—z(to)

: Nech z(t)=zo+ ft'; f(s,z(s))ds a z(t) je spojitd na I,. Potom t— f(t, xz(t))
je spojité. = t— ftto f(s,z(s))ds je spojite diferencovatelnd na I, = x(t) je spojite
dx(t)
dt
Okrajova tloha je ekvivalentné rieSeniu tzv. integralnej rovnice

diferencovatelnd na I, = =f(t,z(t)) Vtel, a z(to)=xo.

z(t):onr/t f(s,z(s))ds tel,

Pokracujeme v dokaze vety 4.1%:
Zaciatoénu tulohu stadi riesit pre tg=0, lebo po transformécii t=tg+7 :
y(r)=a(to+T)

W) _ A 7ty +10)=F(r () W =F(r.y) y(0)=z(to)=zo

Tato zaciatocénn tlohu stadi riesit pre 7>0, lebo po transformécii 7=—s dostdvame

dz(s):dy(—S).(_1):_F(_S’y(_8)) s>0 < 7<0.
ds dr N——
z(s)

dy

pre z(s)=y(—s) rovnicu:
Picardova metoda postupnych aproximdcii:

m(t):xo+/0 f(s)x(s)ds , tel;=(0,b)
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0-t4 aproximdcia: xo(t)=

1. aproximécia: x1(t ):x0+ fo )ds

k. aproximécia: xy(t)=x +f0

Najskor dokazeme, Ze (t,x ( ))eG pre We],ﬁ k 1,2,

lzks1(t) = woll = I fy f(s,(9)dsll < Jy |1/ (s,(5))]lds <
< Mb < Ma < Mmin{a, 2} < ML = b Teda (¢ z541(t)EG pre Vtely,
k=0,1,---. Teraz dokdzeme, 2e T3 X na Ij. (zp,x sa spojité.)

zp(t)=a (t) w1 () = ()H Hak(t)—zr-1(2)]
H$1( wo(t)| |—||f0 s, xo(s ds||§M~t<M -h

w2 () =21 (=] fy £ (s, 21(5))—f (5,0 (s) d8||< Jo 1F(s,21(5))=f(5,@0(5)) [ ds <

Sfo L-||z1(s)—xo(s)||ds= Lfo M sds= LM , tely.

2 t3
|z (t)—xa(t)|| <L fo |z2(s)—x1(s)||ds<L fo LM%ds:L2 37 atd.
k+1 LRk

||1‘k+1(t)—$k(t)||:Lk'M(k+1)!SL M(k+1)!

h? h3
lzoll+ |21 (B) 2o (Ol1+- - +llk () =2k 1 @) l|zoll+MAFLM Ty LM -+ +

hk M Lh Lh)*
+LF 1M——||:vo||+— {Lth( i +'~+( k,)

M
} §||:U0||+feLh = 2(t) = 2(t)

na intervale Ij.

g1 () :mo—i—/ f(s,xk(s))dséx(t):xo—i—/ f(s,z(s))ds Vitel, <
N—_—— 0 SN—— 0

=ax(t) =x(s)

s #(t)=f(t,z(t), z(0)=zo Vtel,

Jednoznacnost: Nech uq(t),us(t) st rieSenia na Ip, uq (t)#us(t) =
s -u2=1 | 5625~ o a1 60) s vl

¢
SL/ ||u1(s)—u2(s)|\ds§LhOr<nai(h||u1(7')—u2(7')|| = |Jug (t)—u2(t)||<Lhp Vtely
0 <r<

=p

1
Ak h>0 je také, ze Lh<1, tj. 0<h<f’ potom 0<p<Lh<p —spor.
Odhad chyby: n>m, ||z (t)=2m (0)||=[[zn () —zn-1 )]+ - - - +[mi1 () =2zm ()] <

h™ pn—t
Slzn(®) =22 @O+ - - Fll@ma () —zm () [[<L"T lM HL 2M
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hm"rl M M
m +1),fL(Lh)’”+1 e n—00 : a(t)—wm (IS (Lh)" et

Nech Lh<1 a e>0. Treba nédjst najmensie m také , aby ||x(t)—zn(t)||<e Vtel,.

+L™mM

M M
Staéi aby f(Lh)m+1eLh<s < logy ), f+m+1+Lh log;, e>log;, e <
£
= m+1> IOth w

Tvrdenie 5.2. Nech C,=C(I},R") je mnozina spojitych zobrazeni z intervalu
=(0, k) do R™. Potom plati:

1. Ak L>0, r>0 tak d,.(f,g)=max;es, {e || f(t)—g(t)||} je metrika na cy.

2. (Cy,d,) je uplny metricky priestor.

Banachova veta. Nech (X, d) je tiplny metricky priestor a F : X—X je kontrak-
tivne zobrazenie také, ze d(F(z), F(y))<kd(z,y) pre Vz,yeX. Potom F m4 prave
jeden pevny bod u taky, ze F(u)=u

Dokaz. woeX, ugr1=F(uk), ux—u tj. d(ug,u)=0 pre k—oo.

_ > <
1_kd(u1,u) Ym>n m—oo d(u’u")*l—k

A(Up, U < d(uq,u)

2.dokaz vety 4.1% metodou pevného bodu
2=Cy; d=dr; r=L; F : Cpy—C}, F(x)(t):moJrfOtf(s,:c(s))ds. Hladam z€Cj:
F(z)=x. z,yeC} :
¢
d(F(z), F(y)):?g}f{f”||F(I)(f)*F(y)(t)||}: grg}f{f”||[$o+/o f(s,2(s))ds]—
F(z)(t)

oo+ [ S pasii<maxte™ [ 17(s.a(0) = (s s)]ds)=

F(y)(t)

¢ ¢
=max{e” LtL/ eLSe_LSHx(s)—y(s)Hds}gmax{e_LtLdL(x,y)/ elddsy=

tely 0 tely 0

1
—rtréax{e BLdp (z, y)z( -1)}= rnax{l e Yy (z,y)=(1—e M) dp (2, y) =
= di(F(x), F(y))<(1—e M)d(x,y) = F je kontraktivne zobrazenie =
= F ma jediny pevny bod F(z)=zx.

o R S CULSES vy

z(t) Ip,

Odhad chyby: x=x(t) -pevné rieSenie. x,,=x,,(t) —m-t4 aproximacia. m>n,

1—€7Lh m 1—67Lh m
dL(Z'm’l‘n)S(e#h)d(xhxo) = d(%n,x)ﬁ(efh)dL(xl, T9)=
km
ﬁdL(xl,xo) kde k=1—e L
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Pripravné avahy ku dokazu Peanovej vety.

mo—l-/ f(s,z(8))ds, telp=(0,h) G={(t,x)eERxR";|t|<a,|r—x0|<b}

f: G—=R", f je spojita, ale nemusi spliat lipschitzovskost.

