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2 2.ROČNÍK

I. Obyčajné diferenciálne rovnice a
systémy obyčajných diferenciálnych rovníc

Definícia 1.1. Nech D⊂R×Rn je oblasť, tj. otvorená súvislá množina a
f : D→Rn (t, x)7→f(t, x), x∈Rn. Obyčajná diferenciálna rovnica 1. rádu v D je
rovnica tvaru:

(1)
dx

dt
=f(t, x) (t, x)∈D

Niekedy píšeme ẋmiesto
dx

dt
, tj. ẋ=f(t, x), pričom x=(x1, · · · , xn), ẋ=(ẋ1, · · · , ẋn).

Nech f = (f1, f2, · · · , fn), tj. f(t, x) = (f1(t, x), · · · , fn(t, x)), kde fi : D→R
(t, x)7→fi(t, x). Rovnica (1) platí ⇔ ak ẋ1=f1(t, x1, · · · , xn), ẋ2=f2(t, x1, · · · , xn),
· · · , ẋn=fn(t, x1, · · · , xn) systém obyčajných diferenciálnych rovníc 1.rádu.

Príklad 1.1. D=R2, f : R×R2→R2, f=(f1, f2), f1(t, x)=x1, f2(t, x)= − x2 potom
ẋ1=x1, ẋ2=− x2.

x1(t)=c1eλt

x2(t)=c2eµt
⇔ ẋ1=c1λeλt=c1eλt

ẋ2=c2µeµt=c2eµt
⇔ λ=1

µ=− 1
x1(t)=c1et

x2(t)=c2e−t

Definícia 1.2. Nech f : D→Rn, (t, x)7→f(t, x) je spojité zobrazenie. Riešenie
diferenciálnej rovnice (1) na intervale I⊂R je také spojite diferencovateľné zobraze-
nie ϕ : I→Rn, pre ktoré platí:
1. (t, ϕ(t))∈D, pre ∀t∈I.

2.
dϕ(t)
dt

=f(t, ϕ(t)) pre ∀t∈I, kde ϕ=(ϕ1, · · · , ϕn),
dϕ(t)
dt

=

(
dϕ1(t)
dt

, · · · , dϕn(t)
dt

)
,

dϕi(t)
dt

=fi(t, ϕ1(t), · · · , ϕn(t)) pre ∀t∈I, i=1, · · · , n.

Príklad 1.2.
dx

dt
=1, x∈R má nekonečne veľa riešení x(t)=t+c. Ale

dx

dt
=1, x(0)=0

má jediné riešenie x(t)=t.
Cauchyho začiatočná úloha:

(2)

{
ẋ=f(t, x)

x(t0)=x0

Pre dané (t0, x0)∈D treba nájsť interval I⊂R obsahujúci t0 tj. t0∈I a riešenie
x : I→Rn diferenciálnej rovnice ẋ=f(t, x) ktoré splňuje tzv. začiatočnú podmienku
ẋ(t0)=x0. Hovoríme tiež, že riešenie x prechádza bodom (t0, x0).

II. Vety o existencii a jednoznačnosti a globálnej existencii riešení

Veta 2.1. Peanova o existencii
Nech D⊂R×Rn je oblasť a f : D→Rn, (t, x)7→f(t, x) je spojité zobrazenie. Potom
pre každý bod (t0, x0)∈D existuje otvorený interval I⊂R obsahujúci t0 na ktorom
je definované riešenie x : I→Rn začiatočnej úlohy (2), tj. ẋ=f(t, x) x(t0)=x0.
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Definícia 2.1. Nech f : D→Rn, (t, x)7→f(t, x), D je oblasť v R×Rn. Hovoríme,
že zobrazenie f spĺňa v D Lipschitzovu podmienku vzhľadom na premennú x (ho-
voríme tiež, že f je lipschitzovské v D vzhľadom na x), ak existuje taká konštanta
L>0, že platí ‖f(t, x)−f(t, y)‖≤L‖x−y‖ pre ∀(t, x), (t, y)∈D, kde ‖ · ‖ je norma
v Rn (napr. euklidovská norma).

Definícia 2.2. Hovoríme, že zobrazenie f : D→Rn, (t, x) 7→f(t, x), je lokálne lip-
schitzovské na D vzhľadom na x, ak je splnená podmienka: ∀(t0, x0)∈D existujú
čísla a>0, b>0 také, že G={(t, x)∈R×Rn; |t−t0|<a, ‖x−x0‖<b}⊂D a
‖f(t, x)−f(t, y)‖≤L‖x−y‖, pre ∀(t, x), (t, y)∈G, kde L>0 je konštanta.

Veta 2.2. o lokálnej existencii a jednoznačnosti
Nech D⊂R×Rn je oblasť, f : D→Rn, (t, x) 7→f(t, x) je spojité zobrazenie a lokálne
lipschitzovské na D vzhľadom na x. Potom pre každý bod (t0, x0)∈D existuje
číslo δ>0 také, že na intervale Iδ=(t0−δ, t0+δ) je definované práve jedno riešenie
začiatočnej úlohy: ẋ=f(t, x), x(t0)=x0.

Otázka: Ako sa nájde lipschitzova konštanta?

Tvrdenie 2.1. Nech f=(f1, · · · , fn) : D=(a, b)×H→Rn je spojité zobrazenie, kde
−∞<a<b<∞ a H⊂Rn je konvexná oblasť pričom funkcia fi (i=1, · · · , n) má spo-

jité parciálne derivácie
∂fi(x)
∂xj

, (j=1, · · · , n), (t, x)∈(a, b)×H.

K= sup
(t,u)∈(a,b)×H
i,j=1,··· ,n

∣∣∣∣
∂fi(t, u)
∂xj

∣∣∣∣<∞

Potom ‖f(t, x)−f(t, y)‖≤L‖x−y‖, pre ∀(t, x), (t, y)∈(a, b)×H, kde L=K·n a ‖ · ‖
je euklidovská norma.

Dôkaz.

Nech (t, x), (t, y)∈(a, b)×H. Potom ‖f(t, x)−f(t, y)‖=
[

n∑

i=1

(fi(t, x)−fi(t, y))2

]1/2

.

fi(t, x)−fi(t, y)
MVT
=

n∑

j=1

∂fi(t, cj)
∂xj

(xj−yj)=〈~u,~v〉

kde ~u=

(
∂fi(t, c1)
∂x1

, · · · , ∂fi(t, cn)
∂xn

)
; ~v=x−y.

|fi(t, x)−fi(t, y)| CSB≤




n∑

j=1



∂fi(t, cj)
∂xj︸ ︷︷ ︸
≤K




2


1/2

·‖x−y‖≤√nK‖x−y‖

‖f(t, x)−f(t, y)‖=




n∑

i=1

(fi(t, x)−fi(t, y))2

︸ ︷︷ ︸
≤nK2




1
2

‖x−y‖≤(n2K2)
1
2 ‖x−y‖= nK︸︷︷︸

=L

‖x−y‖

MVT= Mean value theorem= Veta o strednej hodnote
CSB= nerovnosť Cauchyho-Schwarzova-Bunjakovského
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Definícia 2.3. Nech I⊂R je interval (otvorený) a x : I→Rn je riešenie diferen-
ciálnej rovnice ẋ=f(t, x). Riešenie y : J→Rn diferenciálnej rovnice ẋ=f(t, x), kde
J⊂R je interval sa nazýva predĺžením riešenia x, ak I⊂J a x(t)=y(t) pre ∀t∈I.
Ak I 6=J , I⊂J potom sa y(t) nazýva vlastným predĺžením riešenia x(t). Riešenie
x : I→Rn sa nazýva úplné, ak neexistuje žiadne jeho vlastné predĺženie. Vtedy I sa
nazýva maximálny interval existencie. Riešenie x diferenciálnej rovnice ẋ=f(t, x)
sa nazýva globálne, ak I=(−∞,∞)– maximálny interval existencie.

Veta 2.3. o globálnej existencii
Nech f : R×Rn→Rn je spojité zobrazenie splňujúce podmienku, že
‖f(t, x)‖≤Φ(t)ω(‖x‖) pre ∀(t, x)∈R×Rn, kde Φ : R→R+, ω : R+→R+;∫∞
v0

[ω(σ)]−1dσ=∞, v0>0.

III. Technika riešení niektorých typov diferenciálnych rovníc

1. Triviálne diferenciálne rovnice:
ẋ=f(t), x(t0)=x0, kde f(t) nezávisí od x. Potom x(t)=

∫ t
t0
f(s)ds+x0, kde

f=(f1, · · · , fn), x=(x1, · · · , xn) a x(t)=(
∫ t
t0
f1(s)ds+ · · ·+ ∫ t

t0
fn(s)ds)+x0.