Kedy mozno z postupnosti {zx}2°,, 2x€ACC,=C(I},,R™); I;,=(0, h) vybrat kon-
vergentni podpostupnost vzhladom na d(f, g)=maxcr, ||f(t)—g(t)].

Definicia 5.1. Nech (X,d) je metricky priestor. Mnozina ACX sa nazyva re-
lativne kompaktna, ak A=AUA’ je kompaktna.

Kritérium pre relativnu kompaktnost mnoziny ACC,=C(I;,,R").

Definicia 5.2. Hovorime, ze mnoZina zobrazeni ACC(I,R"™), (I=(a,b)CR) je rov-

nomerne ohranifend, ak existuje konstanta k>0 taka, ze || f(¢)||<k Vtel VfeA.

Definicia 5.3. Hovorime, ze ACC(I,R™) je rovnomocne spojita, ak

Ve>0 39=06()>0 takd, ze plati: |t1—t2|<0, t1,t2€] = || f(t1)—f(t2)|l<e, VfEA.

Arzelova-Ascoliho Lema:. Nech ACC(I,R"™) je nekone¢nd mnozina, ktord je

rovnomerne ohrani¢ena a rovnomocne spojita, potom je A relativne kompaktna.

e-priblizné riesenie:

Definicia 5.4. Nech f : D—R"™ (DCRxR"™ je oblast), £>0, ICR je interval.

Spojité zobrazenie x : I—R"™ sa nazyva e -priblizné rieSenie diferencialnej rovnice

z=f(t, ), ak plati:

1. (t,z(t))eD Vtel.

2. xz=x(t) je spojite diferencovatelné zobrazenie na I'\\S, kde SCI pozostava z ko-

dz(t)
dt

existuji, ale su roézne.

neéného poctu bodov v ktorych ma derivaciu &(t)=

dx(t dz(t
ze ak tp€S, potom lim ﬂ aj lim ﬁ
t—ty t—tg  dl

dx(t)
o (t,z(t))||<e Vtel\S.

body nespojitosti také,

3. |

Eulerove polygony: (na intervale I, =(to,to+a), a>0 pre @(t)=f(t, x), x(to)=x0.
0-ty Bulerov polygon: x—zo—f (to, zo)- (v —z0), i (to)—f (to, 2(t0)) = (to, o),
.”L'Q(t):l‘o—‘rf(to,xo)(t—to).

Nech 6, : to<t1< -+ - <tp,=to+a.

1. FEulerov polygon: m=2: to<ti<ts=to+a.

z1(t)=xo+[ (to, zo)(t—to) pre to<t<t:.

z2(t)=z1+f(to, o) (t1—t)+ f (t1, 21)(t—t1) pre t1<t<to+a.

kde Xlle(tl):x0+f(t0,xo)(tl—xo).

m-ty Eulerov polygdn: (pri deleni §,,)

Xm(t)za?m(tk_l)—Ff(tk_h J)m(tk_l))(t—tk_l) pre tp_1<t<tp k=1,---,n

Veta 5.2. Nech G={(t,z)eERxR", [t—to|<a, |[z—z0||<b}, a,b>0, (to, z9) ERXR™ a
f : G—>R" je spojité zobrazenie. Potom pre Ve>0 existuje e-priblizné rieSenie zacia-
tocnej tlohy d—fzf(t, ), z(to)=10 na intervale I,=(to, to+a), kde a=min {a, 2},

M= t,2)|.
nax | £(t, z)]l
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Dokaz. f spojité na kompakte G, potom f je rovnomerne spojité na G. Ak
>0 je dané, tak ku nemu existuje d=0(¢)>0 také, ze (t,u), (s,v)€G, |t—s|<d(e),
lu—v]|<d(e) = || f(t,u)—f(t,v)||<e. Zvolme delenie g : to<to+ay; Om : to<t1<:--
<tm=to+a, m>0.
do — Xo(t) 0-ty Eulerov polygdn; é,, — X, (t) m-ty Eulerov polygdn.
Dokézeme, zZe (¢, x,,(t))€G  Vtel,=(to, to+ca). Nech to<t<tj. ||z, (t)—zo|=
:Hf(t(), .Z'())(t—lf())||:<1f—t0)||f(t()7 .’17()) HSM(t—to)SMQ&SM%:b. Nech tl Stftz =
Xon (O)=m () +f (t1, 2 (t1)) (E—t1)=20+f (to, T0) (t1—t0) + f (t1, T (t1)) (t—t1) =
= |z (O)=zo(t)|=I1f (to, mo) (1 —to)+f (t1, @ (t1)) | SM (tr—to) +M (t—t1)=
=M (t—tg)<Ma<b atd. indukciou.

Plati:
1. @, (t) je spojité zobrazenie na I,, a derivécia existuje az na koneény pocet bodov
z 1.
5 ”dxm(t)

dt
5
Nech ke{1,2,--- ,n}, tr—1<t<ty a delenie také, ze ml?x{tk—tk_l}g min{J(e), %}

o(e)

Potom ||z (t) =2 m (te—1) = (th-1, 2 (te- 1)) | (t—te-1) SM (t—te—1) M — 7=

=5(6) = 1t (D= 1, b1 1)— )5 ak exstuje

Az, (t)
dt

—f(t,xm(t))||<e Vtel, aZ na koneény pocet bodov z I,.