2. Separované a separovateľné diferenciálne rovnice:
Separovaná: ẋ=f1(t)f2(x), x∈R.
Separovateľné: ktoré sa dajú transformovať do separovaných.
Formálny výpočet:

dx

dt
=f1(t)f2(x)⇔ dx

f2(x)
=f1(t)dt⇔

∫ x

x0

dx

f2(x)
=
∫ t

t0

f1ds+k ⇔

⇔ xk=F−1(
∫ t

t0

f1(s)ds+k)

Veta 3.1. Nech f1 : (a, b)→R, f2 : (c, d)→R sú spojité funkcie, t0∈(a, b), x0∈(c, d).
Potom platí:
1. Ak f2(x0)=0 potom je x : (a, b)→R, x(t0)≡x0 je riešením začiatočnej úlohy
ẋ=f1(t)f2(x) , x(t0)=ẋ0. (pozn. x(t)≡x0 je singulárne riešenie.)
2. Ak f2(x0)6=0 pre všetky x∈(c, d) potom pre každé x0∈(c, d) existuje riešenie
x : (α, β)→R začiatočnej úlohy: x=f1(t)f2(x), x(t0)=x0, kde t0∈(α, β), x0∈(c, d),
(α, β)⊂(a, b) a toto má tvar:

x(t)=F−1(G(t)+k), kde G(t)=
∫ t

t0

f1(s)ds, F (x)=
∫ x

x0

ds

f2(s)
, F (x0)=k

IV. Lineárna homogénna diferenciálna rovnica (v R)

(1)
dx

dt
=p(t)x, x∈R

p : (a, b)→R, (−∞≤a≤b≤∞) spojitá funkcia.
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Veta 4.1. F
Nech p(t) je spojitá na intervale I=(a, b). Potom platí:

1. Každé riešenie x(t) diferenciálnej rovnice (1) má tvar x(t)=e
R t
t0
p(s)ds

c, t∈I, t0∈I,
c∈R. (Toto riešenie sa nazýva všeobecné)

2. Pre každé t0∈I a každé x0∈R má začiatočná úloha:
dx

dt
=p(t)x, x(t0)=x0 práve

jedno riešenie a toto riešenie x(t) má tvar x(t)=e
R t
t0
p(s)ds

x0.

Dôkaz. Separácia premenných
dx

x
=p(t)dt⇔ ∫ dx

x
=
∫
p(t)dt⇔ ln |x|= ∫ p(t)dt=

=
∫ t
t0
p(s)ds+ ln |c| ⇔ ln

∣∣∣x
c

∣∣∣=
∫ t
t0
p(s)ds⇔ |x(t)|=e

R t
t0
p(s)ds|c| ~

x(t) 6=0⇒ ∀t∈I. Ak by ∃τ∈R : x(τ)=0, potom by
dx

dt
=p(t)x, x(τ)=0 mala 2 rôzne

riešenia, a to x(t) a x0(t)≡0 spor s jednoznačnosťou.

~ Ak x(t)>0, tak |x(t)|=x(t) ∀t⇒ x(t)=e
R t
t0
p(s)ds|c|

Ak x(t)<0, tak |x(t)|=− x(t)⇒ x(t)=−e
R t
t0
p(s)ds(−|c|).

2. x(t)=e
R t
t0
p(s)ds

c; x(t0)=x0 ⇒ x0=x(t0)=c.

V. Lineárna nehomogénna diferenciálna rovnica (v R)

dx

dt
=p(t)x+f(t) f(t), p(t) sú spojité na I

Veta 5.1. Pre každé t0∈I=(a, b) a každé x0∈R má začiatočná úloha
dx

dt
=p(t)x+f(t), x(t0)=x0 práve jedno riešenie x(t) a toto riešenie má tvar:

x(t)= e
R t
t0
p(s)ds

x0︸ ︷︷ ︸
xh(t)

+ e
R t
t0
p(s)ds

∫ t

t0

e
− R τ

t0
p(s)ds

f(τ)dτ

︸ ︷︷ ︸
xp(t)

xh(t)–riešenie homogénnej rovnice splňujúce x(t0)=x0.
xp(t)–partikulárne riešenie nehomogénnej diferenciálnej rovnice.
x(t)=xp(t)+xh(t) −→ princíp superpozície riešení.

Dôkaz. Metóda variácie konštanty:

Hľadajme riešenie nehomogénnej diferenciálnej rovnice v tvare x(t)=e
R t
t0
p(s)ds

c(t),
kde c(t) je spojite diferencovateľná na I=(a, b). Dosaďme x(t) do rovnice:

dx(t)
dt

=p(t) e
R t
t0
p(s)ds

c(t)︸ ︷︷ ︸
x(t)

+e
R t
t0
p(s)ds dc(t)

dt
=p(t)x(t)+f(t)⇔

e
R t
t0
p(s)ds dc(t)

dt
=f(t)

dc(t)
dt

=e
R t
t0
p(s)ds

f(t) triviálna diferenciálna rovnica pre c

c(t)=
∫ t

t0

e
R τ
t0
p(s)ds

f(τ)dτ+K
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⇒ x(t)=e
R t
t0
p(s)ds

c(t)=e
R t
t0
p(s)ds·

[∫ t

t0

e
− R τ

t0
p(s)ds

f(τ)dτ+K

]
x0=x(t0)=K

x(t)= e
R t
t0
p(s)ds

x0︸ ︷︷ ︸
xh(t)

+ e
R t
t0
p(s)ds

∫ t

t0

e
− R τ

t0
p(s)ds

f(τ)dτ

︸ ︷︷ ︸
xp(t)

Dôkaz vety F.
a) Metódou postupných aproximácií: f : D⊂R×Rn→Rn. Z predpokladu existuje
a, b>0 také, že f splňuje lipschitzovskú podmienku v oblasti G={(t, x)∈R×Rn;

|t−t0|≤a, ‖x−x0‖≤b}⊂D. Nech M= max
(t,x)∈Ḡ

‖f(t, x)‖, nech α= min

{
a,

b

M

}
.

Budeme konštruovať postupnosť {xk}∞k=0, xk : 〈t0−α, t0+α〉→Rn takú, že
xk(t)⇒ x(t) na Iα, kde x(t) je riešenie začiatočnej úlohy. (pokr.)

Tvrdenie 5.1. x(t) je riešením začiatočnej úlohy
dx

dt
=f(t, x), x(t0)=x0 na inter-

vale Iα ⇔ x(t) je spojitá na Iα a x(t)=x0+
∫ t
t0
f(s, x(s))ds pre ∀t∈Iα.

Dôkaz.
⇒ :

∫ t

t0

dx(s)
dt

ds

︸ ︷︷ ︸
x(t)−x(t0)

=x(t)−x0=
∫ t

t0

f(s, x(s))ds⇒ x(t)=x0+
∫ t

t0

f(s, x(s))ds ∀t∈Iα

⇐ : Nech x(t)=x0+
∫ t
t0
f(s, x(s))ds a x(t) je spojitá na Iα. Potom t7→f(t, x(t))

je spojité. ⇒ t7→ ∫ t
t0
f(s, x(s))ds je spojite diferencovateľná na Iα ⇒ x(t) je spojite

diferencovateľná na Iα ⇒ dx(t)
dt

=f(t, x(t)) ∀t∈Iα a x(t0)=x0.

Okrajová úloha je ekvivalentná riešeniu tzv. integrálnej rovnice

x(t)=x0+
∫ t

t0

f(s, x(s))ds t∈Iα

Pokračujeme v dôkaze vety 4.1F:
Začiatočnú úlohu stačí riešiť pre t0=0, lebo po transformácií t=t0+τ :
y(τ)=x(t0+τ)

dy(τ)
dτ

=
dx(τ+t0)

dt
=f(τ+t0, x(τ+t0)):=F (τ, y(τ))

dy

dτ
=F (τ, y) y(0)=x(t0)=x0

Túto začiatočnú úlohu stačí riešiť pre τ≥0, lebo po transformácií τ=−s dostávame

pre z(s)=y(−s) rovnicu:
dz(s)
ds

=
dy(−s)
dτ

·(−1)=−F (−s, y(−s)︸ ︷︷ ︸
z(s)

) s≥0 ⇔ τ≤0.

Picardova metóda postupných aproximácií:

x(t)=x0+
∫ t

0
f(s)x(s)ds , t∈Ik=〈0, b〉
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0-tá aproximácia: x0(t)≡x0.
1. aproximácia: x1(t)=x0+

∫ t
0 f(s)x(s)ds.

k. aproximácia: xk(t)=xk−1(t)+
∫ t

0 f(s)x(s)ds.
Najskôr dokážeme, že (t, xk(t))∈G pre ∀t∈Ik, k=1, 2, · · · .
‖xk+1(t)− x0‖ = ‖ ∫ t0 f(s, xk(s))ds‖ ≤ ∫ t0 ‖f(s, xk(s))‖ds ≤
≤ Mb < Mα ≤ M min{a, bM } ≤ M b

M = b. Teda (t, xk+1(t))∈G pre ∀t∈Ik,
k=0, 1, · · · . Teraz dokážeme, že xk ⇒ x na Ik. (xk, x sú spojité.)
xk(t)=x0(t)+[x1(t)−x0(t)]+ · · ·+[xk(t)−xk−1(t)]
‖x1(t)−x0(t)‖=‖ ∫ t0 f(s, x0(s))ds‖≤M ·t≤M ·h
‖x2(t)−x1(t)‖=‖ ∫ t0 f(s, x1(s))−f(s, x0(s))ds‖≤ ∫ t0 ‖f(s, x1(s))−f(s, x0(s))‖ds≤
≤ ∫ t0 L·‖x1(s)−x0(s)‖ds=L ∫ t0 Msds=LM

t2

2
, t∈Ik.

‖x3(t)−x2(t)‖≤L ∫ t0 ‖x2(s)−x1(s)‖ds≤L ∫ t0 LM
s2

2
ds=L2M

t3

3!
atď.

‖xk+1(t)−xk(t)‖=Lk·M tk+1

(k+1)!
≤LkM hk+1

(k+1)!