= () je e-priblizné riesenie.

Dékaz Peanovej vety. Nech {e,,}*, ”}i_rr)loo €m=0 (napr. Em:%). X (t) je
e-priblizné rieSenie na I, =(to, to+a). Ukdzali sme, zZe |z, (t)—x0l|<b Vm =
= ||em () |<KK=b+|zo]| Ym>0 (K nezéavisi od m) = mnozina A={x,,€C;m>0;
C(I,,R™)} je rovnomerne ohrani¢end. UkaZzeme, ze A je rovnomocne spojitd. Nech
t,s€ly=(to, to+a). Op @ to<t1<---<tp=to+a. Nech s<t. Potom s&(t;,t;i1),
te(ti, titr), i>J.
[ (&) =2m ()| = [2m () =2 (E) [+ [2m (E) —2m (Ei2) [ - - Fem (1) —zm ()] <
S () =2 (t) |+ |1 2m () =2m (G [+ - -+l (Ejg1) —2m () | <M (E—15)+
+M(ti—ti—1)+- - +M(tj1—s)=M(t—s) = Ve>0 F0=0(c)>0 také, ze [t—s|<
= |l zm(t)—zm(s)||<e Ve,€A = A je rovnomocne spojitd. Z Ascoli-Arzelovej
lemy vyplyva, ze existuje podpostupnost {x,, }7>, taka, ze ,,, ZxeC(I,,R"™)
na In. g(t)=Tm, (t), {9}, x=32, gr(t)=w0+ [}, £(5, gr(5))+Dk(s)ds.

dg(t)
Arlt)="4
IAKESem, ——% 0= £,=0 = gu(t)=a = a(t)=zo+ [} f(s,2(s))ds, t€l, =
je riesenie.
Veta o predlZitelnosti rieSeni. Nech f : D—R" (DCRxR" je oblast) je spojité,
ohranic¢ené zobrazenie. Nech x(t) je rieSenie zaciatoc¢nej ilohy i=f(t,x) x(to)=xo,
kde (to,x0)€D na intervale I={(a,b). Potom existuje z(a+)= tlir;1+ x(t) a

dgr(t
ft,gx(t)) ak t je také, Ze existuje g§t( ), inde 0. Vieme, Ze

tlirgl x(t)=x(b—). Naviac, ak (b, 2(b))€D (analogicky (a,z(a))€D.) potom existuje

(>0 a rieSenie y(t), t€(a—03,b+0) také, ze y(t)=x(t) pre t€(a,b). ( y(t)-spojité
predlZenie z(t) na intervale (a—3,b+3).)
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Dokaz. x(t)=z1+ f:o f(s,z(s))ds, te(a,b). Nech M:(m;cme | f (¢, z)||. Nech
t,x)e
-z

a<u<v<b. Potom z(v)—z(u)= [ f(s,2(s))ds = ||z(v)—z(u)| <M (v—u) =

= lin}7 [z(v)—z(u)]=0. Z Cauchyho konvergen¢ného kritéria = tlirl? x(t) exis-
tuje.7 Oznac¢me ju z(b—). Analogicky existuje tlim+sc(t)::n(a+). Predpokladajme,
z(t);te(a,b)
x(b—); ak t=b
A mozno riesit za¢iatoéna ulohu z=f(t, z); x(b)=x(b—). tlim+x(t):a:(a+) existuje

7e (b, z(b—))eD. Definujme z(t):{ . Zrejme z(t) je spojité na (a, b).

z Peanovej vety = 36>0 také, Ze zacdiatofnd tloha ma rieSenie x(t), t€{a,b+03).
Analogicky nalavo od a.

VI. LINEARNA HOMOGENNA DIFERENCIALNA ROVNICA V R"

Algebraickd Struktira rieSend diferencidlnej rovnice (1):

Veta 6.1. Mnozina M rieSeni diferencidlnej rovnice (1) je n-rozmerny vektorovy
priestor nad R.

Dokaz. Nech x;(t), x2(t) st rieSenia, k1, ko€R. x(t)=k1x1(t)+kaxa(t).
X(t):klxl(t)—l—kg).ig(t):khA(t)Xl(t)—Fk‘QA(t)XQ(t):A(t)[k‘1X1(t)+k2X2(t)]. Ukézali
sme, ze X1,X0EM = x=kix1+koxo€M = M je vektorovy priestor nad R".

Dokézeme, ze dim(M)=n. Nech {é1,--- ,€,} je baza jednotkovych vektorov v R™.
Nech x;(t) je rieSenie diferencidlnej rovnice (1) splitujice zaéiatoéni podmienku
x;(0)=€;, i=1,2,--- ,n. x1(t),x2(¢t) -+ , X, (t) st linedrne nezavislé, tj. neexistuji

c1, -+ ,cn€ER také, ze Y c2#£0 a cix1(t)+ - +c,x,(t)=0 Vtel. Nech také kons-
tanty existuji. Potom pre =0 je c1x1(0)+ - - - +¢px,(0)=0 = ¢=(c1,c2 -+ ,¢n)=
=(0,---,0) & V¢;=0 = dim(M)>n.

Nech y(t) je lubovolné riesenie tj. yeM. Nech y(0)=v=(v1,--- ,v,)T€R™. Nech
u(t)=v1x1(t)+ - - - +vpxp (). Zrejme ueM a plati: y(0)=v=u(0), lebo x;(0)=¢;,
i=1,--- ,n. Z vety o existencii a jednoznacnosti rieSeni = u(t)=y(t) Vtel
u(t)=v1x1(t)+ - - - +v,xp(t) = dim(M)<n, ale vieme, ze dim(M)>n = dim(M)=n
a{x1, - ,X,} je bdza v M.

Definicia 6.1. Kazdd mnozinu ¢1(t), pa(t), - , @n(t) linedrne nezavislych rieseni

diferencialnej rovnice (1) nazyvame fundamentdlnym systémom rieseni diferencil-
nej rovnice (1).