‖x0‖+‖x1(t)−x0(t)‖+ · · ·+‖xk(t)−xk−1(t)‖≤‖x0‖+Mh+LM
h2

2!
+L2M

h3

3!
+ · · ·+

+Lk−1M
hk

k!
=‖x0‖+M

L

[
Lh+

(Lh)2

2!
+ · · ·+(Lh)k

k!

]
≤‖x0‖+M

L
eLh ⇒ xk(t)⇒ x(t)

na intervale Ik.

xk+1(t)︸ ︷︷ ︸
⇒x(t)

=x0+
∫ t

0
f(s, xk(s)︸ ︷︷ ︸

⇒x(s)

)ds⇒ x(t)=x0+
∫ t

0
f(s, x(s))ds ∀t∈Ik ⇔

⇔ ẋ(t)=f(t, x(t)), x(0)=x0 ∀t∈Ik
Jednoznačnosť: Nech u1(t), u2(t) sú riešenia na Ih, u1(t)6=u2(t)⇒

‖u1(t)−u2(t)‖=‖
∫ t

0
[f(s, u1(s))−f(s, u2(s))]ds‖≤

∫ t

0
‖f(s, u1(s))−f(s, u2(s))‖ds≤

≤L
∫ t

0
‖u1(s)−u2(s)‖ds≤Lh max

0≤τ≤h
‖u1(τ)−u2(τ)‖

︸ ︷︷ ︸
=ρ

⇒ ‖u1(t)−u2(t)‖≤Lhρ ∀t∈Ih

⇒ max
0≤τ≤h

‖u1(τ)−u2(τ)‖≤Lhρ⇔ ρ≤Lhρ

Ak h>0 je také, že Lh<1, tj. 0<h<
1
L

, potom 0<ρ≤Lh<ρ –spor.

Odhad chyby: n>m, ‖xn(t)−xm(t)‖=‖[xn(t)−xn−1(t)]+ · · ·+[xm+1(t)−xm(t)]‖≤
≤‖xn(t)−xn−1(t)‖+ · · ·+‖xm+1(t)−xm(t)‖≤Ln−1M

hn

n!
+Ln−2M

hn−1

(n−1)!
+ · · ·+
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+LmM
hm+1

(m+1)!
≤M
L

(Lh)m+1eLh n→∞ : ‖x(t)−xm(t)‖≤M
L

(Lh)n+1eLh.

Nech Lh<1 a ε>0. Treba nájsť najmenšie m také , aby ‖x(t)−xm(t)‖<ε ∀t∈Ih.

Stačí aby
M

L
(Lh)m+1eLh<ε⇔ logLh

M

L
+m+1+Lh logLh e> logLh ε⇔

⇔ m+1> logLh
ε

eLhML

Tvrdenie 5.2. Nech Ck=C(Ik,Rn) je množina spojitých zobrazení z intervalu
Ik=〈0, k〉 do Rn. Potom platí:
1. Ak L>0, r>0 tak dr(f, g)= maxt∈Ik{e−rk‖f(t)−g(t)‖} je metrika na ck.
2. (Ck, dr) je úplný metrický priestor.

Banachova veta. Nech (X, d) je úplný metrický priestor a F : X→X je kontrak-
tívne zobrazenie také, že d(F (x), F (y))≤kd(x, y) pre ∀x, y∈X. Potom F má práve
jeden pevný bod u taký, že F (u)=u.

Dôkaz. u0∈X, uk+1=F (uk), uk→u tj. d(uk, u)=0 pre k→∞.

d(un, um)≤ kn

1−kd(u1, u) ∀m≥n m→∞ d(u, un)≤ kn

1−kd(u1, u)

2.dôkaz vety 4.1F metódou pevného bodu
x=Ck; d=dL; r=L; F : Ck→Ck, F (x)(t)=x0+

∫ t
0 f(s, x(s))ds. Hľadám x∈Ck:

F (x)=x. x, y∈Ck :

d(F (x), F (y))= max
t∈Ik
{e−Lt‖F (x)(t)−F (y)(t)‖}= max

t∈Ik
{e−Lt‖[x0+

∫ t

0
f(s, x(s))ds

︸ ︷︷ ︸
F (x)(t)

]−

−[x0+
∫ t

0
f(s, y(s))ds

︸ ︷︷ ︸
F (y)(t)

]‖}≤max
t∈Ik
{e−Lt

∫ t

0
‖f(s, x(s))−f(s, y(s))‖ds}=

= max
t∈Ik
{e−LtL

∫ t

0
eLse−Ls‖x(s)−y(s)‖ds}≤max

t∈Ik
{e−LtLdL(x, y)

∫ t

0
eLsds}=

= max
t∈Ik
{e−LtLdL(x, y)

1
L

(eLt−1)}= max
t∈Ik
{1−e−Lt}dL(x, y)=(1−e−Lh)dL(x, y)⇒

⇒ dL(F (x), F (y))≤(1−e−Lh)dL(x, y)⇒ F je kontraktívne zobrazenie⇒
⇒ F má jediný pevný bod F (x)=x.

F (x)(t)︸ ︷︷ ︸
x(t)

=x0+
∫ t

0
f(s, x(s))ds ∀t∈Ih;x∈C(〈a, b〉︸ ︷︷ ︸

Ih

,Rn)⇔
{
ẋ=f(t, x)

x(0)=x0

Odhad chyby: x=x(t) -pevné riešenie. xm=xm(t) –m-tá aproximácia. m>n,

dL(xm, xn)≤ (1−e−Lh)m

e−Lh
d(x1, x0)⇒ d(xm, x)≤ (1−e−Lh)m

e−Lh
dL(x1, x0)=

=
km

1−kdL(x1, x0), kde k=1−e−Lh.



OBYČAJNÉ DIFERENCIÁLNE ROVNICE 9

Prípravné úvahy ku dôkazu Peanovej vety.

x(t)=x0+
∫ t

0
f(s, x(s))ds, t∈Ih=〈0, h〉 G={(t, x)∈R×Rn; |t|≤a, |x−x0|≤b}

f : G→Rn, f je spojitá, ale nemusí spĺňať lipschitzovskosť.
Kedy možno z postupnosti {xk}∞k=1, xk∈A⊂Cb=C(Ih,Rn); Ih=〈0, h〉 vybrať kon-
vergentnú podpostupnosť vzhľadom na d(f, g)= maxt∈Ih ‖f(t)−g(t)‖.
Definícia 5.1. Nech (X, d) je metrický priestor. Množina A⊂X sa nazýva re-
latívne kompaktná, ak Ā=A∪A′ je kompaktná.

Kritérium pre relatívnu kompaktnosť množiny A⊂Ch=C(Ih,Rn).

Definícia 5.2. Hovoríme, že množina zobrazení A⊂C(I,Rn), (I=〈a, b〉⊂R) je rov-
nomerne ohraničená, ak existuje konštanta k>0 taká, že ‖f(t)‖≤k ∀t∈I ∀f∈A.

Definícia 5.3. Hovoríme, že A⊂C(I,Rn) je rovnomocne spojitá, ak
∀ε>0 ∃δ=δ(ε)>0 taká, že platí: |t1−t2|<δ, t1, t2∈I ⇒ ‖f(t1)−f(t2)‖<ε, ∀f∈A.

Arzelova-Ascoliho Lema:. Nech A⊂C(I,Rn) je nekonečná množina, ktorá je
rovnomerne ohraničená a rovnomocne spojitá, potom je A relatívne kompaktná.

ε-približné riešenie:

Definícia 5.4. Nech f : D→Rn (D⊂R×Rn je oblasť), ε>0, I⊂R je interval.
Spojité zobrazenie x : I→Rn sa nazýva ε -približné riešenie diferenciálnej rovnice
ẋ=f(t, x), ak platí:
1. (t, x(t))∈D ∀t∈I.
2. x=x(t) je spojite diferencovateľné zobrazenie na I\S, kde S⊂I pozostáva z ko-

nečného počtu bodov v ktorých má deriváciu ẋ(t)=
dx(t)
dt

body nespojitosti také,

že ak t0∈S, potom lim
t→t−0

dx(t)
dt

aj lim
t→t+0

dx(t)
dt

existujú, ale sú rôzne.

3. ‖dx(t)
dt
−f(t, x(t))‖<ε ∀t∈I\S.

Eulerove polygóny: (na intervale Iα=〈t0, t0+α〉, α>0 pre ẋ(t)=f(t, x), x(t0)=x0.
0-tý Eulerov polygón: x−x0=f(t0, x0)·(x−x0), ẋ(t0)=f(t0, x(t0))=f(t0, x0),
x0(t)=x0+f(t0, x0)(t−t0).
Nech δm : t0<t1< · · ·<tm=t0+α.
1. Eulerov polygón: m=2: t0<t1<t2=t0+α.
x1(t)=x0+f(t0, x0)(t−t0) pre t0≤t≤t1.
x2(t)=x1+f(t0, x0)(t1−t)+f(t1, x1)(t−t1) pre t1≤t≤t0+α.
kde X1=x1(t1)=x0+f(t0, x0)(t1−x0).
m-tý Eulerov polygón: (pri delení δm)
Xm(t)=xm(tk−1)+f(tk−1, xm(tk−1))(t−tk−1) pre tk−1≤t≤tk k=1, · · · , n.

Veta 5.2. Nech G={(t, x)∈R×Rn, |t−t0|≤a, ‖x−x0‖≤b}, a, b>0, (t0, x0)∈R×Rn a
f : G→Rn je spojité zobrazenie. Potom pre ∀ε>0 existuje ε-približné riešenie začia-

točnej úlohy
dx

dt
=f(t, x), x(t0)=x0 na intervale Iα=〈t0, t0+α〉, kde α= min

{
a, bM

}
,

M= max
(t,x)∈G

‖f(t, x)‖.
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Dôkaz. f spojité na kompakte G, potom f je rovnomerne spojité na G. Ak
ε>0 je dané, tak ku nemu existuje δ=δ(ε)>0 také, že (t, u), (s, v)∈G, |t−s|<δ(ε),
‖u−v‖<δ(ε)⇒ ‖f(t, u)−f(t, v)‖<ε. Zvoľme delenie δ0 : t0<t0+α; δm : t0<t1< · · ·
<tm=t0+α, m>0.
δ0 −→ X0(t) 0-tý Eulerov polygón; δm −→ Xm(t) m-tý Eulerov polygón.
Dokážeme, že (t, xm(t))∈G ∀t∈Iα=〈t0, t0+α〉. Nech t0≤t≤t1. ‖xm(t)−x0‖=
=‖f(t0, x0)(t−t0)‖=(t−t0)‖f(t0, x0)‖≤M(t−t0)≤Mα≤M b

M=b. Nech t1≤t≤t2 ⇒
Xm(t)=xm(t)+f(t1, xm(t1))(t−t1)=x0+f(t0, x0)(t1−t0)+f(t1, xm(t1))(t−t1)⇒
⇒ ‖xm(t)−x0(t)‖=‖f(t0, x0)(t1−t0)+f(t1, xm(t1))‖≤M(t1−t0)+M(t−t1)=
=M(t−t0)≤Mα≤b atď. indukciou.

Platí:
1. xm(t) je spojité zobrazenie na Iα a derivácia existuje až na konečný počet bodov
z Iα.

2. ‖dxm(t)
dt

−f(t, xm(t))‖<ε ∀t∈Iα až na konečný počet bodov z Iα.

Nech k∈{1, 2, · · · , n}, tk−1≤t≤tk a delenie také, že max
k
{tk−tk−1}≤min{δ(ε), δ(ε)

M
}

Potom ‖xm(t)−xm(tk−1)‖=‖f(tk−1, xm(tk−1))‖(t−tk−1)≤M(t−tk−1)≤M δ(ε)
M

=

=δ(ε) ⇒ ‖dxm(t)
dt

−f(t, xm(t))‖=‖f(tk−1, xm(tk−1))−f(t, xm(t))‖≤ε ak existuje

dxm(t)
dt

⇒ xm(t) je ε-približné riešenie.

Dôkaz Peanovej vety. Nech {εm}∞, lim
m→∞

εm=0 (napr. εm=
1
m

). Xm(t) je

ε-približné riešenie na Iα=〈t0, t0+α〉. Ukázali sme, že ‖xm(t)−x0‖≤b ∀m⇒
⇒ ‖xm(t)‖≤K=b+‖x0‖ ∀m>0 (K nezávisí od m) ⇒ množina A={xm∈C;m>0;
C(Iα,Rn)} je rovnomerne ohraničená. Ukážeme, že A je rovnomocne spojitá. Nech
t, s∈Iα=〈t0, t0+α〉. δm : t0<t1< · · ·<tm=t0+α. Nech s<t. Potom s∈〈tj , tj+1〉,
t∈〈ti, ti+1〉, i>j.
‖xm(t)−xm(s)‖=‖[xm(t)−xm(ti)]+[xm(ti)−xm(ti−1)]+ · · ·+[xm(tj+1)−xm(s)]‖≤
≤‖xm(t)−xm(ti)‖+‖xm(ti)−xm(ti−1)‖+ · · ·+‖xm(tj+1)−xm(s)‖≤M(t−ti)+
+M(ti−ti−1)+ · · ·+M(tj+1−s)=M(t−s)⇒ ∀ε>0 ∃δ=δ(ε)>0 také, že |t−s|<δ
⇒ ‖xm(t)−xm(s)‖<ε ∀xm∈A ⇒ A je rovnomocne spojitá. Z Ascoli-Arzelovej
lemy vyplýva, že existuje podpostupnosť {xmk}∞k=1 taká, že xmk⇒x∈C(Iα,Rn)
na Iα. gk(t)=xmk(t), {gk}, gk⇒x, gk(t)=x0+

∫ t
t0
f(s, gk(s))+4k(s)ds.

4k(t)=
dgk(t)
dt
−f(t, gk(t)) ak t je také, že existuje

dgk(t)
dt

, inde 0. Vieme, že

‖4k(t)‖≤εmk k→∞−−−→ 0⇒ 4k⇒0⇒ gk(t)⇒x⇒ x(t)=x0+
∫ t
t0
f(s, x(s))ds, t∈Iα ⇒

je riešenie.

Veta o predĺžiteľnosti riešení. Nech f : D→Rn (D⊂R×Rn je oblasť) je spojité,
ohraničené zobrazenie. Nech x(t) je riešenie začiatočnej úlohy ẋ=f(t, x) x(t0)=x0,
kde (t0, x0)∈D na intervale I=〈a, b〉. Potom existuje x(a+)= lim

t→a+
x(t) a

lim
t→b−

x(t)=x(b−). Naviac, ak (b, x(b))∈D (analogicky (a, x(a))∈D.) potom existuje

β>0 a riešenie y(t), t∈(α−β, b+β) také, že y(t)=x(t) pre t∈(a, b). ( y(t)–spojité
predĺženie x(t) na intervale (a−β, b+β).)
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Dôkaz. x(t)=x1+
∫ t
t0
f(s, x(s))ds, t∈(a, b). Nech M= max

(t,x)∈D
‖f(t, x)‖. Nech

a<u<v<b. Potom x(v)−x(u)=
∫ v
u
f(s, x(s))ds⇒ ‖x(v)−x(u)‖≤M(v−u)⇒

⇒ lim
u,v→b−

[x(v)−x(u)]=0. Z Cauchyho konvergenčného kritéria ⇒ lim
t→b−

x(t) exis-

tuje. Označme ju x(b−). Analogicky existuje lim
t→a+

x(t)=x(a+). Predpokladajme,

že (b, x(b−))∈D. Definujme z(t)=

{
x(t); t∈(a, b)

x(b−); ak t=b
. Zrejme z(t) je spojitá na (a, b〉.

A možno riešiť začiatočnú úlohu ẋ=f(t, x); x(b)=x(b−). lim
t→a+

x(t)=x(a+) existuje

z Peanovej vety ⇒ ∃β>0 také, že začiatočná úloha má riešenie x(t), t∈〈a, b+β).
Analogicky naľavo od a.

VI. Lineárna homogénna diferenciálna rovnica v Rn

(1)
dx

dt
=A(t)·x, x∈Rn A(t)=(aij(t))∈Mnn(R) aij(t) sú spojité na I=R

Algebraická štruktúra riešení diferenciálnej rovnice (1):

Veta 6.1. Množina M riešení diferenciálnej rovnice (1) je n-rozmerný vektorový
priestor nad R.

Dôkaz. Nech x1(t),x2(t) sú riešenia, k1, k2∈R. x(t)=k1x1(t)+k2x2(t).
ẋ(t)=k1ẋ1(t)+k2ẋ2(t)=k1A(t)x1(t)+k2A(t)x2(t)=A(t)[k1x1(t)+k2x2(t)]. Ukázali
sme, že x1,x2∈M ⇒ x=k1x1+k2x2∈M ⇒ M je vektorový priestor nad Rn.
Dokážeme, že dim(M)=n. Nech {~e1, · · · , ~en} je báza jednotkových vektorov v Rn.
Nech xi(t) je riešenie diferenciálnej rovnice (1) splňujúce začiatočnú podmienku
xi(0)=~ei, i=1, 2, · · · , n. x1(t),x2(t) · · · ,xn(t) sú lineárne nezávislé, tj. neexistujú
c1, · · · , cn∈R také, že

∑
c2i 6=0 a c1x1(t)+ · · ·+cnxn(t)=0 ∀t∈I. Nech také konš-

tanty existujú. Potom pre t=0 je c1x1(0)+ · · ·+cnxn(0)=0⇒ ~c=(c1, c2 · · · , cn)=
=(0, · · · , 0)⇔ ∀ci=0⇒ dim(M)≥n.
Nech y(t) je ľubovoľné riešenie tj. y∈M . Nech y(0)=v=(v1, · · · , vn)T∈Rn. Nech
u(t)=v1x1(t)+ · · ·+vnxn(t). Zrejme u∈M a platí: y(0)=v=u(0), lebo x1(0)=~ei,
i=1, · · · , n. Z vety o existencii a jednoznačnosti riešení ⇒ u(t)=y(t) ∀t∈I
u(t)=v1x1(t)+ · · ·+vnxn(t)⇒ dim(M)≤n, ale vieme, že dim(M)≥n⇒ dim(M)=n
a {x1, · · · ,xn} je báza v M .

Definícia 6.1. Každú množinu ϕ1(t), ϕ2(t), · · · , ϕn(t) lineárne nezávislých riešení
diferenciálnej rovnice (1) nazývame fundamentálnym systémom riešení diferenciál-
nej rovnice (1).