Definicia 6.2. Nech ¢1(t), -, p,(t) je fundamentdlny systém rieSeni a
$1 (t):[(pll(t)v T 7501n(t)]Ta T 7@”@):[90"17 T a@nn}T' Potom sa matica
O(t)=[p1(t), -, on(t)]=(pi;(t)) nazyva fundamentdlnou maticou diferencidlnej

rovnice (1).
Tvrdenie 6.1. Fundamentédlna matica ®(t) je maticovym rieSenim diferencidlnej

rovnice X:%:A(t)x, tj. é(t):d%f):A(t)@(t), kde ®(t)=(¢1(t), -, Pn(t)).

Dokaz. (t)=[p1(t), -+ @u(®)]=[A[D@1(1), - Alt)n ()] =A() D(t).
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) 1 1
Priklad 6.1. X=( ° ;) X=AX. eBt:In+—Bt+—B2t2+
2!

;tAt A+ A2t+ A3t2 _A(1+ A+ )=Achl &(t)=eA! tak je to

maticové rleseme d1ferenc1alneJ rovnice (1) ®(0)=I.
Dokazte, ze ®(t)=e At:( cost smf).

—sint cost

Tvrdenie 6.2. Liouvilleova formula
Nech ®(t) je maticové rieSenie diferencialnej rovnice X=A(t)X. Potom pre kazdé

to€R je det @(t)=det ‘b(to)ef‘to Tra(ds gde TrA(s)=a11(8)+ - +ann(s),
A(s)=(ai;(s))-

Dékaz (ndznak). % det(®(t))=det[p1(t), -, on()]+ - -+ det[p1(t), -, on(t)]=
=At)p1(t)+ - +A (), (H)=TrA(t) det ®(t), @;(t) st stipce matice ®(t).

4 det(®(t)) = TrA(t) det B(t)  x=p(t)x = x(t)=el0 ¥ (1)
dt N N N —
x(1) p(t)  x(1)

Dasledok. det ®(tg)#0 = det ®(¢)#0 VieR. Ak det (to)=0 = det ®(¢)=0.

Veta 6.2.
Zaciatocna tiloha x=A(t)x x(to)=xo m4 rieSenie tvaru x(t)=®(t)®~1(t9)xo, kde
®(t) je fundamentdlna matica diferencidlnej rovnice x=A (t)x.

Dokaz.
X(8)=B (1) D (to)xo=A(t)®(t)B " (to)=A(t)x(t), x(to)=(to) P (to)x0=xXo0.

VII. LINEARNA NEHOMOGENNA DIFERENCIALNA ROVNICA vV R"

S=A(OxHE(t) A(D)=(a; (1)) EO=(Fi(t),- -, fult))™ spojité na R

Veta 7.1. RieSenie zaciatocnej tlohy x=A(t)x+£(t), x(to)=x¢ m4 tvar:

x(t)=®(t)® " (to)xo+P(2) / O 1(s)f(s)ds

to

Dokaz. Metoda varidcie konstanty:

Hladdme riesenie v tvare x(t)=®(¢)c(t), kde c(t) je spojite diferencovatelna.

x(t)=®(t)c(t)+D(t)¢c(t)=A(t) (t)c(t) +£(t). Dostdvame rovnicu pre c(¢):
——

x(t)
A)P(t)c(t)+P(t)c(t)+P()e(t)=A(t) ®(t)c(t) +£(t) & D(t)e(t)=£(t) &
——
& ct)=2 L ()f(t) = c(t)= ft “1(s)f(s)ds+K, kde K je konstantny vektor.
Mame: x(t)=®(t)c(t)=o(¢)[K+ ft “L(s)f(s)ds]|=P(t) K+P(t ft s)ds.
onq)(to)K = K=%~ (to)XO = X( ) <I>(t)<I> to X0+(I) ft dS
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Priklad 7.1(skaskovy!!!).

%= (_01 é) X+ (‘f) x(0)=%o=(2,1)T

———
£(t)

Riesenie: x(t)= (lesntt :g;i) v+y(t). Hladajme partikuldrne riesenie v tvare:

y(t)=a=(a1,as)T —konstantny. Dosadime: 0=Aa+f = a=—A"'f=(1,-4)T.
XOZX(O):’}/—‘rOz:’y—I—(l, _4)T = 7:x0—(1, _4)T:(27 l)T_(lv _4)T:(17 5)T7

o= (ol (34

VIII. LINEARNA DIFERENCIALNA ROVNICA n-TEHO RADU
Homogénna: L,u=0, nehomogénna: L,u=f(t), kde

n n—1
Lun=ao) Tt ar )Tt () Tt (1
ao(t),ai(t), - ,an(t), f(t) st spojité skaldrne funkcie na R. Ak ag(to)=0 pre ne-
jaké tp€R —singuldrna diferencidlna rovnica; ak ao(t)#£0 pre Vt€R tak reguldrna
diferencidlna rovnica. Budeme predpokladat, Ze ag(t)#0 pre Vi€R. Potom bez
ujmy na obecnosti prepokladajme, Ze ag(t)=1. VyuZzijeme tedriu linedrnych diferen-
cidlnych rovnic v R™. Uvazujme diferencidlnu rovnicu L,u=f(t). NapiSeme diferen-

41 ou ako svstém: O . du dntu o
cidlnu rovnicu ako systém: Ozn. zi=u, ro=t=—, - ,Tpn=—"" T1=u=2x
Y 1=U, T2 at’ L PP 1 2,
o d2u . A1y . d™u a1y
502:@:933, s In—l:W:xm $n:w:*alwf c—aputf=
=—a1Tp— - —apT1+f.
T2
T3
).(:(itla co 73.37L)T:
Tn
—Tp—A2Tp—1— " —ApT1+f
0 1 0 0 T1 0
0 0 1 0 T3 0
= : Do o+ [ =Amx+EE)
0 0 0 1 Tp_1 0
—0p —Ap—1 Aap—2 e —aq Tn f
(1) x=A(t)x+f(t)
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Tvrdenie 8.1.