Definícia 6.2. Nech ϕ1(t), · · · , ϕn(t) je fundamentálny systém riešení a
ϕ1(t)=[ϕ11(t), · · · , ϕ1n(t)]T, · · · , ϕn(t)=[ϕn1, · · · , ϕnn]T. Potom sa matica
Φ(t)=[ϕ1(t), · · · , ϕn(t)]=(ϕij(t)) nazýva fundamentálnou maticou diferenciálnej
rovnice (1).

Tvrdenie 6.1. Fundamentálna matica Φ(t) je maticovým riešením diferenciálnej

rovnice Ẋ=
dX
dt

=A(t)X, tj. Φ̇(t)=
dΦ(t)
dt

=A(t)Φ(t), kde Φ̇(t)=(ϕ̇1(t), · · · , ϕ̇n(t)).

Dôkaz. Φ̇(t)=[ϕ̇1(t), · · · , ϕ̇n(t)]=[A(t)ϕ1(t), · · · ,A(t)ϕn(t)]=A(t)Φ(t).
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Príklad 6.1. Ẋ=
(

0 1
−1 0

)
X=AX. eBt=In+

1
1!

Bt+
1
2!

B2t2+ · · ·
d

dt
eAt=A+

1
1!

A2t+
1
2!

A3t2+ · · ·=A(1+
1
1!

A+ · · · )=AeAt. Φ(t)=eAt tak je to

maticové riešenie diferenciálnej rovnice (1). Φ(0)=I.

Dokážte, že Φ(t)=eAt=
(

cos t sin t
− sin t cos t

)
.

Tvrdenie 6.2. Liouvilleova formula
Nech Φ(t) je maticové riešenie diferenciálnej rovnice Ẋ=A(t)X. Potom pre každé

t0∈R je det Φ(t)= det Φ(t0)·e
R t
t0
TrA(s)ds, kde TrA(s)=a11(s)+ · · ·+ann(s),

A(s)=(aij(s)).

Dôkaz (náznak).
d

dt
det(Φ(t))= det[ϕ̇1(t), · · · , ϕn(t)]+ · · ·+ det[ϕ1(t), · · · , ϕ̇n(t)]=

=A(t)ϕ1(t)+ · · ·+A(t)ϕn(t)=TrA(t) det Φ(t), ϕi(t) sú stĺpce matice Φ(t).

d

dt
det(Φ(t))︸ ︷︷ ︸

x(t)

=TrA(t)︸ ︷︷ ︸
p(t)

det Φ(t)︸ ︷︷ ︸
x(t)

ẋ=p(t)x⇒ x(t)=e
R t
t0
p(s)ds

x(t0)

Dôsledok. det Φ(t0)6=0⇒ det Φ(t)6=0 ∀t∈R. Ak det Φ(t0)=0⇒ det Φ(t)≡0.

Veta 6.2.
Začiatočná úloha ẋ=A(t)x x(t0)=x0 má riešenie tvaru x(t)=Φ(t)Φ−1(t0)x0, kde
Φ(t) je fundamentálna matica diferenciálnej rovnice ẋ=A(t)x.

Dôkaz.
ẋ(t)=Φ̇(t)Φ−1(t0)x0=A(t)Φ(t)Φ−1(t0)=A(t)x(t), x(t0)=Φ(t0)Φ−1(t0)x0=x0.

VII. Lineárna nehomogénna diferenciálna rovnica v Rn

ẋ=A(t)x+f(t) A(t)=(aij(t)) f(t)=(f1(t), · · · , fn(t))T spojité na R

Veta 7.1. Riešenie začiatočnej úlohy x=A(t)x+f(t), x(t0)=x0 má tvar:

x(t)=Φ(t)Φ−1(t0)x0+Φ(t)
∫ t

t0

Φ−1(s)f(s)ds

Dôkaz. Metóda variácie konštanty:
Hľadáme riešenie v tvare x(t)=Φ(t)c(t), kde c(t) je spojite diferencovateľná.
ẋ(t)=Φ̇(t)c(t)+Φ(t)ċ(t)=A(t) Φ(t)c(t)︸ ︷︷ ︸

x(t)

+f(t). Dostávame rovnicu pre c(t):

A(t)Φ(t)c(t)+Φ(t)c(t)+Φ(t)ċ(t)=A(t) Φ(t)c(t)︸ ︷︷ ︸
x

+f(t)⇔ Φ(t)ċ(t)=f(t)⇔

⇔ c(t)=Φ−1(t)f(t) ⇒ c(t)=
∫ t
t0

Φ−1(s)f(s)ds+K, kde K je konštantný vektor.

Máme: x(t)=Φ(t)c(t)=Φ(t)[K+
∫ t
t0

Φ−1(s)f(s)ds]=Φ(t)K+Φ(t)
∫ t
t0

Φ−1(s)f(s)ds.

x0=Φ(t0)K⇒ K=Φ−1(t0)x0 ⇒ x(t)=Φ(t)Φ−1(t0)x0+Φ(t)
∫ t
t0

Φ−1(s)f(s)ds.
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Príklad 7.1(skúškový!!!).

ẋ=

(
0 1
−1 0

)
x+

(
4
1

)

︸ ︷︷ ︸
f(t)

x(0)=~x0=(2, 1)T

Riešenie: x(t)=
(

cos t sin t
− sin t cos t

)
γ+y(t). Hľadajme partikulárne riešenie v tvare:

y(t)≡α=(α1, α2)T –konštantný. Dosadíme: 0=Aα+f ⇒ α=−A−1f=(1,−4)T.
x0=x(0)=γ+α=γ+(1,−4)T ⇒ γ=x0−(1,−4)T=(2, 1)T−(1,−4)T=(1, 5)T,

x(t)=

(
cos t sin t
− sin t cos t

)(
1
5

)
+

(
1
−4

)

VIII. Lineárna diferenciálna rovnica n-teho rádu

Homogénna: Lnu=0, nehomogénna: Lnu=f(t), kde

Lnu=a0(t)
dnu

dtn
+a1(t)

dn−1u

dtn−1
+ · · ·+an−1(t)

du

dt
+an(t)u

a0(t), a1(t), · · · , an(t), f(t) sú spojité skalárne funkcie na R. Ak a0(t0)=0 pre ne-
jaké t0∈R –singulárna diferenciálna rovnica; ak a0(t) 6=0 pre ∀t∈R tak regulárna
diferenciálna rovnica. Budeme predpokladať, že a0(t)6=0 pre ∀t∈R. Potom bez
ujmy na obecnosti prepokladajme, že a0(t)≡1. Využijeme teóriu lineárnych diferen-
ciálnych rovníc v Rn. Uvažujme diferenciálnu rovnicu Lnu=f(t). Napíšeme diferen-

ciálnu rovnicu ako systém: Ozn. x1=u, x2=u̇=
du

dt
, · · · , xn=

dn−1u

dtn−1
⇒ ẋ1=u̇=x2,

ẋ2=
d2u

dt2
=x3, . . . , ẋn−1=

dn−1u

dtn−1
=xn, ẋn=

dnu

dtn
=−a1

dn−1u

dtn−1
− · · ·−anu+f=

=−a1xn− · · ·−anx1+f .

ẋ=(ẋ1, · · · , ẋn)T=




x2

x3
...
xn

−a1xn−a2xn−1− · · ·−anx1+f




ẋ=




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 an−2 · · · −a1







x1

x2
...

xn−1

xn




+




0
0
...
0
f




=A(t)x+f̂(t)

(1) ẋ=A(t)x+f̂(t)

(2) Lnu=0
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Tvrdenie 8.1.
1. x(t)=(x1(t), · · · , xn(t))T je riešením diferenciálnej rovnice (1) ⇔ x2(t)=ẋ1(t),

x3(t)=
d2x1(t)
dt2

, . . . , xn(t)=
dn−1u

dtn−1
a x1(t) je riešením diferenciálnej rovnice (2).

2. Ak x1(t), x2(t), · · · , xn(t) sú riešenia diferenciálnej rovnice (2)⇒ maticové rieše-
nie diferenciálnej rovnice ẋ=A(t)x je

Φ(t)=




x1(t) · · · xn(t)
dx1(t)
dt

· · · dxn(t)
dt

...
. . .

...
dn−1x1(t)
dtn−1

· · · dn−1xn(t)
dtn−1




Definícia 8.1. W (x1, · · · , xn):= det Φ(t) –Wronského determinant (wronskián).

Riešiť Cauchyho úlohu: ẋ=A(t)x+f̂(t); x(t0)=ξ=




ξ0
...

ξn−1


 je to isté ako riešiť

začiatočnú úlohu Lnu=f(t); u(t0)=ξ0, u̇(t0)=ξ1, ü(t0)=ξ2, . . . , u(n−1)(t0)=ξn−1,

lebo x=




u(t)
u̇(t)

...
u(n−1)(t)


 je riešením diferenciálnej rovnice ẋ=A(t)x+f̂(t) ⇔ u(t) je

riešením diferenciálnej rovnice Lnu=f .

Definícia 8.2. Množina x1(t), · · · , xn(t) lineárne nezávislých riešení diferenciálnej
rovnice Lnu=0 sa nazýva fundamentálny systém.

Veta 8.1. Riešenia x1(t), x2(t), · · · , xn(t) diferenciálnej rovnice Lnu=0 sú lineárne
nezávislé ⇔ ak W (x1, · · · , xn)(t) 6=0 pre ∀t∈R.