1. x(t)=(z1(t), -+ ,2,(t))T je riesenim diferencialnej rovnice (1) < xo(t)=i1(t),
d2 t dn—l

x3(t)= 22( ), cey ()= dtn—? a x1(t) je rieSenim diferencidlnej rovnice (2).
2. Ak z1(t), z2(t), -+ ,x,(t) st rieSenia diferencidlnej rovnice (2) = maticové riese-
nie diferencidlnej rovnice Xx=A(t)x je

a(t) - wa(t)

dxy(t) da, (t)

o= ¥
A () d ()

dgn—1 dtn—1

Definicia 8.1. W(xy,- - ,z,):=det ®(t) ~-Wronského determinant (wronskian).
€o
Riesit Cauchyho tlohu: x=A(¢)x+f(t); x(to)=¢= je to isté ako riesit
gnfl
zadiatoént dlohu L,u=f(t); u(to)=&, t(te)=¢1, i(te)=¢2, ..., u" Y (te)=¢,_1,
u(t)
u(t) .
lebo x= ) je rieSenim diferencidlnej rovnice X=A(t)x+f(t) < u(t) je
u(n—l) (t)

rieSenim diferencialnej rovnice L,u=f.
Definicia 8.2. MnoZina x1(t),- - , z, () linedrne nezavislych rieseni diferencialnej
rovnice L,u=0 sa nazyva fundamentalny systém.
Veta 8.1. RieSenia x1(t), x2(t),- - ,x,(t) diferencidlnej rovnice L, u=0 st linedrne
nezavislé < ak W(xy, -, x,)(t)#£0 pre VieR.
Dokaz.

: Nech x1(t), -,z (t) st linedrne nezavislé riesenia, ale W(xy, -+ ,2,)(to)=0
pre nejaké toeR. Z Liouvilleovej formuly:

W (@1, ) (O)=W (1, ) (o) To O S W(ay, oo 2,)()=0 =

= Jeg, 0,0 €R YT A0 také, Ze c1xq (t)+ - - - +cnxy, (t)=0 pre VtER. Spor s line-
arnou nezévislostou.

: Nech W(z1,- -+ ,25)(t)#0 pre VteR, ale z1(t), -+ ,x,(t) st linedrne zavislé.
Potom ey, -+ ,c,€R Y 240 také, ze cyz1(t)+ - - - +cp2,(t)=0 pre VtER =

= @1 ()4 Fendn(t=0, ..., clxgnfl)(t)+~-~—|—cnx£1n71)(t)20 pre VteR. Ho-
mogénny systém algebraickych rovnic pre nezndme cy, - - - , ¢,. Ak jeho determinant
(=Wronskian) je nenulovy = ¢;=0,--- , ¢, =0 —spor.

Veta 8.2. Nechxi(t), - ,z,(t) je fundamentdlny systém rieSeni homogénnej difer-
encidlnej rovnice Lyu=u +a;(t)u” Y+ ... +a,_;(t)a+a,(t)u=0. Potom riese-
nie x(t) Cauchyho tlohy L,x=f(t), x(to)=&, X(to)=¢1, -, x V=&, | m4 tvar

Wiz, wn)(s)
o Wiz, 20)(s)

x(t)=u(t)+ Zxk(t) f(s)ds
k=1 ¢
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kde W(xy,- -+ ,x,) je wronskidn rieSeni x1(t), -+ ,xn(t). Wi(x1, -+ ,2,)(t) je defi-
nované takto:

0 xo(t) e zg(t)
0  do(t) cee Zp(t)
Wl(mlv"'ﬂxn)(t):det I
0 xén_2)(t) 22
1 xgn 1) x%nfl)
T1 (t) o (t) 0
T (t) j)g (t) 0
Wn(xla"' 7-Tn)(t):det : P
x(1n72) mgn72) (t) .0
xgn—l) m;n—l) o1
u(t) je riesenim Cauchyho zaciatoc¢nej tilohy L,u=0, u(to)=&, ... u»~V(tg)=¢, 1
Dékaz. %*=A(t)x+f(t), £1(t), - ,x,(t) fundamentalny systém pre diferencialnu
rovnicu L, u=0. Potom
zy(t) - za(t)
a(t) - da(t)
d(t)= ) .
A O )
fundamentélna matica pre x=A (t)x+f(t). Nech z(t) je riedenie diferencialnej rovni-
R
ce L,u=0. Potom v(t)= rieSenie zaciato¢nej tlohy pre systém
Z(n—l)( )
v(£)=8(t) D (to)s+D(1) [ &~ s)ds. ()=(pi;)=(z\""V(1)). X-algebra-

icky doplnok.

7 (H)=diag(X11(1), -+, Xnn(t)  v()=BH)™" (to)s+w (1)

t Xi(s) o Xu(s)] [ °
w(t)=[(z ) #)] ! SRR -] ds=
nt) o za(t) X1 (5)(5)

N R O R ! Xoo(9)fe) |
: : to W(xla"' ,JL‘H)(S) :
) gy Xy (8)£(5)

= wi(t)=3 () [
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Metdda varidcie konstdnt:
Lou=ii+a; (t)0+as(t)u=f(t) homogénna: X+a;(t)X+az(t)x=0

Nech x1(t), z2(t) st rieSenia. VSeobecné rieSenie homogénnej rovnice:
x(t)=c121(t)+caxa(t) c1,c2€R. Hladdme rieenie nehomogénnej diferencidlnej
rovnice v tvare: u(t)=ay(t)z1(t)+az(t)x2(t), ai(t), az(t) s spojite diferencovatel-
né, zatial nezndme. U=d; (t)x1+aq ()i (t)+aa(t)x2(t)+az(t)ia(t). Zvolme ay(t),
O[Q(t) tak, ze (11(t)1‘1(t)+0[21‘2(t)10 pre VteR. ﬁ:d1f1+a2f2+dgib2. Za fél a jg
dosadime z homogénnej diferencidlnej rovnice:

Lyu=f = da1(t)d1(t)+aa(t)t2(t)=f(t) = { G171 +Cpa2=0

0 &1+Gode=f

dl(t): 1 . ’ 0 x2(t) ’ __ IQ(t)f(t)
W(zy,z0)(t) | f(t) Z2(t) W (z1,22)(t)
. B 1 ) x1(t) 0 _ x1(t) f(t)
SO |50 10| =l
= ai(t)=c1— t Mds as(t)=co+ t Mds

to Wiz1,22)(s) to W(z1,22)(8)
u(t)=ay (t)z1(t)+as(t)x2(t)= crz1(t)+coxa(t) +
— —

vS§. ries. Lau=0

b —my(s) f(s) box(s)f(s) ds
to Wiz1,22)(s) to Wiz1,22)(s)

Ak by sme mali zadiatoéntt podmienku u(tg)=¢&g, u(to)=¢1, tak cix1(to)+
+eama(to)=&p. Zderivovanim 0(t) dostaneme: c¢q&1(to)+cada(to)=E1-

+z1(t) ds+x2(t)

Linearne diferencidlne rovnice n-teho radu s konstantnymi koeficien-
tami.

(1) Lyu=u™+aqu" Y+... +q, ;0+a,u=0 a; €R resp.C

Pozndmka. Pod komplexnym rieSenim diferencialnej rovnice (1) rozumieme funkcie
u(t)=uq (t)+iug(t) (s hodnotami v C). uq(t), ua(t) st redlne riesenia diferencidlnej
rovnice (1).

Plati. Ak ¢(t)=1(t)+ip2(t) s hodnotami v R, potom L, p=L,p1+iL,ps =

= L,0o=0 < L,p1=0=L,ps tj. ¢ je komplexnym rieSenim diferencidlnej rovnice
(1) & ak 1, 2 st redlne rieSenia diferencidlnej rovnice (1).

Leibnizova formula. Ak u(t), v(t) st n-krat diferencovatelné, potom:

(1v) ™ —uy+ (?) a Dyt (Z) P ( n

)ﬁv("l)—l—uv(")
n—1
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Definicia 8.3. Polyném P(\)=\"+ai\" '+ - +a,_ 1\ +a, sa nazyva charakte-
risticky polynom diferencidlnej rovnice (1).

7 Leibnizovej formuly:

L (e*v(t)=[eMv ()] ™ +a1 (eMNv(t) "Dt fan_1 (e V(1) +anev(t)=

—eMt P()\)V(t)—i—P[ll]!()\) v () + - _i_P([:l]l;f\)v(n—l)(t)P[ji!()‘)v(n)(t)
d'v(t) aoo diP(N)
kde T =v(t) a pll(\)= S

Lo (v (t))=(eMv (1)@ +ar (Mv(8)) D tas(eM v (1) =
=)DV () +2(M)V () +NV (#)Far (M) v () Far eV (8) faze v (t)=
=2ZeMy () 20NV (1) v (1) eM Fag deM v (t) Fa1 NV () Fage v (t)=

MA2Far A +az) v () +(20+an)v' () +v" ()]

Veta 8.3. Nech A1, g, -+, A\ st navzajom rozne korene charakteristického poly-
nému P(A\)=\"+a;\" "'+ - +a,_1 \a,. Pricom ndsobnost koretia \; je m;.

S
Zmi:n, Potom fundamentdlny systém rieSeni (vo vSeobecnosti komplexnych)
i=1
diferencialnej rovnice (1) je:

z1(t)=e™; mo(t)=te™ .-z, ()=t "letM
xm1+1(t):et/\2; 3 Tmy4me (t):tm27let)\2
Ty o 41 (=€ 5 @y g, (D)= e

Dokaz. Najskor ukazeme, e ak 7 je korefi P()\) nésobnosti k, potom st funkcie e,
te™, ..., t*Lem riegeniami diferencidlnej rovnice (1). Nech 0<i<k—1, potom

. 1 4 1 .. L
Lu(temy=e | P(y) 41 PR (2 ++- 5 P (o) () 0+
~—~— Ve i ——

=0 =0 =0
i+1
+ M (1) (+D) +...+P[7l]( n) (™ | =0
(+1)! —— n! -
=0 =0
Dokazeme, ze x1(t), - - -, xn(t) st linedrne nezavislé. Staci dokazat, Ze ich wronskidn
W (1, ,2n)(t)#0 pre t=0. Nech:
x1(0) . 2, (0)
1 1
7570 o 20

W(x17x27'” ,l’n)(o): . . . =0=
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Potom existuja konstanty bg, - - - , b,—1€R nie vSetky nulové také, ze
boa:j(O)—l—bla:;l)(O)—f— e +bn,1$§-n71)(0):0 pre j=1,2.---  n. Definujme
Q(N\):=bg+bi A+ +b, 1 A" "1 deg Q=n—1 a polyném Q()\) ma n koretiov (vra-
tane ich nasobnosti) —spor.

Ing dokaz: Nech st x1(t), -+ ,x,(t) st linedrne zavislé; potom existuji konstanty
Clls " 3Clmy—15C21, """ ;C2my—1," " ;Csl," ** »Csm,—1 Die vSetky nulové také, ze

crreMttepateMi4 - +clm1_1tm1716/\1t+ e +csm5_1tm5718>‘5t &
& Py (t)e)‘lt+P2 (t)e’\2t+ e +Pg(t)e)‘st:0 deg P;(t)=m;—1
Nie vSetky P; st =0. Bez ujmy na obecnosti predpokladajme, ze P(t)70.
Pi(t)+Py(t)eP2= )t P (1)eP A=
Derivujme mq-krat:
Py (t)e(’\r)‘l)t—i— <Py (t)e()"*_Al)tEO deg P;y=m;—1

Po s takychto procedir dostavame, ze Py, (t)e(rs == =de-1)t=(,
Spor, lebo deg P;s;=m—1.

Veta 8.4. Nech A1, , s st (1<s<n) korene charakteristického polynému P(\)

diferencidlnej rovnice (1), A; md nasobnost m;. > m;=n. Nech A1, -- , \x st redlne
aAep1=0k+1+HiBrt1, -+, As=as+ifs st komplexné. Potom fundamentalny systém
redlnych riefeni je: e'*i teti ... tmiTlethi (i=1,2,--- k), €' cos(B;t), - ,

k
tmi—let cos(B;t), €' sin(B;t), - - -, t™i et sin(Byt), j=k+1,- -, %
Priklad. n=2 A\=a+if, ##0, A=a—ig.