Dôkaz.
⇒ : Nech x1(t), · · · , xn(t) sú lineárne nezávislé riešenia, ale W (x1, · · · , xn)(t0)=0

pre nejaké t0∈R. Z Liouvilleovej formuly:

W (x1, · · · , xn)(t)=W (x1, · · · , xn)(t0)·e−
R t
t0
a1(s)ds ⇒W (x1, · · · , xn)(t)≡0⇒

⇒ ∃c1, · · · , cn∈R
∑
c2i 6=0 také, že c1x1(t)+ · · ·+cnxn(t)=0 pre ∀t∈R. Spor s line-

árnou nezávislosťou.
⇐ : Nech W (x1, · · · , xn)(t)6=0 pre ∀t∈R, ale x1(t), · · · , xn(t) sú lineárne závislé.

Potom ∃c1, · · · , cn∈R
∑
c2i 6=0 také, že c1x1(t)+ · · ·+cnxn(t)=0 pre ∀t∈R⇒

⇒ c1ẋ1(t)+ · · ·+cnẋn(t=0, . . . , c1x
(n−1)
1 (t)+ · · ·+cnx(n−1)

n (t)=0 pre ∀t∈R. Ho-
mogénny systém algebraických rovníc pre neznáme c1, · · · , cn. Ak jeho determinant
(=Wronskián) je nenulový ⇒ c1=0, · · · , cn=0 –spor.

Veta 8.2. Nech x1(t), · · · , xn(t) je fundamentálny systém riešení homogénnej difer-
enciálnej rovnice Lnu=u(n)+a1(t)u(n−1)+ · · ·+an−1(t)u̇+an(t)u=0. Potom rieše-
nie x(t) Cauchyho úlohy Lnx=f(t), x(t0)=ξ0, ẋ(t0)=ξ1, · · · ,x(n−1)=ξn−1 má tvar

x(t)=u(t)+
n∑

k=1

xk(t)
∫ t

t0

Wk(x1, · · · , xn)(s)
W (x1, · · · , xn)(s)

f(s)ds
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kde W (x1, · · · , xn) je wronskián riešení x1(t), · · · , xn(t). Wk(x1, · · · , xn)(t) je defi-
nované takto:

W1(x1, · · · , xn)(t)= det




0 x2(t) · · · xn(t)
0 ẋ2(t) · · · ẋn(t)
...

...
. . .

...
0 x

(n−2)
2 (t) · · · x

(n−2)
n

1 x
(n−1)
2 · · · x

(n−1)
n



, · · · ,

Wn(x1, · · · , xn)(t)= det




x1(t) x2(t) · · · 0
ẋ1(t) ẋ2(t) · · · 0

...
...

. . .
...

x
(n−2)
1 x

(n−2)
2 (t) · · · 0

x
(n−1)
1 x

(n−1)
2 · · · 1




u(t) je riešením Cauchyho začiatočnej úlohy Lnu=0, u(t0)=ξ0, . . . u(n−1)(t0)=ξn−1

Dôkaz. ẋ=A(t)x+f̂(t), x1(t), · · · , xn(t) fundamentálny systém pre diferenciálnu
rovnicu Lnu=0. Potom

Φ(t)=




x1(t) · · · xn(t)
ẋ1(t) · · · ẋn(t)

...
. . .

...
x

(n−1)
1 (t) · · · x

(n−1)
n (t)




fundamentálna matica pre ẋ=A(t)x+f̂(t). Nech z(t) je riešenie diferenciálnej rovni-

ce Lnu=0. Potom v(t)=




z(t)
ż(t)

...
z(n−1)(t)


 riešenie začiatočnej úlohy pre systém

v(t)=Φ(t)Φ−1(t0)ξ+Φ(t)
∫ t
t0

Φ−1(s)f(s)ds. Φ(t)=(ϕij)=(x(i−1)
j (t)). Xij-algebra-

ický doplnok.

Φ−1(t)=diag(X11(t), · · · ,Xnn(t)) v(t)=Φ(t)Φ−1(t0)ξ+w(t)

w(t)=[(x(i−1)
j (t))]

∫ t

t0

1
W (x1, · · · , xn)(s)




X11(s) · · · Xn1(s)
...

. . .
...

X1n(s) · · · Xnn







0
...
0

f(s)


 ds=

=




x1(t) · · · xn(t)
ẋ1(t) · · · ẋn(t)

...
. . .

...
x

(n−1)
1 (t) · · · x

(n−1)
n



∫ t

t0

1
W (x1, · · · , xn)(s)




Xn1(s)f(s)
Xn2(s)f(s)

...
Xnn(s)f(s)


 ds⇒

⇒ w(t)=
n∑

k=1

xk(t)
∫ t

t0

Wk(x1, · · · , xn)(s)
W (x1, · · · , xn)(s)

f(s)ds
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Metóda variácie konštánt:

L2u=ü+a1(t)u̇+a2(t)u=f(t) homogénna: ẍ+a1(t)ẋ+a2(t)x=0

Nech x1(t), x2(t) sú riešenia. Všeobecné riešenie homogénnej rovnice:
x(t)=c1x1(t)+c2x2(t) c1, c2∈R. Hľadáme riešenie nehomogénnej diferenciálnej
rovnice v tvare: u(t)=α1(t)x1(t)+α2(t)x2(t), α1(t), α2(t) sú spojite diferencovateľ-
né, zatiaľ neznáme. u̇=α̇1(t)x1+α1(t)ẋ1(t)+α̇2(t)x2(t)+α2(t)ẋ2(t). Zvoľme α1(t),
α2(t) tak, že α̇1(t)x1(t)+α̇2x2(t)=0 pre ∀t∈R. ü=α̇1ẋ1+α2ẍ2+α̇2ẋ2. Za ẍ1 a ẍ2

dosadíme z homogénnej diferenciálnej rovnice:

Lnu=f ⇒ α̇1(t)ẋ1(t)+α̇2(t)ẋ2(t)=f(t)⇒
{
α̇1x1+α̇2x2=0

α̇1ẋ1+α̇2ẋ2=f

α̇1(t)=
1

W (x1, x2)(t)
·
∣∣∣∣

0 x2(t)
f(t) ẋ2(t)

∣∣∣∣=−
x2(t)f(t)

W (x1, x2)(t)

α̇2(t)=
1

W (x1, x2)(t)
·
∣∣∣∣
x1(t) 0
ẋ1(t) f(t)

∣∣∣∣=
x1(t)f(t)

W (x1, x2)(t)

⇒ α1(t)=c1−
∫ t

t0

x2(s)f(s)
W (x1, x2)(s)

ds α2(t)=c2+
∫ t

t0

x1(s)f(s)
W (x1, x2)(s)

ds

u(t)=α1(t)x1(t)+α2(t)x2(t)= c1x1(t)+c2x2(t)︸ ︷︷ ︸
vš. rieš. L2u=0

+

+x1(t)
∫ t

t0

−x2(s)f(s)
W (x1, x2)(s)

ds+x2(t)
∫ t

t0

x1(s)f(s)
W (x1, x2)(s)

ds

Ak by sme mali začiatočnú podmienku u(t0)=ξ0, u̇(t0)=ξ1, tak c1x1(t0)+
+c2x2(t0)=ξ0. Zderivovaním u̇(t) dostaneme: c1ẋ1(t0)+c2ẋ2(t0)=ξ1.

Lineárne diferenciálne rovnice n-teho rádu s konštantnými koeficien-
tami.

(1) Lnu=u(n)+a1u(n−1)+ · · ·+an−1u̇+anu=0 ai∈R resp.C

Poznámka. Pod komplexným riešením diferenciálnej rovnice (1) rozumieme funkcie
u(t)=u1(t)+iu2(t) (s hodnotami v C). u1(t), u2(t) sú reálne riešenia diferenciálnej
rovnice (1).

Platí. Ak ϕ(t)=ϕ1(t)+iϕ2(t) s hodnotami v R, potom Lnϕ=Lnϕ1+iLnϕ2 ⇒
⇒ Lnϕ=0 ⇔ Lnϕ1=0=Lnϕ2 tj. ϕ je komplexným riešením diferenciálnej rovnice
(1)⇔ ak ϕ1, ϕ2 sú reálne riešenia diferenciálnej rovnice (1).

Leibnizova formula. Ak u(t),v(t) sú n-krát diferencovateľné, potom:

(uv)(n)=u(n)v+

(
n

1

)
u(n−1)v̇+

(
n

2

)
u(n−2)v̈+ · · ·+

(
n

n−1

)
u̇v(n−1)+uv(n)
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Definícia 8.3. Polynóm P (λ)=λn+a1λ
n−1+ · · ·+an−1λ+an sa nazýva charakte-

ristický polynóm diferenciálnej rovnice (1).

Z Leibnizovej formuly:

Ln(eλtv(t))=[eλtv(t)](n)+a1(eλtv(t))(n−1)+ · · ·+an−1(eλtv(t))′+aneλtv(t)=

=eλt
[
P (λ)v(t)+

P [1](λ)
1!

v′(t)+ · · ·+P [n−1](λ)
(n−1)!

v(n−1)(t)
P [n](λ)
n!

v(n)(t)

]

kde
div(t)
dti

=v(i)(t) a p[i](λ)=
diP (λ)
dλi

.