Komplexné riefenia: u(t)=e = (cos ft+isint), v(t)=e=e(cos Ft—isin ft),

, C . . u~+v u—0v
redlne rieSenia: u;(t)=e** cos Bt, ug(t)=e! sin f3t, ul(t):T’ ug(t):T.
i
u+v u+v U—v
v el 2"
u o v 2 s 2 21 | iUl u2
07& Y =2 w4’ o =4i W w = =4i u,l u,2
2 2 2i
IX. SYSTEMY LINEARNYCH DIFERENCIALNYCH
ROVNIC S KONSTANTNYMI KOEFICIENTAMI
Xi1=anxi+ - +ainXy T
(2) Oznac¢me A=[(a;;)] = X=Ax x=
Xn:anlxl“i’ st apnXn Tn

Linedrna transformdcia: y=t~'x, kde T€M,,,, je regularna matica. x=x(t) riesenie
x=Ax = y=y(t)=T 'x: y=T '%=T 1Ax=(T!'AT)y =

(3) y=By, kde B:=T 'AT
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Definicia 9.1. Hovorime, Ze systémy (2), (3) st ekvivalentné.

Veta 9.1. Systém x=Ax je ekvivalentny so systémom y=By, kde B=T 'AT je
Jordanova forma matice A tj.

D] o

0 S1
B=J(A)= E =diag(D,S1, -+ ,Sk)
A, 1 0o .- 0 A O -0
0 A\, 1 .. 0 0 XA -+ O
kde S;= 0 (U W €Mym; D= : : Lo
0 0o - 0 A, 0 0 - An
7=1,2,--- .k am+mi+---+mrp=n. \; st vlastné hodnoty matice A. Teda systém

y=By ma tvar y1=My1, . Ym=AmYm- Vypoclet matice T ak A ma vsSetky
vlastné hodnoty navzajom rézne. V tomto pripade

M O -0
. 0 X --- 0 .
B=T!'AT=| . . .| =diag(A1, -+, An)
O () )\n

T=[Ty, Ts,---,T,]=? (T; st stlpce). B=T !AT < TB=AT.

TB=[\Ty, - ,\,Ty] , AT=[ATy,--- ,AT,]. Rovnost AT=TB nastdva prave
vtedy, ked AT;=\;T; pre Vi. det T#0 = T;#0 pre Vi=1,2,--- ,n.

Tvrdenie 9.1. Pre vsetky 1=1,2,--- n je T; vlastny vektor matice A zodpoveda-
juci vlastnému cislu \;.

Riesme Cauchyho ulohu x=Ax, x(to)=xXo.
y=T"!x, B=T!AT=J(A)=diag(\1,- - ,\,) = x=By, y(to)=T 'xo=:yo.

y(t)=€BtyO=(I+Bt+%(Bt)2+ - )yo= (Z(Bt)k1> Yo=

k!
k=0
et 0 -0
T A ) PO
0 0 . oMt

e -1 —
Pozndmka. eBt=e(T  AT)i_—1lAt

Priflad. %=} ") %, xo=x(0)= (}).

Riesenie: Vlastné hodnoty \;=—2, \o=—3 = vlastné vektory Ty, To, T1=(1,1)T,



20 2.ROCNIK

Ty=(3,4)T = T= (1 i), T 1= ( : _3). x(t)=T-diag(e=%,e=3")T~1. Hladdme

-1 1
riesenie v tvare x(t)=e*~, kde A€C je parameter a v je nenulovy vektor.

x=XeMy=A(e M) (VtER) < eMAN—-A]y=0 V¢ < (\I-A)y=0

tj. algebraickd rovnica (A\I—A)x=0 m4 netrividlne rieSenie . To plati prave vte-
dy, ked P(A\)=det(A\I—A)=0 —charakteristickd rovnica pre diferencidlnu rovnicu
X=Ax. Teda Ay=Mv, tj. v je vlastny vektor patriaci k .

Veta 9.2. Nech Ay, -+, \, st navzdjom rozne vlastné hodnoty matice A, (A\;€C)
a ;70 je vlastny vektor zodpovedajici vlastnej hodnote \;, pricom 7y, -+ , v, SU
linedrne nezavislé. Potom fundamentélny systém rieSeni (vo vSeobecnosti kom-
plexnych) diferencidlnej rovnice x=Ax je: x1(t)=e iy, - x,(t)=e ty,.

Dokaz. Ukdzali sme, 7e x1(t), -+ ,X,(t) st rieSenia. Linedrna nezavislost je triv-
idlna:

det[e)\lt’yh T ’e)\nt,.yn]ze()\l‘i‘““f’)\n)t det[’}/lv e 77”]750 Vt lebo det[th e 7771]7&0
——

stipce

Vypocet redlnych rieseni z komplexnych
eMry -komplexné rieSenie. A=0+iw, w#0, y=g+ih, h#0. e My=eT T (gtin)=
=e?!(cos wt+isinwt)(g+ih)=e’*[(g cos wt—hsin wt)+i(h coswt+gsinwt)]. Redlne
riesenia: u(t)=R(e v)=e"*(g coswt—hsinwt); v(t)=J(eMy)=e"*(h cos wt+
+gsinwt).