L2(eλtv(t))=(eλtv(t))(2)+a1(eλtv(t))(1)+a2(eλtv(t))=

=(eλt)(2)v(t)+2(eλt)′v′(t)+eλtv′′(t)+a1(eλt)′v(t)+a1e
λtv′(t)+a2e

λtv(t)=

=λ2eλtv(t)+2λeλtv′(t)+v′′(t)eλt+a1λe
λtv(t)+a1e

λtv′(t)+a2e
λtv(t)=

=eλt[(λ2+a1λ+a2)v(t)+(2λ+a1)v′(t)+v′′(t)]

Veta 8.3. Nech λ1, λ2, · · · , λs sú navzájom rôzne korene charakteristického poly-
nómu P (λ)=λn+a1λ

n−1+ · · ·+an−1λ+an. Pričom násobnosť koreňa λi je mi.
s∑

i=1

mi=n. Potom fundamentálny systém riešení (vo všeobecnosti komplexných)

diferenciálnej rovnice (1) je:

x1(t)=etλ1 ; x2(t)=tetλ1 , · · · , xm1(t)=tm1−1etλ1

xm1+1(t)=etλ2 ; · · · ;xm1+m2(t)=tm2−1etλ2

...

xm1+···+ms−1+1(t)=etλs ; · · · ;xm1+···+ms(t)=t
ms−1etλs

Dôkaz. Najskôr ukážeme, že ak η je koreň P (λ) násobnosti k, potom sú funkcie eηt,
teηt, . . . , tk−1eηt riešeniami diferenciálnej rovnice (1). Nech 0≤i≤k−1, potom

Ln(tieηt)=eηt


P (η)︸ ︷︷ ︸

=0

·ti+ 1
1!
P [1](η)︸ ︷︷ ︸

=0

(ti)′+ · · ·+ 1
i!
P [i](η)︸ ︷︷ ︸

=0

(ti)(i)+

+
P [i+1](η)

(i+1)!
(ti)(i+1)

︸ ︷︷ ︸
=0

+ · · ·+P [n](η)
n!

(ti)(n)

︸ ︷︷ ︸
=0


=0

Dokážeme, že x1(t), · · · , xn(t) sú lineárne nezávislé. Stačí dokázať, že ich wronskián
W (x1, · · · , xn)(t) 6=0 pre t=0. Nech:

W (x1, x2, · · · , xn)(0)=

∣∣∣∣∣∣∣∣∣

x1(0) · · · xn(0)

x
(1)
1 (0) · · · x

(1)
n (0)

...
. . .

...
x

(n−1)
1 (0) · · · x

(n−1)
n (0)

∣∣∣∣∣∣∣∣∣
=0⇒
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Potom existujú konštanty b0, · · · , bn−1∈R nie všetky nulové také, že
b0xj(0)+b1x

(1)
j (0)+ · · ·+bn−1x

(n−1)
j (0)=0 pre j=1, 2. · · · , n. Definujme

Q(λ):=b0+b1λ+ · · ·+bn−1λ
n−1, degQ=n−1 a polynóm Q(λ) má n koreňov (vrá-

tane ich násobnosti) –spor.
Iný dôkaz: Nech sú x1(t), · · · , xn(t) sú lineárne závislé; potom existujú konštanty
c11, · · · , c1m1−1, c21, · · · , c2m2−1, · · · , cs1, · · · , csms−1 nie všetky nulové také, že

c11e
λ1t+c12te

λ1t+ · · ·+c1m1−1t
m1−1eλ1t+ · · ·+csms−1t

ms−1eλst ⇔
⇔ P1(t)eλ1t+P2(t)eλ2t+ · · ·+Ps(t)eλst=0 degPi(t)=mi−1

Nie všetky Pi sú ≡0. Bez ujmy na obecnosti predpokladajme, že Ps(t)6=0.

P1(t)+P2(t)e(λ2−λ1)t+ · · ·+Ps(t)e(λs−λ1)t≡0

Derivujme m1-krát:

P21(t)e(λ2−λ1)t+ · · ·+Ps1(t)e(λs−λ1)t≡0 degPi1=mi−1

Po s takýchto procedúr dostávame, že Pss(t)e(λs−λ1−···−λs−1)t≡0.
Spor, lebo degPss=ms−1.

Veta 8.4. Nech λ1, · · · , λs sú (1≤s≤n) korene charakteristického polynómu P (λ)
diferenciálnej rovnice (1), λi má násobnosť mi.

∑
mi=n. Nech λ1, · · · , λk sú reálne

a λk+1=αk+1+iβk+1, · · · , λs=αs+iβs sú komplexné. Potom fundamentálny systém
reálnych riešení je: etλi , tetλi , · · · , tmi−1etλi , (i=1, 2, · · · , k), etαj cos(βjt), · · · ,
tmj−1etαj cos(βjt), etαj sin(βjt), · · · , tmj−1etαj sin(βjt), j=k+1, · · · , s+k

2
.

Príklad. n=2 λ=α+iβ, β 6=0, λ̄=α−iβ.
Komplexné riešenia: u(t)=eλt=eαt(cosβt+i sin t), v(t)=eλ̄t=eαt(cosβt−i sinβt),

reálne riešenia: u1(t)=eαt cosβt, u2(t)=eαt sinβt, u1(t)=
u+v

2
, u2(t)=

u−v
2i

.

06=
∣∣∣∣
u v
u′ v′

∣∣∣∣=2

∣∣∣∣∣∣

u+v
2

v

u′+v′

2
v′

∣∣∣∣∣∣
=4i

∣∣∣∣∣∣

u+v
2

u−v
2i

u′+v′

2
u′−v′

2i

∣∣∣∣∣∣
=4i

∣∣∣∣
u1 u2

u′1 u′2

∣∣∣∣

IX. Systémy lineárnych diferenciálnych
rovníc s konštantnými koeficientami

(2)

ẋ1=a11x1+ · · ·+a1nxn
...

ẋn=an1x1+ · · ·+annxn

Označme A=[(aij)]⇒ ẋ=Ax x=



x1
...
xn




Lineárna transformácia: y=t−1x, kde T∈Mnn je regulárna matica. x=x(t) riešenie
ẋ=Ax⇒ y=y(t)=T−1x : ẏ=T−1ẋ=T−1Ax=(T−1AT)y⇒
(3) ẏ=By, kde B:=T−1AT
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Definícia 9.1. Hovoríme, že systémy (2), (3) sú ekvivalentné.

Veta 9.1. Systém ẋ=Ax je ekvivalentný so systémom ẏ=By, kde B=T−1AT je
Jordanova forma matice A tj.

B=J(A)=




D 0

0 S1

. . .
Sk




=diag(D,S1, · · · ,Sk)

kde Sj=



λmj 1 0 · · · 0

0 λmj 1 · · · 0
0 0 · · · λmj 1
0 0 · · · 0 λmj


∈Mmjmj D=




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λm




j=1, 2, · · · , k a m+m1+ · · ·+mk=n. λi sú vlastné hodnoty matice A. Teda systém
ẏ=By má tvar ẏ1=λ1y1, · · · , ẏm=λmym. Výpočet matice T ak A má všetky
vlastné hodnoty navzájom rôzne. V tomto prípade

B=T−1AT=




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


=diag(λ1, · · · , λn)

T=[T1,T2, · · · ,Tn]=? (Ti sú stĺpce). B=T−1AT⇔ TB=AT.
TB=[λ1T1, · · · , λnTn] , AT=[AT1, · · · ,ATn]. Rovnosť AT=TB nastáva práve
vtedy, keď ATi=λiTi pre ∀i. det T 6=0⇒ Ti 6=0 pre ∀i=1, 2, · · · , n.

Tvrdenie 9.1. Pre všetky i=1, 2, · · · , n je Ti vlastný vektor matice A zodpoveda-
júci vlastnému číslu λi.

Riešme Cauchyho úlohu ẋ=Ax, x(t0)=x0.
y=T−1x, B=T−1AT=J(A)=diag(λ1, · · · , λn)⇒ ẋ=By, y(t0)=T−1x0=:y0.

y(t)=eBty0=(I+Bt+
1
2!

(Bt)2+ · · · )y0=

( ∞∑

k=0

(Bt)k
1
k!

)
y0=

=




eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt


y0=diag(eλ1t, · · · , eλnt)y0 ⇒

⇒ x(t)=Ty(t)=TeBtT−1x0

Poznámka. eBt=e(T−1AT)t=T−1eAtT.

Príklad. ẋ=
(

1 −3
4 6

)
x, x0=x(0)=

(
1
2

)
.

Riešenie: Vlastné hodnoty λ1=−2, λ2=−3⇒ vlastné vektory T1,T2, T1=(1, 1)T,
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T2=(3, 4)T ⇒ T=
(

1 3
1 4

)
, T−1=

(
4 −3
−1 1

)
. x(t)=T·diag(e−2t, e−3t)T−1. Hľadáme

riešenie v tvare x(t)=eλtγ, kde λ∈C je parameter a γ je nenulový vektor.

ẋ=λeλtγ=A(eλtγ) (∀t∈R)⇔ eλt[λI−A]γ=0 ∀t⇔ (λI−A)γ=0

tj. algebraická rovnica (λI−A)x=0 má netriviálne riešenie γ. To platí práve vte-
dy, keď P (λ)= det(λI−A)=0 –charakteristická rovnica pre diferenciálnu rovnicu
ẋ=Ax. Teda Aγ=λγ, tj. γ je vlastný vektor patriaci k λ.

Veta 9.2. Nech λ1, · · · , λn sú navzájom rôzne vlastné hodnoty matice A, (λi∈C)
a γi 6=0 je vlastný vektor zodpovedajúci vlastnej hodnote λi, pričom γ1, · · · , γn sú
lineárne nezávislé. Potom fundamentálny systém riešení (vo všeobecnosti kom-
plexných) diferenciálnej rovnice ẋ=Ax je: x1(t)=eλ1tγ1, · · · ,xn(t)=eλntγn.

Dôkaz. Ukázali sme, že x1(t), · · · ,xn(t) sú riešenia. Lineárna nezávislosť je triv-
iálna:

det[eλ1tγ1︸ ︷︷ ︸
stĺpce

, · · · , eλntγn]=e(λ1+···+λn)t det[γ1, · · · , γn] 6=0 ∀t lebo det[γ1, · · · , γn] 6=0

Výpočet reálnych riešení z komplexných
eλtγ -komplexné riešenie. λ=σ+iω, ω 6=0, γ=g+ih, h 6=0. eλtγ=e(σ+iω)t(g+ih)=
=eσt(cosωt+i sinωt)(g+ih)=eσt[(g cosωt−h sinωt)+i(h cosωt+g sinωt)]. Reálne
riešenia: u(t)=<(eλtγ)=eσt(g cosωt−h sinωt); v(t)==(eλtγ)=eσt(h cosωt+
+g sinωt).

Veta 9.3. Nech λ=σ+iω, ω 6=0 je k-násobný koreň charakteristickej rovnice pre
diferenciálnu rovnicu ẋ=Ax, tj. polynóm P (λ)= det(λI−A), pričom k nemu e-
xistuje k lineárne nezávislých vlastných vektorov: ξ1=g1+ih1, · · · , ξk=gk+ihk. Po-
tom množina riešení tvaru u(t)=(a cosωt+b sinωt)eσt, (kde t∈R, a,b sú vektory)
je vektorový podpriestor množiny všetkých riešení dimenzie 2k, pričom jej báza je
u1(t)=(g1 cosωt−h1 sinωt)eσt; · · · ; uk(t)=(gk cosωt−hk sinωt)eσt;
v1(t)=(h1 cosωt+g1 sinωt)eσt; · · · ; vk(t)=(hk cosωt+gk sinωt)eσt.

Dôkaz. u1, · · · ,uk,v1, · · · ,vk sú riešenia to je jasné.
Lineárna nezávislosť: Nech existujú c1, · · · , ck, d1, · · · , dk∈R;

∑
(c2i+d

2
i 6=0):

c1u1(t)+ · · ·+ckuk(t)+d1v1(t)+ · · ·+dkvk(t)=0⇔ (c1g1+ · · ·+ckgk+d1h1+ · · ·+
+dkhk)eσt cosωt−i(c1h1+ · · ·+ckhk−d1g1− · · ·−dkgk)eσt sinωt=0⇔ (c1g1+ · · ·+
+ckgk+d1h1+ · · ·+dkhk)eσt cosωt=0 ∧ (c1h1+ · · ·+ckhk−d1g1− · · ·−dkgk)eσt·
· sinωt=0⇔ t=

π

2ω
∧ t=0⇒ (c1−id1)(g1+ih1︸ ︷︷ ︸

ξ1

)+ · · ·+(ck−idk)(gk+ihk︸ ︷︷ ︸
ξk

)=0.

Spor s lineárnou nezávislosťou ξ1, · · · , ξk.

Riešenie pomocou zovšeobecnených vlastných vektorov:

Definícia 9.2. Vektor v sa nazýva zovšeobecnený vlastný vektor rádu p matice A
prislúchajúci vlastnému číslu λ matice A ak platí: (A−λI)pv=0 a (A−λI)p−1v 6=0.

Označme: v1=(A−λI)p−1v, v2=(A−λI)p−2v, · · · ,vp−1=(A−λI)v, vp=v.
Platí: (A−λI)v1=0, (A−λI)v2=v1, · · · , (A−λI)vp−1=vp−2, (A−λI)vp=vp−1,
kde v1 je vlastný vektor.
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Definícia 9.3. Usporiadanú p-ticu (v1,v2, · · · ,vp) nazývame reťazec zovšeobec-
nených vlastných vektorov rádu (dĺžky) p matice A vytvorený vektorom v;
(A−λI)pv=0; (A−λI)p−1v 6=0.

Veta 9.4. Nech (v1, · · · ,vm) je reťazec zovšeobecnených vlastných vektorov ma-
tice A zodpovedajúce vlastnému číslu λ matice A vytvorený vlastným vektorom
v=v1. Potom vektorové funkcie (vo všeobecnosti komplexné) w1(t)=v1e

λt,

w2(t)=(v2+v1t)eλt, · · · ,wk(t)=(vk+
1
1!

vk−1t+ · · ·+ 1
(k−1)!

v1t
k−1)eλt, · · · ,

wm(t)=

(
m∑

i=1

1
i!

vitm−i
)
eλt sú riešeniami diferenciálnej rovnice ẋ=Ax, ktoré sú

lineárne nezávislé.

Dôkaz. Lineárna nezávislosť v1, · · · ,vm:
m=2: Nech v1,v2 sú lineárne závislé. Potom c1v1+c2v2=0, c1, c2∈R a c21+c22 6=0.
Potom c1 (A−λI)v1︸ ︷︷ ︸

=0

+c2 (A−λI)v2︸ ︷︷ ︸
=v1

=0⇒ c2=0⇒ c1=0 –spor.

m=3: c1v1+c2v2+c3v3=0,
∑
c2i 6=0.

c1 (A−λI)v1︸ ︷︷ ︸
0

+c2 (A−λI)v2︸ ︷︷ ︸
v1

+c3 (A−λI)v3︸ ︷︷ ︸
v2

=0⇒ c2v1+c3v2=0⇔

⇔ c2(A−λI)v1+c3(A−λI)v2=0⇒ c3=0⇒ c2=0⇒ c1=0.
Lineárna nezávislosť funkcií w1(t), · · · ,wm(t) vyplýva z toho, že wi(0)=vi pre ∀i.
Dokážeme, že w1(t), · · · ,wm(t) sú riešenia diferenciálnej rovnice ẋ=Ax.
Platí: ẇ1(t)=λv1e

λt=λw1(t)=Aw1(t), lebo v1 je vlastný vektor.
ẇ2(t)=v1e

λt+(v2+v1t)λeλt ⇒ ẇ2(t)=λw2+w1 atď. ẇm=λwm+wm−1.
Aw2=A[(v2+v1t)eλt]=eλtAv2+eλtAv1t=eλt(λv2+v1)+eλttλv1=λeλtv2+eλtv1+
+λv2te

λt=λ(v2+v1t)eλt+v1e
λt, Aw2=λw2+w1 ⇒ ẇ2=Aw2. Ak wk(t) je kom-

plexné riešenie, tak reálne riešenia sú: xk(t)=<(wk(t)), yk(t)==(wk(t)).

Poznámka. ẋ=Ax, x∈Rn, Φ(t)=eAt=Im+
1
1!

(At)+ · · ·+ 1
k!

(At)k+ · · · .
P (λ)= det(A−λIn)=(−1)n(λn+c1λn−1+ · · ·+cn−1λ+cn)=0. Podľa Cayley-Hamil-
tonovej vety ⇒ An=−c1An−1− · · ·−cn−1A+cn. Potom Ak pre k≥n možno vy-
jadriť ako lineárnu kombináciu matíc I,A,A2, · · · ,An−1, teda existujú funkcie
(s hodnotami v R) b0(t),b1(t), · · · ,bn−1(t) také, že Φ(t)=eAt=b0(t)In+b1(t)A+
+ · · ·+bn−1(t)An−1 ∀t∈R.
1. Nech λ1, · · · , λn sú navzájom rôzne vlastné čísla matice A. TAT−1 = B =
=diag(λ1, · · · , λn). Potom eBt=TeAtT−1=T[b0(t)+ · · ·+bn−1(t)An−1]T−1=
=b0(t)In+ · · ·+bn−1(t) TAn−1T−1︸ ︷︷ ︸

Bn−1

.



eλ1t · · · 0

...
. . .

...
0 · · · eλnt


=

n−1∑

i=0




b0(t)λi1 · · · 0
...

. . .
...

0 · · · bn(t)λin


⇔

⇔ eλit=b0(t)+b1(t)λi+ · · ·+bn−1(t)λn−1
i i=1, 2, · · · , n

systém lineárnych algebraických rovníc o neznámich b0(t), · · · ,bn−1(t). Jeho de-
terminant je Vandermondov determinant a ten je nenulový.
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2. Ak λ je k-násobný koreň charakteristického polynómu. Máme jednu rovnicu:
b0(t)+b1(t)λ+ · · ·+bn−1(t)λn−1=eλt. Derivujme podľa λ:
b1(t)+2b2(t)λ+ · · ·+(n−1)bn−1(t)λn−2=teλt, . . . ,
(k−1)!bk−1(t)+ · · ·+(n−k) · · · (n−1)bn−1(t)·λn−k−1=tk−1eλt.
Ak to urobíme pre každé vlastné číslo matice A, tak dostaneme n rovníc o nezná-
mich b0(t), · · · ,bn−1(t).