Veta 9.3. Nech A\=0+iw, w#0 je k-nasobny koren charakteristickej rovnice pre
diferencidlnu rovnicu x=Ax, tj. polynom P(\)=det(A\I-A), pricom k nemu e-
xistuje k linearne nezavislych vlastnych vektorov: £&1=g1+ih1, - -, {g=gr+ihy. Po-
tom mnozina rieseni tvaru u(t)=(acoswt+bsinwt)e’, (kde teR, a, b su vektory)
je vektorovy podpriestor mnoziny vsetkych rieseni dimenzie 2k, pricom jej baza je

u; (t)=(g1 coswt—hy sinwt)e; - - - ;ug(t)=(gx cos wt—hy sinwt)e’?;
v1(t)=(h1 cos wt+gy sinwt)et; - ;v (t)=(hy cos wt+gy, sin wt)e’?.
Dokaz. uy,--- ,ug, vy, -, Vg surieSenia to je jasné.
Linedrna nezdvislost: Nech existuji ¢y, -+ ,cg, dy, -+, dp€R; Y (cZ+d2#0):
crug(t)+- - +epug(t)+divi(t)+ - - - +dpvi(t)=0 & (c1g1+ - - - +ergrtdihy+- - +
+dghy)e?t coswt—i(crhi+ - - +cphg—digri— - - —dggr)et sinwt=0 < (c1g1+ -+ +
+ekgrt+dihi+ - - +dghy)e?t coswt=0 A (c1hi+ - - +ephi—digr— - - - —dggr ) et
sinwt=0 & t=—— A t=0 = (c1—idy)(gr+ihy)+ - - - +(cp—idy) (g +ihg)=0.

2w —— ——
Spor s linedrnou nezavislostou &1, - - - ,&fl -

Riesente pomocou zovseobecnenych vlastnych vektorov:

Definicia 9.2. Vektor v sa nazyva zovSeobecneny vlastny vektor radu p matice A
prisltichajici vlastnému éslu A matice A ak plati: (A—AI)Pv=0 a (A—AI)?~1v£0.

Ozna¢me: vi=(A-A)P~lv, vo=(A-AD)P2v, -+ v, 1=(A-AI)v, v,=V.
Plati: (A—AI)v1=0, (A=AD)vo=vy, -, (A=A)v,_1=v,p_a, (A-A)v,=v,_1,
kde vy je vlastny vektor.
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Definicia 9.3. Usporiadanu p-ticu (vi,vs,---,v,) nazyvame retazec zovseobec-

nenjch vlastnjch vektorov radu (dlzky) p matice A vytvoreny vektorom v;
(A—=MI)Pv=0; (A—AI)P~1v£0.

Veta 9.4. Nech (vi,---, V) je retazec zovSeobecnenych vlastnych vektorov ma-
tice A zodpovedajiice vlastnému c¢islu A matice A vytvoreny vlastnym vektorom

v=v,. Potom vektorové funkcie (vo véeobecnosti komplexné) w1 (t)=v e,
1
wa(t)=(votvit)er, - - 7Wk(t)=(vk+FVk—1t+'"+Wvltkfl)€& e

m
1 i . L . ; .
W, (t)= (E _f'vitm “| eM sii rieSeniami diferencialnej rovnice x=Ax, ktoré sii
i!
i=1
linedrne nezavislé.

Dokaz. Linedrna nezdvislost vy, -+ ,Viy:
m=2: Nech vy, vy st linedrne zavislé. Potom c¢;vi+cava=0, c1,c2€R a ci+c24£0.
Potom ¢; (A—AI)vy +ca (A—AI)ve =0 = =0 = ¢;=0 —spor.

=0 =vi
m=3: c1vi+cavatezvi=0, > c2£0.
c1 (A—)\I)Vl +cCo (A—/\I)Vg “+c3 (A—)\I)Vg =0 = covi+c3ve=0 &

0 Vi A\
-~ CQ(A—)\I)V1+03(A—>\I)V2:0 = c3=0 = =0 = ¢1=0.
Linearna nezavislost funkeii wq(¢),- -, w,,(t) vyplyva z toho, ze w;(0)=v; pre Vi.
Dokéazeme, ze wi(t),- -, W,,(t) st rieSenia diferencidlnej rovnice x=Ax.
Plati: Wy (t)=AvieM=Aw(t)=Aw(t), lebo v; je vlastny vektor.
Wo (t)=vieM+(votvit) AeM = Wo(t)=Awo+w atd. W, =AW, +W,,_ 1.
Awr=A[(vot+vit)eM]=e M Avy+er Avit=e M (Avo+vy ) +erMtAvi = eM vo+eMv+
FAvateM =\ (vo+vit)eMtvieN, Awo= wotw; = Wo=Aw,y. Ak wy(t) je kom-
plexné rieSenie, tak redlne rieSenia sti: x;(t)=R(wi(t)), yr(t)=S(w(t)).
1

1
Pozndmka. x=Ax, x€R", ®(t)=eA=I,,+—(At)+ - +E<At)k+ .

1! !
P(N)=det(A-AL,)=(=1)"(A\"+c1 A" "1+ - - - +¢p_1A+¢,)=0. Podla Cayley-Hamil-
tonovej vety = A"=—c; A" 1'—... —c,_1A+c,. Potom AF pre k>n moino vy-
jadrit ako linedrnu kombindciu matic I, A, A2, .-, A"~ teda existuju funkcie

(s hodnotami v R) by(t), by (t),--- ,b,_1(t) také, ze ®(t)=eA'=bg(t)I,+b;(t)A+
+--+b,_1(t)A""1  VteR.

1. Nech A1, -+, A\, st navzijom rozne vlastné &isla matice A. TAT ! =B =
=diag(\1,- -, A\n). Potom eB!=TeA*T1=T[bg(t)+---+b,_1(t)A" 1| T 1=
=bo(t)I,4 - +b,_1(t) TA" T,

Bn—l
eMt L 0 1 bo(t)A] .- 0
oo = e
0 .- et i=0 0 o bu(t)AL

& eMit=bg(t)+by ()it +b,_ (DA i=1,2,--- n

systém linedrnych algebraickych rovnic o nezndmich bg(t),-- ,b,—1(t). Jeho de-
terminant je Vandermondov determinant a ten je nenulovy.
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2. Ak A je k-nésobny koreni charakteristického polynému. Méme jednu rovnicu:
bo(t)+by ()M - +b,_1(t)A\""t=e*. Derivujme podla \:

b1 (t)+2by(t) A+ - - +(n—1)b, 1 (H) A" 2=te, ...,

(k—=)bg_1(t)+- - +(n—k)--- (n—1)b,,_1 (t)- A"k~ I=th—1eAt,

Ak to urobime pre kazdé vlastné ¢islo matice A, tak dostaneme n rovnic o nezna-
mich b()(t), te ,bn_l(t).



